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The SPX volatility surface as of 15-Sep-2005
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Figure 1: The SPX volatility surface as of 15-Sep-2005 (Figure 3.2 of The Volatility Surface).
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Interpreting the smile

» We could say that the volatility smile (at least in equity markets) reflects two basic observations:
= Volatility tends to increase when the underlying price falls, hence the negative skew.

» We don't know in advance what realized volatility will be, hence implied volatility is increasing in the
wings.

« [It's implicit in the above that more or less any model that is consistent with these two observations will
be able to fit one given smile.
= Fitting two or more smiles simultaneously is much harder.
= Heston for example fits a maximum of two smiles simultaneously.
= SABR can only fit one smile at a time.

The term structure of at-the-money skew

» Given one smile for a fixed expiration, little can be said about the process generating it.

« In contrast, the dependence of the smile on time to expiration is intimately related to the underlying
dynamics.

» In particular model estimates of the term structure of ATM volatility skew defined as
W) = Lok 1)
= T O 5
ok BS k=0

are very sensitive to the choice of volatility dynamics in a stochastic volatility model.
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Term structure of SPX ATM skew as of 15-Sep-2005
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Figure 2: Term structure of ATM skew as of 15-Sep-2005, with power law fit 77044 superimposed in red.
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Stylized facts

« Although the levels and orientations of the volatility surfaces change over time, their rough shape stays
very much the same.

= |t's then natural to look for a time-homogeneous model.
e The term structure of ATM volatility skew

1
w(T) ~ —
T

with a € (0.3,0.5).

Conventional stochastic volatility models

» Conventional stochastic volatility models generate volatility surfaces that are inconsistent with the
observed volatility surface.
= In stochastic volatility models, the ATM volatility skew is constant for short dates and inversely
proportional to 7 for long dates.

» Empirically, we find that the term structure of ATM skew is proportional to 1/7% forsome 0 < a < 1/2
over a very wide range of expirations.
= The conventional solution is to introduce more volatility factors, as for example in the DMR
and Bergomi models.
= One could imagine the power-law decay of ATM skew to be the result of adding (or averaging)
many sub-processes, each of which is characteristic of a trading style with a particular time
horizon.

Forward variance curve models

Inspired by the HJM approach to interest rate modeling, [Bergomi and Guyon]@l</a></sup> originally suggested that it is
natural to express stochastic volatility models in forward variance form. Specifically let

d
i = \/V‘det
S

dét(u) = /1(1" u, ft) th

where v, denotes instantaneous variance and the £,(u) = E [v, | F;], u € (¢, T]are forward variances.
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Forward variance curve models and perfect hedging

« As noted by [El Euch and Rosenbaum][7]</a></sup> ,.models written in forward variance form are explicitly Markovian in the

asset price S, and the (infinite-dimensional)_forward variance curve &,.

= European payoffs V_may be perfectly hedged.
= The delta-hedging_strategy involves holding_ds V.in the asset and 05 Vin forward variance contracts where 65 denotes the

Fréchet derivative of V_with respect to the forward variance curve.

Bergomi Guyon

. According to [Bergomi and Guyon][5]</a></sup> ,.in the context of a variance curve model, implied volatility may be

expanded as

w 1
k,T) = T+,/——fok+0 2
ops(k,T) = oo (T) T 702 )

where 7_is volatility of volatility, w = /0 £y (s) ds.is total variance to expiration 7',_and

szf _ / dt / E [dxt dft(”)]
dt

» Thus, given a stochastic volatility model in forward variance form, we can easily (at least in principle)

compute this smile approximation.

The Bergomi model

» The n-factor Bergomi variance curve model reads:
O
n t
&) = Sou) ex i =) gw 4 drift
1Y n
i=1 0

« The Bergomi model generates a term structure of volatility skew y/(7) that is something like

1 l—e™”
l//(T)=Z E{I—Ter}.

i 1
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o This functional form is related to the term structure of the autocorrelation function.
= Which is in turn driven by the exponential kernel in the exponent in (1).

» To achieve a decent fit to the observed volatility surface, and to control the forward smile, we need at
least two factors.
= In the two-factor case, there are 8 parameters.

