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We propose a minimal theory of non-linear price impact based on the fact that the (latent) order book
is locally linear, as suggested by reaction–diffusion models and general arguments. Our framework
allows one to compute the average price trajectory in the presence of a meta-order that consistently
generalizes previously proposed propagator models. We account for the universally observed square-
root impact law, and predict non-trivial trajectories when trading is interrupted or reversed. We prove
that our framework is free of price manipulation and that prices can be made diffusive (albeit with a
generic short-term mean-reverting contribution). Our model suggests that prices can be decomposed
into a transient ‘mechanical’ impact component and a permanent ‘informational’ component.

Keywords: Market microstructure; Price formation; Market impact model; Reaction–diffusion; Limit
order book; Non-arbitrage

1. Introduction

The study of market impact (i.e. the way trading influences
prices in financial markets) is arguably among the most exciting
current themes in theoretical finance, with many immediate
applications ranging from trading cost modelling to important
regulatory issues. What is the meaning of the market price if
the very fact of buying (or selling) can substantially affect that
price? The questions above would on their own justify a strong
research activity that dates back to the classic Kyle (1985)
paper. But as often in science, it is the empirical discovery of
a genuinely surprising result that explains the recent spree of
activity on the subject (see e.g. Almgren et al. 2005, Tóth et
al. 2011, Farmer et al. 2013, Skachkov 2014, Mastromatteo et
al. 2014a and references therein). In strong contrast with the
predictions of the Kyle model, market impact appears to be
neither linear (in the traded quantity Q) nor permanent, i.e.
time independent (Bouchaud et al. 2008). As now firmly es-
tablished by many independent empirical studies, the average
price change induced by the sequential execution of a total
volume Q (which we call meta-order) appears to follow a sub-
linear, approximate

√
Q law (Torre and Ferrari 1997, Grinold

and Kahn 2000, Almgren et al. 2005, Moro et al. 2009, Tóth et
al. 2011, Bershova and Rakhlin 2013, Brokmann et al. 2014,

∗Corresponding author. Email: jonathan.donier@polytechnique.org

Gomes and Waelbroeck 2015, Mastromatteo et al. 2014a). At
the end of the meta-order, impact is furthermore observed to
decay (partially or completely) towards the unimpacted price
(Bershova and Rakhlin 2013, Brokmann et al. 2014, Donier
and Bonart 2014, Gomes and Waelbroeck 2015).

Quite strikingly, the square-root law appears to be univer-
sal, as it is to a large degree independent of details such as
the type of contract traded (futures, stocks, options or even
Bitcoin, see Donier and Bonart 2014), the geographical posi-
tion of the market venue (US, Europe, Asia), the time period
(1995 → 2014), the maturity of the market (e.g. Bitcoin vs.
S&P500). While the impact of single orders is non universal
and highly sensitive to market microstructure, the impact of
meta-orders appears to be extremely robust against microstruc-
tural changes. For example, the rise of high-frequency trading
(HFT) in the last 10 years seems to have had no effect on
its validity (compare Torre and Ferrari 1997, Almgren et al.
2005 that uses pre-2004 data with Tóth et al. 2011, Gomes and
Waelbroeck 2015, Mastromatteo et al. 2014a that use post-
2007 data). This universality strongly suggests that simple,
‘coarse-grained’models should be able to reproduce the square-
root impact law and other slow market phenomena, while
abstracting away from many microscopic details that govern
order flow and price formation at high frequencies. This line of
reasoning is very similar to many situations in physics, where
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1110 J. Donier et al.

universal large-scale/low-frequency laws appear for systems
with very different microscopic behaviour. A well-known ex-
ample is the behaviour of weakly interacting molecules which
on large length scales can be accurately described by the
Navier–Stokes equation, with a single ‘emergent’ parameter
(the viscosity) that encodes the microscopic specificities of
the system. The Navier–Stokes equation can in fact be de-
rived either from the statistical description of the dynamics of
molecules, through an appropriate coarse-graining procedure,
or from general considerations based on symmetries, conser-
vation laws and dimensional arguments. Along this path, two
pivotal ideas have recently emerged. One is the concept of a
latent order book (Tóth et al. 2011) that contain the intentions
of low-frequency actors at any instant of time, which may
or may not materialize in the observable order book. Indeed,
since the square-root impact is an aggregate, low-frequency
phenomenon, the relevant object to consider cannot be the
‘revealed’ order book, which chiefly reflects the activity of
high-frequency market makers. Simple orders of magnitude
confirm that the latent liquidity is much higher than the re-
vealed liquidity, whereas the total daily volume exchange on
a typical stock is around 1/200th of its market capitalization,
the volume present in the order book at any instant in time
is 1000 times smaller than this. Market makers only act as
small intermediaries between much larger volume imbalances
present in the latent order book that can only get resolved on
large time scales.

The second idea is that the dynamics of the latent order book
can be faithfully modelled by a so-called ‘reaction–diffusion’
model, at least in a region close to the current price where this
dynamics becomes universal, i.e. independent of the detailed
setting of the model—and hence, as emphasized above, of the
detailed microstructure of the market and of its high-frequency
activity. The reaction–diffusion model in one dimension posits
that two types of particles (called B and A) representing in
a financial context the intended orders to buy (bids) and to
sell (ask) diffuse on a line and disappear whenever they meet
A + B → ∅—corresponding to a transaction. The boundary
between the B-rich region and the A-rich region therefore corre-
sponds to the price pt . This highly stylized order book model
was proposed in the late 90s by Bak et al. (1997) (see also
Tang and Tian 1999) but never made it to the limelight because
the resulting price dynamics was found to be strongly mean-
reverting on all time scales, at odds with market prices which,
after a short transient, behave very much like random walks.
However, some of us (Mastromatteo et al. 2014b) recently
realized that the analogue of market impact can be defined and
computed within this framework, and was found to obey the
square-root law exactly.

This opens the door to a fully consistent theoretical model
of non-linear impact in financial markets, which we propose in
the present paper. We show how all the previously discussed
ingredients can be accommodated in a unifying coarse-grained
model for the dynamics of the latent order book that is consis-
tent with price diffusion, with a single emergent parameter—
the market liquidity L, defined below. When fluctuations are
neglected (in a sense that will be specified below), the impact of
a meta-order can be computed exactly, and is found to exhibit
two regimes: when the execution rate is sufficiently slow, the
model becomes identical to the linear propagator framework

proposed in Bouchaud et al. (2004, 2008), with a bare propaga-
tor decaying as the inverse square root of time. When execution
is faster, impact becomes fully non-linear and obeys a non-
trivial, closed form integral equation. In the two regimes, the
impact of a meta-order grows as the square root of the volume,
albeit with a pre-factor that depends on the execution rate in the
slow regime, but becomes independent of it in the fast regime—
as indeed suggested by empirical data. The model predicts
interesting price trajectories when trading is interrupted or
reversed, leading to effects that are observed empirically but
impossible to account for within a linear propagator model. We
demonstrate that prices in our model cannot be manipulated,
in the sense that any sequence of buy and sell orders that
starts and ends with a zero position on markets leads to a non-
positive average profit. This is a non-trivial property of our
modelling strategy, which makes it eligible for practical appli-
cations. Finally, we discuss how our framework suggests a clear
separation between ‘mechanical’ price moves (i.e. induced by
the impact of random trades) and ‘informational’ price moves
(i.e. the impact of any public information that changes the
latent supply/demand). This is a key point that allows us to
treat consistently, within the same model, diffusive prices and
memory of the order book— which otherwise leads to strongly
mean-reverting prices (see the discussion in Tóth et al. 2011,
Taranto et al. 2014, Mastromatteo et al. 2014a). We discuss in
the conclusion some of the many interesting problems that our
modelling strategy leaves open—perhaps most importantly,
how to consistently account for order book fluctuations that are
presumably at the heart of liquidity crises and market crashes.

