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EcypriaN MARKET SCENES

From an Egyptian tomb. Selling and cleaning fish; bartering a necklace for pots
of perfume. In the upper and central parts of each scene are examples of Egyp-
tian writing in hieroglyphics.



‘One price and goods returnable’

Engraver unknown. From J.D. McCabe, The Illustrated History of the Centennial Exposition, 1876



Dynamic pricing:

Adapting selling prices to changing circumstances

e Remaining inventory

o Competitor’s prices

e Time and date Zelfs de kapper varieert nu met zijn
stoelprijzen

e Expiry date

o Customer profile
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o Temperature

Digitalization makes price changes (practically) costless



Even ‘stable’ products are dynamically priced:
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Price experiments to learn customer’s willingness-to-pay?



Learn the willingness-to-pay distribution / price-demand relation

Plassmann H. et. al, Orbitofrontal cortex encodes willingness to pay in everyday

economic transactions. J Neurosci. 2007
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Estimate unknown parameters
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Determine optimal decision
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How to learn the optimal selling price?

den Boer and Zwart, Management Science 60(3), 2014



@ A firm sells a single product in 7" discrete time periods t =1,...,T.
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@ A firm sells a single product in 7" discrete time periods t =1,...,T.
o No competition, infinite supply, marginal costs zero.

e Each period ¢:
(i) choose selling price py;

(ii) observe demand
dy = 61 + Oapr + €,
where 6 = (01, 6;) are unknown parameters in some known set ©,

€; unobservable random disturbance term with zero mean;

(iii) collect revenue pyd;.



Demand

Price
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Intractable problem



Myopic pricing

An intuitive solution
e Choose arbitrary initial prices p; # pa.
e For each t > 2:
(i) determine least-square estimate ét of 8, based on available sales data;
(ii) set

pry1 = arg maxp - (01 + Oyop)
P
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Myopic pricing

An intuitive solution
e Choose arbitrary initial prices p; # pa.
e For each t > 2:

(i) determine least-square estimate ét of 8, based on available sales data;
(ii) set

D1 = arg maxp - (étl + étgp) perceived optimal decision
p

o ‘Always choose the perceived optimal action’.
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Convergence

Does 6, converge to 6 as t — c0?

No

0, always converges, but w.p. zero to the true 6.



Sample paths of prices under Certainty Equivalent Pricing
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Caused by indeterminate equilibria: what-you-see is what-you-predict



Indeterminate equilibria

If 6 suff. close to 0, then arg maxp - (61 + Oap) = —6, /(20,).
p
Then:

2

0
‘Predicted’ expected demand: 91 + 0251. (2)
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Indeterminate equilibria

If 6 suff. close to 0, then arg maxp - (61 + Oap) = —6, /(20,).
p
Then:

2

0
‘Predicted’ expected demand: 91 + 0251. (2)

2

If (1) equals (2), then 6 is an IE.

Model output ‘confirms’ correctness of the (incorrect) estimates.



Indeterminate equilibria: example
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Indeterminate Equilibria - Dynamic Pricing
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Moral: do not always do what seems best, but deviate in order to learn more

about the dynamics of your system



Back to original problem
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T
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Back to original problem

Which non-anticipating prices p1, ..., pr maximize

T
RLE[ X pa].
t=1
or, equivalently, minimize the Regret(7")

SupIE{T maxp (61 + 02p) — Zptdt}
0cO

e Exact solution intractable

e Myopic pricing not optimal

o Let’s find asymptotically optimal policies: smallest growth rate of
Regret(T) in T



Asymptotically optimal policy

Important observation: Variation in controls = better estimates.
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Asymptotically optimal policy

Important observation: Variation in controls = better estimates.

logt

G|~ o8t
164 ] tVar(pi,...,pt)

To ensure convergence of 6;, some amount of experimentation is necessary.

But, not too much.



‘Controlled Variance pricing’

@ Choose arbitrary initial prices p; # po.
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‘Controlled Variance pricing’

e Choose arbitrary initial prices p; # pa.

o For each t > 2:
(i) determine least-squares estimate 0, of 0, based on available sales data;
(ii) set
P41 = arg maxp - (étl + étzp) perceived optimal decision
P

s.t. t-Var(py,...,per1) > f(t), ‘information constraint’

for some increasing f: N — (0, 00).

@ ‘Always choose the perceived optimal action that induces sufficient

experimentation’.
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‘Controlled Variance pricing’ - performance

Information constraint:
(pey1— ) > f(t+1) — f(t)

where py = (p1 + ... +pi)/t.

‘Taboo interval’ induces sufficient experimentation
1
o Regret(T) ~ f(T) + 3°,_, ‘P&

e f balances between exploration and exploitation.

e Optimal f gives Regret(T) ~ /TlogT, and no policy beats v/T.

First-order optimal policy.

In implementation, ‘second-order’ refinements possible.



Dgna Price

Dynamic pricing at Wijnvoordeel.nl



The pilot (2015-2016)
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Implementation of a highly structured
data extraction & analysis process

Registration of visitor actions
(product views & product purchases)

=™ 5

Webshop Tag Manager / API's
Implementation Restructure
of actual prices Actions into Sessions

(manually or via XML feed)
#
g oo {;}
CcMS Algorithm
(Cloud)

Delivery of recommended prices
(price list in email or XML feed)
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Estimating the demand models

Conversion
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Final outtake

Margin improvement i Insight into pricing dynamics
298
252
Margin Sales Margin
Before After Price
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Some extensions

This extends to multiple products; instead of ¢ - Var(py, ..., p:), control

1
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(den Boer, Mathematics of Operations Research 39(3), 2014).



Some extensions

This extends to multiple products; instead of ¢ - Var(py, ..., p:), control

1
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(den Boer, Mathematics of Operations Research 39(3), 2014).

If inventory is finite and selling seasons are repeated,
no experimentation is needed, and O(log?(T)) regret possible.

(den Boer and Zwart, Operations Research 63(4), 2015).
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Linear demand function is robust for misspecification (sesbes and zeevi, Management

Science 61(4), 2015).



Some extensions

Linear demand function is robust for misspecification (sesbes and zeevi, Management

Science 61(4), 2015).

Behavioral aspects such as reference effects can be dealt with

(den Boer and Keskin, Dynamic Pricing with Demand Learning and Reference Effects, SSRN.



Thanks for your attention!