» When calibrating, we find that the two-factor Bergomi model is already over-parameterized. Any
combination of parameters that gives a roughly 1/+/T ATM skew fits well enough.
= Moreover, the calibrated correlations between the Brownian increments dWs(i) tend to be
high.

ATM skew in the Bergomi model
« The Bergomi model generates a term structure of volatility skew /() that is something like
1 1 —e™it
T) = — ql=-— 7.
W( ) Z K, T { KT }

o This functional form is related to the term structure of the autocorrelation function.
= Which is in turn driven by the exponential kernel in the exponent in (1).

Tinkering with the Bergomi model
« Empirically, y(z) ~ 77% for some a.
« It's tempting to replace the exponential kernels in (1) with a power-law kernel.

» This would give a model of the form

E () = &g(u) exp{n / _AWs + drift }
o (u—s)

E(u) = Eo(u) exp{n WH + drift }

which looks similar to

where WtH is fractional Brownian motion.
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History of fractional stochastic volatility models

Ei(u) = Eo(u) eXp{n / _dW, + drift }
o (@—s)y

belongs to a larger class of fractional stochastic volatility models that was originally shown by [Alds et al.]1l</2>
</sup> and then by [Fukasawa][8]</a></sup> to generate a short-dated ATM skew of the form

More formally, the model

1
W(T) ~ "

Further motivation from the time series of realized volatility

» In Lecture 1, we saw that distributions of differences in log realized variance are close to Gaussian.
= This motivates us to model v, (and so o;) as a lognormal random variable.

» Moreover, the scaling property of variance of RV differences suggests the (RFSV) model:

@

logoia —logo, =v (WH, — WH)

where WH s fractional Brownian motion.

Fractional Brownian motion (fBm) again

 Fractional Brownian motion (fBm) {WtH ;1 € R} is the unique Gaussian process with mean zero and
autocovariance function
1
E (WS W] = o P+ 1P = 1= 5P

where H € (0, 1) is called the Hurst index or parameter.

= In particular, when H = 1/2, fBm is just Brownian motion.

» If H > 1/2, increments are positively correlated.

» If H < 1/2, increments are negatively correlated.
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Representations of fBm

There are infinitely many possible representations of fBm in terms of Brownian motion. For example, with
1
y=5-H,

Mandelbrot-Van Ness

— {/f dw, _/0 dWs}
CTT e t=9 S (=

where the choice

_— YHTGZ — H)
" T(H + 1/2)TQ2 — 2 H)
ensures that
1
E[w/ wi] = 2 R e I L

The RFSV model again

Then from the definition (2) of the model, with the Mandelbrot-Van Ness representation of fBm,
logv, —logv,

u 1 .
! 1 1 b
+/_oo [(u—s)7 B (t—s)?] W }

=:2vCqy [M,(u) + Z;(u)] .

« Note that E¥ [M,(u)| F,] = 0 and Z, () is F,-measurable.
= To price options, it would seem that we would need to know F;, the entire history of the
Brownian motion W for $s
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Pricing under P

Let

W, ) :=+ZH

' ”_S)y

Withn :=2v Cy/+/2 H wehave 2v Cy M,(u) =1 Vf/? (u) so denoting the stochastic exponential by £(+), we
may write

v, =V, exp{nWEﬂ)(u) +2vCy Z,(u)}

=E° | F1E (n W, W).

« The conditional distribution of v, depends on F, only through the variance forecasts E* [v, | F,],

« To price options, one does not need to know F;, the entire history of the Brownian motion W}p for $s

Pricing under Q

Our model under P reads:

®
= E DI FIE (n W W),

Consider some general change of measure
dWP = dw@ + A, ds,

where {A; : s > t} has a natural interpretation as the price of volatility risk We may then rewrite (2) as

_ P
=[E [vulF,]é'(ﬂW, (u))exp{n\/TH l (u—s)?ds}'

« Although the conditional distribution of v, under P is lognormal, it will not be lognormal in general

under Q.
= The upward sloping smile in VIX options means A, cannot be deterministic in this picture.
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The rough Bergomi (rBergomi) model

Let's nevertheless consider the simplest change of measure
dWP = dw2 + A(s) ds,

where A(s) is a deterministic function of s. Then from (2), we would have

v, =EV [vu|T’,]£<nW?(u))exp{71\/2—H /“ ;ﬂ(s)ds}

(u—s)r

=& (nW, W)

where the forward variances &,(u) = E® [v, | F,] are (at least in principle) tradable and observed in the market.

