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‘One price and goods returnable’

Engraver unknown. From J.D. McCabe, The Illustrated History of the Centennial Exposition, 1876



Dynamic pricing:

Adapting selling prices to changing circumstances

Remaining inventory

Competitor’s prices

Time and date

Expiry date

Customer profile

Temperature

...

Digitalization makes price changes (practically) costless



Even ‘stable’ products are dynamically priced:

Price experiments to learn customer’s willingness-to-pay?



Learn the willingness-to-pay distribution / price-demand relation

Plassmann H. et. al, Orbitofrontal cortex encodes willingness to pay in everyday

economic transactions. J Neurosci. 2007
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How to learn the optimal selling price?

den Boer and Zwart, Management Science 60(3), 2014



A firm sells a single product in T discrete time periods t = 1, . . . , T .

No competition, infinite supply, marginal costs zero.

Each period t:

(i) choose selling price pt;

(ii) observe demand

dt = θ1 + θ2pt + εt,

where θ = (θ1, θ2) are unknown parameters in some known set Θ,

εt unobservable random disturbance term with zero mean;

(iii) collect revenue ptdt.
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Myopic pricing

An intuitive solution

Choose arbitrary initial prices p1 6= p2.

For each t ≥ 2:

(i) determine least-square estimate θ̂t of θ, based on available sales data;

(ii) set

pt+1 = arg max
p

p · (θ̂t1 + θ̂t2p)

perceived optimal decision

‘Always choose the perceived optimal action’.
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Does θ̂t converge to θ as t→∞?

No

θ̂t always converges, but w.p. zero to the true θ.
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Caused by indeterminate equilibria: what-you-see is what-you-predict
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Indeterminate equilibria

If θ̂ suff. close to θ, then arg max
p

p · (θ̂1 + θ̂2p) = −θ̂1/(2θ̂2).

Then:

‘True’ expected demand: θ1 + θ2
−θ̂1

2θ̂2

. (1)

‘Predicted’ expected demand: θ̂1 + θ̂2
−θ̂1

2θ̂2

. (2)

If (1) equals (2), then θ̂ is an IE.

Model output ‘confirms’ correctness of the (incorrect) estimates.
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Indeterminate equilibria: example

Moral: do not always do what seems best, but deviate in order to learn more

about the dynamics of your system
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Back to original problem

Which non-anticipating prices p1, . . . , pT maximize

inf
θ∈Θ

E
[ T∑
t=1

ptdt

]
,

or, equivalently, minimize the Regret(T )

sup
θ∈Θ

E
[
T ·max

p
p · (θ1 + θ2p)−

T∑
t=1

ptdt

]

Exact solution intractable

Myopic pricing not optimal

Let’s find asymptotically optimal policies: smallest growth rate of

Regret(T ) in T .
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Asymptotically optimal policy

Important observation: Variation in controls ⇒ better estimates.

||θ̂t − θ||2 ∼
log t

tVar(p1, . . . , pt)

To ensure convergence of θ̂t, some amount of experimentation is necessary.

But, not too much.
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‘Controlled Variance pricing’

Choose arbitrary initial prices p1 6= p2.

For each t ≥ 2:

(i) determine least-squares estimate θ̂t of θ, based on available sales data;

(ii) set

pt+1 = arg max
p

p · (θ̂t1 + θ̂t2p)

perceived optimal decision

s.t. t ·Var(p1, . . . , pt+1) ≥ f(t), ‘information constraint’

for some increasing f : N→ (0,∞).

‘Always choose the perceived optimal action that induces sufficient

experimentation’.
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‘Controlled Variance pricing’ - performance

Information constraint:

(pt+1 − p̄t)2 ≥ f(t+ 1)− f(t)

where p̄t = (p1 + . . .+ pt)/t.

‘Taboo interval’ induces sufficient experimentation

Regret(T ) ∼ f(T ) +
∑T
t=1

log t
f(t) .

f balances between exploration and exploitation.

Optimal f gives Regret(T ) ∼
√
T log T , and no policy beats

√
T .

First-order optimal policy.

In implementation, ‘second-order’ refinements possible.
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Some extensions

This extends to multiple products; instead of t ·Var(p1, . . . , pt), control

λmin


t∑
i=1


1

p1(i)
...

pn(i)


(

1 p1(i) . . . pn(i)
)
 .

(den Boer, Mathematics of Operations Research 39(3), 2014).

If inventory is finite and selling seasons are repeated,

no experimentation is needed, and O(log2(T )) regret possible.

(den Boer and Zwart, Operations Research 63(4), 2015).
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Some extensions

Linear demand function is robust for misspecification (Besbes and Zeevi, Management

Science 61(4), 2015).

Behavioral aspects such as reference effects can be dealt with

(den Boer and Keskin, Dynamic Pricing with Demand Learning and Reference Effects, SSRN.
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Thanks for your attention!


