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The SPX volatility surface as of 15-Sep-2005

Figure 1: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of The Volatility Surface).
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Interpreting the smile
We could say that the volatility smile (at least in equity markets) reflects two basic observations:

Volatility tends to increase when the underlying price falls, hence the negative skew.

We don't know in advance what realized volatility will be, hence implied volatility is increasing in the
wings.

It's implicit in the above that more or less any model that is consistent with these two observations will
be able to fit one given smile.

Fitting two or more smiles simultaneously is much harder.
Heston for example fits a maximum of two smiles simultaneously.
SABR can only fit one smile at a time.

The term structure of at-the-money skew
Given one smile for a fixed expiration, little can be said about the process generating it.

In contrast, the dependence of the smile on time to expiration is intimately related to the underlying
dynamics.

In particular model estimates of the term structure of ATM volatility skew defined as

are very sensitive to the choice of volatility dynamics in a stochastic volatility model.
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Term structure of SPX ATM skew as of 15-Sep-2005

Figure 2: Term structure of ATM skew as of 15-Sep-2005, with power law fit  superimposed in red.
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Stylized facts
Although the levels and orientations of the volatility surfaces change over time, their rough shape stays
very much the same.

It's then natural to look for a time-homogeneous model.
The term structure of ATM volatility skew

with .

Conventional stochastic volatility models
Conventional stochastic volatility models generate volatility surfaces that are inconsistent with the
observed volatility surface.

In stochastic volatility models, the ATM volatility skew is constant for short dates and inversely
proportional to  for long dates.

Empirically, we find that the term structure of ATM skew is proportional to  for some 
over a very wide range of expirations.

The conventional solution is to introduce more volatility factors, as for example in the DMR
and Bergomi models.
One could imagine the power-law decay of ATM skew to be the result of adding (or averaging)
many sub-processes, each of which is characteristic of a trading style with a particular time
horizon.

Forward variance curve models
Inspired by the HJM approach to interest rate modeling, [Bergomi and Guyon]

where  denotes instantaneous variance and the  are forward variances.

[6]</a></sup> originally suggested that it is

natural to express stochastic volatility models in forward variance form. Specifically let
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Forward variance curve models and perfect hedging
As noted by [El Euch and Rosenbaum]

Bergomi Guyon
According to [Bergomi and Guyon]

where  is volatility of volatility,  is total variance to expiration , and

Thus, given a stochastic volatility model in forward variance form, we can easily (at least in principle)
compute this smile approximation.

The Bergomi model
The -factor Bergomi variance curve model reads:

(1)

The Bergomi model generates a term structure of volatility skew  that is something like

[7]</a></sup> , models written in forward variance form are explicitly Markovian in the

asset price  and the (infinite-dimensional) forward variance curve .
European payoffs  may be perfectly hedged.
The delta-hedging strategy involves holding  in the asset and  in forward variance contracts where  denotes the
Fréchet derivative of  with respect to the forward variance curve.

[5]</a></sup> , in the context of a variance curve model, implied volatility may be

expanded as
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This functional form is related to the term structure of the autocorrelation function.
Which is in turn driven by the exponential kernel in the exponent in (1).

To achieve a decent fit to the observed volatility surface, and to control the forward smile, we need at
least two factors.

In the two-factor case, there are 8 parameters.

When calibrating, we find that the two-factor Bergomi model is already over-parameterized. Any
combination of parameters that gives a roughly  ATM skew fits well enough.

Moreover, the calibrated correlations between the Brownian increments  tend to be
high.

ATM skew in the Bergomi model
The Bergomi model generates a term structure of volatility skew  that is something like

This functional form is related to the term structure of the autocorrelation function.
Which is in turn driven by the exponential kernel in the exponent in (1).

Tinkering with the Bergomi model
Empirically,  for some .

It's tempting to replace the exponential kernels in (1) with a power-law kernel.

This would give a model of the form

which looks similar to

where  is fractional Brownian motion.
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History of fractional stochastic volatility models
More formally, the model

belongs to a larger class of fractional stochastic volatility models that was originally shown by [Alòs et al.]

with  and $0

Further motivation from the time series of realized volatility
In Lecture 1, we saw that distributions of differences in log realized variance are close to Gaussian.

