Dealing with market frictions: Some challenges for stochastic analysis and optimal control

Peter Bank

based on joint work with David Besslich, Yan Dolinsky, Ibrahim Ekren, Johannes Muhle-Karbe, Mete Soner, and Moritz Voss

19th Winter School on Mathematical Finance

Lunteren, 20-22 January 2020

- Classical Black-Scholes theory: dynamic trading of arbitrary amounts, arbitrarily fast without impact on (exogenously given) asset prices and without taxes, transaction fees, etc.
- How to account for these nonlinear effects? Formidable challenges at the interfaces between financial modelling, stochastic analysis, and stochastic optimal control.

- Classical Black-Scholes theory: dynamic trading of arbitrary amounts, arbitrarily fast without impact on (exogenously given) asset prices and without taxes, transaction fees, etc.
- How to account for these nonlinear effects? Formidable challenges at the interfaces between financial modelling, stochastic analysis, and stochastic optimal control.
- Tax effects: important aspect of some financial deals (and shenanigans: cf. cum-ex trades)

- Classical Black-Scholes theory: dynamic trading of arbitrary amounts, arbitrarily fast without impact on (exogenously given) asset prices and without taxes, transaction fees, etc.
- How to account for these nonlinear effects? Formidable challenges at the interfaces between financial modelling, stochastic analysis, and stochastic optimal control.
- Tax effects: important aspect of some financial deals (and shenanigans: cf. cum-ex trades), devil in the details of an ever changing tax code

 \rightsquigarrow not obviously fun to develop mathematical theory for this

- Classical Black-Scholes theory: dynamic trading of arbitrary amounts, arbitrarily fast without impact on (exogenously given) asset prices and without taxes, transaction fees, etc.
- How to account for these nonlinear effects? Formidable challenges at the interfaces between financial modelling, stochastic analysis, and stochastic optimal control.
- Tax effects: important aspect of some financial deals (and shenanigans: cf. cum-ex trades), devil in the details of an ever changing tax code

 \rightsquigarrow not obviously fun to develop mathematical theory for this

 Transaction fees: often mixture of lump sum payments and (capped) proportional fees

- Classical Black-Scholes theory: dynamic trading of arbitrary amounts, arbitrarily fast without impact on (exogenously given) asset prices and without taxes, transaction fees, etc.
- How to account for these nonlinear effects? Formidable challenges at the interfaces between financial modelling, stochastic analysis, and stochastic optimal control.
- Tax effects: important aspect of some financial deals (and shenanigans: cf. cum-ex trades), devil in the details of an ever changing tax code

 \rightsquigarrow not obviously fun to develop mathematical theory for this

Transaction fees: often mixture of lump sum payments and (capped) proportional fees ~> optimal control problems which received a lot of attention in recent years: asymptotic analysis for small fees, shadow prices, ...

Price impact: triviality from the point of view of economic theory as prices are determined by demand and supply, also in financial markets

- Price impact: triviality from the point of view of economic theory as prices are determined by demand and supply, also in financial markets
 PLIT: How to formalize equilibrium prices?
 - BUT: How to formalize equilibrium prices?

Price impact: triviality from the point of view of economic theory as prices are determined by demand and supply, also in financial markets BUT: How to formalize equilibrium prices? Answers from the

work of many Nobel laureates: Debreu, Arrow, ..., Thaler;

Price impact: triviality from the point of view of economic theory as prices are determined by demand and supply, also in financial markets BUT: How to formalize equilibrium prices? Answers from the work of many Nobel laureates: Debreu, Arrow, ..., Thaler; price formation theory is an academic industry of its own, even when focusing on financial markets alone: market microstructure, role of information and knowledge, market power, market organization, different time scales for modeling...

Price impact: triviality from the point of view of economic theory as prices are determined by demand and supply, also in financial markets BUT: How to formalize equilibrium prices? Answers from the work of many Nobel laureates: Debreu, Arrow, ..., Thaler; price formation theory is an academic industry of its own, even when focusing on financial markets alone: market

microstructure, role of information and knowledge, market power, market organization, different time scales for modeling...

 \rightsquigarrow stylized models of price impact to be considered first and then move to more sophisticated models

Price impact due to limited market liquidity

Kyle '85 identifies different notions to assess market liquidity:

- Tightness: The cost of turning around a position over a short period of time. Well captured by spread between bid- and ask-prices.
 - Depth: The size of an order flow innovation required to change prices a given amount. Good proxy: volume available for trading on bid- and ask-side of limit order book.
- Resiliency: The speed at which prices recover from a random, uninformative shock. Hard to measure . . .

Price impact due to limited market liquidity

Kyle '85 identifies different notions to assess market liquidity:

- Tightness: The cost of turning around a position over a short period of time. Well captured by spread between bid- and ask-prices.
 - Depth: The size of an order flow innovation required to change prices a given amount. Good proxy: volume available for trading on bid- and ask-side of limit order book.
- Resiliency: The speed at which prices recover from a random, uninformative shock. Hard to measure ...

Liquidity model has to identify *relevant time-scale* for its purpose:

- high-frequency trading: limit order book model.
- option pricing, hedging, optimal investment: mesoscopic models like the ones of this course.

Course outline

This course will discuss:

- models with purely temporary price impact: [3], [4]
 - indifference pricing and asymptotics for small impact
 - quadratic hedging
 - (essentially) classical stochastic control
- tractable models with transient price impact: [1], [2]
 - super-replication duality
 - utility maximization
 - singular stochastic control
- equilibrium with frictions: [5]
- new approach to information modeling in optimal control problems: [6] (time permitting)

Models with temporary price impact

Models with transient price impact

Equilibrium with market frictions

Modeling information flow in stochastic control

Temporary price impact

Consider an arbitrage-free stock price model:

$$P = (P_t)_{0 \le t \le T}$$
 with volatility $d \langle P \rangle_t = \sigma_t^2 dt$

Temporary price impact when an investor changes her position X at speed \dot{X} with market liquidity described by $\kappa > 0$:

$$P_t^{\kappa} = P_t + \dot{X}_t \kappa_t \quad (0 \le t \le T)$$

PnL at time T when starting and ending with a flat stock position:

$$V_T^{\kappa}(X) = -\int_0^T P_t^{\kappa} dX_t = \int_0^T X_t dP_t - \int_0^T \dot{X}_t^2 \kappa_t dt$$

How to invest optimally? How to price & hedge contingent claims?

Temporary price impact

Consider an arbitrage-free stock price model:

$$P = (P_t)_{0 \le t \le T}$$
 with volatility $d \langle P \rangle_t = \sigma_t^2 dt$

Temporary price impact when an investor changes her position X at speed \dot{X} with market liquidity described by $\kappa > 0$:

$$P_t^{\kappa} = P_t + \dot{X}_t \kappa_t \quad (0 \le t \le T)$$

PnL at time T when starting and ending with a flat stock position:

$$V_T^{\kappa}(X) = -\int_0^T P_t^{\kappa} dX_t = \int_0^T X_t dP_t - \int_0^T \dot{X}_t^2 \kappa_t dt$$

How to invest optimally? How to price & hedge contingent claims? Asymptotic expansions about the frictionless case " $\kappa = 0$ ": Guasoni, Weber ('15), Moreau, Muhle-Karbe, Soner ('15), ...

Heuristics for indifference price asymptotics

With ξ denoting the *frictionless* optimizer with endowment -H + p, we want to find for "small" κ an X which minimizes

$$\mathbb{E}u(V_T^0(\xi) - H + p) - \mathbb{E}u(V_T^{\kappa}(X) - H + p)$$

$$\approx \mathbb{E}\left[u'(V_T^0(\xi) - H + p)\underbrace{(V_T^0(\xi) - V_T^{\kappa}(X))}_{=\int_0^T (\xi_t - X_t)dP_t + \int_0^T \dot{X}_t^{2\kappa_t}dt} + \frac{1}{2}u''(V_T^0(\xi) - H + p)(V_T^0(\xi) - V_T^{\kappa}(\xi))^2\right]$$

$$\approx \mathbb{E}^0\left[\int_0^T \dot{X}_t^{2\kappa_t}dt + \frac{1}{2}\alpha\int_0^T (\xi_t - X_t)^2d\langle P \rangle_t\right] + \dots$$

where $d\mathbb{P}^0/d\mathbb{P} \propto u'(V_T^0(\xi) - H + p)$ is the density of a martingale measure for *P* and where $u(x) = -\exp(-\alpha x)$. \rightsquigarrow simplified quadratic optimization problem!

Quadratic tracking problem

Mathematical optimization problem

For a given predictable ξ and given $x \in \mathbb{R}$, find an absolutely continuous, adapted process $X_t = x + \int_0^t u_s ds$ with $u \in L^2(\mathbb{P} \otimes \kappa_s ds)$, which minimizes

$$J(u) \triangleq \mathbb{E}\left[\int_0^T (\xi_t - X_t)^2 \sigma_t^2 dt + \int_0^T u_t^2 \kappa_t dt\right]$$

for given progressively measurable, strictly positive processes $\sigma,\kappa.$

Quadratic tracking problem

Mathematical optimization problem

For a given predictable ξ and given $x \in \mathbb{R}$, find an absolutely continuous, adapted process $X_t = x + \int_0^t u_s ds$ with $u \in L^2(\mathbb{P} \otimes \kappa_s ds)$, which minimizes

$$J(u) \triangleq \mathbb{E}\left[\int_0^T (\xi_t - X_t)^2 \sigma_t^2 dt + \int_0^T u_t^2 \kappa_t dt\right]$$

for given progressively measurable, strictly positive processes σ, κ . Possible additional constraint on terminal position:

$$X_T = \xi_T$$
 for some given $\xi_T \in \mathscr{F}_T$.

Closely related references from Mathematical Finance Rogers & Singh (2010), Naujokat & Westray (2011), Frei & Westray (2013), Schied (2013), Horst & Naujokat (2014), Almgren & Li (2014), Cartea & Jaimungal (2015), Cai et al. (2015, 2016), ...

Constant coefficients in the unconstrained case

Theorem

If σ and κ are constant and there is no constraint on the terminal position, it is optimal to always trade towards

$$\hat{\xi}_t = \mathbb{E}\left[\int_t^T \xi_s \frac{\cosh(\frac{T-s}{\sqrt{\lambda}})}{\sinh(\frac{T-t}{\sqrt{\lambda}})\sqrt{\lambda}} ds \,\middle|\, \mathscr{F}_t\right]$$

according to

$$dX_t^* = rac{1}{\sqrt{\lambda}} anh(rac{\mathcal{T}-t}{\sqrt{\lambda}}) \left(\hat{\xi}_t - X_t^*
ight) dt$$

where $\lambda \triangleq \kappa / \sigma^2$.

Rather than towards the current target ξ_t , one should trade towards its expected future $\hat{\xi}_t$; cf. Garleanu & Pedersen (2014).