» &,(u) is the product of two terms:
« E” [v,| F,] which depends on the historical path $\{W_s, s
« aterm which depends on the price of risk A(s).

Features of the rough Bergomi model
» The rBergomi model is a non-Markovian generalization of the Bergomi model:
E v | Fi] # E[v, |v].

= The rBergomi model is Markovian in the (infinite-dimensional) state vector
EC [v,| 7,1 = &)

« We have achieved our earlier aim of replacing the exponential kernels in the Bergomi model with a
power-law kernel.

» We may therefore expect that the rBergomi model will generate a realistic term structure of ATM
volatility skew.

Re-interpretation of the conventional Bergomi model

» A conventional n-factor Bergomi model is not self-consistent for an arbitrary choice of the initial
forward variance curve &;(u).
» £,(u) = E[v,| F;] should be consistent with the assumed dynamics.
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» Viewed from the perspective of the fractional Bergomi model however:
» The initial curve &,(u) reflects the history $\{W_s; s
= The exponential kernels in the exponent of the conventional Bergomi model approximate
more realistic power-law kernels.

» The conventional two-factor Bergomi model is then justified in practice as a tractable Markovian
engineering approximation to a more realistic fractional Bergomi model.

The stock price process

» The observed anticorrelation between price moves and volatility moves may be modeled naturally by
anticorrelating the Brownian motion W that drives the volatility process with the Brownian motion
driving the price process.

e Thus

ﬁ — \/Wde
St

dZ, = pdW, + /1 — p* dW}

where p is the correlation between volatility moves and price moves.

with

Simulation of the rBergomi model

« In [Bayer, Friz and Gathera|][2]</a></sup>, we performed an exact simulation of the Volterra process VI/;

« This simulation was very slow!

Hybrid simulation of BSS processes

« The Rough Bergomi variance process is a special case of a Brownian Semistationary (BSS) process.

« [Bennedsen, Lunde and Pakkanen][4]</a></sup> show how to simulate such processes more efficiently.

» More recently, [McCrickerd and Pakkanen][10] show how to massively increasing the efficiency of the
hybrid scheme.
= Moreover, they provide a sample Jupyter notebook!
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« Their idea is roughly as follows:

/” W _ 3 / dw,
t (u - S)}/ k=1 Tr+1 (l/l - S)}/

= o dw, u 1 b
Y[ ey = [ aw,
k=1 7] (I/l - S)y (M - Sk)y Trt1

k=Kk+1
- ko dw L 1 u—1t
=z/-—L+z———a
= S =97 L (= s n

where t;, = u — %(u — 1), the Z;, areiid N(0, 1) random variables and the s, are such that

/t" ds 1
78] (I/t - S)y (u - Sk)y

» The choice k = 1 works well in practice.
« The choice k = 0 corresponds to the Euler scheme which as expected performs poorly.

Some R-code

In [1]: setwd("./LRV")

In [2]: source("BlackScholes.R")
source( "hybridSimulation.R")
source("plotIvols.R")

R-implementation of the hybrid scheme
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In [3]: hybridScheme

function (xi, params)
function(N, steps, expiries) {
eta <- paramsS$eta
H <- params$H
rho <- paramsS$rho
W <- matrix(rnorm(N * steps), nrow = steps, ncol = N)
Wperp <- matrix(rnorm(N * steps), nrow = steps, ncol = N)
Z <- rho * W + sqrt(l - rho * rho) * Wperp
Wtilde <- Wtilde.sim(W, Wperp, H)
S <- function(expiry) {
dt <- expiry/steps
ti <- (l:steps) * dt
Wtilde.H <- expiry”"H * Wtilde
xi.t <- xi(ti)
vl <- xi.t * exp(eta * Wtilde.H - 1/2 * eta”™2 * ti"(2 *
H))
v0 <- rep(xi(0), N)
v <- rbind(v0, vl[-steps, 1)
logs <- apply(sqrt(v * dt) * 2 - v/2 * dt, 2, sum)
s <- exp(logs)
return(s)
}
st <- t(sapply(expiries, S))
return(st)

Run the hybrid BSS scheme

We will use R parallel processing functionality.