2. Dynamics of the latent order book

Our starting point is the zero-intelligence model of Smith et al.
(2003), reformulated in the context of the latent order book in
Tóth et al. (2011) and independently in Lehalle et al. (2010).
We assume that each trading (buy/sell) intention of market par-
ticipant is characterized by a reservation price and a volume.†
In the course of time, the dynamics of intentions can be essen-
tially of four types: (a) reassessment of the reservation price,
either up or down; (b) partial or complete cancellation of the
intention of buying/selling; (c) appearance of new intentions,
not previously expressed and finally; (d) matching of an equal
volume of buy/sell intentions, resulting in a transaction at a
price that delimits the buys/sells regions, and removal of these
intentions from the latent order book. It is clear that provided
very weak assumptions are met: (i) the changes in reservation
prices are well behaved (i.e. have a finite first and second
moment) and short-ranged correlated in time; (ii) the volumes
have a finite first moment, one can establish—in the large-
scale, low-frequency, ‘hydrodynamic’ limit—the following set
of partial differential equations for the dynamics of the average
buy (resp. sell) volume densityρB(x, t) (resp.ρA(x, t)) at price
level x:

†In fact, each participant may have a full time-dependent
supply/demand curve with different prices and volumes, with little
change in the effective model derived below.

D
ow

nl
oa

de
d 

by
 [

Jo
na

th
an

 D
on

ie
r]

 a
t 0

2:
24

 0
6 

Ju
ne

 2
01

5 



A fully consistent, minimal model for non-linear market impact 1111

∂ρB(x, t)

∂t
= −Vt

∂ρB(x, t)

∂x

+ D
∂2ρB(x, t)

∂x2
− νρB(x, t)+ λ�(pt − x)

− κRAB(x, t); (1-a)

∂ρA(x, t)

∂t
= −Vt

∂ρA(x, t)

∂x
+ D

∂2ρA(x, t)

∂x2︸ ︷︷ ︸
a- Drift-Diffusion

− νρA(x, t)︸ ︷︷ ︸
b- Cancel.

+ λ�(x − pt )︸ ︷︷ ︸
c- Deposition

− κRAB(x, t)︸ ︷︷ ︸
d- Reaction

; (1-b)

where the different terms in the right-hand sides correspond to
the four mechanisms a–d, on which we elaborate below, and pt

is the coarse-grained position of the price (i.e. averaged over
high-frequency noise), defined from the condition

ρA(pt , t)− ρB(pt , t) = 0. (1)

• a- Drift–Diffusion: The first two terms model the fact
that each agent reassess his/her reservation price x due
to many external influences (news, order flow and price
changes themselves, other technical signals, etc.). One
can therefore expect that price reassessments contain
both a (random) agent specific part that contributes to
the diffusion coefficient† D and a common component
Vt that shifts the entire latent order book. This shift is due
to a collective price reassessment due, for example, to
some publicly available information (that could well be
the past transactions themselves). The drift component
Vt is at this stage very general; one possibility that we
will adopt below is to think of Vt as a white noise, such
that the price pt is a diffusive random walk. Since the
derivation of these first two terms and the assumptions
made are somewhat subtle, we devote appendix 1 to a
more detailed discussion and alternative models; see in
particular equation (30).

• b- Cancellations: The third term corresponds to par-
tial or complete cancellation of the latent order, with
a decay time ν−1 independent of the price level x (but
see previous footnote†). Consistent with the idea of a
common information, cancellation could be correlated
between different agents. However, this does not affect
the evolution of the average densities ρB,A(x, t), while
it might play a crucial role for the fluctuations of the
order book, in particular to explain liquidity crises.

• c- Deposition: The fourth term corresponds to the ap-
pearance of new buy/sell intentions, modelled by a ‘rain
intensity’ λ modulated by an arbitrary increasing func-
tion �(u), expressing that buy orders mostly appear
below the current price pt and sell orders mostly appear
above pt . The detailed shape of�(u) actually turns out
to be, to a large extent, irrelevant for the purpose of the
present paper (see appendix 2 for details); for simplicity,
we will choose below a step function, �(u > 0) = 1
and �(u < 0) = 0.

†In full generality, the diffusion constant D could depend on the
distance |x − pt | to the transaction price. We neglect this possibility
in the present version of the model, for reasons that will become clear
later: see appendix 2. A similar remark applies to the cancellation rate
ν as well.

• d- Reaction: The last term corresponds to transactions
when two orders meet with ‘reaction rate’κ; the quantity
RAB(x, t) is formally the average of the product of the
density of A particles and the density of B particles, i.e.
RAB(x, t) ≈ ρA(x, t)ρB(x, t) + fluctuations. However,
the detailed knowledge of RAB(x, t) will not affect the
following discussion. We will consider in the following
the limit κ → ∞, which corresponds to the case where
latent limit orders close to the transaction price all be-
come instantaneously visible limit orders that are duly
executed against incoming market orders.

Let us insist that equations (1-a,b) only describe the average
shape of the latent order book, i.e. fluctuations coming from
the discrete nature of orders are neglected at this stage: see
figure 1 for an illustration. In particular, the instantaneous
position of the price pinst.

t —where the density of buy/sell orders
vanishes—has an intrinsic non-zero width even in the limit
κ → ∞ (Barkema et al. 1996), corresponding to the average
distance a − b between the highest buy order x = b and the
lowest sell order x = a.‡ The instantaneous price can then be
conventionally be defined as pinst.

t = (a + b)/2, but will in
general not coincide with the coarse-grained price pt defined
by the average shape of the latent order book through equation
(1). Indeed, as shown in Barkema et al. (1996), the diffusion
width (i.e. the typical distance between pinst.

t and pt ) is also
non-zero and actually larger than the intrinsic width, but only
by a logarithmic factor.

In the following, we will neglect both the intrinsic width
and the diffusion width, which is justified if we focus on price
changes much larger than these widths. This is the large-scale,
low-frequency regime where our coarse-grained equations
(1-a,b) are warranted. Formally, equations (1-a,b) become valid
when the market latent liquidity L (defined below) tends to
infinity, since both the intrinsic width and the diffusion width
vanish as L−1/2 (Barkema et al. 1996).

3. Stationary shape of the latent order book

A remarkable feature of equations (1-a,b) is that although the
dynamics of ρA and ρB is non-trivial because of the reaction
term (that requires a control of fluctuations, see Barkema et al.
1996), the combination ϕ(x, t) := ρB(x, t)−ρA(x, t) evolves
according to a linear equation independent of κ§:

∂ϕ(x, t)

∂t
= −Vt

∂ϕ(x, t)

∂x
+ D

∂2ϕ(x, t)

∂x2

− νϕ(x, t)+ λ sign (pt − x) , (2)

where pt is the solution of ϕ(pt , t) = 0. This solution is
expected to be unique for all t > 0 if it is unique at t = 0

‡We indeed assume that latent orders become instantaneously visible
when close to pinst.

t , in such a way that the latent order book and
the observable order book become identical at the best limits. This
is of course needed to identify pinst.

t with the ‘real’ mid-price. It is
very interesting to ask what happens if the conversion speed between
latent orders and real orders is not infinitely fast, or when market
orders become outsized compared to the prevailing liquidity. As we
discuss in the conclusion, this is a potential mechanism for crashes,
and the simple coarse-grained framework discussed here has to be
adapted to deal with these situations.
§The disappearance of κ can be traced to the conservation of #A−#B
for each reaction A + B → ∅.
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1112 J. Donier et al.