Constant coefficients in the constrained case

Theorem

If σ and κ are constant and the terminal position has to be $X_T^* = \xi_T \in L^2(\mathbb{P})$, it is optimal to always trade towards

$$\begin{split} \hat{\xi}_t = & \frac{1}{\cosh(\frac{T-t}{\sqrt{\lambda}})} \mathbb{E}\left[\xi_T \mid \mathscr{F}_t\right] \\ &+ \left(1 - \frac{1}{\cosh(\frac{T-t}{\sqrt{\lambda}})}\right) \mathbb{E}\left[\int_t^T \xi_s \frac{\sinh(\frac{T-s}{\sqrt{\lambda}})}{(\cosh(\frac{T-t}{\sqrt{\lambda}}) - 1)\sqrt{\lambda}} \middle| \mathscr{F}_t\right] \end{split}$$

according to

$$dX_t^* = rac{1}{\sqrt{\lambda}} \coth(rac{T-t}{\sqrt{\lambda}}) \left(\hat{\xi}_t - X_t^*\right) dt$$

where $\lambda \triangleq \kappa / \sigma^2$. As $t \uparrow T$ we have to trade towards $\hat{\xi}$ (and thus towards ξ_T) with higher and higher urgency.

Figure: Target strategy ξ with a jump at t = T/2 (blue)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Figure: Target strategy ξ with a jump at t = T/2 (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red).

Illustration: Discretely monitored Asian option

Figure: Target strategy ξ of "Asian option" $(\frac{1}{2}(S_{T/2} + S_T) - K)^+$ (blue), unconstrained (orange, dashed) and constrained (green, dashed) target, corresponding unconstrained (orange) and constrained (green) frictional hedge, and directly targeting strategy (red)

Illustration: Call option with physical delivery

Illustration: Call option with physical delivery ???

Lemma

A terminal position ξ_T can be attained at finite expected costs if and only if it becomes known sufficiently fast towards the end:

$$\int_0^T \frac{\mathbb{E}[(\xi_T - \mathbb{E}\left[\xi_T \mid \mathscr{F}_t\right])^2]}{(T-t)^2} dt < \infty.$$
General case with stochastic coefficients

For a given predictable target strategy ξ , a given terminal position ξ_T and a given initial position $x \in \mathbb{R}$, find an absolutely continuous, adapted process $X = x + \int_0^{\cdot} u_t dt$ which minimizes

$$\mathbb{E}\left[\int_0^T (\xi_t - X_t)^2 \sigma_t^2 dt + \int_0^T u_t^2 \kappa_t dt + \eta (\xi_T - X_T)^2\right]$$

with σ, κ progressively measurable, strictly positive, bounded processes, nonnegative $\eta \in \mathscr{F}_T$.

General case with stochastic coefficients

For a given predictable target strategy ξ , a given terminal position ξ_T and a given initial position $x \in \mathbb{R}$, find an absolutely continuous, adapted process $X = x + \int_0^{\cdot} u_t dt$ which minimizes

$$\mathbb{E}\left[\int_0^T (\xi_t - X_t)^2 \sigma_t^2 dt + \int_0^T u_t^2 \kappa_t dt + \eta (\xi_T - X_T)^2\right]$$

with σ, κ progressively measurable, strictly positive, bounded processes, nonnegative $\eta \in \mathscr{F}_T$.

Also allow for $\eta = +\infty$ with positive probability:

- → imposes implicitly the terminal state constraint $X_T = \xi_T$ on $\{\eta = +\infty\}$ (constrained problem)
- → we have to be careful with $\eta(\xi_T X_T)^2$ if $\eta = \infty$ and $\xi_T = X_T$: "truncation in space" vs. "truncation in time".

Kohlmann and Tang (2002): For $\eta \ge 0$ bounded, construct optimal control $u^* = (b - cX^*)/\kappa$ from solutions to BSRDE

$$dc_t = \left(rac{c_t^2}{\kappa_t} - \sigma_t^2
ight) dt - dM_t \quad (0 \le t \le T), \quad c_T = \eta,$$

and linear BSDE

$$db_t = \left(rac{c_t}{\kappa_t}b_t - \sigma_t^2\xi_t
ight)dt + dM_t' \quad (0 \le t \le T), \quad b_T = \eta\xi_T.$$

Problem: How to make sense of this when $\mathbb{P}[\eta = +\infty] > 0$?

Kohlmann and Tang (2002): For $\eta \ge 0$ bounded, construct optimal control $u^* = (b - cX^*)/\kappa$ from solutions to BSRDE

$$dc_t = \left(rac{c_t^2}{\kappa_t} - \sigma_t^2
ight) dt - dM_t \quad (0 \le t \le T), \quad c_T = \eta,$$

and linear BSDE

$$db_t = \left(rac{c_t}{\kappa_t}b_t - \sigma_t^2\xi_t
ight)dt + dM'_t \quad (0 \le t \le T), \quad b_T = \eta\xi_T.$$

Problem: How to make sense of this when $\mathbb{P}[\eta = +\infty] > 0$?

For BSRDE: Truncate $\eta \wedge n$ to obtain $c^{(n)}$ and use comparison to control $c \triangleq \lim_{n} c^{(n)}$; see Kruse & Popier (2015).

Kohlmann and Tang (2002): For $\eta \ge 0$ bounded, construct optimal control $u^* = (b - cX^*)/\kappa$ from solutions to BSRDE

$$dc_t = \left(rac{c_t^2}{\kappa_t} - \sigma_t^2
ight) dt - dM_t \quad (0 \le t \le T), \quad c_T = \eta,$$

and linear BSDE

$$db_t = \left(rac{c_t}{\kappa_t}b_t - \sigma_t^2\xi_t
ight)dt + dM'_t \quad (0 \le t \le T), \quad b_T = \eta\xi_T.$$

Problem: How to make sense of this when $\mathbb{P}[\eta = +\infty] > 0$?

- For BSRDE: Truncate $\eta \wedge n$ to obtain $c^{(n)}$ and use comparison to control $c \triangleq \lim_{n} c^{(n)}$; see Kruse & Popier (2015).
- For BSDE: Above truncation does not work because of linear dynamics!?! unless ξ_T = 0 → "liquidation problem"

Kohlmann and Tang (2002): For $\eta \ge 0$ bounded, construct optimal control $u^* = (b - cX^*)/\kappa$ from solutions to BSRDE

$$dc_t = \left(rac{c_t^2}{\kappa_t} - \sigma_t^2
ight) dt - dM_t \quad (0 \le t \le T), \quad c_T = \eta,$$

and linear BSDE

$$db_t = \left(rac{c_t}{\kappa_t}b_t - \sigma_t^2\xi_t
ight)dt + dM_t' \quad (0 \le t \le T), \quad b_T = \eta\xi_T.$$

Problem: How to make sense of this when $\mathbb{P}[\eta = +\infty] > 0$?

- For BSRDE: Truncate $\eta \wedge n$ to obtain $c^{(n)}$ and use comparison to control $c \triangleq \lim_{n \to \infty} c^{(n)}$; see Kruse & Popier (2015).
- For BSDE: Above truncation does not work because of linear dynamics!?! unless ξ_T = 0 → "liquidation problem"
 Idea: Use signal process ξ̂ for "consistent truncation in time"!

General result

Suppose:

- integrable coefficients: $\int_0^T (\sigma_t^2 + \kappa_t^{-1}) dt < \infty$ a.s.
- effective time horizon is indeed T, i.e. penalization for deviations from targets remains conceivable throughout:

$$\mathbb{P}\left[\eta = 0, \int_{t}^{T} \sigma_{s}^{2} ds = 0 \ \middle| \ \mathscr{F}_{t}\right] < 1, \quad \text{for all } t < T$$

Supersolution for BSRDE: consider semimartingale c = (c_t)_{0≤t<T} > 0 with dynamics

$$dc_t = \left(\frac{c_t^2}{\kappa_t} - \sigma_t^2\right) dt - dM_t \quad (0 \le t < T), \quad \liminf_{t \uparrow T} c_t \ge \eta$$

such that $(M_t)_{t < T}$ is a martingale and

$$\int_{[0,T)} \frac{d[c]_t}{c_{t-}^2} < \infty \text{ on } \{\eta = +\infty\}.$$

▶ integrable targets: $\xi_t \in L^1(\mathbb{P} \otimes \sigma_t^2 dt), \xi_T L_T^c \in L^1(\mathbb{P})$

General result (ctd)

Then $L_t^c \triangleq c_t e^{-\int_0^t \frac{c_u}{\kappa_u} du} \ge 0$ is a supermartingale and ...

... the signal process

$$\hat{\xi}_t^c \triangleq \frac{1}{L_t^c} \mathbb{E}\left[\xi_T L_T^c + \int_t^T \xi_r e^{-\int_0^r \frac{c_u}{\kappa_u} du} \sigma_r^2 dr \, \middle| \, \mathscr{F}_t\right] \quad (0 \le t < T)$$

is well defined and satisfies

$$\lim_{\uparrow T} \hat{\xi}_t^c = \Xi_T \text{ on } \{ L_T^c > 0 \} \supset \{ \eta > 0 \},$$

... the target functional with "truncation in time"

$$J^{c}(u) \triangleq \limsup_{\tau \uparrow T} \mathbb{E} \left[\int_{0}^{\tau} (X_{t}^{u} - \xi_{t})^{2} \sigma_{t}^{2} dt + \int_{0}^{\tau} \kappa_{t} u_{t}^{2} dt + c_{\tau} (X_{\tau}^{u} - \hat{\xi}_{\tau}^{c})^{2} \right]$$

dominates J: $J(u) \leq J^{c}(u)$. Its domain $\{u \mid J^{c}(u) < \infty\}$ is nonempty iff

$$\mathbb{E}\left[\int_0^T (\hat{\xi}_t^c)^2 \sigma_t^2 dt\right] < +\infty \quad \text{and} \quad \mathbb{E}\left[\int_{[0,T)} c_t d[\hat{\xi}^c]_t\right] < +\infty,$$

General result (ctd)

Image: ... if {u | J^c(u) < ∞} ≠ Ø, the optimal control u^c can be described in feedback form as

$$u_t^c = \frac{c_t}{\kappa_t} (\hat{\xi}_t^c - X_t^{u^c}), \quad 0 \le t < T,$$

... the minimal costs decompose as

$$J(u^c) = c_0(x - \hat{\xi}_0^c)^2 + \mathbb{E}\left[\int_0^T (\xi_t - \hat{\xi}_t^c)^2 \sigma_t^2 dt\right] + \mathbb{E}\left[\int_{[0,T)} c_t d[\hat{\xi}^c]_t\right]$$

into costs due to suboptimal starting position, to the (lack of) regularity and compatibility of the targets ξ , ξ_T , and to the signal's variability given new information on problem data.

Key insights for proof

A lengthy calculation reveals that

$$\begin{split} &\int_{0}^{\tau} (X_{t}^{u} - \xi_{t})^{2} \sigma_{t}^{2} dt + \int_{0}^{\tau} \kappa_{t} u_{t}^{2} dt + c_{\tau} (X_{\tau}^{u} - \hat{\xi}_{\tau}^{c})^{2} \\ &= c_{0} (x - \hat{\xi}_{0}^{c})^{2} + \int_{0}^{\tau} (\xi_{t} - \hat{\xi}_{t}^{c})^{2} \sigma_{t}^{2} dt + \int_{0}^{\tau} c_{t} d[\hat{\xi}^{c}]_{t} \\ &+ \int_{0}^{\tau} \left(u_{t} - \frac{c_{t}}{\kappa_{t}} \left(\hat{\xi}_{t}^{c} - X_{t}^{u} \right) \right)^{2} \kappa_{t} dt + \text{local martingale}_{\tau} \,. \end{split}$$

→→ Consistency of optimization problems with different time horizons τ : same feedback policy optimal for all $\tau < T$ Letting $\tau \uparrow T$ and taking expectations reveals optimality of given u^c along with necessary and sufficient conditions for $\{u \mid J^c(u) < \infty\} \neq \emptyset$.

