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I

General Arbitrage Theory
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Pricing financial derivatives

Definition:

A contingent claim (derivative) with delivery

time T , is a random variable

X ∈ FT .

“At t = T the amount X is paid to the holder

of the claim”.

Example: (European Call Option)

X = max [ST − K,0]

(ST =stock price at time T)

Let X be a contingent T -claim.

Problem: What is an “reasonable” price process

Π [t;X] for X?
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Philosophy

• The derivative is defined in terms of un-

derlying.

• The derivative can be priced in terms of

underlying price.

• Consistent pricing.

• Relative pricing.

• No mispricing between derivative and un-

derlying.

• No arbitrage possibilities.
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Financial Markets

Price Process:

S(t) = [S0(t), ..., SN(t)]

Si(t) = price of asset i at time t. (S0 > 0)

Example: (Black-Scholes, S0 := B, S1 := S)

dS = αSdt + σSdW,

dB = rBdt.

Portfolio:

h(t) = [h0(t), ..., hN(t)]

hi(t) = number of units of asset i at time t.

Value Process:

Vh(t) =
N∑

i=0

hi(t)Si(t) = h(t)S(t)
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Self Financing Portfolios

Definition: (intuitive)

A portfolio is self-financing if there is no ex-

ogenous infusion or withdrawal of money. “The

purchase of a new asset must be financed by

the sale of an old one.”

Definition: (mathematical)

A portfolio is self-financing if the value process

satisfies

dVh(t) =
N∑

i=0

hi(t)dSi(t)

Major insight:

If the price process S is a martingale, and if h

is self-financing, then Vh is a martingale.
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Arbitrage

A portfolio h is an arbitrage strategy if

• h is self financing

• Vh(0) = 0

• P(Vh(T) > 0) = 1

or more precisely

P(Vh(T) ≥ 0) = 1

P(Vh(T) > 0) > 0

Interpretation:
An arbitrage possibilty is a serious case of mis-
pricing on the market.

Main Question: When is the market free of
arbitrage?
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Absence of Arbitrage

The market is arbitrage free

iff

There exists a probability measure Q ∼ P such

that all normalized price processes are

Q-martingales.

i.e.

Z(t) =
S(t)

S0(t)
= [1, Z1(t), ..., ZN(t)]

is a Q martingale.

i.e.

EQ [Zi(s)| Ft] = Zi(t), t ≤ s
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Choice of Numeraire

The numeraire price S0 can be chosen arbi-

trarily. Typically we choose the riskless asset,

i.e.

S0(t) = B(t)

where

dB(t) = r(t)B(t)dt

B(t) = e
∫ t
0 r(s)ds

B = The money account (a bank with short

rate r).

In this case Q is called the “risk neutral” mea-

sure.
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Pricing

Definition:

A contingent claim with delivery time T , is

a random variable

X ∈ FT .

“At t = T the amount X is paid to the holder

of the claim”.

Example: (European Call Option)

X = max [ST − K,0]

Let X be a contingent T -claim.

Main Pricing Problem:

What is an arbitrage free price process Π [t;X]

for X?
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Solution: The extended market

St, Π [t;X]

must be free of arbitrage. In particular, the

process Π[t;X]
B(t) must be a martingale, under some

martingale measure Q, i.e.

Π [t;X]

B(t)
= EQ

[
Π [T ;X]

B(T)

∣∣∣∣∣Ft

]

Pricing formula:

Π [t;X] = EQ
[
e−
∫ T
t r(s)ds × X

∣∣∣∣Ft

]
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Black-Scholes Model:

Π [t;X] = e−r(T−t)EQ [X| Ft]

Q-dynamics:

dS = rSdt + σSdW̃ .

Simple claims:

X = Φ(ST ),

Π[t;X] = e−r(T−t)EQ [Φ(ST )| Ft]

Kolmogorov ⇒
Π [t;X] = F(t, St).

F(t, s) solves the Black-Scholes equation:


∂F
∂t + rs∂F

∂s + 1
2σ2s2∂2F

∂s2
− rF = 0,

F(T, s) = Φ(s).
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Risk neutral dynamics

• For every arbitrage free price process Πt,

the process

Πt

Bt

is a Q-martingale.