Figure 1. Snapshot of a latent order book in the presence of a meta-order, with bid orders (blue boxes) and ask orders (red boxes) sitting on
opposite sides of the price line and subject to a stochastic evolution. The dashed lines show the mean values the order densities ρA,B(x, t),
which are controlled by equations (1).

(see also Lehalle et al. 2010). Note that equation (2), without
the drift–diffusion terms, has recently been obtained as the
hydrodynamic limit of a Poisson order book dynamics in Gao
et al. (2014).

Introducing p̂t = ∫ t
0 ds Vs , the above equation can be rewrit-

ten in the reference frame of the latent order book y = x − p̂t

as†:

∂ϕ(y, t)

∂t
= D

∂2ϕ(y, t)

∂y2
− νϕ(y, t)+ λ sign (pt − p̂t − y) .

(3)
Starting from a symmetric initial condition ϕ(y, t = 0) =
−ϕ(−y, t = 0) such that pt=0 = p̂t=0 = 0, it is clear by
symmetry that the equality pt = p̂t is a solution at all times,
since all terms in the above equation are odd when y → −y.
For more general initial conditions, pt converges to p̂t when
t → ∞ and the stationary solution of equation (3) reads:

ϕst.(y ≤ 0) = λ

ν

[
1 − eγ y] ; ϕst.(y ≥ 0) = −ϕst.(−y),

(4)
with γ 2 = ν/D. This is precisely the solution obtained in
Tóth et al. (2011) which behaves linearly close to the trans-
action price. But as emphasized in Tóth et al. (2011) and in
appendix 2, this linear behaviour in fact holds for a very wide
range of models—for example, if the appearance of new orders
only takes place at some arbitrary boundary y = ±L , as in
Mastromatteo et al. (2014b), or else if the coefficients D, ν are
non-trivial (but sufficiently regular) functions of the distance
to the price |y|, etc.

4. Price dynamics within a locally linear order book
(LLOB)

We will therefore, in the following, ‘zoom’ into the universal
linear region by taking the formal limit γ → 0 with a fixed
current

†One should be careful with the ‘Ito’ term when Vs is a Wiener noise,
which adds a contribution to D, see appendix 1 and equation (31).

J = D|∂yϕst.|y=0 ≡ λ/γ. (5)

This current can be interpreted as the volume transacted per
unit time in the stationary regime, i.e. the total quantity of buy
(or sell) orders that get executed per unit time.As a side remark,
it is important to realize that if the drift Vt contains a Wiener
noise component, or jumps, this drift does in fact contribute
to J and does not merely shift the latent order book around
without any transactions (see appendix 1).

In the limit ν, λ → 0 with λ/γ = J fixed, the stationary
solution ϕst.(y) becomes exactly linear:

ϕst.(y) = −J y/D. (6)

This is the regime we will explore in the present paper, although
we will comment below on the expected modifications induced
by non-zero values of ν, λ. Note that L = J/D ≡ λ

√
D/ν

can be interpreted as the latent liquidity of the market, which is
large when deposition of latent orders is intense (λ large) and/or
when latent orders have a long lifetime (ν small). The quantity
L−1 is the analogue, within a LLOB, of Kyle’s ‘lambda’ for a
flat order book.

In terms of order of magnitudes, it is reasonable to expect
that the latent order book has a memory time ν−1 of several
hours to several days (Tóth et al. 2011)—remember that we
are speaking here of slow actors, not of market makers con-
tributing to the high-frequency dynamics of the revealed order
book. Taking D to be of the order of the price volatility, the
width of the linear region γ−1 is found to be of the order of
1% of the price (see equation (4)). Therefore, we expect that
restricting the analysis to the linear region of the order book
will be justified for meta-orders lasting up to several hours, and
impacting the price by less than a fraction of a per cent. For
larger impacts and/or longer execution times, a more elaborate
(and probably less universal) description may be needed.

We now introduce a ‘meta-order’ within our framework and
work out in detail its impact on the price. Working in the
reference frame of the unimpacted price p̂t defined above, we
model a meta-order as an extra current of buy (or sell) orders
that fall exactly on the transaction price pt . Introducing yt ≡
pt − p̂t , the corresponding equation for the latent order book
reads, within a LLOB that precisely holds when ν, λ → 0:
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A fully consistent, minimal model for non-linear market impact 1113⎧⎨⎩
∂ϕ(y, t)

∂t = D ∂2ϕ(y,t)
∂y2 + mtδ(y − yt )

∂ϕ(y → ±∞, t)
∂y = −L,

(7)

where mt is the (signed) trading intensity at time t; mt > 0
corresponding to a buy meta-order. Note that the meta-order
will be assumed to be small enough not to change the behaviour
of the rest of the market (i.e. the parameters D, ν and λ), so
that L is a fixed parameter in the above equation. Of course,
this assumption might break down when the meta-order is out-
sized, leading to a sudden increase of the cancellation rate ν
and a corresponding drop of the liquidity L, which might in
turn result in a crash (see the discussion in the conclusion).

We will now consider a meta-order that starts at a random
time that we choose as t = 0, with no information on the state
of the latent order book. This means that at t = 0, there is no
conditioning on the state of the order book that can be described
by its stationary shape, ϕst.(y) = −J y/D. For t > 0, the latent
order book is then given by the following exact formula:

ϕ(y, t) = −Ly +
∫ t

0

ds ms√
4πD(t − s)

e− (y−ys )2

4D(t−s) , (8)

where ys is the transaction price (in the reference frame of
the book) at time s, defined as ϕ(ys, s) ≡ 0. This leads to a
self-consistent integral equation for the price at time t > 0:

yt = 1

L
∫ t

0

ds ms√
4πD(t − s)

e− (yt −ys )2

4D(t−s) . (9)

This is the central equation of the present paper, which we
investigate in more detail in the next sections.†

As a first general remark, let us note that provided impact is
small, in the sense that ∀t, s, |ys − yt |2 � D(t − s), then the
above formula exactly boils down to the linear propagator
model proposed in Bouchaud et al. (2004, 2008) (see also
Gatheral 2010), with a square-root decay of impact:

yt = 1

L
∫ t

0

ds ms√
4πD(t − s)

. (10)

This linear approximation is therefore valid for very small
trading rates ms , but breaks down for more aggressive ex-
ecutions, for which a more precise analysis is needed. An
ad-hoc non-linear generalization of the propagator model was
suggested by Gatheral (2010), but is difficult to justify theoreti-
cally (and leads to highly singular optimal trading schedules in
the continuous time limit, see Curato et al. 2015). We believe
that equation (9) above is the correct way to generalize the
propagator model, such that all known empirical results can be
qualitatively accounted for.

