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Derivative pricing is time-consuming...

I Sophisticated models

I Exotic products
→ we need to rely on numerical methods, e.g.

Monte Carlo simulations

I Portfolio valuation

• Sensitivity analysis
• VaR/ES calculations
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... and markets are moving!

time-consuming algorithms

continuously moving markets

→ prices are outdated when available, risk calculations
cannot be completed in time, ...
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Let a machine learn the pricing function

product, market and
model parameters model price

time-consuming method

machine learning

Expensive pricing function is summarized with machine learning.
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Let a machine learn the pricing function

product, market and
model parameters model price

time-consuming method

machine learning

When training is completed, prediction is extremely fast!
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Literature

I Neural networks:
• Ferguson & Green (2018), Deeply learning derivatives.
• Liu, Oosterlee & Bohte (2019), Pricing options and computing

implied volatilities using neural networks.
• Horvath, Muguruza & Tomas (2019), Deep learning volatility.
• . . .
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Literature

I Gaussian process regression:
• De Spiegeleer, Madan, Reyners & Schoutens (2018), Machine

learning for quantitative finance: fast derivative pricing, hedging
and fitting.

• Crépey & Dixon (2019), Gaussian process regression for derivative
portfolio modeling and application to CVA computations.

• Sousa, Esqúıvel & Gaspar (2012), Machine Learning Vasicek
Model Calibration with Gaussian Processes.

I Gradient boosting machines:
• Davis, Devos, Reyners & Schoutens, Gradient Boosting for

Quantitative Finance. Working paper.
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Gaussian process regression



Gaussian process regression (GPR)

Consider a training set (X,y) = {(xi, yi) | i = 1, . . . , n} and
assume that

yi = f(xi) + εi

I f(x) is a Gaussian process, characterized by two functions:

• mean function: m(x) = E
[
f(x)

]
• kernel function: k(x,x′) = Cov(f(x), f(x′))

I εi ∼ N (0, σ2
n) are i.i.d. random variables representing the noise

in the data.
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Gaussian process

I f(x) ∼ GP (m(x), k(x,x′))

I If (X,f) = {(xi, fi) | i = 1, . . . , n} is a sample from f(x), then

f ∼ N (M(X),K(X,X))

with

M(X) =

m(x1)
...

m(xn)

 , K(X,X) =

k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

 .
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GPR: a Bayesian method

I Don’t model the relation as one function, but as a distribution
over functions.

I Procedure:

1 Start from a prior GP (with zero mean)
→ prior knowledge: smooth function, periodic function, ...
→ prior distribution over functions

2 Include observed data points

3 Compute a posterior GP
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Posterior distribution

Only consider functions that agree with the data.

I Take new inputs X∗, with corresponding (unknown) function
values f∗.

I Joint distribution of training outputs and function values:[
y
f∗

]
∼ N

(
0 ,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
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Posterior distribution

I Condition on the observations:

f∗|X∗, X,y ∼ N
(
µ,Σ

)
with

µ = K(X∗, X)
[
K(X,X) + σ2

nI
]−1
y

Σ = K(X∗, X∗)−K(X∗, X)
[
K(X,X) + σ2

nI
]−1

K(X,X∗)

I Point prediction: µ
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Kernel function

Squared exponential kernel function (with ARD):

k(x,x′) = σ2
f exp

−1
2

d∑
j=1

|xj − x′j |2

`2j


with hyperparameters σf and `:

I σ2
f : signal variance

I `1, . . . , `d : characteristic length-scale parameters

→ Hyperparameters (including σn) are estimated on the training set,
usually with MLE.
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Machine learning for derivative pricing

I Construct a training set:

product, market and
model parameters model price

time-consuming method

compute n
corresponding prices yi

sample n random
combinations xi
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Machine learning for derivative pricing

I Construct a training set:

product, market and
model parameters model price

time-consuming method

sample n random
combinations xi

compute n
corresponding prices yi
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Machine learning for derivative pricing

I Construct a training set:

product, market and
model parameters model price

time-consuming method

I Fit a GPR model.

I Fast prediction of new model prices.
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Case study:
pricing a structured product



Bonus certificate’s payoffs

→ Price according to Heston model, using Monte Carlo simulation.
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Build a training set

Parameter ranges:

Product/market Heston model (∗)

B ∈ [105%, 155%] κ ∈ [0.2, 1.6]
H ∈ [55%, 95%] ρ ∈ [−0.95,−0.25]
T ∈ [11M, 1Y ] θ ∈ [0.15, 0.65]
r ∈ [2%, 3%] η ∈ [0.01, 0.25]
q ∈ [0%, 5%] v0 ∈ [0.01, 0.25]

→ sample parameter combinations + calculate corresponding prices.