Key insights for proof

A lengthy calculation reveals that

$$\begin{split} &\int_{0}^{\tau} (X_{t}^{u} - \xi_{t})^{2} \sigma_{t}^{2} dt + \int_{0}^{\tau} \kappa_{t} u_{t}^{2} dt + c_{\tau} (X_{\tau}^{u} - \hat{\xi}_{\tau}^{c})^{2} \\ &= c_{0} (x - \hat{\xi}_{0}^{c})^{2} + \int_{0}^{\tau} (\xi_{t} - \hat{\xi}_{t}^{c})^{2} \sigma_{t}^{2} dt + \int_{0}^{\tau} c_{t} d[\hat{\xi}^{c}]_{t} \\ &+ \int_{0}^{\tau} \left(u_{t} - \frac{c_{t}}{\kappa_{t}} \left(\hat{\xi}_{t}^{c} - X_{t}^{u} \right) \right)^{2} \kappa_{t} dt + \text{local martingale}_{\tau} \,. \end{split}$$

 \rightsquigarrow Consistency of optimization problems with different time horizons $\tau:$ same feedback policy optimal for all $\tau < T$

Letting $\tau \uparrow T$ and taking expectations reveals optimality of given u^c along with necessary and sufficient conditions for $\{u \mid J^c(u) < \infty\} \neq \emptyset$.

Conjecture:

 $\operatorname{argmin} J = \operatorname{argmin} J^{c_{\min}}$ for *minimal* supersolution c_{\min} of BSRDE.

- B., H. M. Soner, M. Voß, Hedging with Temporary Price Impact. Mathematics and Financial Economics, 11(2), (2017), 215-239
- B., M. Voß, Linear quadratic stochastic control problems with singular stochastic terminal constraint. SIAM J. on Control and Optimization.

Conclusions

- quadratic hedging with quadratic transaction costs from temporary price impact
- explicit solution for constant coefficients: trade towards expected average future position of suitable frictionless optimum
- ... possibly combined with weighted expectation of ultimate target position
- characterization of ultimate positions which are attainable with finite expected costs
- closed-form hedging recipes also for frictionless reference hedges which have singularities
- very general optimal control with stochastic coefficients solved in terms of (singular) backward stochastic Riccati equation under minimal assumptions
- construction of signal process and interpretation of problem value

Conclusions

- quadratic hedging with quadratic transaction costs from temporary price impact
- explicit solution for constant coefficients: trade towards expected average future position of suitable frictionless optimum
- ... possibly combined with weighted expectation of ultimate target position
- characterization of ultimate positions which are attainable with finite expected costs
- closed-form hedging recipes also for frictionless reference hedges which have singularities
- very general optimal control with stochastic coefficients solved in terms of (singular) backward stochastic Riccati equation under minimal assumptions
- construction of signal process and interpretation of problem value

Thank you very much!

Models with temporary price impact

Models with transient price impact

Equilibrium with market frictions

Modeling information flow in stochastic control

Continuous-time model with transient price impact

- no interest; unaffected, "fundamental" asset price: continuous adapted process P = (P_t)
- ▶ investment strategy of large investor: number of assets held $X_t = x_0 + X_t^{\uparrow} X_t^{\downarrow}, t \ge 0, \quad X_{0-} = x_0, \quad X_{0-}^{\uparrow} = X_{0-}^{\downarrow} = 0,$ right-continuous, adapted, of bounded total variation
- ▶ permanent impact on midquote price: $P_t^X = P_t + \iota X_t, t \ge 0, P_{0-}^X = P_0 + \iota x_0$ (cf. Huberman-Stanzl '04)
- ► half-spread: $d\zeta_t^X = \frac{1}{\delta_t} (dX_t^\uparrow + dX_t^\downarrow) r_t \zeta_t^X dt, \quad \zeta_{0-}^X = \zeta_0 \ge 0$
 - ▶ market depth: $\delta = (\delta_t)$ continuous adapted, bounded away from 0 and ∞ .

▶ resilience rate: $r = (r_t) \ge 0$ predictable, $\int_0^T r_t dt$ bounded

 bid-price: P^X_t − ζ^X_t; ask-price: P^X_t + ζ^X_t (cf. Roch-Soner '13)

Wealth dynamics

Holding X_t assets at time $t \in [0, T]$ yields ultimate cash position:

$$V_T^X = v_0 - \int_{[0,T]} P_t^X \circ dX_t - \int_{[0,T]} \zeta_t^X \circ d(X_t^{\uparrow} + X_t^{\downarrow}).$$

where $\int_{[0,T]} Y_t \circ dX_t = \int_{[0,T]} \frac{1}{2} (Y_{t-} + Y_{t+}) dX_t$ (Stratonovich/Marcus-integral; cf. Becherer et al. '17)

Crucial observation: For $X \in \mathscr{X}$ with $X_T = 0$,

$$V_{T}^{X} = v_{0} + \frac{1}{2}(\iota x_{0}^{2} + \delta_{0}\zeta_{0}^{2}) - \int_{0}^{T} P_{t}dX_{t} - \frac{1}{2}\int_{0}^{T}(\rho_{t}\zeta_{t}^{X})^{2}|d\kappa_{t}|$$

if $\kappa_t = \delta_t / \rho_t^2 \mathbb{1}_{[0,T)}(t)$ is strictly decreasing (assumed henceforth) with $\rho_t = \exp\left(\int_0^t r_s \, ds\right)$.

~> convex transaction costs, convex analytic methods apply

Consider contingent claim with \mathscr{F}_T -measurable payoff $H \ge 0$. Super-replication costs:

 $\pi(H) \triangleq \inf \{ v_0 \in \mathbb{R} : V_T^X \ge H \text{ for some } X \in \mathscr{X} \text{ with } X_T = 0 \}$

 \rightsquigarrow convex functional of H

Consider contingent claim with \mathscr{F}_T -measurable payoff $H \ge 0$. Super-replication costs:

 $\pi(H) \triangleq \inf \{ v_0 \in \mathbb{R} : V_T^X \ge H \text{ for some } X \in \mathscr{X} \text{ with } X_T = 0 \}$

 \rightsquigarrow convex functional of H

Question: What is its dual description?

Notice: payoff of *H* not affected by strategy *X*; this is no issue if $H = h(P_T^X)$ because $P_T^X = P_T$ when $X_T = 0$. (See Frey '96, Bouchard et al '17, Becherer-Bilarev '17 for PDE-approach with manipulable claims.)

Super-replication duality

Additional technical assumption:

All (\mathscr{F}_t) -martingales have a continuous version.

Theorem

The super-replication costs of a contingent claim $H \ge 0$ have the dual description

$$\pi(H) = \sup_{(\mathbb{Q},M,\alpha)} \left\{ \mathbb{E}_{\mathbb{Q}}[H] - \frac{1}{2} \|\alpha - \zeta_0\|_{L^2(\mathbb{Q} \otimes |d\kappa|)}^2 - M_0 x_0 - \frac{1}{2} \iota x_0^2 \right\} > -\infty$$

where the supremum is taken over all triples (\mathbb{Q}, M, α) of probability measures $\mathbb{Q} \ll \mathbb{P}$ on \mathscr{F}_T , martingales $M \in \mathscr{M}^2(\mathbb{Q})$ and all optional $\alpha \in L^2(\mathbb{Q} \otimes |d\kappa|)$ which control the fluctuations of Pin the sense that

$$|P_t - M_t| \leq \frac{\rho_t}{\delta_t} \mathbb{E}_{\mathbb{Q}} \left[\int_{[t,T]} \alpha_u |d\kappa_u| \middle| \mathscr{F}_t \right], \quad 0 \leq t \leq T.$$

Connections with other duality formulae

$$\pi(H) = \sup_{(\mathbb{Q},M,\alpha)} \left\{ \mathbb{E}_{\mathbb{Q}}[H] - \frac{1}{2} \|\alpha - \zeta_0\|_{L^2(\mathbb{Q} \otimes |d\kappa|)}^2 - M_0 x_0 - \frac{1}{2} \iota x_0^2 \right\} > -\infty$$

subject to $|P_t - M_t| \leq \frac{\rho_t}{\delta_t} \mathbb{E}_{\mathbb{Q}} \left[\int_{[t,T]} \alpha_u \left| d\kappa_u \right| \middle| \mathscr{F}_t \right], \quad 0 \leq t \leq T.$

- If $\mathbb{Q} \ll \mathbb{P}$ martingale measure for P, $\pi(H) \ge \mathbb{E}_{\mathbb{Q}}[H]$.
- Classical transaction cost models correspond roughly to r = 0 and δ = ∞, without permanent impact: ι = 0. Then we have a constant spread ζ^X ≡ ζ₀ and can choose α ≡ ζ₀ for any consistent price system, (ℚ ≪ ℙ with M ∈ M²(ℚ)) to ensure closeness constraint and thus obtain π(H) ≥ ℝ_Q[H].
- Classical transaction cost models *not* a special case, though, since they require admissibility notion because of linear scaling. No notion of admissibility required for our "quadratic" price impact model.
- With temporary transaction costs ∫₀^T G_t(X_t)dt for suitable convex G_t (like G_t(x) = x²), Dolinsky-Soner '13 and Guasoni-Rasonyi'15 also get convex risk measure description.

Proof

lower bound: not too hard given convex form of wealth dynamics **upper bound:**

 construct Q by separation argument: standard because of convex wealth dynamics; need to understand

$$\inf_{X\in\mathscr{X}^2, X_T=0} \mathbb{E}_{\hat{\mathbb{Q}}}\left[\int_0^T P_t dX_t + \frac{1}{2}\int_0^T (\rho_t \zeta_t^X)^2 |d\kappa_t|\right] = ?$$

• construct \hat{M} as a Lagrange multiplier for $X_T = 0$; solve

$$\inf_{X\in\mathscr{X} \text{ bdd.}} \mathbb{E}_{\hat{\mathbb{Q}}}\left[\int_{0}^{T} (P_t - \hat{M}_t) dX_t - \hat{M}_0 x_0 + \frac{1}{2} \int_{0}^{T} (\rho_t \zeta_t^X)^2 |d\kappa_t|\right] = ?$$

► construct $\hat{\alpha}$ for which $\dots = -\frac{1}{2} \|\hat{\alpha} - \zeta_0\|_{L^2(\hat{\mathbb{Q}} \otimes |d\kappa|)}^2 - \hat{M}_0 x_0 + \frac{1}{2} \zeta_0^2 \delta_0$: need continuity of filtration for representation theorem in B. & El Karoui '04

Optimal investment

Question: How to determine optimal investment strategies with transient price impact?

Optimal investment

Question: How to determine optimal investment strategies with transient price impact?