• The Q-dynamics of Πt are of the form:

dΠt = rtΠtdt + dMt

where M is a Q-martingale
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Problem: What if there are several different

martingale measures Q?
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Hedging

Def: A portfolio is a hedge against X (“repli-

cates X”) if

• h is self financing

• Vh(T) = X, P − a.s.

Def: The market is complete if every X can

be hedged.

Pricing Formula:

If h replicates X, then a natural way of pricing

X is

Π [t;X] = Vh(t)

When can we hedge?
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Existence of hedge

m

Existence of stochastic integral
representation
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Fix T -claim X.

If h is a hedge for X then

• V Z(T) = X
B(T)

• h is self financing, i.e.

dV Z =
K∑
1

hidZi

Thus V Z is a Q-martingale.

V Z(T) = EQ

[
X

B(T)

∣∣∣∣∣Ft

]
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Lemma:

Fix T -claim X. Define martingale M by

M(t) = EQ

[
X

B(T)

∣∣∣∣∣Ft

]

Suppose that there exist predictable processes

h1, · · · , hK such that

M(t) = x +
K∑

i=1

∫ t

0
hi(s)dZi(s),

Then X is attainable.

Proof: Easy.
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Theorem:

The market is complete

iff

the martingale measure Q is unique.
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Main Results:

• The market is arbitrage free ⇔ There exists
a martingale measure Q

• The market is complete ⇔ Q is unique.

• Every X must be priced by the formula

Π [t;X] = EQ
[
e−
∫ T
t r(s)ds × X

∣∣∣∣Ft

]
for some choice of Q.

• In a non-complete market, different choices
of Q will produce different prices for X.

• For a hedgeable claim X, all choices of Q

will produce the same price for X:

Π [t;X] = Vh(t) = EQ
[
e−
∫ T
t r(s)ds × X

∣∣∣∣Ft

]
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Metatheorem:

Assume that

N = Number of risky assets.

R = Number of independent sources of ran-

domness.

Then the following hold.

• The market is arbitrage free iff R ≥ N.

• The market is complete iff R ≤ N .

• The market is arbitrage free and complete

iff R = N .
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Example: Black-Scholes Model:

dS = αSdt + σSdW,

dB = rBdt.

For B-S we have N = R = 1. The market is

arbitrage free and complete.
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II

Interest Rate Theory
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The Bond Market

Bonds: T -bond = Zero coupon bond, which

pays 1 $ at time of maturity T .

p(t, T) = price, at time t, of a T -bond.

p(T, T) = 1.

Main problem:

Determine the term structure, i.e. the struc-

ture of {p(t, T); 0 ≤ t ≤ T, T ≥ 0} on an arbi-

trage free bond market.

Determine arbitrage free prices of other inter-

est rate derivatives (interest rate options, swap

rates, caps, floors etc.)
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Interest Rate Options

Problem:

We want to price, at t, a European Call, with

exercise date S, and strike price K, on an un-

derlying T -bond. (t < S < T).

Naive approach: Use Black-Scholes’ formula.

F(t, p) = pN [d1] − e−r(T−t)KN [d2] .

d1 =
1

σ
√

T − t

{
ln
(

p

K

)
+
(
r +

1

2
σ2
)
(T − t)

}
,

d2 = d1 − σ
√

T − t.

where

p = p(t, T)
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Is this allowed?

• p shall be the price of a traded asset. OK!

• The volatility of p must be constant. Here

we have a problem because of pull-to-par,

i.e. the fact that p(T, T) = 1. Bond volatil-

ities will tend to zero as the bond approaches

the time of maturity.

• The short rate must be constant and de-

terministic. Here the approach collapses

completely, since the whole point of study-

ing bond prices lies in the fact that interest

rates are stochastic.
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Deeply felt need

A consistent arbitrage free model for
the bond market
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Short Rate Models

Model: (Under the objective measure.)

P:

dr = µ(t, r)dt + σ(t, r)dW,

dB = r(t)Bdt.

Question: Are bond prices uniquely deter-

mined by the P -dynamics of r, and the require-

ment of an arbitrage free bond market?

NO!!

WHY?
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Stock Models ∼ Interest Rates

Black-Scholes:

dS = αSdt + σSdw,

dB = rBdt.

Interest Rates:

dr = µ(t, r)dt + σ(t, r)dW,

dB = r(t)Bdt.

