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1 Outline of the problem

e Consider the classical optimal investment allocation problem of Merton [5]: dynamic
allocation between risky versus riskless securities to optimize a given utility function

e Through the lens of some of the more modern approaches such as stochastic volatility
and local volatility models

e There is a huge body of literature dedicated to the optimal investment problem, often
focused on theoretical results of the related dynamic programming problem

e Here, our interest lies more in the practical domain following interesting questions
posed/considered in the articles [14], [15], and others to be found in
https://elmfunds.com/blog/

e (Q1: How much value accurate modeling of the volatility process of a risky asset adds
to the utility of an investor?

e ()2: Optimal investment as a reinforcement learning problem — towards model-free
optimal investment policy



2 Our setup, processes

e We consider a general process for a risky asset in the "P", or real-world, measure,
dX(t)/X(t) = p(t) dt +&(t) dB(2), (1)
where both p(t) and £(¢) are stochastic processes

e Let r(t) be the risk-free rate (also stochastic in full generality), and
dR(t)/R(t) = r(t) dt
be the risk-free asset

e Consider a self-financing wealth process P(t) defined by

P(t) = mo()R() + m(H) X (¢)
dP(t) = mo(t) dR(t) + m(t) dX (1)

e With some stochastic calculus manipulations and defining x(t) £ 7(¢) X (t)/P(t) to
be the proportion of wealth invested into the risky asset, we obtain

dP(t)/P(t) = (r(t) + k(1) (u(t) = 7(t))) dt + w(t)E(t) dB(t) (2)

e The problem is to choose k(t) to optimize "utility"



3 Our setup, utility

e Let U(w) be a function that we call the utility function, and consider the investor’s
objective to maximize
EUP(T))),
over all admissible choices of k()

e We maximize the terminal wealth and not the more general problem of maximizing
the utility of consumption at the same time as in [7]

e We specialize the utility function to be the family of Constant Relative Risk Aversion
(CRRA) utility functions parameterized by the risk aversion parameter v > 1:
1—v 1
w
U(w) = Ulw;7) = 3
-
e Turnpike theorem [10] tells us that for sufficiently long investment time horizons
the optimal allocation for a large class of general utility functions is approximated,
arbitrarily closely, by that of type (3)




e CRRA utility functions for different +’s, as a function of w, terminal wealth relative
to current wealth, are plotted below

e Intuitively, higher risk aversion penalizes lower terminal wealth more
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Figure 1: CRRA utility functions as a function of terminal wealth, for diferent risk aversion parameters .



4 Log Utility

e The case of v — 1 is illuminating and corresponds to the utility function being
log-utility U(w; 1) = log(w).

e In this case U = log(P) and we know dP/P = ... (|2]) so

ey y) -5 | : (r0) + k() (a0~ r(0) = (026(0?) )

e Quadratic problem; the optimal x(t) is given by

wipy _ Hlt) = 7(t)

e This allocation is known as the Merton ratio (for v = 1)

e With log-optimal allocation (4) in the portfolio process (2), the value of the optimal

(under the log-utility) process F(t), the so-called growth-optimal portfolio, is

dPgg(t)/ Pog(t) = (r(t) +<(t)?) dt+<(t) dB(),
where ¢(t) is the Sharpe ratio:




5 Local Volatility

e To start, let us specialize the processes pu(t), £(t) to be of the local volatility form
plt) = pl(t, X(1), &) =& X)),
where u(t, x), £(t, x) are deterministic functions of ¢ and .

e Let us define the expected utility at time ¢, given the wealth process is at p, the risky
asset process is at x, and the risky allocation function is &(-), by

J(t,p,x; k() = E(U(P(T))| P(t) = p, X(t) = z).

e Given the functional form of the utility function (3), we can easily see that

—ht i k() (5)

J(tapa L, ’%()) —

where

h(t, @; (1)) = Eyoexp ((1 - v)/t (7(5) + £(s)(u(s, X(s)) = 7(s))) ds

1

— 5= [ w(sPels X ()P + (=) [ w(s)e(s, X (5) dB(s)) ,

as follows from (2) and (3). Using Girsanov’s theorem and Feynman-Kac (see [12])
we can derive a PDE for h