Note that one can in fact define a volume-dependent ‘bid’
(or ‘ask’) price y±

t (q) for a given volume q as the solution of:∫ yt

yt− (q)
dy ϕ(y, t) = −

∫ yt+ (q)

yt

dy ϕ(y, t) = q. (11)

Clearly, in the equilibrium state, and for q small enough, y±
t (q)

= yt ± √
2q/L. After a buy meta-order, however, we will find

that strong asymmetries can appear.

†When ms has a non-trivial time dependence, the above equation
may not be easy to deal with numerically. It can be more convenient
to iterate numerically the equation (7) and find the solution of
ϕ(yt , t) = 0.

5. The square-root impact of meta-orders

The simplest case where a fully non-linear analysis is possible
is that of a meta-order of size Q executed at a constant rate
m0 = Q/T for t ∈ [0, T ]. In this case, it is straightforward to
check that ys = A

√
Ds is an exact solution of equation (9),

where the constant A is the solution of the following equation:

A = m0

J

∫ 1

0

du√
4π(1 − u)

e
− A2(1−√

u)
4(1+√

u) . (12)

It is easy to work out the asymptotic behaviour of A in the
two limits m0 � J and m0 � J . In the first case, one finds
A ≈ m0/J

√
π , while in the second case, A ≈ √

2m0/J . The
impact I of a meta-order of size Q is defined as:‡

I(Q) = 〈ε · (pt+T − pt )|Q〉, (13)

where 〈. . . |Q〉 denotes an average over all meta-orders of sign
ε and volume Q, executed over the time interval [t, t + T ].

We assume for now that the meta-order is uninformed, in
the following sense:

〈ε · ( p̂t+T − p̂t )|Q〉 = 0, (14)

such that the only contribution is the ‘mechanical’ impact on
the dynamics of yt . The case of informed meta-orders will be
treated in section IX. The mechanical impact at the end of the
meta-order is then given by yT = A

√
DT , i.e. §:

I(Q) = A√
m0

√
DQ ≈

√
m0

Jπ
×
√

Q

L (m0 � J );

I(Q) ≈
√

2
Q

L (m0 � J ), (15)

i.e. precisely a square-root impact law.
In fact, the empirical result is often written as I(Q) =

Yσ
√

Q/V where σ is the daily volatility and V ≡ J Td =
DLTd the daily traded volume (Td ≡ 1 day) and Y a constant
of order unity. Assuming that σ 2 ∝ DTd (which is the case
if D0 = 0, see appendix 1), we see that equation (15) exactly
reproduces the empirical result, with Y proportional to

√
m0/J

for small trading intensity m0 and becoming independent of
m0 for larger trading intensity—see figure 2.¶ CFM’s empir-
ical data indeed suggest that Y only very weakly depends on
the trading intensity, which is nicely explained by the present
framework.

6. Impact decay: beyond the propagator model

The next interesting question is impact relaxation: how does
the price behave after the meta-order has been executed, i.e.
when t > T . Mathematically, the impact decay is given by the
solution of:

‡Note that I(Q) is a slight abuse of notations since the impact in fact
depends in general in the whole trajectory ms .
§The results in the two limits are (up to prefactors) those obtained
in Mastromatteo et al. (2014b) within an explicit reaction–diffusion
setting.
¶Note that in agreement with our interpretation of the latent order
book, the quantity JT must be interpreted as the volume of ‘slow’
orders executed in a time T, removing all fast intra-day activity that
averages out and therefore cannot withstand (other than temporarily)
the incoming meta-order.
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1114 J. Donier et al.

Figure 2. Left: Dependence of the ratio A/
√

m0/J upon the trading rate parameter m0/J . (This ratio coincides with the empirically used
Y ratio if σ 2 is identified with D and V with J ). The curve interpolates between a

√
m0/J dependence observed at small trading trading

rates and an asymptotically constant regime ≈ √
2 for large m0/J . This is consistent with the weak dependence of Y upon the trading rate

observed in CFM empirical data. Right: Dependence of the impact I(Q) on Q for a fixed execution time T—i.e. a variable m0 = Q/T . Note
the crossover between a linear behaviour at small Q and a square-root behaviour for large Q.

Figure 3. Impact I(Q, t) as a function of rescaled time for various
trading rate parameters m0/J . The initial growth of the impact follows
exactly a square-root law, and is followed by a regime shift suddenly
after end of the meta-order. While for t = T +, the slope of the
impact function becomes infinite, at large times, one observes an
inverse square relaxation ∼ √

T/t with an m0/J -dependent pre-
factor. Note that the curves for m0/J = 0.1 and m0/J = 1 are
nearly indistinguishable.

yt = Dm0

J

∫ T

0

ds√
4πD(t − s)

e− (yt −A
√

Ds)2

4D(t−s) , (t > T )

(16)
In the small m0/J limit, the linear propagation model is ap-
propriate and predicts the following impact relaxation:

I(Q, t > T )

I(Q) =
√

t − √
t − T√

T
, (17)

that behaves as 1 − √
(t − T )/T very shortly after the end of

the meta-order and as
√

T/t/2 at long times.

Figure 4. Evolution in time of the bid p−
t (q) (blue line) and the

ask p+
t (q) (red line) while executing a meta-order at a rate m0/J ∈

{1, 10, 100}. The price pt (green line) is also shown for comparison.
The three curves correspond to the execution of a constant volume
Q = m0T , while the threshold q has been set by q = 10−3 Q. The
plot illustrates how a large execution rate m0/J induces a locally
asymmetric liquidity profile around the price, see also figure 5.

The analysis of equation (16) at large m0/J is more subtle, in
particular at short times. The full analysis is given in appendix
3 and reveals that the rescaled initial decay of impact is, quite
unexpectedly, still exactly given by equation (17), indepen-
dently of m0/J . For large times, yt → 0, which implies that
asymptotically |yt − A

√
Ds| � √

Dt , i.e. the exponential term
in equation (16) is approximately equal to one, leading to an
asymptotic rescaled impact decay as

√
m0T/2π J t/4. We plot

in equation 3 the normalized free decay of impact for different
values of m0/J for the ‘mid-price’ pt , and in figure 4, the
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A fully consistent, minimal model for non-linear market impact 1115

Figure 5. Evolution of the order book shape ϕ(x, t) during the execution of a meta-order at small trading rate m0/J = 1 (left plot) and large
trading rate m0/J = 10 (right plot). The solid lines indicate the profile of the book at t = 0.01 (green line), t = 0.1 (red line) and t = 1 (blue
line). While the displacement of the mid-price follows a square root law, the function Dϕ(x, t)/J + x satisfies a scaling relation determined
by the parameter m0/J—see also appendix 3 and figure C1.

corresponding evolution of the effective ‘bid-ask’ p±
t (q) for a

given volume q, illustrating how the latent order book becomes
more and more asymmetric as m0/J increases.

The above analysis can be extended to the case where trading
is reverted after time T , i.e. mt = m0 for t ∈ [0, T ] and
mt = −m0 for t ∈ [T, 2T ]. This case is particularly interesting
since it puts the emphasis on the lack of liquidity behind the
price for large execution rates. Within the linear propagator
approximation, it is easy to show that the time needed for the
price to come back to its initial value (before continuing to be
pushed down by the sell meta-order) is given by T/4. In the
non-linear regime m0 � J , the price goes down much faster,
and reaches its initial value after a time given by J T/2m0 �
T/4—see figures 5 and 6. Such an asymmetry is indeed seen
empirically (Benichou 2013), and means that such a simple
round trip is necessary costly, since the average sell price is
below the average buy price. We shall see below that this
property (called absence of price manipulation in Huberman
and Stanzl (2004), Alfonsi and Schied (2010)) holds in full
generality within our framework.