In [4]: library(foreach)
library(doParallel)

Loading required package: iterators
Loading required package: parallel

In [5]: paths <- 1le5
steps <- 200

In [6]: params.rBergomi <- list(H=0.05, eta=1.9, rho=-0.9)
xiCurve <- function(t){0.1672+0*t}

In [7]: expiries <- c(.25,1)
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In [8]: tO<-proc.time()

#number of iterations
iters<- max(1l,floor(paths/1000))

#setup parallel backend

cl.num <- detectCores() # This number is 8 on my MacBook Pro
cl<-makeCluster(cl.num)

registerDoParallel(cl)

#loop
ls <- foreach(icount(iters)) %dopar% {

hybridScheme (xiCurve,params.rBergomi) (N=1000, steps=steps, expir
ies=expiries)

}
stopCluster(cl)
mcMatrixl <- do.call(cbind, 1ls) #Bind all of the submatrices into one bi
g matrix

print(proc.time()- t0)

user system elapsed
0.115 0.028 4.800

Plot the 3-month smile

In [9]: plotSmile <- function(mcMatrix,expiries,slice)function(kmin, kmax,yrange)

{

t <- expiries[slice]
spots <- mcMatrix[slice, ]
s0 <- mean(spots)
curve (bsOut(spots, t, s0 * exp(x))$BSV,from=kmin, to=kmax,
xlab="Log Strike",ylab="Implied Vol.",col="red",lwd=2,y
lim=yrange)

}

In [10]: options(repr.plot.width=11,repr.plot.height=6)
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In [11]: plotSmile(mcMatrixl,expiries,l)(-.25,.25, yrange=c(.1l,.26))

w
[V
o
o
B N
) (=]
>
h=]
2
o
E
w
=3
o
e T I T T T
-0.2 0.1 0.0 01 0.2
Log Strike

Figure 3: 3-month rough Bergomi smile with parameters params .rBergomi.

Guessing rBergomi model parameters

« The rBergomi model has only three parameters: H, 1 and p.

If simulation were fast enough, we could just iterate on these parameters to find the best fit to
observed option prices.

» The BSS scheme is not yet fast enough, at least in my R implementation.

However, the model parameters H, n and p have very direct interpretations:
= H controls the decay of ATM skew y/(7) for very short expirations.
= The product p 5 sets the level of the ATM skew for longer expirations.
o Keeping p i constant but decreasing p (so as to make it more negative) pushes the
minimum of each smile towards higher strikes.

So we can guess parameters in practice.

= A couple of examples of the results of guessing are given in [Bayer, Friz and Gatheral]2</2
</sup>.
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Calibration using machine learning

« Recently, [Bayer and Stemper][3]</a></sup> showed how to calibrate the rough Bergomi model to the volatility surface using

machine learning.

= A neural network is trained to approximate the implied volatility map.

H from VIX futures

» Rather than brute-force fitting a rough volatility model to the volatility surface, following [Jacquier,
Martini and Muguruza], one can try to fix H from the term structure of the convexity adjustment
between variance swaps and VIX futures.

+ Once the Volterra process W has been simulated for this H , iterating on the parameters 7 and p to fit
the observed volatility surface is relatively fast.

» The main practical trick is to fit normalized smiles

st T) = Z&D

6(0,7)

ATM volatilities can then be fitted by iterating on the forward variance curve as explained above.

Rough Bergomi parameters under P and under (Q

» We might wonder whether implied model parameters are consistent with historical parameters.