This motivates us to model  (and so ) as a lognormal random variable.

Moreover, the scaling property of variance of RV differences suggests the (RFSV) model:

(2)

where  is fractional Brownian motion.

Fractional Brownian motion (fBm) again
Fractional Brownian motion (fBm)  is the unique Gaussian process with mean zero and
autocovariance function

where  is called the Hurst index or parameter.
In particular, when , fBm is just Brownian motion.
If , increments are positively correlated.
If , increments are negatively correlated.

[1]</a>

</sup> and then by [Fukasawa][8]</a></sup> to generate a short-dated ATM skew of the form
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Representations of fBm
There are infinitely many possible representations of fBm in terms of Brownian motion. For example, with 

,

Mandelbrot-Van Ness
 

 

where the choice

ensures that

The RFSV model again
Then from the definition (2) of the model, with the Mandelbrot-Van Ness representation of fBm,

Note that  and  is -measurable.
To price options, it would seem that we would need to know , the entire history of the
Brownian motion  for $s
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Pricing under 

Let

With  we have  so denoting the stochastic exponential by , we
may write

The conditional distribution of  depends on  only through the variance forecasts ,

To price options, one does not need to know , the entire history of the Brownian motion  for $s

Pricing under 

Our model under  reads:

(3)

Consider some general change of measure

where  has a natural interpretation as the price of volatility risk. We may then rewrite (2) as

Although the conditional distribution of  under  is lognormal, it will not be lognormal in general
under .

The upward sloping smile in VIX options means  cannot be deterministic in this picture.
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The rough Bergomi (rBergomi) model
Let's nevertheless consider the simplest change of measure

where  is a deterministic function of . Then from (2), we would have

where the forward variances  are (at least in principle) tradable and observed in the market.

 is the product of two terms:
 which depends on the historical path $⧵{W_s, s

a term which depends on the price of risk .

Features of the rough Bergomi model
The rBergomi model is a non-Markovian generalization of the Bergomi model:

The rBergomi model is Markovian in the (infinite-dimensional) state vector 
.

We have achieved our earlier aim of replacing the exponential kernels in the Bergomi model with a
power-law kernel.

We may therefore expect that the rBergomi model will generate a realistic term structure of ATM
volatility skew.

Re-interpretation of the conventional Bergomi model
A conventional -factor Bergomi model is not self-consistent for an arbitrary choice of the initial
forward variance curve .

 should be consistent with the assumed dynamics.
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Viewed from the perspective of the fractional Bergomi model however:
The initial curve  reflects the history $⧵{W_s; s
The exponential kernels in the exponent of the conventional Bergomi model approximate
more realistic power-law kernels.

The conventional two-factor Bergomi model is then justified in practice as a tractable Markovian
engineering approximation to a more realistic fractional Bergomi model.

The stock price process
The observed anticorrelation between price moves and volatility moves may be modeled naturally by
anticorrelating the Brownian motion  that drives the volatility process with the Brownian motion
driving the price process.

Thus

with

where  is the correlation between volatility moves and price moves.

Simulation of the rBergomi model
In [Bayer, Friz and Gatheral]
This simulation was very slow!

Hybrid simulation of BSS processes
The Rough Bergomi variance process is a special case of a Brownian Semistationary (BSS) process.

[Bennedsen, Lunde and Pakkanen]

More recently, [McCrickerd and Pakkanen][10] show how to massively increasing the efficiency of the
hybrid scheme.

Moreover, they provide a sample Jupyter notebook!

[2]</a></sup>, we performed an exact simulation of the Volterra process .

[4]</a></sup> show how to simulate such processes more efficiently.
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Their idea is roughly as follows:

where , the  are iid  random variables and the  are such that

The choice  works well in practice.
The choice  corresponds to the Euler scheme which as expected performs poorly.