7. Price trajectory at large trading intensities

Our general price equation (9) is amenable to an exact treatment
in the large trading intensity limit mt � J , provided mt does
not change sign and is a sufficiently regular function of time. In
such a case, the change of price is large and therefore justifies a
saddle-point estimate of the integral appearing in equation (9).
This leads to the following asymptotic equation of motion:

Lyt |ẏt | ≈ mt

[
1 + D

(
3

ÿt

ẏ3
t

− 2
ṁt

mt ẏ2
t

)
+ O

(
J 2

m2

)]
;
(18)

see appendix 4 for details of the derivation and for the next
order term, of order J 2/m2.

When mt keeps a constant sign (say positive), the leading
term of the above expansion therefore yields the following
average impact trajectory:

yt ≈
√

2

L
∫ t

0
ds ms, (19)

i.e. a price impact that only depends on the total traded volume,
but not on the execution schedule. This is a stronger result
than the one obtained above, where impact was found to be
independent of the trading intensity for a uniform execution
scheme. This path independence is in qualitative agreement
with empirical results obtained at CFM. Using equation (18),
systematic corrections to the above trajectory can be computed
(see appendix 4). Perhaps surprisingly, the execution cost of
a given quantity Q is found to be independent of the trading
schedule even to first order in J/m – see appendix 4 for a proof.
Exploring the optimal execution schedule within the full non-
linear price equation (9), and comparing the results with those
obtained in Curato et al. (2015), is left for a future study.

8. Absence of price manipulation

We now turn to a very important issue, that of price manip-
ulation. Although not proven to be impossible in reality, it
looks highly implausible that one will ever be able to build
a money machine that ‘mechanically’ pumps money out of
markets. Any viable model of price impact should therefore be
such that mechanical price manipulation, leading to a positive
profit after a closed trading loop, is impossible in the absence of
information about future prices (Huberman and Stanzl 2004).†
Here, we show that the non-linear price impact model defined
by equation (9) is free of price manipulation, generalizing the
result of Alfonsi and Schied (2010) for the linear propagator
model (see also Alfonsi and Blanc 2014). We start by noticing
that the average cost of a closed trajectory is given by:

C =
∫ T

0
ds ms ys, with

∫ T

0
ds ms = 0 (20)

†Note that property is highly important for practical purposes as well,
since using an impact model with profitable closed trading trajectories
in—say—dynamical portfolio algorithms would lead to instabilities.
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1116 J. Donier et al.

Figure 6. Trajectory of the average price before and after a sudden
switch of the sign of a meta-order. We have considered mt = m0
for t < T and mt = −m0 for t > T , and plotted the expected
price change as a function of time for different values of m0. The
curves for finite m0 (solid lines) are also compared with the theoretical
benchmark m0 = 0, corresponding to the propagator model (dotted
line), and to the m0 = ∞ limit (dot-dashed line). We find that non-
linear effects in the large m0 regime make propagator approximation
invalid, and increase considerably the impact of the reversal trade.

and ys given by equation (9). The above formula simply means
that the executed quantity msds between time s and s +ds is at
price ys .† Because the initial and final positions are assumed
to be zero, there is no additional marked-to-market boundary
term. Using equation (9), it is not difficult to show that C can
be identically rewritten as a quadratic form:

C = 1

2

∫ T

0

∫ T

0
dsds′ ms M(s, s′)ms′ , (21)

where M(s, s′) is a non-negative operator, since it can be
written as a sum of ‘squares’ K K †, or more precisely:

M(s, s′) = D

L
∫ ∞

−∞
dz z2

∫ +∞

−∞
du Kz(s, u)K ∗

z (s
′, u),

Kz(s, u) ≡ �(s − u)e−Dz2(s−u)+i zys . (22)

This therefore proves that C ≥ 0 for any execution
schedule, i.e. price manipulation is impossible within a LLOB
(see Skachkov 2014 for loosely related ideas). We note, en pas-
sant, that this proof extends to a much larger class of
Markovian order book dynamics, where the reservation price
of latent orders evolves, for example, according to a Lévy pro-
cess (and not necessarily a diffusion, as assumed heretofore—
see appendix 1).

†The alert reader might wonder whether ms is really the executed
quantity, rather than the submitted quantity, as the definition of ms
as a flux of buy/sell orders suggest. However, within the present
framework where ms is deposited precisely at the mid-price pt , one
can check that in the limit κ → ∞, and provided latent and real
liquidity are the same close to pt , the opposite flow of limit orders
immediately adapts to absorb exactly the incoming meta-order.

9. Mechanical vs. informational impact

We now imagine that the agent executing his/her meta-order
has some information about the future price, i.e. that the ex-
ecution flow mt is correlated with the future motion of the
latent order book Vt ′ for t ′ > t . The apparent impact of the
meta-order will now contain two contributions that are, within
our framework, additive. Assuming again, for simplicity, that
mt = m0, one finds that the average price difference can be
written as:

〈ε ·(pt − p0)|Q〉 = 〈ε ·( p̂t − p̂0)|Q〉+〈ε ·(yt − y0)|Q〉, (23)

where now the first term is non-zero. More explicitly, this leads
to:

〈pt −p0〉 = m0

∫ t

0
ds
∫ s

0
ds′C(s−s′)+A(m0)

√
Dt, (t ≤ T )

(24)
where C(s − s′) ∝ 〈Vsms′ 〉 is a measure of the temporal
correlation between meta-orders and future collective latent
order moves. Let us insist that we do not assume any causality
here: C(s − s′) can be interpreted either as the information
content of the order that predicts future price moves (i.e. the
so-called ‘alpha’) or as the collective reaction of the market
to the order flow, i.e. the fact that agents may change their
valuation as a result of the trading itself (see Bouchaud et al.
2008, Bouchaud 2010 for a discussion of this duality).

The second term in the right-hand side of equation (24)
corresponds to the ‘mechanical’ component of the impact dis-
cussed above, corresponding to the square-root impact. The
first term, on the other hand, may behave very differently as
a function of T. For example, if C(s − s′) has a range much
smaller than T, the first term is expected to grow like Q and
not

√
Q.

When t > T , i.e. after the end of the meta-order, the in-
formational contribution adds to the impact decay computed
above and can substantially change the apparent evolution of
〈pt − p0〉. In order to fix ideas, let us assume that C(s − s′)
= �ζe−ζ(s−s′) (other functional forms would not change the
qualitative conclusions below). The behaviour of the ‘total’
impact for t > T is then given by:

Itot.(Q, t > T ) = I(Q, t > T )+ �Q

− m0�

ζ
(1 − e−ζT )e−ζ(t−T ) −→

t→∞ �Q,

(25)

which shows that on top of the relaxing mechanical impact
(the first term), there is a growing contribution coming from
the informational content of the trade (or alternatively from the
collective reaction of the market to that trade) that saturates at
large time to a finite value proportional to Q—see figure 7.
This corresponds to a ‘permanent’ component of impact. That
the permanent component of impact should be linear in Q
conforms well with the assumptions of Almgren et al. (2005),
Kyle (1985). However, our calculation shows that the empir-
ical determination of the mechanical component of impact
should carefully take into account any possible information
content of the analysed trades, as well as the possible auto-
correlation of the trades. This parallels the discussion offered in
Brokmann et al. (2014), Gomes and Waelbroeck (2015), where
attempts are made to measure the decay of mechanical impact
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A fully consistent, minimal model for non-linear market impact 1117

Figure 7. The figure illustrates the relative rôles of mechanical and
informational impact in determining the price trajectory during and
after the execution of a meta-order. We have chosen in particular the
set of parameters D = J = ζ = m = T = 1 and � = 0.1. The figure
indicates that the mechanical part of the impact is the dominating
effect at small times. The permanent, informational component of the
impact becomes relevant only after the slow decay of the mechanical
component, as shown the inset. From a theoretical point of view, the
permanent component is important since it counterbalances potential
market making/mean-reversion profits coming from the confining
effect of the latent order book on the price.