Corollary

Consider a strictly concave, increasing and differentiable utility function u for which $\sup_{X \in \mathscr{X}, X_T=0} \mathbb{E}[u(V_T^X) \lor 0] < \infty$. Suppose $\hat{X} \in \mathscr{X}$ with $\hat{X}_T = 0$ yields via $\frac{d\hat{\mathbb{Q}}}{d\mathbb{P}} = \frac{u'(V_T^{\hat{X}})}{\mathbb{E}[u'(V_T^{\hat{X}})]}$ a probability measure $\hat{\mathbb{Q}} \ll \mathbb{P}$ with a shadow price \hat{M} for spread dynamics

$$\hat{\lambda}_t = \frac{\rho_t}{\delta_t} \mathbb{E}_{\hat{\mathbb{Q}}}\left[\int_{[t,T]} \hat{\alpha}_u \mu(du) \middle| \mathscr{F}_t \right], \quad 0 \le t \le T,$$

with $\hat{\alpha} = \rho \zeta^{\hat{X}} \in L^2(\hat{\mathbb{Q}} \otimes \mu)$. Then \hat{X} yields the highest expected utility $\mathbb{E}[u(V_T^X)]$ among all strategies $X \in \mathscr{X}$ with $X_T = 0$.

Optimal investment

Question: How to determine optimal investment strategies with transient price impact?

Corollary

Consider a strictly concave, increasing and differentiable utility function u for which $\sup_{X \in \mathscr{X}, X_T=0} \mathbb{E}[u(V_T^X) \vee 0] < \infty$. Suppose $\hat{X} \in \mathscr{X}$ with $\hat{X}_T = 0$ yields via $\frac{d\hat{\mathbb{Q}}}{d\mathbb{P}} = \frac{u'(V_T^{\hat{X}})}{\mathbb{E}[u'(V_T^{\hat{X}})]}$ a probability measure $\hat{\mathbb{Q}} \ll \mathbb{P}$ with a shadow price \hat{M} for spread dynamics

$$\hat{\lambda}_t = \frac{\rho_t}{\delta_t} \mathbb{E}_{\hat{\mathbb{Q}}}\left[\int_{[t,T]} \hat{\alpha}_u \mu(du) \middle| \mathscr{F}_t \right], \quad 0 \leq t \leq T,$$

with $\hat{\alpha} = \rho \zeta^{\hat{X}} \in L^2(\hat{\mathbb{Q}} \otimes \mu)$. Then \hat{X} yields the highest expected utility $\mathbb{E}[u(V_T^X)]$ among all strategies $X \in \mathscr{X}$ with $X_T = 0$.

 \rightsquigarrow not constructive, but suitable for verification of optimality

Exponential utility maximization in Bachelier model with constant transient impact

Choose:

- utility function: $u(x) = -\exp(-\alpha x)$
- Bachelier reference model: $P_t = \mu t + \sigma B_t$
- constant coefficients: $r_t \equiv r \ge 0$, $\delta_t \equiv \delta > 0$; $\iota = 1/\delta$

Exponential utility maximization in Bachelier model with constant transient impact

Choose:

- utility function: $u(x) = -\exp(-\alpha x)$
- Bachelier reference model: $P_t = \mu t + \sigma B_t$
- constant coefficients: $r_t \equiv r \ge 0$, $\delta_t \equiv \delta > 0$; $\iota = 1/\delta$

Figure: Buying region below green surface, selling region above red surface, holding region in between.

Figure: After waiting for spread to recover, one buys towards Merton's optimal holdings (grey) and holds this position before unwinding it as time for investing elapses (blue).

Figure: When the trading period starts with a "small" spread, one should do an initial block trade and then gradually build up a position which is held until liquidation at the end.

Figure: But, maybe somewhat counterintuitively, it may also be optimal to do an initial block trade, hold the position and then liquidate everything with a final block trade.

Figure: Starting with a short position, it may be optimal to clear this position and go away then, even though there is still time for a more moderate unwinding of short position or for even holding stock.

Figure: Starting with a long position beyond the Merton position, an initial block sell is followed by a smooth unwinding at varying speed depending on time to go; cf. Obizhaeva & Wang (2013).

Figure: When the initial spread is very large, a starting position beyond the Merton position will be unwound only after an initial waiting period.

Illustration: Trading trajectories embedded in state space

Figure: The different optimal trading trajectories as they move through the buying region, the selling region, and the holding region in state space; dashed lines indicated holding periods.

Papers for this talk

with Yan Dolinsky:

Super-replication with Transient Price Impact, to appear in The Annals of Applied Probability arXiv:1808.09807

Scaling Limits for Super–replication with Transient Price Impact submitted

arXiv:1810.07832

with Moritz Voss:

Optimal Investment with Transient Price Impact SIAM J. Finan. Math. 10-3 (2019), pp. 723-768 https://doi.org/10.1137/18M1182267

Conclusion and Outlook

 model for transient price impact with convex liquidity costs What if convexity condition on depth/resiliency fails?
 cf. B. & Fruth '14 for order execution result then
- model for transient price impact with convex liquidity costs What if convexity condition on depth/resiliency fails?
 cf. B. & Fruth '14 for order execution result then
- tractable: super-replication duality, utility maximization What about nonlinear impact specifications? More accurate resiliency model?

- model for transient price impact with convex liquidity costs What if convexity condition on depth/resiliency fails?
 cf. B. & Fruth '14 for order execution result then
- tractable: super-replication duality, utility maximization What about nonlinear impact specifications? More accurate resiliency model?
- wide panorama of optimal investment strategies Truly stochastic case? Asymptotic expansions?

- model for transient price impact with convex liquidity costs What if convexity condition on depth/resiliency fails?
 cf. B. & Fruth '14 for order execution result then
- tractable: super-replication duality, utility maximization What about nonlinear impact specifications? More accurate resiliency model?
- wide panorama of optimal investment strategies Truly stochastic case? Asymptotic expansions?
- convex duality for utility maximization problem (Master thesis by Fritz Krause)

- model for transient price impact with convex liquidity costs What if convexity condition on depth/resiliency fails?
 cf. B. & Fruth '14 for order execution result then
- tractable: super-replication duality, utility maximization What about nonlinear impact specifications? More accurate resiliency model?
- wide panorama of optimal investment strategies Truly stochastic case? Asymptotic expansions?
- convex duality for utility maximization problem (Master thesis by Fritz Krause)
- interesting new aspect: discontinuous information
 → Meyer σ-fields, recent work with David Beßlich

- model for transient price impact with convex liquidity costs What if convexity condition on depth/resiliency fails?
 cf. B. & Fruth '14 for order execution result then
- tractable: super-replication duality, utility maximization What about nonlinear impact specifications? More accurate resiliency model?
- wide panorama of optimal investment strategies Truly stochastic case? Asymptotic expansions?
- convex duality for utility maximization problem (Master thesis by Fritz Krause)
- interesting new aspect: discontinuous information
 → Meyer σ-fields, recent work with David Beßlich

Thank you very much!

Models with temporary price impact

Models with transient price impact

Equilibrium with market frictions

Modeling information flow in stochastic control

Dramatis personae

- Dealers: in perfect competition for their clients' business; can manage their inventory risk by trading with "end-users" at fundamental prices, but they incur search costs
- Clients: demand immediacy for their trades from dealers; no direct access to "end-user" market
- "End-users": accept positions at exogenous, fundamental prices; dealers can only find them incurring search costs

Dramatis personae

- Dealers: in perfect competition for their clients' business; can manage their inventory risk by trading with "end-users" at fundamental prices, but they incur search costs
- Clients: demand immediacy for their trades from dealers; no direct access to "end-user" market
- "End-users": accept positions at exogenous, fundamental prices; dealers can only find them incurring search costs

Questions:

- How do the dealers' prices match demand with supply? How are they related to fundamentals? What role is played by the dealers' search costs and holding costs?
- How should clients choose their demand to manage their exogenously given risk? What if they internalize their impact? Do they benefit from the dealers' presence?

The dealers' problem

For dealer market prices (S_t) and fundamental prices (P_t) , the dealers servicing their clients' requested positions (K_t) and cumulatively transferring $U_t = \int_0^t u_s \, ds$ to the end-users at costs $\frac{\lambda}{2}u_t^2 dt$ in $t \in [0, T]$, will generate proceeds

$$\int_0^T (-K_t) dS_t - (P_T - S_T) K_T + \int_0^T U_t dV_t - \frac{\lambda}{2} \int_0^T u_t^2 dt.$$

Assuming P is a martingale, i.e., ruling out speculation by the dealers, we get the **dealers' expected proceeds** to be

$$\mathbb{E}\left[\int_0^T (-K_t) dS_t - (P_T - S_T) K_T - \frac{\lambda}{2} \int_0^T u_t^2 dt\right].$$

The **dealers' inventory risk** is determined by U - K:

$$\frac{1}{2}\mathbb{E}\left[\int_0^T (K_t - U_t)^2 \, dt\right]$$

The dealers' problem

Dealers' target functional with holding costs $\gamma_d > 0$:

$$J_d(K, u; S) \triangleq \mathbb{E}\left[\int_0^T (-K_t) dS_t - (P_T - S_T) K_T - \frac{\lambda}{2} \int_0^T u_t^2 dt\right] \\ - \frac{\gamma_d}{2} \mathbb{E}\left[\int_0^T (K_t - U_t)^2 dt\right] \to \max_{K, u}$$

The dealers' problem

Dealers' target functional with holding costs $\gamma_d > 0$:

$$J_d(K, u; S) \triangleq \mathbb{E}\left[\int_0^T (-K_t) dS_t - (P_T - S_T) K_T - \frac{\lambda}{2} \int_0^T u_t^2 dt\right] \\ - \frac{\gamma_d}{2} \mathbb{E}\left[\int_0^T (K_t - U_t)^2 dt\right] \to \max_{K, u}$$

Observe: Problem can be addressed in two stages. **Stage 1:** Given K, maximization over u is a quadratic tracking problem

$$\mathbb{E}\left[\frac{\gamma_d}{2}\int_0^T (K_t - U_t)^2 dt + \frac{\lambda}{2}\int_0^T u_t^2 dt\right] \to \min_u$$

as solved explicitly in B., Soner, Voß'17.

Stage 2: Given the optimal transfer policy u^{K} for any K, optimize over K.

Quadratic tracking problem

Theorem (B., Soner, Voß'17)

The dealers' optimal trading rate minimizing

$$\mathbb{E}\left[\frac{\gamma_d}{2}\int_0^T (K_t - U_t)^2 dt + \frac{\lambda}{2}\int_0^T u_t^2 dt\right]$$

is

$$u_t^K \triangleq rac{d}{dt} U_t^K = rac{ anh((T-t)/\sqrt{\kappa})}{\sqrt{\kappa}} (\hat{K}_t - U_t^K)$$

where

$$\kappa \triangleq \lambda/\gamma_d \text{ and } \hat{K}_t \triangleq \mathbb{E}\left[\int_t^T K_u \frac{\cosh((T-u)/\sqrt{\kappa})}{\sqrt{\kappa}\sinh((T-t)/\sqrt{\kappa})} du \middle| \mathscr{F}_t\right]$$

 \rightsquigarrow Dealers form a view \hat{K} on expected future demand and trade with the end-users towards this ideal position.

Back to our equilibrium considerations ...

Back to our equilibrium considerations ...

Stage 2: Dealers' target functional with holding costs $\gamma_d > 0$: $J_d(K; S) \triangleq \mathbb{E} \left[\int_0^T (-K_t) dS_t - (P_T - S_T) K_T \right] \\
- \mathbb{E} \left[\frac{\gamma_d}{2} \int_0^T (K_t - U_t^K)^2 dt + \frac{\lambda}{2} \int_0^T (u_t^K)^2 dt \right] \to \max_K$

Back to our equilibrium considerations ...