« It is shown in [Bayer, Friz and Gathera|][2]</a></sup> that the volatility of volatility parameter 7_in the rough Bergomi model

and the volatility of volatility v_in the historical time series should be related as follows.

n=nv2H=2vCy

Co = \/ 2HT32-H)

<
=

T(H+1/2)T2-2H)

Parameter estimates under

In Section 5.2 of [Bayer, Friz and Gathera|][2]</a></sup>, parameter guesses for the SPX implied volatility surface on two particular

dates in history are given as follows:

Date H| n n
February 4, 2010| 0.07(1.9(0.7109
August 14, 2013 | 0.05|2.3|0.7273

http://127.0.0.1:8888/nbconvert/html/Course%20and %20workshops/LunterenRough Volatility/LRV?2 ipynb?download=false 17/21



1/21/2019 LRV2

« Estimates of 77 seem more stable than estimates of # and H separately.

« We observe the same phenomenon when estimating v and H from historical RV data.
= Estimates of the product v v/H are more stable than estimates of the two parameters
separately.

Parameter estimates under P

» From our analysis of the SPX realized variance time series in Lecture 1, we estimated
H ~ 0.15, v~ 0.30.

» Plugging these estimates into the formula (from above)

i \/ THTGRZ —H)
1 = 21/

~ 0.25.

T T(H+ 1/2)TQ2-2H)

In [12]: h.est <- 0.15
nu.est <- 0.3
(nu.tilde <- 2*nu.est*sqrt(2*h.est*gamma(3/2-h.est)/gamma(h.est+1/2)*gam
ma(2-2*h.est)))

0.251298848335933
« Seemingly inconsistent with the implied estimate of around 0.7.

« However, the historical estimate is in daily terms and the implied estimate in annualized terms.
« To convert, we need to multiply the historical estimate by the annualization factor (252)", to get
n~n X (252)H = (0.58.
= At least by physicists' standards, the historical and implied estimates are consistent.

« It is not unexpected for implied volatility of volatility to be higher than historical to reflect the volatility of
the volatility risk premium.
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More rough volatility models

This form suggests many other rough volatility models of the form

ds,
— = ‘fz(t) dZt
A

d&(u) = &) k(u — 1) dW,

where both the function A and the kernel k depend on the model.

» Aslongas k(7) ~ 777 as t — 0, the model will be rough in the sense that sample paths of

instantaneous variance will be Holder continuous with exponent H = % —-7.

Rough volatility and long memory

e In [Bennedsen, Lunde and pakkanen][5]</a></sup>. the authors show how we can both have our cake and eat it by

choosing different kernels.

« |n particular, with appropriate choices of y and /5 the kernel

1
7 (1 +7)f

k(t) =

generates a model that exhibits both rough volatility and power-law decay of the autocorrelation
function.
= That is rough volatility plus long_ memory.

* Models with with more parameters may of course also fit the volatility surface better.

Dynamics of the volatility surface: Model dependence

« All rough stochastic volatility models have essentially the same implications for the shape of the
volatility surface.

« At first it might therefore seem that it would be hard to differentiate between models.
= That would certainly be the case if we were to confine our attention to the shape of the
volatility surface today.
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« If instead we were to study the dynamics of the volatility skew — in particular, how the observed
volatility skew depends on the overall level of volatility, we would be able to differentiate between
models.

« As explained in [The Volatility Surface]® , we expect the ATM volatility skew to be roughly independent
of the ATM volatility in a lognormal model such as rough Bergomi.

« In Figure 4, we see how the ATM skew varies with ATM volatility under rough Bergomi, with the above
parameters and compare with empirical estimates.

-0.2

-0.4

3m ATM volatility skew
-0.6

-0.8

-1.0

0.1 0.2 0.3 0.4 0.5

3m ATM volatility

Figure 4: Blue points are empirical 3-month ATM volatilities and skews (from Jan-1996 to today); the red line is
the rough Bergomi computation with the above parameters.
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Summary

» In Lecture 1, scaling properties of the time series of historical volatility suggested a natural non-
Markovian stochastic volatility model under [P.

» The simplest specification of % gives the rough Bergomi model, a non-Markovian generalization of
the Bergomi model.
» The history of the Brownian motion $\lbrace W_s, s
= Efficient computations are possible using the hybrid BSS scheme.

» Rough Bergomi is a simple tractable stochastic volatility model consistent with both the historical time
series of volatility and the implied volatility surface.
= Moreover, rough Bergomi dynamics seem to be reasonable.
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