I(Q, t > T ) in equity markets, with the conclusion that the
mechanical component of impact seems indeed to relax to zero
at large times.

The possibility of generating a permanent impact by corre-
lating the collective drift Vt with the flow of meta-orders ms

is in fact important to make our model internally consistent.
If the permanent impact component is absent, a random flow
of meta-orders would give rise to a strongly mean-reverting
contribution to the price (on top of the random walk contribu-
tion p̂t = ∫ t

0 ds Vs), and therefore potentially profitable mean-
reversion/market making strategies. This profit can however be
reduced to zero by increasing the permanent impact component
(i.e. the � factor above) that acts as an adverse selection bias
for market makers. On this point, see the discussion in Wyart
et al. (2008).

10. Possible extensions and open problems

The LLOB framework presented above is surprisingly rich and
accounts for many empirical observations, but it can only be a
first approximation of a more complex reality. First, we have
neglected effects that are in principle contained in equations
(1-a,b) but that disappear in the limit of slow latent order books
νT � 1 (such that the memory time 1/ν is much longer than
the meta-order) and large liquidity L, such that the meta-order
only probes the linear region of the book. Reintegrating these
effects perturbatively is not difficult; for example, one finds
that the impact I(Q) of a meta-order of size Q, executed at a
constant rate, is lowered by a quantity proportional to νT when

νT � 1. In the opposite limit νT � 1, one expects that I(Q)
becomes linear in Q, since impact must become additive in that
limit (see Tóth et al. 2011).Any other large-scale regularization
of the model will lead to the same conclusion. One also expects
that the deposition, with rate λ, of new orders behind the
moving price should reduce the asymmetry of impact when
the trade is reversed. We leave a more detailed calculation of
these effects for later investigations.

Another important line of research is to understand the cor-
rections to the LLOB induced by fluctuations that are of two
types: first, as discussed in section 2, the theory presented here
only deals with the average order book ϕ(x, t), from which
the price pt is deduced using the definition ϕ(pt , t) = 0,
that allowed us to compute the average impact of a meta-
order. However, one should rather compute the impact from
the instantaneous definition of the price pinst.

t (that takes into
account the fluctuations of the order book) and then take an
average that would lead to I(Q). The numerical simulations
shown in Mastromatteo et al. (2014b) suggest however that
the approximation used here is quite accurate for long meta-
orders, which is indeed expected as the difference |pinst.

t − pt |
becomes small compared to I(Q).

Second, we have assumed that the rest of the market is
in its stationary state and does not contribute to the source
term modelling the meta-order. One should rather posit that
the flow of meta-order ms has a random component that adds
to the particular meta-order that one is particularly interested
in. There again, a calculation based on the average order book
is not sufficient, since the interaction with other uncorrelated
meta-orders then trivially disappears. Following Barkema et al.
(1996), one finds that random fluctuations in ms do contribute
to a strongly mean-reverting term in the variogram of the price
trajectory that should be taken into account in a consistent way.
Interestingly, this generic mean-reverting component leads to
an excess short-term volatility that is commonly observed in
financial markets; more quantitative work on that front would
therefore be worthwhile.

Finally, other extensions/modifications may be important in
practice: as noted above, the cancellation rate ν is expected
to increase with the intensity of meta-orders. Furthermore, the
incoming flow of latent orders λ and/or the lifetime of orders
1/ν can be expected to be increasing functions of the distance to
the price |x− pt |, i.e. better prices should attract more and more
patient buyers (or sellers), in such a way that the latent order
book becomes convex at large distances. This would naturally
explain why all impact data known to us appear to grow even
slower t han

√
Q at large Q (Bacry et al. 2014, Zarinelli et al.

2014, and CFM, unpublished data). Another interesting path
would be to allow the ‘drift’ term Vt in equation (1-a,b) to
become non-Gaussian and thereby study a cumulant expansion
of the square-root law.

11. Conclusion

In this paper, we have proposed a minimal theory of non-linear
price impact based on a linear (latent) order book approx-
imation, inspired by reaction–diffusion models and general
arguments. As emphasized in Tóth et al. (2011), Mastromatteo
et al. (2014a, 2014b), our modelling strategy does not rely
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1118 J. Donier et al.

on any equilibrium or fair-pricing conditions, but rather relies
on purely statistical considerations. Our approach is strongly
bolstered by the universality of the square-root impact law,
in particular on the Bitcoin market—as recently documented
in Donier and Bonart (2014)—where fair-pricing arguments
are clearly unwarranted because impact is much smaller than
trading fees.

Our framework allows us to compute the average price tra-
jectory in the presence of a meta-order, that consistently gen-
eralizes previously proposed propagator models. Our central
result is the dynamical equation (9), which not only repro-
duces the universally observed square-root impact law, but also
predicts non-trivial trajectories when trading is interrupted or
reversed. Quite surprisingly, we find that the short-time be-
haviour of the free decay of impact is identical to that predicted
by a propagator model, whereas the impact of a reversed trade
is found to be much stronger. The latter result is in qualitative
agreement with empirical observations (Benichou 2013). We
have shown that our model is free of price manipulation, which
makes it the first consistent, non-linear and time-dependent
theory of impact. Our setting also suggests how prices can
be naturally decomposed into a transient ‘mechanical impact’
component and a permanent ‘informational’component, as ini-
tially proposed byAlmgren et al. (2005), and recently exploited
in Brokmann et al. (2014), Gomes and Waelbroeck (2015)—
see section 9. Let us insist once again that this decomposition
allowed us to construct diffusive prices (albeit with a generic
short-term mean-reverting contribution).†

Although our calculations are based on several approxima-
tions (restricting to a locally linear order book and neglecting
fluctuations), we believe that it provides a sound starting point
for further extensions where the neglected effects can be pro-
gressively reinstalled. Of particular importance is the potential
feedback loop between price moves, order flow and the shape
of the latent and of the revealed order books. In particular, we
have assumed that latent orders instantaneously materialize in
the real order book as the distance to the price gets small: any
finite conversion time might however contribute to liquidity
droughts, in particular when prices accelerate, leading to an
unstable feedback loop. As emphasized in Bouchaud (2011),
Lillo and Farmer (2005), Tóth et al. (2011), this might be
triggered by the anomalous liquidity fluctuations induced by
the vanishingly small liquidity in the vicinity of the price. This
mechanism could explain the universal power-law distribution
of returns that appear to be unrelated to exogenous news but
rather to unavoidable, self-induced liquidity crises.
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Appendix 1. Derivation of the drift/diffusion term.