Stage 2: Dealers' target functional with holding costs $\gamma_d > 0$: $J_d(K; S) \triangleq \mathbb{E} \left[\int_0^T (-K_t) dS_t - (P_T - S_T) K_T \right] \\
- \mathbb{E} \left[\frac{\gamma_d}{2} \int_0^T (K_t - U_t^K)^2 dt + \frac{\lambda}{2} \int_0^T (u_t^K)^2 dt \right] \to \max_K$

Dealer market prices (S_t) will generate an **equilibrium** if at these quotes the dealers' optimal supply matches their clients' demand:

 $\mathscr{K} \in \operatorname*{arg\,max}_{K} J_d(K; S)$

Back to our equilibrium considerations . . .

Stage 2: Dealers' target functional with holding costs $\gamma_d > 0$:

$$J_{d}(K;S) \triangleq \mathbb{E}\left[\int_{0}^{T} (-K_{t}) dS_{t} - (P_{T} - S_{T})K_{T}\right] \\ - \mathbb{E}\left[\frac{\gamma_{d}}{2} \int_{0}^{T} (K_{t} - U_{t}^{K})^{2} dt + \frac{\lambda}{2} \int_{0}^{T} (u_{t}^{K})^{2} dt\right] \to \max_{K}$$

Dealer market prices (S_t) will generate an **equilibrium** if at these quotes the dealers' optimal supply matches their clients' demand:

 $\mathscr{K} \in \operatorname*{arg\,max}_{K} J_d(K; S)$

Theorem

Given clients' demand $\mathcal K$, the unique equilibrium quotes $S^{\mathcal K}$ are

$$S_t^{\mathscr{K}} \triangleq P_t + \gamma_d \mathbb{E}\left[\int_t^T (\mathscr{K}_s - U_s^{\mathscr{K}}) ds \,\middle|\, \mathscr{F}_t\right], \quad 0 \le t \le T,$$

where $U^{\mathcal{H}}$ describes the dealers' optimal cumulative transfers to the end-users as determined by B., Soner, Voß '17.

Equilibrium

$$S_t^{\mathscr{K}} = P_t + \gamma_d \mathbb{E}\left[\int_t^T (\mathscr{K}_s - U_s^{\mathscr{K}}) ds \,\middle|\, \mathscr{F}_t\right], \quad 0 \le t \le T,$$

- fundamental value P adjusted for dealers' effective risk
- adjustment in line with asymptotic expansion for small dealer risk aversion in exponential utility setting by Kramkov-Pulido '16 (who do not consider end-users)
- small search costs asymptotics of dealers' surcharge depend on demand regularity:

• absolutely continuous demand $\mathscr{K} = \int_0^{\cdot} \mu_t^{\mathscr{K}} dt$:

$$\int_0^T K_t d(P_t - S_t^{\mathscr{K}}) = \lambda \int_0^T (\mu_t^{\mathscr{K}})^2 dt + o(\lambda) \text{ in } L^1 \text{ as } \lambda \downarrow 0$$

• diffusive demand $\mathscr{K} = \int_0^{\cdot} (\mu_t^{\mathscr{K}} dt + \sigma_t^{\mathscr{K}} dW_t)$:

$$\int_{0}^{T} \mathscr{K}_{t} d(P_{t} - S_{t}^{\mathscr{K}}) = \sqrt{\lambda \gamma_{d}} \int_{0}^{T} (\sigma_{t}^{\mathscr{K}})^{2} dt + o(\sqrt{\lambda}) \text{ in } L^{1} \text{ as } \lambda \downarrow 0$$

 endogenous price impact model with resilience, in contrast to B.-Kramkov '15

The clients' problem

How should the clients choose their demand \mathcal{K} given quotes (S_t) ?

The clients' problem

How should the clients choose their demand \mathcal{K} given quotes (S_t) ? **Quadratic criterion:** Facing exogenous FX exposure (ζ_t) , the clients seek to maximize

$$J_{c}(\mathscr{K}; S) \triangleq \mathbb{E}\left[\int_{0}^{T} \mathscr{K}_{t} \, dS_{t}\right] - \frac{\gamma_{c}}{2} \mathbb{E}\left[\int_{0}^{T} (\zeta_{t} - \mathscr{K}_{t})^{2} dt\right] \to \max_{\mathscr{K}}$$

If (S_t) has drift (μ_t) , this amounts to

$$\mathbb{E}\left[\int_0^T \left(\mathscr{K}_t \mu_t - \frac{\gamma_c}{2}(\zeta_t - \mathscr{K}_t)^2\right) dt\right] \to \max_{\mathscr{K}}, \text{ i.e. } \mathscr{K}_t^* = \zeta_t - \mu_t / \gamma_c$$

The clients' problem

How should the clients choose their demand \mathscr{K} given quotes (S_t) ? **Quadratic criterion:** Facing exogenous FX exposure (ζ_t) , the clients seek to maximize

$$J_{c}(\mathscr{K}; S) \triangleq \mathbb{E}\left[\int_{0}^{T} \mathscr{K}_{t} \, dS_{t}\right] - \frac{\gamma_{c}}{2} \mathbb{E}\left[\int_{0}^{T} (\zeta_{t} - \mathscr{K}_{t})^{2} dt\right] \to \max_{\mathscr{K}}$$

If (S_{t}) has drift (μ_{t}) , this amounts to
$$\mathbb{E}\left[\int_{0}^{T} \left(\mathscr{K}_{t}\mu_{t} - \frac{\gamma_{c}}{2}(\zeta_{t} - \mathscr{K}_{t})^{2}\right) dt\right] \to \max_{\mathscr{K}}, \text{ i.e. } \mathscr{K}_{t}^{*} = \zeta_{t} - \mu_{t}/\gamma_{c}$$

Given demand $\mathscr{K}^*,$ the equilibrium quotes' $S^{\mathscr{K}^*}$ drift is

$$\mu_t^{\mathscr{K}^*} = -\gamma_d(\mathscr{K}_t^* - U_t^{\mathscr{K}^*})$$

which yields the equilibrium demand equation:

$$\mathscr{K}_t^* = \frac{\gamma_d}{\gamma_d + \gamma_c} U_t^{\mathscr{K}^*} + \frac{\gamma_c}{\gamma_d + \gamma_c} \zeta_t, \quad t \in [0, T],$$

where, again, $U^{\mathcal{K}^*}$ is as in B., Soner, Voß '17.

Equilibrium demand

The equilibrium demand equation:

$$\mathscr{K}_t^* = \frac{\gamma_d}{\gamma_d + \gamma_c} U_t^{\mathscr{K}^*} + \frac{\gamma_c}{\gamma_d + \gamma_c} \zeta_t, \quad t \in [0, T],$$

is an integral equation for \mathscr{K}^* .

Equilibrium demand

The equilibrium demand equation:

$$\mathscr{K}_t^* = \frac{\gamma_d}{\gamma_d + \gamma_c} U_t^{\mathscr{K}^*} + \frac{\gamma_c}{\gamma_d + \gamma_c} \zeta_t, \quad t \in [0, T],$$

is an integral equation for \mathscr{K}^* . With

$$k_t \triangleq \mathscr{K}_t^* - \frac{\gamma_c}{\gamma_d + \gamma_c} \zeta_t \text{ and } K_t \triangleq \mathbb{E}\left[\int_t^T \mathscr{K}_u^* \frac{\cosh((T-u)/\sqrt{\kappa})}{\sqrt{\kappa}\cosh((T-t)/\sqrt{\kappa})} du\right] \mathscr{F}_t\right]$$

it is equivalent to the *linear forward backward stochastic differential equation* (FBSDE):

$$k_{0} = 0, \ dk_{t} = \left(\frac{\gamma_{d}}{\gamma_{d} + \gamma_{c}}K_{t} - \frac{\tanh((T - t)/\sqrt{\kappa})}{\sqrt{\kappa}}k_{t}\right)dt,$$

$$K_{T} = 0, \ dK_{t} = \left(\frac{\tanh((T - t)/\sqrt{\kappa})}{\sqrt{\kappa}}K_{t} - \frac{1}{\kappa}(k_{t} + \frac{\gamma_{c}}{\gamma_{d} + \gamma_{c}}\zeta_{t})\right)dt + dM_{t}^{K}$$

for a suitable martingale M^{K} determined uniquely by the FBSDE.

Equilibrium demand

Theorem

The unique equilibrium demand is given explicitly by

$$\mathscr{K}_{t}^{*} = \frac{\gamma_{c}}{\gamma_{d} + \gamma_{c}} \zeta_{t} + \tilde{U}_{t}^{\frac{\gamma_{d}}{\gamma_{d} + \gamma_{c}}\zeta}, \quad t \in [0, T]$$

where $\tilde{U}^{\frac{\gamma_d}{\gamma_d+\gamma_c}\zeta}$ denotes the tracking portfolio from B., Soner, Voß:

$$\frac{d}{dt}\tilde{U}_t^{\frac{\gamma_d}{\gamma_d+\gamma_c}\zeta} = \frac{\tanh((T-t)/\sqrt{\tilde{\kappa}})}{\sqrt{\tilde{\kappa}}} \left(\frac{\gamma_d}{\gamma_d+\gamma_c}\zeta_t - \tilde{U}_t^{\frac{\gamma_d}{\gamma_d+\gamma_c}\zeta}\right),$$

for the aggregate holding costs $ilde{\gamma} = (1/\gamma_d + 1/\gamma_c)^{-1}$, i.e.,

$$ilde{\kappa} \triangleq \lambda/ ilde{\gamma} \text{ and } ilde{\zeta}_t \triangleq \mathbb{E}\left[\int_t^T \zeta_u rac{\cosh((T-u)/\sqrt{ ilde{\kappa}})}{\sqrt{ ilde{\kappa}}\sinh((T-t)/\sqrt{ ilde{\kappa}})} \, du \bigg| \mathscr{F}_t
ight].$$

This balances the clients' demand for immediacy with their holding costs, taking into account also their dealers' holding costs and their ability of transferring risk to end-users: $\tilde{U}^{\zeta} = U^{\mathscr{K}^*}$.

When do the clients really need their dealers?

Example: Constant target position

Figure: Risk or holding costs vs. search costs when clients are trading through their dealers' or are searching end-users themselves.

In other words: What if the dealers are facing a large trader?

In other words: What if the dealers are facing a **large trader**? **Quadratic criterion:** Facing exogenous FX cash flow (ζ_t), the large investor seeks to maximize

$$J_{c}(\mathscr{K}) \triangleq \mathbb{E}\left[\int_{0}^{T} \mathscr{K}_{t} \, dS_{t}^{\mathscr{K}}\right] - \frac{\gamma_{c}}{2} \mathbb{E}\left[\int_{0}^{T} (\zeta_{t} - \mathscr{K}_{t})^{2} dt\right] \to \max_{\mathscr{K}}$$

In other words: What if the dealers are facing a **large trader**? **Quadratic criterion:** Facing exogenous FX cash flow (ζ_t), the large investor seeks to maximize

$$J_{c}(\mathscr{K}) \triangleq \mathbb{E}\left[\int_{0}^{T} \mathscr{K}_{t} \, dS_{t}^{\mathscr{K}}\right] - \frac{\gamma_{c}}{2} \mathbb{E}\left[\int_{0}^{T} (\zeta_{t} - \mathscr{K}_{t})^{2} dt\right] \to \max_{\mathscr{K}}$$

This is still **concave** in \mathscr{K} since $\mathscr{K} \mapsto -\mathbb{E}\left[\int_0^T \mathscr{K}_t dS_t^{\mathscr{K}}\right]$ is the dealers' expected profit in equilibrium and thus nonnegative. \rightsquigarrow **no statistical arbitrage** in this model with **endogenously derived market impact**.