(∗) κ = rate of mean reversion, ρ = correlation stock - vol, θ = vol-of-vol,
η = long run variance, v0 = initial variance.
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Pricing a bonus certificate

I Train a GPR model

B, H, T , r, q,
κ, ρ, θ, η, v0

BC pricelearn this relation

→ matrix inversion + hyperparameter optimization

I Construct a test set (100 000 instances):
• similarly to training set construction
• slightly smaller parameter intervals
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GPR’s predictions

Maximal error

absolute: 0.0058
relative: 0.51%

Prediction: 84 seconds
Speed-up × 2900

→ GPR model trained on 10 000 samples, tested on 100 000 samples.
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Gradient Boosting Machines



Gradient boosting machine (GBM)

= ensemble of regression trees h

ŷi = FK(xi) =
K∑
k=0

fk(xi) = c+
K∑
k=1

νhk(xi)

with 0 < ν ≤ 1 a shrinkage parameter.

→ Many simple models fk are combined into one strong model.
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Gradient BOOSTING machine

I GBM is trained stage-wise:

→ Trees are added sequentially:
fk tries to correct for the errors made by model Fk−1.

→ Previously fitted trees are not readjusted.
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GRADIENT boosting machine

How to measure the errors?

I Use pseudo-residuals

gi,k = −
[
∂L(yi, ŷ)

∂ŷ

]
ŷ=Fk−1(xi)

i = 1, . . . , n

where L is a loss function that measures how well the data is
captured by the model.
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Case study:
pricing a structured product



Boosting derivative pricing

I Construct a training set.

I Train a GBM model:

B, H, T , r, q,
κ, ρ, θ, η, v0

BC pricelearn this relation

→ LightGBM implementation.

I Fast prediction of new model prices.
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GBM’s predictions

Maximal error

absolute: 0.0146
relative: 1.11%

Prediction: 42 seconds
Speed-up × 5800

→ GBM model trained on 10 000 samples, tested on 100 000 samples.
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GBM’s predictions

Maximal error

absolute: 0.0052
relative: 0.41%

Prediction: 42 seconds
Speed-up × 5800

→ GBM model trained on 100 000 samples, tested on 100 000
samples.
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GPR’s predictions

Maximal error

absolute: 0.0058
relative: 0.51%

Prediction: 84 seconds
Speed-up × 2900

→ GPR model trained on 10 000 samples, tested on 100 000 samples.
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GBM vs. GPR
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GPR predictions are smoother
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Fixed parameters: H = 80%, T = 1Y , r = 2.5%, q = 3%, κ = 1, η = 0.05,
θ = 0.5, ρ = −0.7, v0 = 0.05.
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GPR has built-in analytic derivatives

I GPR’s point prediction for x∗:

f∗(x∗) = K(x∗, X)
[
K(X,X) + σ2

nI
]−1
y︸ ︷︷ ︸

α

I Derivatives w.r.t. x∗:

∂f∗(x∗)
∂x∗

= ∂K(x∗, X)
∂x∗

α = −Λ−1X̃∗
T [
K(x∗, X)T ◦α

]
with

X̃∗ = [x∗ − x1, . . . ,x∗ − xn]T , Λ =

`
2
1 0

. . .
0 `2

d
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Smooth Greek profiles for free!
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(a) GPR’s Theta
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(b) GPR’s Vega

→ Monte Carlo simulations based on 100 million price paths.

24 Machine Learning for Quantitative Finance



Conclusion

I Time-consuming pricing methods

I Machine learning methods
• Gaussian process regression (GPR)
• Gradient boosting machines (GBM)

I Pricing a structured product:
• Speed-ups of several orders of magnitude.
• GBM prediction is faster, training scales more easily.
• GPR provides smoother price predictions and Greeks.
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Thank you!

Contact: sofie.reyners@kuleuven.be
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Hyperparameters

ntrees = 10 000 bagging freq = 1
learning rate = 0.2 bagging fraction = 0.5
num leaves = 16 L2 regularization = 0.8
min obs in leaf = 24 booster = DART
max bin = 255 drop rate = 0.1

GPR

σf = 0.4580

σn = 0.0011
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