In order to give more flesh to the microscopic assumptions underlying
the drift/diffusion equation written in equations (1-a,b), let us assume
first that each agent contributes to a negligible fraction of the latent
order book, which is probably a good approximation for deep liquid
markets.Amodel for thin markets, where some participants contribute
to a substantial fraction of the liquidity, is discussed below, but leads
to a very similar final result.

Between t and t + δt , each agent i revises its reservation price
pi to pi + βi ξt + ηi,t , where ξt is common to all i representing
some public information (news, but also the price change itself or
the order flow, etc.) and βi > 0 is the sensitivity of agent i to
the news, which we imagine to be a random variable from agent
to agent, with a pdf �(β) mean normalized to [βi ]i = 1. ([. . .]i
represents a cross-sectional average over agents.) Some agents may
overreact, others underreact; βi might in fact be itself time dependent,
but we assume that the distribution ofβ’s is stationary. The completely
idiosyncratic contribution ηi,t is an independent random variable both
across different agents and in time, with distribution R(η) of mean
zero and rms �. We assume that within each price interval x, x + dx
lie latent orders from a large number of agents. The density of latent
orders ρ(x, t) therefore evolves according to the following Master

equation:

ρ(x, t + δt)

=
∫ ∞

0
dβ�(β)

∫ ∞
−∞

dηR(η)
∫

dyρ(y, t)δ(x − y − βξt − η),

(26)
or:

ρ(x, t + δt) =
∫ ∞

0
dβ�(β)

∫ ∞
−∞

dηR(η)ρ(x − βξt − η, t). (27)

Assuming that the price revisions βξt +η over a small time interval δt
are small enough, a second-order expansion Kramers–Moyal of the
above equation leads to (see Gardiner 2009 for an in-depth discussion
of this procedure):

ρ(x, t+δt)−ρ(x, t) = −ξtρ′(x, t)+ 1

2

(
[β2]ξ2

t +�2
)
ρ′′(x, t)+. . .

(28)
At this stage, one can either assume that formally ξt = Vt δt and
�2 = 2D0δt in which case the continuous time limit reads:

∂ρ(x, t)

∂t
= −Vt

∂ρ(x, t)

∂x
+ D0

∂2ρ(x, t)

∂x2
(29)

or that ξt = Vt
√
δt , where Vt is now a Gaussian white noise of

variance σ 2, and again �2 = 2Dδt , in which case, the continuous
time limit should be written as:

dρ(x, t) = −dWt
∂ρ(x, t)

∂x
+ D1dt

∂2ρ(x, t)

∂x2
(30)

with dWt a Wiener noise and D1 ≡ D0 + [β2]σ 2/2, to wit, the
diffusion constant involves both the idiosyncratic component and the
dispersion of reaction to random information. This is the interpreta-
tion we will mostly follow in the present paper. A careful derivation
of the corresponding equation in the reference frame of the price
p̂t = ∫ t

0 dWs finally gives the diffusion part of equation (3) in the
main text:

∂ρ(y, t)

∂t
= D

∂2ρ(y, t)

∂y2
; D ≡ D0 + σ 2

2

∫
dβ�(β)(β − 1)2;

(31)
i.e. only the dispersion of reaction β−1 can contribute to the diffusion
term, as expected.

Another interpretation of this last equation is to imagine that be-
tween t and t + dt , a fraction φ ∈ [0, 1] (possibly time dependent) of
agents change their price estimate by an amount dWt , with no other
idiosyncratic component. This leads to:

dρ(x, t) = φ [ρ(x − dWt , t)− ρ(x, t)]

= −φdWtρ
′(x, t)+ 1

2
φσ 2dtρ′′(x, t), (32)

that essentially corresponds to the case above with �(β) =
(1−φ)δ(β)+φδ(β−1). In the price reference frame p̂t = ∫ t

0 φdWs ,
one finds equation (31) with D ≡ φ(1 − φ)σ 2/2. Note that, clearly,
these price revisions must by themselves induce transactions
whenever 0 < φ < 1.

Interestingly, this last derivation may also be interpreted as the
order book dynamics with macroscopic agents: The fraction φ intro-
duced above would then correspond to the relative size of the agent
with respect to the market. We notice that in this case, there is no need
for synchronization between agents via the common component ξt ,
since single agents may have non-negligible effects on the order book
and on the price. More generally, a drift component will be obtained
as soon as a non-negligible fraction of the latent volume moves in the
same direction, and a diffusion-style component will be obtained as
soon as these moves are heterogeneous among agents.

If price revisions cannot be considered as small, the resulting
evolution of ρ(x, t) should include jumps in the continuous time
limit, i.e. one would find an integro-differential equation rather than a
partial differential equation for ρ(x, t). However, if the jump process
is homogeneous in space, one can diagonalize the evolution operator
in Fourier space. This allows one to show that price manipulation is
impossible in that case as well.
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Appendix 2. A generically linear latent order book.

Let us consider the case where the deposition flow is not constant.
This leads to the following equation for the stationary state of the
latent order book:

D
∂2ϕst.(y)

∂y2
− νϕst.(y)+ λ (�(y)−�(−y)) = 0, (33)

with ϕst.(y) = −ϕst.(−y) (and in particular, the market clearing
condition ϕst.(y = 0) = 0).

Let us assume that �(y) − �(−y) behaves, for y → ∞, as a
constant that we can set to unity. The solution ϕst.(y) then converges
to λ/ν for large y, so we set:

ϕst.(y) = λ

ν
+�(y), (34)

where �(y) = 1 −�(y)+�(−y) with �(y → ∞) → 0, and:

D
∂2�(y)

∂y2
− ν�(y) = λ�(y), (35)

where �(y → ∞) → 0. The boundary condition on �(y) at large y
means that we can look at a solution of the form:

�(y) = ψ(y)e−√
ν/D y , (36)

so that:
Dψ ′′(y)− 2

√
νDψ ′(y) = λ�(y)e

√
ν/D y . (37)

Finally, one finds:

ϕst.(y) = λ

ν

[
1 − e−√

ν/D y
]

+ λ

D
e−√

ν/D y
∫ y

0
dy′

× e2
√
ν/D y′

∫ ∞
y′

dy′′e−√
ν/D y′′

�(y′′). (38)

The solution given in the main text corresponds to� ≡ 0, so that only
the first term survives. From the above explicit form, one sees that
provided the integral

∫∞
0 dy′′e−√

ν/Dy′′
�(y′′) is finite, the behaviour

of ϕst.(y) is always linear in the vicinity of y = 0. Only a highly
singular the deposition rate, diverging faster than 1/y when y → 0,
would jeopardize the local linearity of the latent order book (see also
Bouchaud et al. 2002, where this property was first discussed).

Appendix 3. Shape of the order book during constant rate
execution and initial relaxation of impact.

When the trading rate is a constant (equal to m0), one can exhibit an
exact scaling solution of the time-dependent order book of the form
ϕ(x, t) = m0

√
t/D F( x√

Dt
), where F is the solution of:

2F ′′(u)+ uF ′(u)− F(u) = −2δ(u − A). (39)

As we show below, this equation can be solved and gives the exact
shape of the book at t = T , from which the initial relaxation (after
trading has stopped) can be deduced.