Question: What is the difference?

Answer: The short rate r is not the price

of a traded asset!
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1. Meta Theorem:

N = 0, (No risky asset)
R = 1, (One source of randomness, W )

Thus M < R. The market is incomplete.

2. Martingale Measures:

If the money-account B is the only exoge-

nously given asset, then every Q ∼ P is a

martingale measure.

The martingale measure is not unique, so

the market is not complete.

3. Hedging portfolios:

You are only allowed to invest your money

in the bank, and then sit back and wait.

We have not enough underlying assets in order

to price bonds.
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• There is not a unique price for a particular

T−bond.

• In order to avoid arbitrage, bonds of dif-

ferent maturities have to satisfy internal

consistency relations.

• If we take one “benchmark” T0-bond as

given, then all other bonds can be priced

in terms of the market price of the bench-

mark bond.

Assumption:

p(t, T) = F(t, r(t);T)

p(t, T) = FT (t, r(t)),

FT (T ;T) = 1.
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Self Financing Portfolios

Definition:

A portfolio is self-financing if the value process

satisfies

dVh(t) =
N∑

i=0

hi(t)dSi(t)

Introduce portfolio weights

ui =
hi(t)Si(t)

Vt

Portfolio dynamics:

dVt = Vt ·
∑
i

ui(t)
dSi(t)

Si(t)

(Compare with CAPM)
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Program:

• Form portfolio based on T− and S−bonds.

Use Itô on FT (t, r(t)) to get bond- and

portfolio dynamics.

dV = V

{
uT

dFT

FT
+ uS

dFS

FS

}

• Choose portfolio weights such that the dW−
term vanishes. Then we have

dV = V · kdt,

(“synthetic bank” with k as the short rate)

• Absence of arbitrage ⇒ k = r .

• Read off the relation k = r!
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From Itô:

dFT = FTαTdt + FTσTdW̃ ,

where 


αT =
FT

t +µFT
r +1

2σ2FT
rr

FT ,

σT = σFT
r

FT .

Portfolio dynamics

dV = V

{
uT dFT

FT
+ uSdFS

FS

}
.

Reshuffling terms gives us

dV = V ·
{
uTαT + uSαS

}
dt+V ·

{
uTσT + uSσS

}
dW.

Let the portfolio weights solve the system{
uT + uS = 1,

uTσT + uSσS = 0.
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


uT = − σS
σT−σS

,

uS = σT
σT−σS

,

Portfolio dynamics

dV = V ·
{
uTαT + uSαS

}
dt.

i.e.

dV = V ·
{

αSσT − αTσS

σT − σS

}
dt.

Absence of arbitrage requires

αSσT − αTσS

σT − σS
= r

which can be written as

αS(t) − r(t)

σS(t)
=

αT (t) − r(t)

σT (t)
.
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αS(t) − r(t)

σS(t)
=

αT (t) − r(t)

σT (t)
.

Note!

The quotient does not depend upon the par-

ticular choice of maturity date.
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Result:

Assume that the bond market is free of arbi-

trage. Then there exists a universal process λ,

such that

αT(t) − r(t)

σT (t)
= λ(t),

holds for all t and for every choice of maturity

T .

NB: The same λ for all choices of T .

λ = Risk premium per unit of volatility
= “Market Price of Risk” (cf. CAPM).

Slogan:

“On an arbitrage free market all bonds have

the same market price of risk.”

The relation
αT − r

σT
= λ

is actually a PDE!
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The Term Structure Equation

FT
t + {µ − λσ}FT

r +
1

2
σ2FT

rr − rFT = 0,

FT (T, r) = 1.

P -dynamics:

dr = µ(t, r)dt + σ(t, r)dW.

λ =
αT − r

σT
, for all T

In order to solve the TSE we need to know λ.
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General Term Structure Equation

Contingent claim:

X = Φ(r(T))

Result:

The price is given by

Π [t;X] = F(t, r(t))

where F solves

Ft + {µ − λσ}Fr +
1

2
σ2Frr − rF = 0,

F(T, r) = Φ(r).

In order to solve the TSE we need to know λ.
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Question:
Who determines λ?

Answer:

THE MARKET!
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Moral

• Since the market is incomplete the require-

ment of an arbitrage free bond market will

not lead to unique bond prices.