In other words: What if the dealers are facing a **large trader**? **Quadratic criterion:** Facing exogenous FX cash flow (ζ_t), the large investor seeks to maximize

$$J_{c}(\mathscr{K}) \triangleq \mathbb{E}\left[\int_{0}^{T} \mathscr{K}_{t} \, dS_{t}^{\mathscr{K}}\right] - \frac{\gamma_{c}}{2} \mathbb{E}\left[\int_{0}^{T} (\zeta_{t} - \mathscr{K}_{t})^{2} dt\right] \to \max_{\mathscr{K}}$$

This is still **concave** in \mathscr{K} since $\mathscr{K} \mapsto -\mathbb{E}\left[\int_0^T \mathscr{K}_t dS_t^{\mathscr{K}}\right]$ is the dealers' expected profit in equilibrium and thus nonnegative. \rightsquigarrow **no statistical arbitrage** in this model with **endogenously derived market impact**.

Remarkably, first order condition for optimality now reads

$$\mathscr{K}_{t}^{*} = \frac{\gamma_{d}}{\gamma_{d} + \gamma_{c}/2} U_{t}^{\mathscr{K}^{*}} + \frac{\gamma_{c}/2}{\gamma_{d} + \gamma_{c}/2} \zeta_{t}, \quad t \in [0, T],$$

i.e. the **same equilibrium demand equation** as before, albeit with **half** the clients' holding costs.

In other words: What if the dealers are facing a **large trader**? **Quadratic criterion:** Facing exogenous FX cash flow (ζ_t), the large investor seeks to maximize

$$J_{c}(\mathscr{K}) \triangleq \mathbb{E}\left[\int_{0}^{T} \mathscr{K}_{t} \, dS_{t}^{\mathscr{K}}\right] - \frac{\gamma_{c}}{2} \mathbb{E}\left[\int_{0}^{T} (\zeta_{t} - \mathscr{K}_{t})^{2} dt\right] \to \max_{\mathscr{K}}$$

This is still **concave** in \mathscr{K} since $\mathscr{K} \mapsto -\mathbb{E}\left[\int_0^T \mathscr{K}_t dS_t^{\mathscr{K}}\right]$ is the dealers' expected profit in equilibrium and thus nonnegative. \rightsquigarrow **no statistical arbitrage** in this model with **endogenously derived market impact**.

Remarkably, first order condition for optimality now reads

$$\mathscr{K}_{t}^{*} = \frac{\gamma_{d}}{\gamma_{d} + \gamma_{c}/2} U_{t}^{\mathscr{K}^{*}} + \frac{\gamma_{c}/2}{\gamma_{d} + \gamma_{c}/2} \zeta_{t}, \quad t \in [0, T],$$

i.e. the same equilibrium demand equation as before, albeit with half the clients' holding costs. "Price of anarchy": $J_c(\mathcal{K}^*) \ge J_c(\mathcal{K}^*) = J_c(\mathcal{K}^*; S^{\mathcal{K}^*})$

Conclusions

- analyzed dealer market with clients and end-users
- quadratic setting allows for explicit computations following previous optimal tracking results
- equilibrium quotes for arbitrary demand take into account legacy position and expected future positions
- optimization of demand with and without impact awareness
- dealers will be used if their search and holding costs are small compared to those of their clients
- harder to serve sophisticated clients aware of their impact
- endogenously derived impact model ruling out statistical arbitrage
- asymptotic analysis for small search costs

Conclusions

- analyzed dealer market with clients and end-users
- quadratic setting allows for explicit computations following previous optimal tracking results
- equilibrium quotes for arbitrary demand take into account legacy position and expected future positions
- optimization of demand with and without impact awareness
- dealers will be used if their search and holding costs are small compared to those of their clients
- harder to serve sophisticated clients aware of their impact
- endogenously derived impact model ruling out statistical arbitrage
- asymptotic analysis for small search costs

Thank you very much!

Models with temporary price impact

Models with transient price impact

Equilibrium with market frictions

Modeling information flow in stochastic control

Information flow and optimal control

In many financial optimal control problems, there are moments known in advance when significant new information will become available:

- interest rate decisions by central banks, elections, referendums
- publication of data on GDP growth, job market statistics, trade balances
- price jumps, e.g., at opening of exchanges, due to earning announcements, ...
- trading algos scanning limit order books for signals of new demand/supply for shares of stock

Information flow and optimal control

In many financial optimal control problems, there are moments known in advance when significant new information will become available:

- interest rate decisions by central banks, elections, referendums
- publication of data on GDP growth, job market statistics, trade balances
- price jumps, e.g., at opening of exchanges, due to earning announcements, ...
- trading algos scanning limit order books for signals of new demand/supply for shares of stock

Before these moments, investors will form an opinion and take precautionary actions: *proactive trading*. Afterwards, when the news are fully revealed, further measures may have to be taken: *reactive trading*.

Information flow and optimal control

In many financial optimal control problems, there are moments known in advance when significant new information will become available:

- interest rate decisions by central banks, elections, referendums
- publication of data on GDP growth, job market statistics, trade balances
- price jumps, e.g., at opening of exchanges, due to earning announcements, ...
- trading algos scanning limit order books for signals of new demand/supply for shares of stock

Before these moments, investors will form an opinion and take precautionary actions: *proactive trading*. Afterwards, when the news are fully revealed, further measures may have to be taken: *reactive trading*. How to describe such information flows mathematically? How to do optimal control with them?

Illustration: Optimal investment with a twist

 asset price fluctuations modeled by symmetric compound Poisson process

$$ilde{P}_t = ilde{p} + \sum_{k=1}^{N_t} Y_k$$
 with i.i.d. $Y_k \sim U[-1, 1]$

▶ strategy $C = (C_t)_{0 \le t \le 1}$ with $|C| \le 1$ yields expected P&L

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t = \mathbb{E}\sum_{k=1}^{N_1} C_{\mathcal{T}_k} Y_k$$

Question: How to maximize this?
asset price fluctuations modeled by symmetric compound Poisson process

$$ilde{P}_t = ilde{p} + \sum_{k=1}^{N_t} Y_k$$
 with i.i.d. $Y_k \sim U[-1,1]$

▶ strategy $C = (C_t)_{0 \le t \le 1}$ with $|C| \le 1$ yields expected P&L

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t = \mathbb{E}\sum_{k=1}^{N_1} C_{T_k} Y_k$$

Question: How to maximize this?

If controls C are predictable:

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t \equiv 0$$

for any control

 asset price fluctuations modeled by symmetric compound Poisson process

$$ilde{P}_t = ilde{p} + \sum_{k=1}^{N_t} Y_k$$
 with i.i.d. $Y_k \sim U[-1,1]$

▶ strategy $C = (C_t)_{0 \le t \le 1}$ with $|C| \le 1$ yields expected P&L

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t = \mathbb{E}\sum_{k=1}^{N_1} C_{\mathcal{T}_k} Y_k$$

Question: How to maximize this?

If controls C are optional:

٧

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t \leq \mathbb{E}\sum_{k=1}^{N_1} |C_{\mathcal{T}_k}||Y_k| \leq \mathbb{E}\sum_{k=1}^{N_1} |Y_k|$$

with "=" for $C_t^{\mathscr{O}} = \operatorname{sign}(\Delta \tilde{P}_t)$

 asset price fluctuations modeled by symmetric compound Poisson process

$$ilde{P}_t = ilde{p} + \sum_{k=1}^{N_t} Y_k$$
 with i.i.d. $Y_k \sim U[-1,1]$

▶ strategy $C = (C_t)_{0 \le t \le 1}$ with $|C| \le 1$ yields expected P&L

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t = \mathbb{E}\sum_{k=1}^{N_1} C_{T_k} Y_k$$

- Question: How to maximize this?
- If controller alerted only by large enough jumps $|\Delta \tilde{P}_t| \ge \eta$:

$$\mathbb{E}\int_{0}^{1} C_{t} d\tilde{P}_{t} \leq \mathbb{E}\sum_{k=1}^{N_{1}} |C_{\mathcal{T}_{k}}||Y_{k}|1_{\{|Y_{\mathcal{T}_{k}} \geq \eta\}} \leq \mathbb{E}\sum_{k=1}^{N_{1}} |Y_{k}|1_{\{|Y_{\mathcal{T}_{k}} \geq \eta\}}$$

with "=" for $C_{t}^{\eta} = \operatorname{sign}(\Delta \tilde{P}_{t}1_{\{|\Delta \tilde{P}_{t}| \geq \eta\}})$

 asset price fluctuations modeled by symmetric compound Poisson process

$$ilde{P}_t = ilde{p} + \sum_{k=1}^{N_t} Y_k$$
 with i.i.d. $Y_k \sim U[-1,1]$

▶ strategy $C = (C_t)_{0 \le t \le 1}$ with $|C| \le 1$ yields expected P&L

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t = \mathbb{E}\sum_{k=1}^{N_1} C_{\mathcal{T}_k} Y_k$$

- Question: How to maximize this?
- If controller alerted only by large enough jumps $|\Delta \tilde{P}_t| \ge \eta$:

$$\mathbb{E}\int_0^1 C_t d\tilde{P}_t \leq \mathbb{E}\sum_{k=1}^{N_1} |C_{\mathcal{T}_k}|| Y_k |1_{\{|Y_{\mathcal{T}_k} \geq \eta\}} \leq \mathbb{E}\sum_{k=1}^{N_1} |Y_k| 1_{\{|Y_{\mathcal{T}_k} \geq \eta\}}$$

with "=" for $C_t^{\eta} = \operatorname{sign}(\Delta \tilde{P}_t 1_{\{|\Delta \tilde{P}_t| \geq \eta\}})$ in which argmax ?

A σ -field on $\Omega \times [0,\infty)$ is called a Meyer σ -field if

- it is generated by càdlàg processes;
- it contains all deterministic Borel-measurable events;
- It is stable with respect to stopping: with Z also (Z_{s∧t})_{s≥0} is Λ-measurable for any t ≥ 0.

Examples:

0, *P*,

A σ -field on $\Omega \times [0,\infty)$ is called a Meyer σ -field if

- it is generated by càdlàg processes;
- it contains all deterministic Borel-measurable events;
- It is stable with respect to stopping: with Z also (Z_{s∧t})_{s≥0} is Λ-measurable for any t ≥ 0.

Examples:

 \mathscr{O} , \mathscr{P} , and

$$\Lambda^{\eta} = \mathscr{P} \lor \sigma \left(\sum_{k=1}^{N} Y_k \mathbf{1}_{\{|Y_k| \ge \eta\}} \right)$$

A σ -field on $\Omega \times [0,\infty)$ is called a Meyer σ -field if

- it is generated by càdlàg processes;
- it contains all deterministic Borel-measurable events;
- It is stable with respect to stopping: with Z also (Z_{s∧t})_{s≥0} is Λ-measurable for any t ≥ 0.