Writing F = uG in the above equation, one finds a first-order
linear equation for H = G′:

H ′(u)+
(

u

2
+ 2

u

)
H(u) = 1

u
δ(u − A) (40)

which is easily solved as:

H(u) = H0

u2
e−u2/4, (u < A);

H(u) = H0 − AeA2/4

u2
e−u2/4, (u > A). (41)

There are two boundary conditions that are useful. One is the very
definition of the price position, x = A

√
Dt or A = u, for which

φ(x, t) = x or F(A) = AJ/m0. The second remark is that when
u = 0, the integral defining F can be computed, leading to

F(0) = A

4
√
π

eA2/4
∫ ∞

A2/4

dv

v3/2
e−v. (42)

This allows one to fix H0 since G′(u) = F ′(0)/u − F(0)/u2 ≈
−F(0)/u2 when u → 0, to be compared with H(u) ≈ H0/u

2 in the
same limit. Hence, H0 = −F(0).

The final solution for F(u) is easily obtained from integrating H
and multiplying by u (see figure C1). Using G(A) = J/m0, one finds:

G(u) = F(0)
∫ A

u

dv

v2
e−v2/4 + J/m0, (u ≤ A) (43)

and

G(u) = −(F(0)+ AeA2/4)

∫ u

A

dv

v2
e−v2/4 + J/m0, (u ≥ A)

(44)
Of special interest is the slope of F for u = A±; with F ′ = u H(u)+
G(u) one finds:

F ′(A−) = J/m0 − F(0)

A
e−A2/4;

F ′(A+) = J/m0 − F(0)

A
e−A2/4 − 1. (45)

Now, shortly after the meta-order has stopped, one can look at the
solution of the diffusion equation in the vicinity of the final price pT =
A
√

DT , using a piece-wise linear function for the initial condition,
with slopes given by F ′(A±). The solution then reads, with t−T = �
small:

ϕ(x, t) = m0
√

T�

[
F ′(A−)z + (F ′(A+)− F ′(A−))

∫ ∞
z

du

(u − z)√
4π

e−u2/4
]
, (46)

with z = (pT − x)/
√

D�. The position of the price is given by
pt = pT − √

D�z∗, with z∗ such that:

F ′(A−)z∗ + (F ′(A+)− F ′(A−))
∫ ∞

z∗
du
(u − z∗)√

4π
e−u2/4 = 0.

(47)
Using the expression for F(0) and the result above for F ′(A±), this
equation simplifies to:

z∗
∫ ∞

A2/4

dv

v3/2
e−v = 2

∫ ∞
z∗

du (u − z∗)e−u2/4. (48)

Changing variables in the RHS from u to v = u2/4, and integrating
by parts, one finds:

z∗
∫ ∞

A2/4

dv

v3/2
e−v = z∗

∫ ∞
z∗2/4

dv

v3/2
e−v, (49)

which leads to z∗ = A for all m0/J . [The other solution, z∗ = 0, is
spurious].

Hence, the initial stage of the impact relaxation can be written in
a super-universal way:

pt ≈
t→T + pT

[
1 −

√
t − T

T

]
, (50)

i.e. exactly the result from the propagator model, even in the
non-linear regime!

Appendix 4. A saddle point approximation for large
trading rates.

In this appendix, we develop a systematic procedure in order to solve
perturbatively equation (9). The first step in order to find a solution
is to introduce an expansion parameter ε � 1, which we use in order
to control the amplitude of the trading rate through mt → mt ε

−1.
Such substitution implies a scaling of the solution of the form yt →
yt ε

−1/2, leading to an equation for the price of the form:

Lyt =
∫ t

0

ds ms√
4πDε(t − s)

e− (yt −ys )2

4Dε(t−s) . (51)

which is equivalent to the one which one would have by leaving
invariant mt and by performing the substitutions D → Dε and J →
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Figure C1. Evolution of the average order book ϕ(x, t), represented for two different values of the perturbation parameter m0/J . The curves
in different colours are snapshots taken at different times of the difference between the perturbed and the unperturbed average of the book.

The scaling form of the book ϕ(x, t) = m0
√

t/DF
(

x√
Dt

)
is clear from the plots, which illustrate how a flat region of the book is formed at

large values of m0/J .

Jε. Hence, the large trading regime is equivalent to the one of slow
diffusion.

In this case, it is evident that the integral is dominated by times s
close to t , which suggests to Taylor expand both the trading rate ms
and the price ys around s = t , so to insert the resulting series in the
integral appearing in equation (9). The dominating term results

mt

∫ ∞
0

du
1√

4πDuε
e−ẏ2

t
u

4Dε = mt |ẏt |−1 . (52)

The successive corrections to above result can be computed system-
atically, as they involve developing the square and the exponential
function in the Gaussian term in equation (9). In particular, by ex-
ploiting the identity∫ ∞

0
du e−z2uuα = �(1 + α)|z|−2(1+α), (53)

it is possible to derive the expansion

Lyt |ẏt |
= mt

[
1 + (Dε)

(
3ÿt

ẏ3
t

− 2ṁt

mt ẏ2
t

)
+ (Dε)2(

6m̈t ẏ2
t − 30ṁt ÿt ẏt − 10mt

...
yt ẏt + 45mt ÿ2

t

mt ẏ6
t

)
+ 5(Dε)3(

−4
...
mt ẏ3

t + 42m̈t ÿt ẏ2
t + 28ṁt

...
yt ẏ2

t + 7mt
....
yt ẏ2

t

mt ẏ9
t

)
+ 5(Dε)3(

−168ṁt ÿ2
t ẏt − 112mt ÿt

...
yt ẏt + 252mt ÿ3

t

mt ẏ9
t

)
+ O

(
ε4
) ]

,

whose first-order terms match the form reported in equation (18).
Each of the contributions of order εn can be seen equivalently either
as suppressed by the small value of the diffusion constant diffusion
(through a Dn factor) or by the large value trading rate (through a
factor of the order of m−n

t ).
Finally, note that the implicit equation above needs to be inverted

in order to obtain a relation yielding yt as a function of mt . This
is possible using equation (54) as an iterative scheme for yt , which
allows to calculate

Lyt |ẏt | = mt + (Jε)

(
−3 + 2Qt ṁt

m2
t

)
(54)

+(Jε)2
(

− 12Qt ṁt

m3
t

− 6 s ṁt

m2
t

+ 4ṁt

m2
t

∫
ds

Qsṁs

m2
s

+16Q2
t ṁt

2

m5
t

− 4Q2
t m̈t

m4
t

)
+ O(ε3), (55)

where Qt = ∫ t
0 ds ms .

As a simple application of the above formula, consider the case
where mt ≥ 0, ∀t ∈ [0, T ]. In this case, ẏt is also non?negative, and
we can remove the absolute value in the above equation. To order ε,
the solution of the above equation is (assuming y0 = 0):

1

2
Ly2

t = Qt + Jε (−t − 2Qt

mt
), (56)

where we have used integration by parts. Now, the cost C(Q) associ-
ated to buying a total quantity Q in time T is given by:

C(Q) =
∫ T

0
ds ms ys , Q =

∫ T

0
ds ms . (57)

Therefore, to order ε:

C(Q) =
√

2

L
∫ T

0
ds ms

√
Qs − Jε√

2L

∫ T

0
ds

[
2
√

Qs + sms√
Qs

]
.

(58)
After integrating by parts the last term, one finally finds that the impact
cost is, to order ε, independent of the trading schedule ms , and given
by:

C(Q) = 2

3

√
2

L Q3/2
[

1 − 3JεT

2Q

]
. (59)

The correction term is negative, as expected since a slower trading
speed leaves time for the opposing liquidity to diffuse towards the
traded price.
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