• Prices on bonds and other interest rate

derivatives are determined by two main fac-

tors.

1. Partly by the requirement of an arbi-

trage free bond market (the pricing func-

tions satisfies the TSE).

2. Partly by supply and demand on the

market. These are in turn determined

by attitude towards risk, liquidity con-

sideration and other factors. All these

are aggregated into the particular λ used

(implicitly) by the market.
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Risk Neutral Valuation

Using Feynmac–Kač we obtain

Π [t;X] = E
Q
t,r

[
e−
∫ T
t r(s)ds × X

]
.

Q-dynamics:

dr = {µ − λσ}dt + σdW
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III

Short Rate Models
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Risk Neutral Valuation

Π [t;X] = E
Q
t,r

[
e−
∫ T
t r(s)ds × X

]

Q-dynamics:

dr = {µ − λσ}dt + σdW

• Price = expected value of future payments

• The expectation should not be taken under

the “objective” probabilities P , but under

the “risk adjusted” probabilities Q.
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Martingale Modelling

• All prices are determined by the Q-

dynamics of r.

• Model dr directly under Q!

Problem: Parameter estimation!
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Martingale pricing

Q-dynamics:

dr = µ(t, r)dt + σ(t, r)dW

Π[t;X] = EQ
[
e−
∫ T
t r(s)ds × X

∣∣∣∣Ft

]

p(t, T) = EQ
[
e−
∫ T
t r(s)ds × 1

∣∣∣∣Ft

]

The Case X = Φ(r(T)):

The price is given by

Π [t;X] = F (t, r(t)){
Ft + µFr + 1

2σ2Frr − rF = 0,
F(T, r) = Φ(r(T)).

(Term Structure Equation)
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1. VasičeK

dr = (b − ar) dt + σdV,

2. Cox-Ingersoll-Ross

dr = (b − ar) dt + σ
√

rdV,

3. Dothan

dr = ardt + σrdV,

4. Black-Derman-Toy

dr = a(t)rdt + σ(t)rdV,

5. Ho-Lee

dr = a(t)dt + σdV,

6. Hull-White (extended Vasiček)

dr = {Φ(t) − ar} dt + σdV,
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Bond Options

European call on a T -bond with strike price K

and delivery date S.

X = max [p(S, T) − K, 0]

X = max
[
FT (S, r(S)) − K, 0

]

FT
t + µFT

r +
1

2
σ2FT

rr − rFT = 0,

FT (T, r) = 1.

Φ(r) = max
[
FT (S, r) − K, 0

]

Ft + µFr +
1

2
σ2Frr − rF = 0,

F(S, r) = Φ(r(S)).

Π [t;X] = F(t, r(t))
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Affine Term Structures

Lots of equations!

Need analytic solutions.

We have an Affine Term Structure if

F(t, r;T) = eA(t,T)−B(t,T)r,

where A and B are deterministic functions.

Problem: How do we specify µ and σ in order

to have an ATS?
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Proposition: Assume that µ and σ are of the

form

µ(t, r) = α(t)r + β(t),

σ2(t, r) = γ(t)r + δ(t).

Then the model admits an affine term struc-

ture

F(t, r;T) = eA(t,T)−B(t,T)r,

where A and B satisfy the system

{
Bt(t, T) = −α(t)B(t, T) + 1

2γ(t)B2(t, T) − 1,
B(T ;T) = 0.

{
At(t, T) = β(t)B(t, T) − 1

2δ(t)B2(t, T),
A(T ;T) = 0.
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Inverting the Yield Curve

Q-dynamics with parameter vector α:

dr = µ(t, r;α)dt + σ(t, r;α)dV

⇓

Theoretical term structure

{p(0, T ;α); T ≥ 0}

Observed term structure:

{p?(0, T); T ≥ 0} .

Want: A model such that theoretical prices
fit the observed prices of today, i.e. choose
parameter vector α such that

p(0, T ;α) ≈ {p?(0, T); ∀T ≥ 0}

Number of equations = ∞ (one for each T).
Number of unknowns =dim(α)

Need: Infinite dimensional parameter vector.
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Hull-White

Q-dynamics:

dr = {Φ(t) − ar} dt + σdV (t),

p(t, T) = eA(t,T)−B(t,T)r(t),

B(t, T) =
1

a

{
1 − e−a(T−t)

}

The instantaneous forward rate at T , con-

tracted at t is given by

f(t, T) = −∂ log p(t, T)

∂T
.