6 LV, Feedback Control

e The function  satisfies the following PDE
b+ 2(u(t, ) + (1= ) KOEE 2 + 2061, 2)he
(=) (r0) + KO ult ) = r(0) = 5 (0= ) ePe(e, 0 ) =0
e The optimal &(t) is given by,
k*(t) = arg max (m(t)g(t, z)hy + k() (u(t, x) — r(t))h — %%(t)%‘(t, a:)Qh)

e (Quadratic problem, solution in feedback form:

tax)—r(t)  xhy(t,z, k(.
e () = BT §)+z(:WﬂD.
’yg(t,.ﬁlﬁ) Y h(t,ﬂf,/@ ())
e The first term is the Merton ratio in the lognormal model /under log-utility (see [5]),

also called the myopic allocation, static portfolio optimal allocation, or short-term
optimal allocation

(6)

e The second term is a volatility (local or stochastic; depending on context) correction
term. It depends on the dynamics of the volatility process
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7 LV, Non-linear to Linear PDE for the Optimal Utility

e The optimal value function is defined as
g(t,x) £ h(t, o, 5"(-))

e Plugging the expression for x* into the equation for A we obtain the following non-
linear (quasi-linear) PDE

1
gr+xu@¢wgf+§x%xtxfgm

1 (2€(t )2, + (ult, ) — 7)g)

+(1=7)r(t)g + 2 £(t, 2)2g = 0.
e Can transform to linear PDE (see [12]) using g(¢, x) = f(¢,x),
fia (704 ult ) = 1(0)) £+ 5600
1 —~ L (pt,z) =) . _
Ty (W) T &ty ) F=0
e The optimal allocation is given, in terms of f, as

V&t )? f(t,x)
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8 Stochastic Volatility - Heston

e Heston model (similar results in general SV models):
dX(t)/X(t) Mdtm\/* dB(t) (9)
dV(t) = 0(Vo — V(1)) dt + nﬁdB?(t), V(0)=Vy=1, (10)
with (dB'(t),dB*(t)) = p dt and p, A, 0, Vy, n constants

e The optimal allocation is given by

| folt,v)
k' (t,v) = MertonRatio + Const X 11
(t,v) F(E0) (11)
where (e .
fv t) d / ds
~ —logE t) = 12
ft,v) dv I P AV (s) Vi) =v (12)
e V/(-) behavior around 0 is of significant importance and depends (see [2]) on the Feller
ratio

20/n* s 1
— Below critical: If 20 < n?, then V(-) = 0 is attainable (reflecting)
— Above critical: If 20 > n?, then V(-) = 0 is unattainable with probability 1

e Different regimes lead to differences in how (12) behaves
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9 Heston, Optimal Allocation

e Set the time horizon T' = 10 years, the risk-free rate r = 0, the risky return rate
1 = 4%, the volatility of the risky asset A to be 20%, p = —90%, and the risk aversion
parameter v = 2

e This selection of values implies the myopic Merton ratio, the baseline allocation to

the risky asset, to be
p(t,v) —r(t) 0.04

Vet v2 2% 022
i.e. half of the wealth should be invested in the risky asset

0.5,

e We shall investigate the impact of stochastic volatility on the adjustment to this
ratio, i.e. the second term in (11)
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10 Heston, Dependence on the Cutoff in SV Model

e The adjustment depends critically on the behavior of the vol process around zero

e Introduce a low bound cutoff to the stochastic volatility process for some veyio > 0:

f(t, /U) — )\\/ma,x(v, /Ucutoﬂ")
e Below critical Feller ratio (0.25) with # = 0.5 and n = 2:
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e Significant dependence on veyto €specially in vegor € [0, 0.1] range
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11 Heston, Dependence on the Cutoff in SV Model

e Feller ratio 1, with 6 = 0.5, n =1

e Adjustments are not nearly as extreme, and the change in values with the cutoff
parameter is much less dramatic:

Adjustment to Merton ratio
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Volatility cutoff

e As reported in ([12]), similar behavior with respect to cutoff parameters is observed
in LV models calibrated (Dupire-style) to Heston

13



12 Stochastic (Heston) versus Local Volatility Model
e Let us now examine the impact of the volatility dynamics on the adjustment to the
Merton ratio

e Our procedure is as follows
— Fix Heston model parameters
— Calculate option prices in Heston model

— Calibrate a local volatility model, Dupire style, to those option prices

— Calculate the Merton ratio adjustment in the original SV model and in the cali-
brated LV model

— The difference quantifies the volatility dynamics vs. the observed option prices
impact on optimal allocation

e Heston model (9)—(10), A = 20% and p = —90%
e Apply the volatility cutoff around V' = 0 as in (13) for different veutos

e Dupire’s local volatility:

‘gDupire(tv 37)2 =k (V(t)2’ X(t) — ZC)
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13 S/LV, Below Critical Feller Ratio

e Case § = 0.5 and n = 2, the Feller ratio of 0.25, well below 1. The impact of the
volatility cutoff (on the Heston model) on the difference between the two models
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e Significant divergence between the SV and the LV model for most values of the
volatility cutoff. Largely explained by the high level of dependence of the Heston
model results on the cutoff parameter as discussed before
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14 S/LV, At Critical Feller Ratio

e Case # = 0.5, n = 1, the Feller ratio = 1, at the critical level
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e The agreement with the local volatility model is not perfect but it is much closer

e Much less variability with respect to the volatility cutoff parameter (for reasonable
values) than in the sub-Feller case
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15 Towards Model-Free Optimal Asset Allocation

e Results so far relied on a specific model of the risky asset dynamics

e We have shown that, after controlling for the behavior at very low volatilities, the
results are reasonably model-independent

e Can we build on this to obtain (nearly) model independent results? Using historical
data?

e Techniques of deep learning helpful here? Motivation from [13] (Ritter on optimal
trading strategies) and [4] (Buehler at al on deep hedging)

— (Much) longer time horizon here, approx 10 years+

e Optimal control problem/American Monte-Carlo re-cast (re-branded?) as a rein-
forcement learning problem (see also Henry-Labordere’s [9])

— We start with some model, to have enough path realizations for "training"

— Use Reinforcement Learning ideas/terminology to parameterize the "action-value
function" and then use the "greedy" allocation algorithm
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16 Discretizing the Problem

e Machine Learning requires time discretization

e Timeline 0 =1y < --- < Ty =T, where T is the final horizon. Denote
X,=X(T,), R.=R(T,). P.=P(T), m=nT). m=rT)
e Assume can only rebalance portfolio at times {7},}, i.e. the control/allocation policy
is now given by a sequence (K, . .., ky_1) not continuous function x(-)
e [, is the expected value conditional on the information at time 7;,

e Discretized returns
£, =X,/ X1 —-1, B,=R,/R,1—1 (14)

e After some manipulations we can derive an intuitive discretized version of our port-
folio process

Pn/Pn—l — 1= /in—lgn -+ (1 — lin_l) Bn (15)

e The return on the portfolio is equal to the weighted average of returns on the risk-free
and risky asset, weighted by the allocation policy

18



17 Myopic Optimal Allocation

e With U(-) the utility function (3) we denote

Valk) = U (Py/Poy) = U (1 4+ KE, + (1 = K) B,) (16)

e Simple problem of myopic optimal allocation: choose policy x to maximize
Ep1Va(k) = Ep U (1 + k€, + (1= K) B,) (17)
e Suppose we have ¢ = 1, ..., K realizations of our model. For each value of k we can

then easily construct the realized utility over the time period |T},_1, 15|,
Voile) =U(1+(1—k)B,,; +KE,,), i=1,...,K
e ML for myopic optimal allocation: E,,_1V,, is the reward and x is the policy, in
MIL-speak. Choose k (state-dependent) to maximize the reward
e This is the setup of reinforcement learning

e Specify artificial neural network (ANN) for E,,_1V,,(k), the action-value function, for
each k. Then apply greedy algorithm to find optimal

19



18 Myopic Optimal Allocation via ML
o Let wy,...,wk € (2 represent simulated states at time 7T,,_1 (asset values, volatilities,
previous values of assets, etc)
e Goal: determine k = k(w) (F,_1-measurable) that maximizes E,, 1V, (k) in (17):

1. Select a grid of values x/, j =1, ..., J, that spans the domain of interest

2. For each j, calculate realized values of the utility on all paths
vgéU(1+ (1—/€j)ﬁn,i+/€j§n’i), 1=1,.... K

3. Use your favorite ANN to "learn" the function v/(w) that is the best fit to the
observed mapping of state to the action-value function

wi — v, i=1,...,K
4. Once done for all j =1, ..., J, use the greedy policy
ki =argmaxv’(w;), i=1,...,K
J
e This determines the optimal policy x* : {2 — R for the time 7,,_1, i.e. the maximizer

of E,,_1V, (k) which is the solution to the myopic optimal allocation

e A value-based optimization; policy-based optimization also possible

20



19 Utility — More Notations

e Recall forn=1,..., N,
Pn/Pn—l —1= /{n—lgn + (1 - /{n—l) 677,

e Denote
Un — Un(’{'n—l) =U (PN/Pn—l)
where K, 1 = (Kp_1,.-., KN_1)
e U, depends on the series of decisions on allocation at 1),_1,...,TN_1