Examples:

 \mathscr{O} , \mathscr{P} , and

$$\Lambda^{\eta} = \mathscr{P} \lor \sigma \left(\sum_{k=1}^{N_{\cdot}} Y_k \mathbb{1}_{\{|Y_k| \ge \eta\}} \right)$$

Theorem

$$C^{\eta} = \operatorname{sign}\left(\Delta \tilde{P} \mathbb{1}_{\{|\Delta \tilde{P}| \geq \eta\}}\right) \in \operatorname{arg\,max}_{C \in \Lambda^{\eta}, |C| \leq 1} \mathbb{E} \int_{0}^{1} C_{t} dP_{t}$$

Proof: To argue:

$$\mathbb{E}\int_{0}^{1} C_{t} d\tilde{P}_{t} \leq \mathbb{E}\sum_{k=1}^{N_{1}} |C_{\mathcal{T}_{k}}|| Y_{k} |1_{\{|Y_{\mathcal{T}_{k}} \geq \eta\}} \leq \mathbb{E}\sum_{k=1}^{N_{1}} |Y_{k}| 1_{\{|Y_{\mathcal{T}_{k}} \geq \eta\}}$$

Observe decomposition of jump times

$$T_{k} = \underbrace{(T_{k})_{\{|Y_{k}| \geq \eta\}}}_{\Lambda^{\eta} - \text{st.time}} \land \underbrace{(T_{k})_{\{|Y_{k}| < \eta\}}}_{\text{tot.inacc.}}$$

yields for Λ^{η} -measurable C (with $C_{\infty} := 0$):

So:
$$C_{\mathcal{T}_{k}} = C_{(\mathcal{T}_{k})_{\{|Y_{k}| \geq \eta\}}} + (^{\mathscr{P}}C)_{(\mathcal{T}_{k})_{\{|Y_{k}| < \eta\}}}$$

$$\mathbb{E}\int_{0}^{1}C_{t}d\tilde{P}_{t} = \mathbb{E}\sum_{k=1}^{N_{1}}C_{\mathcal{T}_{k}}\mathbf{1}_{\{|Y_{k}|\geq\eta\}}Y_{k} + \underbrace{\mathbb{E}\sum_{k=1}^{N_{1}}(\mathscr{P}C)_{(\mathcal{T}_{k})_{\{|Y_{k}|<\eta\}}}Y_{k}}_{=0 \text{ as pred.stoch.int. wrt. mart.}}$$

Illustrative control problem: Irreversible investment

- Classic problem: Dixit and Pindyck (1994), Bertola (1998), Merhi and Zervos (2007), Riedel and Su (2011), Ferrari (2015), Al Motairi and Zervos (2017), De Angelis et al. (2017)...
- Consider target functional:

$$ilde{V}(C) = \mathbb{E}\left[\int_{[0,\infty)} P_t \, dC_t - \int_{[0,\infty)} \rho_t(C_t) \, dR_t\right] o \max_{C \ge c_0
earrow cad, adapted}.$$

P discounted reward process, $\rho_t(c)$ risk penalty convex in *c*, *R* risk assessment clock

► Standard assumptions: $P_t = e^{-rt}\tilde{P}_t$ for compound Poisson $\tilde{P}_t = \tilde{p} + \sum_{k=1}^{N_t} Y_k$; $\rho_t(c) = c^2/2$; $dR_t = e^{-rt}dt$: $\mathbb{E}\left[\int_{[0,\infty)} e^{-rt}\tilde{P}_t dC_t - \int_{[0,\infty)} \frac{1}{2} (C_t)^2 e^{-rt} dt\right] \to \max_C$

Illustrative control problem: Irreversible investment

- Classic problem: Dixit and Pindyck (1994), Bertola (1998), Merhi and Zervos (2007), Riedel and Su (2011), Ferrari (2015), Al Motairi and Zervos (2017), De Angelis et al. (2017)...
- Consider target functional:

$$ilde{V}(C) = \mathbb{E}\left[\int_{[0,\infty)} P_t \, dC_t - \int_{[0,\infty)} \rho_t(C_t) \, dR_t\right] o \max_{C \ge c_0
earrow cad, adapted}.$$

P discounted reward process, $\rho_t(c)$ risk penalty convex in *c*, *R* risk assessment clock

► Alternative assumptions: $P_t = e^{-rt} \tilde{P}_t$ for compound Poisson $\tilde{P}_t = \tilde{p} + \sum_{k=1}^{N_t} Y_k$; $\rho_t(c) = c^2/2$; $dR_t = e^{-rt} dN_t$: $\mathbb{E}\left[\int_{[0,\infty)} e^{-rt} \tilde{P}_t dC_t - \int_{[0,\infty)} \frac{1}{2} (C_t)^2 e^{-rt} dN_t\right] \to \max_C$

New issues: C right- or left-continuous or just làdlàg? What is known about P
_t at time of decision on dC_t?

Relaxation of the problem

Theorem

$$\sup_{\Lambda \ni C \ge c_0 \nearrow, \ c \geqq d} \tilde{V}(C) = \max_{\Lambda \ni C \ge c_0 \nearrow} V(C)$$

where

$$V(C) = \mathbb{E}\left[\int_{[0,\infty)} {}^{\Lambda}P_t \, {}^*dC_t - \int_{[0,\infty)} \rho_t(C_t) \, dR_t\right]$$

with $^{\wedge}P$ the Meyer-projection of P and *d-integral defined by

$$\int_{[0,\infty)} Q_t \, {}^*\! dC_t = \int_{[0,\infty)} Q_t \, dC_t^c + \sum_{t \ge 0} Q_t (C_t - C_{t-}) + \sum_{t \ge 0} Q_t^* (C_{t+} - C_t)$$

for $Q_t^* = \limsup_{u \downarrow t} Q_u$

Heuristics from first order conditions

First order conditions for optimality of C^* :

$$^{\Lambda}P_{S} \leq \mathbb{E}\left[\int_{[S,\infty)} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{t}) dR_{t} \middle| \mathscr{F}_{S}\right]$$

with "=" holding true whenever it is optimal to intervene: $dC_{S}^{*} > 0$

Heuristics from first order conditions

First order conditions for optimality of C^* :

$$^{\Lambda}P_{S} \leq \mathbb{E}\left[\int_{[S,\infty)} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{t}) dR_{t} \middle| \mathscr{F}_{S}\right]$$

with "=" holding true whenever it is optimal to intervene: $dC_S^* > 0$ If optimal to intervene at *S*, then for any *T* with *T* > *S*:

$$\mathbb{E}\left[{}^{\wedge}P_{S} - {}^{\wedge}P_{T} \middle| \mathscr{F}_{S}^{\wedge} \right] \geq \mathbb{E}\left[\int_{[S,T)} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{t}) dR_{t} \middle| \mathscr{F}_{S}^{\wedge} \right]$$
$$\geq \mathbb{E}\left[\int_{[S,T)} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{S}) dR_{t} \middle| \mathscr{F}_{S}^{\wedge} \right]$$

 $\rightsquigarrow \widehat{C}_{S} \leq \operatorname{ess\,inf}_{T} \ell_{S,T} =: L_{S}^{\Lambda}$

Heuristics from first order conditions

First order conditions for optimality of C^* :

$$^{\Lambda}P_{S} \leq \mathbb{E}\left[\int_{[S,\infty)} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{t}) dR_{t} \middle| \mathscr{F}_{S}\right]$$

with "=" holding true whenever it is optimal to intervene: $dC_S^* > 0$ If not optimal to intervene a *S*, then for next time T_S that dC > 0

$$\mathbb{E}\left[{}^{\wedge}P_{S} - {}^{\wedge}P_{T_{S}} \middle| \mathscr{F}_{S}^{\wedge} \right] \leq \mathbb{E}\left[\int_{[S,T_{S})} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{t}) dR_{t} \middle| \mathscr{F}_{S}^{\wedge} \right] \\ = \mathbb{E}\left[\int_{[S,T_{S})} \frac{\partial}{\partial c} \rho_{t}(\widehat{C}_{S}) dR_{t} \middle| \mathscr{F}_{S}^{\wedge} \right]$$

 $\stackrel{\sim}{\longrightarrow} \widehat{C}_{S} \geq \ell_{S,T_{S}} \geq \operatorname{ess\,inf}_{T} \ell_{S,T} =: L_{S}^{\Lambda} \\ \stackrel{\sim}{\longrightarrow} \widehat{C}_{S} = c_{0} \vee \sup_{v \in [0,S]} L_{S}^{\Lambda}$

A stochastic representation theorem

Theorem (B. & El Karoui (2004), B. & Besslich (2019)) Under suitable integrability and upper-semicontinuity assumptions, there exists $L^{\Lambda} \in \Lambda$ such that

$${}^{\Lambda}P_{S} = \mathbb{E}\left[\int_{[S,\infty)} \frac{\partial}{\partial c} \rho_{t} \left(\sup_{v \in [S,t]} L_{v}^{\Lambda}\right) dR_{t} \middle| \mathscr{F}_{S}^{\Lambda}\right], \quad S \in \mathscr{S}^{\Lambda}.$$

The maximal such L^{Λ} is uniquely determined by

$$\mathcal{L}^{\Lambda}_{\mathcal{S}} = \mathrm{essinf}_{\mathcal{T} \in \mathscr{S}^{\Lambda}, \mathcal{T} > \mathcal{S}} \ell_{\mathcal{S}, \mathcal{T}}, \quad \mathcal{S} \in \mathscr{S}^{\Lambda},$$

where for S < T, $\ell_{S,T} \in \mathscr{F}_S^{\Lambda}$ is defined by

$$\mathbb{E}\left[P_{S}-P_{T}\middle|\mathscr{F}_{S}^{\Lambda}\right]=\mathbb{E}\left[\int_{[S,T)}\frac{\partial}{\partial c}\rho_{t}(\ell_{S,T})dR_{t}\middle|\mathscr{F}_{S}^{\Lambda}\right]$$

on $\{\mathbb{P}\left(R_{T-} - R_{S-} > 0 \middle| \mathscr{F}_{S}^{\Lambda}\right) > 0\}$ and $\ell_{S,T} := \infty$ elsewhere.

Solutions via a representation theorem

Suppose
$$C^{L^{\Lambda}}$$
 given by
 $C_{0-}^{L^{\Lambda}} := c_0, \quad C_t^{L^{\Lambda}} := c_0 \lor \sup_{v \in [0,t]} L_v^{\Lambda}, \quad t \in [0,\infty),$

satisfies

$$\mathbb{E}\left[\int_{[0,\infty)}\left\{\frac{\partial}{\partial c}\rho_t\left(C_t^{L^{\Lambda}}\right)\left(C_t^{L^{\Lambda}}-c_0\right)\right\}\vee 0\ dR_t\right]<\infty.$$

Then $C^{L^{\wedge}}$ is optimal for the relaxed problem whose value is $V(C^{L^{\wedge}}) = \mathbb{E}\left[\int_{[0,\infty)} \left\{\frac{\partial}{\partial c} \rho_t\left(C_t^{L^{\wedge}}\right) \left(C_t^{L^{\wedge}} - c_0\right) - \rho_t\left(C_t^{L^{\wedge}}\right)\right\} dR_t\right] < \infty.$

Explicit solution in the compound Poisson example

Let $P_t = e^{-rt}\tilde{P}_t$ with $\tilde{P}_t = \tilde{p} + \sum_{k=1}^{N_t} Y_k$ for Poisson N with param. λ , i.i.d. $Y_k \in L^2$, $\mathbb{E}Y_k = m$; $dR_t = e^{-rt}dN_t$; $\rho_t(c) = \frac{1}{2}c^2$;

$$\Lambda = \Lambda^\eta := \mathscr{P} \vee \sigma \left(\sum_{k=1}^{N_{\cdot}} Y_k \mathbb{1}_{\{|Y_k| \geq \eta\}} \right) \quad \rightsquigarrow \mathsf{Large jump alerts}$$

Probability of failure to alert: $p(\eta) = \mathbb{P}[|Y_k| \le \eta].$

• $p(\eta) = 1$: no alerts, predictable case $\Lambda^{\eta} = \mathscr{P}$

Explicit solution in the compound Poisson example

Let $P_t = e^{-rt}\tilde{P}_t$ with $\tilde{P}_t = \tilde{p} + \sum_{k=1}^{N_t} Y_k$ for Poisson N with param. λ , i.i.d. $Y_k \in L^2$, $\mathbb{E}Y_k = m$; $dR_t = e^{-rt}dN_t$; $\rho_t(c) = \frac{1}{2}c^2$;

$$\Lambda = \Lambda^\eta := \mathscr{P} \vee \sigma \left(\sum_{k=1}^{N_{\cdot}} Y_k \mathbb{1}_{\{|Y_k| \geq \eta\}} \right) \quad \rightsquigarrow \mathsf{Large jump alerts}$$

Probability of failure to alert: $p(\eta) = \mathbb{P}[|Y_k| \le \eta]$.