Fit the observed forward rate curve!
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Result: The Hull-White model can be fitted

exactly to any observed initial term structure.

The calibrated model takes the form

p(t, T) =
p(0, T)

p(0, t)
× eC(t,r(t))

where C is given by

B(t, T)f?(0, t)− σ2

2a2
B2(t, T)

(
1 − e−2aT

)
−B(t, T)r(t)

Analytical formulas for bond-options.
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Models Based on the Short Rate

Pro:

• Easy to model Markov structure for r.

• Analytical expressions for bond prices and
derivatives.

Con:

• Inverting the yield curve can be hard.

• Hard to model a flexible volatility structure

for forward rates.

• One factor models implies perfect correla-
tion along the yield curve.
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IV

Forward Rate Models
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Riskless Interest Rates

At time t:

• Sell one S-bond.

• Buy exactly p(t, S)/p(t, T) T−bonds.

• Zero net investment.

At time S:

• Pay out 1$

At time T:

• Receive p(t, S)/p(t, T) · 1$.
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Net Effect

• The contract is made at t.

• An investment of 1 at time S has yielded

p(t, S)/p(t, T) at time T .

• The equivalent constant rates, R, are given

as the solutions to

Continuous rate:

eR·(T−S) · 1 =
p(t, S)

p(t, T)

Simple rate:

[1 + R · (T − S)] · 1 =
p(t, S)

p(t, T)
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Continuous Interest Rates

1. The forward rate for the period [S, T ],
contracted at t is defined by

R(t;S, T) = −log p(t, T) − log p(t, S)

T − S
.

2. The spot rate, R(S, T), for the period [S, T ]
is defined by

R(S, T) = R(S;S, T).

3. The instantaneous forward rate at T ,
conracted at t is defined by

f(t, T) = −∂ log p(t, T)

∂T
= lim

S→T
R(t;S, T).

4. The instantaneous short rate at t is de-
fined by

r(t) = f(t, t).
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Simple Rates
(LIBOR)

1. The simple forward rate L(t;S,T)for the

period [S, T ], contracted at t is defined

by

L(t;S, T) =
1

T − S
· p(t, S) − p(t, T)

p(t, T)

2. The simple spot rate, L(S, T), for the pe-

riod [S, T ] is defined by

L(S, T) =
1

T − S
· 1 − p(S, T)

p(S, T)
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Bond prices ∼ LIBOR rates

The simple spot rate, L(T, T + δ), for the

period [T, T + δ] is given by

p(T, T + δ) =
1

1 + δL(T, T + δ)

i.e.

L(T, T + δ) =
1

δ
· 1 − p(T, T + δ)

p(T, T + δ)

61



Bond Prices ∼ Forward Rates

p(t, T) = p(t, s) · exp
{
−
∫ T

s
f(t, u)du

}
,

In particular

p(t, T) = exp

{
−
∫ T

t
f(t, s)ds

}
.
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Toolbox

Proposition:

If the forward rate dynamics under Q are given

by

df(t, T) = α(t, T)dt + σ(t, T)dW

Then the bond dynamics are given by

dp(t, T) = p(t, T)
{
r(t) + A(t, T) +

1

2
‖S(t, T)‖2

}
dt

+ p(t, T)S(t, T)dW




A(t, T) = − ∫ T
t α(t, s)ds,

S(t, T) = − ∫ T
t σ(t, s)ds
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The Money Account

{
dB(t) = r(t)B(t)dt,
B(0) = 1.

i.e.

B(t) = exp
{∫ t

0
r(s)ds

}
,

Model of a bank with stochastic short rate of

interest r.
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Money account as roll-over:

“Put all your money in just maturing bonds”

dV x
t = hx

t dp(t, t + x)

We have

hx
t =

V x
t

p(t, t + x)
so

dV x
t = V x

t
dp(t, t + x)

p(t, t + x)

From toolbox

dV x
t = V x

t
rt

p(t, t + x)
dt+V x

t
1

p(t, t + x)
S(t, t+x)dWt

As x → 0, p(t, t + x) → 1 and S(t, t + x) → 0 so
we obtain:

Roll-over dynamics:

dV = r(t)V dt.