Some R-code

In [1]: setwd("./LRV") 

In [2]: source("BlackScholes.R") 
source("hybridSimulation.R") 
source("plotIvols.R") 

R-implementation of the hybrid scheme
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In [3]: hybridScheme 

Run the hybrid BSS scheme
We will use R parallel processing functionality.

In [4]: library(foreach) 
library(doParallel) 

In [5]: paths <- 1e5 
steps <- 200 

In [6]: params.rBergomi <- list(H=0.05, eta=1.9, rho=-0.9) 
xiCurve <- function(t){0.16^2+0*t} 

In [7]: expiries <- c(.25,1) 

function (xi, params)  
function(N, steps, expiries) { 
    eta <- params$eta 
    H <- params$H 
    rho <- params$rho 
    W <- matrix(rnorm(N * steps), nrow = steps, ncol = N) 
    Wperp <- matrix(rnorm(N * steps), nrow = steps, ncol = N) 
    Z <- rho * W + sqrt(1 - rho * rho) * Wperp 
    Wtilde <- Wtilde.sim(W, Wperp, H) 
    S <- function(expiry) { 
        dt <- expiry/steps 
        ti <- (1:steps) * dt 
        Wtilde.H <- expiry^H * Wtilde 
        xi.t <- xi(ti) 
        v1 <- xi.t * exp(eta * Wtilde.H - 1/2 * eta^2 * ti^(2 *  
            H)) 
        v0 <- rep(xi(0), N) 
        v <- rbind(v0, v1[-steps, ]) 
        logs <- apply(sqrt(v * dt) * Z - v/2 * dt, 2, sum) 
        s <- exp(logs) 
        return(s) 
    } 
    st <- t(sapply(expiries, S)) 
    return(st) 
}

Loading required package: iterators 
Loading required package: parallel 
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In [8]: t0<-proc.time() 
 
#number of iterations 
iters<- max(1,floor(paths/1000)) 
 
#setup parallel backend  
cl.num <- detectCores() # This number is 8 on my MacBook Pro 
cl<-makeCluster(cl.num) 
registerDoParallel(cl) 
 
#loop 
ls <- foreach(icount(iters)) %dopar% { 
        hybridScheme(xiCurve,params.rBergomi)(N=1000, steps=steps, expir
ies=expiries) 
        } 
 
stopCluster(cl) 
mcMatrix1 <- do.call(cbind, ls) #Bind all of the submatrices into one bi
g matrix 
 
print(proc.time()- t0) 

Plot the 3-month smile

In [9]: plotSmile <- function(mcMatrix,expiries,slice)function(kmin,kmax,yrange)
{ 
             
            t <- expiries[slice] 
            spots <- mcMatrix[slice, ] 
            s0 <- mean(spots) 
            curve(bsOut(spots, t, s0 * exp(x))$BSV,from=kmin,to=kmax, 
                 xlab="Log Strike",ylab="Implied Vol.",col="red",lwd=2,y
lim=yrange) 
             
        } 

In [10]: options(repr.plot.width=11,repr.plot.height=6) 

   user  system elapsed  
  0.115   0.028   4.800  
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In [11]: plotSmile(mcMatrix1,expiries,1)(-.25,.25, yrange=c(.1,.26)) 

Figure 3: 3-month rough Bergomi smile with parameters params.rBergomi.

Guessing rBergomi model parameters
The rBergomi model has only three parameters: ,  and .

If simulation were fast enough, we could just iterate on these parameters to find the best fit to
observed option prices.

The BSS scheme is not yet fast enough, at least in my R implementation.

However, the model parameters ,  and  have very direct interpretations:
 controls the decay of ATM skew  for very short expirations.

The product  sets the level of the ATM skew for longer expirations.
Keeping  constant but decreasing  (so as to make it more negative) pushes the
minimum of each smile towards higher strikes.

So we can guess parameters in practice.
A couple of examples of the results of guessing are given in [Bayer, Friz and Gatheral][2]</a>

</sup>.
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Calibration using machine learning
Recently, [Bayer and Stemper]

A neural network is trained to approximate the implied volatility map.

 from VIX futures

Rather than brute-force fitting a rough volatility model to the volatility surface, following [Jacquier,
Martini and Muguruza], one can try to fix  from the term structure of the convexity adjustment
between variance swaps and VIX futures.