e Consider long-term (non-myopic) optimal allocations problem to maximize E,, U, (k,_1)
and, in particular, EqU; (Kg)

e As before the optimal allocation policy /optimal value function are denoted by a star,

k. | =argmax bk, 1U, (k,_1), (18)
Kn—1
U; — INnax En—lUn (Fl"n—l) = En—lUn (I‘L:J_l) (19)
Kn—1

note that U* is Fr ,-measurable
n n—1

e Our choice of the utility function allows for a very useful recursive relation in U,,’s,
Un:Vn+(1+(1_7)Vn)Un+1a n:N7'°°707 UN—HEO (20)
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20 Bellman Principle (=" Q-Learning")

e Bellman’s principle of optimality:

An optimal policy has the property that whatever the initial decision is, the remaining
decisions must constitute an optimal policy with regard to the state resulting from the
previous decision

e Suppose we have the optimal policy starting from time 7;,, denoted by k. Let us
consider all policies starting from time 7;,_; of the form

k
Kp—1 = (’%7 K’n)
for various x allocations at time 7,,_

e Recall the recursion (20),
U=V, +(1+1—=9)V,)Us1, n=N,...,0, Uys1 =0
e Hence the (recursive) equation for the value function is

U = max En 1 {Vak) +(1+ (1 —79)Valk) U, 1)}, n=N,...,1 (21)
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21 Long-Term Optimal Allocation via ML

e Recursion (21) leads to a straightforward extension of the myopic algorithm!

e Set U} =0, assume U} = U} (w;) for all k =n+1,..., N are known

e To calculate 7 (w) (policy) and U (w) (optimal value function) for time 7, we use
the recursion (21)
e Modify Step 2 of the algorithm in the previous section to be

J2U 1+ (1= w) B+ #6)
ul = vl(k) + ((1+(1—*y) f(/ﬁz)) ;ZH(W@')), i=1,...,K

i
e Then proceed as before with the ANN now representing a function u/(w) to be

"learned" from the mapping

w¢|—>ug, 1=1,.... K
e Optimal policy « for time T},_; is defined by

* I(0). -
Fipi = TG MAX U (W), 1=1,..., K
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22 Example

e LV model: regularized CEV with 50% skew
o X(0) = 100, B(0) = 1

o 11 =4%,r =0%, A =20%

oy =2

e Action policy  discretized over [—2, 2] i.e. maximum leverage of £2 (k = 2 means
200% of wealth in risky asset, —100% in bond)

e 5 years into a 10 year allocation problem

24



23 Observed vs Learned for Specific Action

e The action-value function for a specific action of k = 0.5, i.e. 50% allocation to the
risky asset, as a function of the asset value

miopic observed
miopic learned
long-term observed
long-term learned

Value function for a specific action of 50% risky allocation
A
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24 Action Value Function for Different Actions

e Learned action-value function for a selection of different actions that span the action
space
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25 Optimal Value (Utility) Function

optimal value (expected utility) function
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26 Optimal Policy vs Risky Asset Value

optimal policy (risky asset allocation)
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27 Discussion of ML

e An algorithm similar to an American Monte-Carlo with states (x/)
— ANN: more flexible regression functions

e As presented requires many simulated paths for optimization, so a model of asset(s)
evolution is still needed

— We have tried it for some models and it works

— We can use a much richer model than we can in PDE

e Can we use historical data?

— Only one path of SPX

— Resample? E.g. in the spirit of ML, use Restricted Boltzmann Machine as in
Kondratyev-Schwarz [8]

e Alternatively have a very rich model

— Fits historical path

— Makes economic sense

e Plenty of scope for further research

29



28 Conclusions

e In the context of various models for the risky asset, the largely unobservable behavior
of the volatility process around zero has a disproportionately large impact on optimal
asset allocation

e Removing the effects around zero volatility, the near-optimal allocation can be de-
duced largely from the option prices and the local volatility process that fits them,
i.e. in an almost model free way

e Approximate model independence is an inspiration to look into truly model-free
approaches such as Reinforcement Learning

— We derive an important recursion for the action-value function that enables rein-
forcement learning on simulated data

e Further research is needed to look into historical simulations/resampling for a truly
model-free approach

e Some of this is covered in detail in [12)]
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