- $p(\eta) = 1$: no alerts, predictable case $\Lambda^{\eta} = \mathscr{P}$
- $p(\eta) = 0$: alerts for all jumps, optional case $\Lambda^{\eta} = \mathscr{O}$

Explicit solution in the compound Poisson example

Let $P_t = e^{-rt}\tilde{P}_t$ with $\tilde{P}_t = \tilde{p} + \sum_{k=1}^{N_t} Y_k$ for Poisson N with param. λ , i.i.d. $Y_k \in L^2$, $\mathbb{E}Y_k = m$; $dR_t = e^{-rt}dN_t$; $\rho_t(c) = \frac{1}{2}c^2$;

$$\Lambda = \Lambda^\eta := \mathscr{P} \vee \sigma \left(\sum_{k=1}^{N_{\cdot}} Y_k \mathbb{1}_{\{|Y_k| \geq \eta\}} \right) \quad \rightsquigarrow \mathsf{Large jump alerts}$$

Probability of failure to alert: $p(\eta) = \mathbb{P}[|Y_k| \le \eta]$.

- $p(\eta) = 1$: no alerts, predictable case $\Lambda^{\eta} = \mathscr{P}$
- $p(\eta) = 0$: alerts for all jumps, optional case $\Lambda^{\eta} = \mathscr{O}$
- ▶ $p(\eta) \in (0,1)$: Meyer case $\mathscr{P} \subsetneq \Lambda^{\eta} \subsetneq \mathscr{O}$

Solution in the predictable case

In the case $p(\eta) = 1$, i.e. without alerts::

$$L_t^{\mathscr{P}} = a(\tilde{P}_{t-} - b), \quad t \in [0,\infty),$$

where the constants a, b are given by

$$\begin{aligned} a &:= \frac{1}{\mathbb{E}[R_{\infty-1}]} = \frac{r}{\lambda}, \\ b &:= \sup_{0 < T \text{ pred.}} \frac{\mathbb{E}\left[e^{-rT} \sum_{k=1}^{N_T} Y_k\right]}{1 - \mathbb{E}\left[e^{-rT}\right]} = \frac{\mathbb{E}\left[\int_{[0,\infty)} \left(\sup_{v \in [0,t]} \tilde{P}_{v-} - \tilde{p}\right) dR_t\right]}{\mathbb{E}[R_{\infty-1}]} \end{aligned}$$

 $\rightsquigarrow C^{\mathscr{P}} = c_0 \lor \sup_{0 \le v \le \cdot} L_v^{\mathscr{P}}$ left-continuous with exclusively reactive jumps because jump times are totally inaccessible to controller

Solution in the Meyer case

In the case $p(\eta) \in (0,1)$ with alerts for some, but not all jumps:

$$\begin{split} \mathcal{L}_{t}^{\Lambda^{\eta}} &= \begin{cases} 0, & \tilde{P}_{t}^{\eta} \geq b, \ |\Delta \tilde{P}_{t}^{\eta}| \geq \eta, \\ \frac{r}{\lambda} (\tilde{P}_{t}^{\eta} - b), & \tilde{P}_{t}^{\eta} \geq b, \ |\Delta \tilde{P}_{t}^{\eta}| < \eta, \\ \inf_{\gamma^{0} \in (0, B_{0}^{\eta} \cdot (b - \tilde{P}_{t}^{\eta}))} f_{1}^{\eta} (\gamma^{0}, 0, \tilde{P}_{t}^{\eta}) < 0, & \tilde{P}_{t}^{\eta} < b, \ |\Delta \tilde{P}_{t}^{\eta}| \geq \eta, \\ \inf_{\gamma^{1} \in (-B_{1}^{\eta} \cdot (b - \tilde{P}_{t}^{\eta}), 0)} f_{0}^{\eta} (0, \gamma^{1}, \tilde{P}_{t}^{\eta}) < 0, & \tilde{P}_{t}^{\eta} < b, \ |\Delta \tilde{P}_{t}^{\eta}| < \eta \end{cases} \\ \text{where } \tilde{P}^{\eta} := \Lambda^{\eta} \tilde{P} = (\tilde{P}_{t-} + \Delta \tilde{P}_{t} \mathbf{1}_{\{|\Delta \tilde{P}_{t}| \geq \eta\}})_{t \geq 0} \text{ a Meyer-projection,} \\ f_{\Delta}^{\eta} &= \frac{\left(1 - \mathbb{E}\left[e^{-rT^{\eta}(\gamma^{0}, \gamma^{1})}\right]\right) p - \mathbb{E}\left[e^{-rT^{\eta}(\gamma^{0}, \gamma^{1})}\sum_{k=1}^{N-\eta} Y_{k}\right]}{\frac{\lambda}{r} \left(1 - \mathbb{E}\left[e^{-rT^{\eta}(\gamma^{0}, \gamma^{1})}\right]\right) - \mathbb{E}\left[e^{-rT^{\eta}(\gamma^{0}, \gamma^{1})}\mathbf{1}_{\{|\Delta \tilde{P}_{T^{\eta}(\gamma^{0}, \gamma^{1})}| \geq \eta\}}\right] + \Delta, \\ T^{\eta}(\gamma^{0}, \gamma^{1}) &= \inf\left\{t \in \{\Lambda^{\eta} N > 0\} \left| \left(|\Delta \tilde{P}_{t}| < \eta \text{ and } \tilde{P}_{t-} - \tilde{p} \geq \gamma^{1}\right)\right\}. \end{aligned}$$

Solution in the optional case

In the optional case with complete alerts $p(\eta) = 0$:

$$L_t^{\mathscr{O}} = \begin{cases} 0, & \tilde{P}_t \ge b, \ |\Delta \tilde{P}_t| > 0, \\ \frac{r}{\lambda} (\tilde{P}_t - b), & \tilde{P}_t \ge b, \ \Delta \tilde{P}_t = 0, \\ \frac{r}{\lambda + r} (b - \tilde{P}_t), & \tilde{P}_t < b, \ |\Delta \tilde{P}_t| > 0, \\ \inf_{\gamma \in (-\infty, 0)} f(\gamma, \tilde{P}_t) < 0, & m_r^{\underline{\lambda}} \le \tilde{P}_t < b, \ \Delta \tilde{P}_t = 0, \\ -\infty, & \tilde{P}_t < m_r^{\underline{\lambda}}, \ \Delta \tilde{P}_t = 0. \end{cases}$$

where

$$f(\gamma, p) := rac{\left(1 - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}
ight]
ight)p - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}\sum\limits_{k=1}^{N_{T(\gamma)}}Y_k
ight]}{rac{\lambda}{r}\left(1 - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}
ight]
ight) - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}
ight]},$$
 $T(\gamma) := \inf\left\{t \in \{N > 0\} \ \left||\Delta ilde{P}_t| > 0 ext{ and } ilde{P}_t - ilde{p} \ge \gamma
ight\}.$

Solution in the optional case

In the optional case with complete alerts $p(\eta) = 0$:

$$L_t^{\mathscr{O}} = \begin{cases} 0, & \tilde{P}_t \ge b, \ |\Delta \tilde{P}_t| > 0, \\ \frac{r}{\lambda} (\tilde{P}_t - b), & \tilde{P}_t \ge b, \ \Delta \tilde{P}_t = 0, \\ \frac{r}{\lambda + r} (b - \tilde{P}_t), & \tilde{P}_t < b, \ |\Delta \tilde{P}_t| > 0, \\ \inf_{\gamma \in (-\infty, 0)} f(\gamma, \tilde{P}_t) < 0, & m_r^{\underline{\lambda}} \le \tilde{P}_t < b, \ \Delta \tilde{P}_t = 0, \\ -\infty, & \tilde{P}_t < m_r^{\underline{\lambda}}, \ \Delta \tilde{P}_t = 0. \end{cases}$$

where

$$f(\gamma, p) := rac{\left(1 - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}
ight]
ight)p - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}\sum\limits_{k=1}^{N_{T(\gamma)}}Y_k
ight]}{rac{\lambda}{r}\left(1 - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}
ight]
ight) - \mathbb{E}\left[\mathrm{e}^{-rT(\gamma)}
ight]},$$

 $T(\gamma) := \inf \left\{ t \in \{N > 0\} \ \left| |\Delta \tilde{P}_t| > 0 \text{ and } \tilde{P}_t - \tilde{p} \ge \gamma \right\}.$ Observation: $L_t^{\mathscr{P}} \xleftarrow[p(\eta) \to 1]{} L_t^{\wedge \eta} \xrightarrow[p(\eta) \to 0]{} L_t^{\mathscr{O}}$

Illustration

Figure: \tilde{P}^{η} (black), *b* (Magenta) and optimal controls for $\eta = 0$ (blue, optional), $\eta = 3$, $\eta = 6$ (green) and $\eta = \infty$ (red, predictable). The dots indicate the processes' value at their jump times.

Papers forming the basis of this talk

- Modelling information flows by Meyer-σ-fields in the singular stochastic control problem of irreversible investment, B. & Besslich 2019, arxiv:1810.08495
- On a Stochastic Representation Theorem for Meyer-measurable Processes and its Applications in Stochastic Optimal Control and Optimal Stopping, B. & Besslich 2019, arxiv: 1810.08491
- On Lenglart's Theory of Meyer-sigma-fields and El Karoui's Theory of Optimal Stopping, B. & Besslich 2019, arxiv: 1810.08485

Conclusion and Outlook

- \blacktriangleright continuous-time information modeling most flexible via Meyer $\sigma\text{-fields}$
- rich toolbox for mathematically rigorous treatment
- allows for modeling instant signals on jumps
- general solution to irreversible investment problem
- explicit solution in compound Poisson setting with jump size dependent alerts
- làdlàg controls in general
- continuous interpolation between predictable and optional information flow

Conclusion and Outlook

- \blacktriangleright continuous-time information modeling most flexible via Meyer $\sigma\text{-fields}$
- rich toolbox for mathematically rigorous treatment
- allows for modeling instant signals on jumps
- general solution to irreversible investment problem
- explicit solution in compound Poisson setting with jump size dependent alerts
- làdlàg controls in general
- continuous interpolation between predictable and optional information flow

Thank you very much!