Once the Volterra process  has been simulated for this , iterating on the parameters  and  to fit
the observed volatility surface is relatively fast.

The main practical trick is to fit normalized smiles

ATM volatilities can then be fitted by iterating on the forward variance curve as explained above.

Rough Bergomi parameters under  and under 

We might wonder whether implied model parameters are consistent with historical parameters.

It is shown in [Bayer, Friz and Gatheral]

Parameter estimates under 

In Section 5.2 of [Bayer, Friz and Gatheral]

Date

February 4, 2010 0.07 1.9 0.7109

August 14, 2013 0.05 2.3 0.7273

[3]</a></sup> showed how to calibrate the rough Bergomi model to the volatility surface using

machine learning.

[2]</a></sup> that the volatility of volatility parameter  in the rough Bergomi model

and the volatility of volatility  in the historical time series should be related as follows.

with

[2]</a></sup>, parameter guesses for the SPX implied volatility surface on two particular

dates in history are given as follows:
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Estimates of  seem more stable than estimates of  and  separately.

We observe the same phenomenon when estimating  and  from historical RV data.
Estimates of the product  are more stable than estimates of the two parameters
separately.

Parameter estimates under 

From our analysis of the SPX realized variance time series in Lecture 1, we estimated

Plugging these estimates into the formula (from above)

In [12]: h.est <- 0.15 
nu.est <- 0.3 
(nu.tilde <- 2*nu.est*sqrt(2*h.est*gamma(3/2-h.est)/gamma(h.est+1/2)*gam
ma(2-2*h.est))) 

Seemingly inconsistent with the implied estimate of around .

However, the historical estimate is in daily terms and the implied estimate in annualized terms.

To convert, we need to multiply the historical estimate by the annualization factor , to get

At least by physicists' standards, the historical and implied estimates are consistent.

It is not unexpected for implied volatility of volatility to be higher than historical to reflect the volatility of
the volatility risk premium.

0.251298848335933
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More rough volatility models
This form suggests many other rough volatility models of the form

where both the function  and the kernel  depend on the model.

As long as  as , the model will be rough in the sense that sample paths of
instantaneous variance will be Hölder continuous with exponent .

Rough volatility and long memory
In [Bennedsen, Lunde and Pakkanen]

In particular, with appropriate choices of  and  the kernel

generates a model that exhibits both rough volatility and power-law decay of the autocorrelation
function.

That is rough volatility plus long memory.

Models with with more parameters may of course also fit the volatility surface better.

Dynamics of the volatility surface: Model dependence
All rough stochastic volatility models have essentially the same implications for the shape of the
volatility surface.

At first it might therefore seem that it would be hard to differentiate between models.
That would certainly be the case if we were to confine our attention to the shape of the
volatility surface today.

[5]</a></sup>, the authors show how we can both have our cake and eat it by

choosing different kernels.
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If instead we were to study the dynamics of the volatility skew – in particular, how the observed
volatility skew depends on the overall level of volatility, we would be able to differentiate between
models.

As explained in [The Volatility Surface]  , we expect the ATM volatility skew to be roughly independent
of the ATM volatility in a lognormal model such as rough Bergomi.

In Figure 4, we see how the ATM skew varies with ATM volatility under rough Bergomi, with the above
parameters and compare with empirical estimates.

Figure 4: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to today); the red line is
the rough Bergomi computation with the above parameters.

[9]
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Summary
In Lecture 1, scaling properties of the time series of historical volatility suggested a natural non-
Markovian stochastic volatility model under .

The simplest specification of  gives the rough Bergomi model, a non-Markovian generalization of
the Bergomi model.

The history of the Brownian motion $⧵lbrace W_s, s
Efficient computations are possible using the hybrid BSS scheme.

Rough Bergomi is a simple tractable stochastic volatility model consistent with both the historical time
series of volatility and the implied volatility surface.

Moreover, rough Bergomi dynamics seem to be reasonable.
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