We need measure valued portfolios!
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Heath-Jarrow-Morton

Idea: Model the dynamics for the entire yield

curve.

The yield curve itself (rather than the short

rate r) is the explanatory variable.

Model forward rates. Use observed yield curve

as boundary value.

Dynamics:

df(t, T) = α(t, T)dt + σ(t, T)dW (t),

f(0, T) = f?(0, T).

One SDE for every fixed maturity time T .
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Existence of martingale measure

f(t, T) =
∂ log p(t, T)

∂T

p(t, T) = exp

{
−
∫ T

t
f(t, s)ds

}

Thus:

Specifying forward rates.

⇐⇒
Specifying bond prices.

Thus:

No arbitrage

⇓
restrictions on α and σ.
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P-dynamics:

df(t, T) = α(t, T)dt + σ(t, T)dW̃ (t)

Look for Girsanov transformation P → Q, s.t.

Q-dynamics:

dp(t, T) = r(t)p(t, T)dt + p(t, T)v(t, T)dW̃ (t)

Toolbox:

df(t, T) = α(t, T)dt + σ(t, T)dW̃

⇓

dp(t, T) = p(t, T)
{
r(t) + A(t, T) +

1

2
‖S(t, T)‖2

}
dt

+ p(t, T)S(t, T)dW

68






A(t, T) = − ∫ T
t α(t, s)ds,

S(t, T) = − ∫ T
t σ(t, s)ds



Girsanov:

dL(t) = L(t)G(t)dW̃ (t),

L(0) = 1.

Q-dynamics:

dp(t, T) = p(t, T)r(t)dt

+
{
A(t, T) +

1

2
||S(t, T)||2 + S(t, T)g(t)

}
dt

+ p(t, T)S(t, T)dW (t),
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Proposition:
∃ a martingale measure

m

∃ process g(t) = [g1(t), · · · gd(t)] s.t.

A(t, T) +
1

2
||S(t, T)||2 + S(t, T)g(t) = 0, ∀t, T

alternatively

α(t, T) = σ(t, T)
∫ T

t
σ(t, s)ds−σ(t, T)g(t), ∀t, T
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• Specify arbitrary volatilities σ(t, T).

• Fix d “benchmark” maturities T1, · · · , Td.
For these maturities, specify drift terms
α(t, T1), · · ·α(t, T1).

• The Girsanov kernel is uniquely determined
(for each fixed t) by

d∑
i=1

σi(t, Tj)gi(t) =
d∑

i=1

σi(t, Tj)
∫ T

0
σi(t, s)ds

− α(t, Tj), j = 1, · · · d.

• Thus Q is uniquely determined.

• All other drift terms will be uniquely de-
fined by

α(t, T) = σ(t, T)
∫ T

t
σ(t, s)ds−σ(t, T)g(t), ∀t, T
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Martingale Modelling

Q-dynamics:

df(t, T) = α(t, T)dt + σ(t, T)dW (t)

Specifying forward rates.

⇐⇒
Specifying bond prices.

Thus:

The process P(t, T)/Bt is a Q martingale for

every T

⇓
restrictions on α and σ.

Which?
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Martingale modelling

m
P = Q

m
g ≡ 0

α(t, T) = σ(t, T)
∫ T

t
σ(t, s)ds−σ(t, T)g(t), ∀t, T

Theorem: (HJM drift Condition) The bond

market is arbitrage free if and only if

α(t, T) = σ(t, T)
∫ T

t
σ(t, s)ds.

Moral: Volatility can be specified freely. The

forward rate drift term is then uniquely deter-

mined.
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Uniqueness of Q

Proposition: The following conditions are equiv-
alent

1. The martingale measure Q is unique.

2. For each fixed t, there exist maturities
T1, · · · , Td (which may depend on t) such
that the matrix

D(t;T1, · · · , Td)i,j = σi(t, Tj)

is nonsingular.

3. For each fixed t, there exist maturities
T1, · · · , Td (which may depend on t) such

that the matrix

H(t;T1, · · · , Td)i,j = Si(t, Tj)

is nonsingular.
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Proposition Assume that

1. For each t, ω the functions

σ1(t, T), · · · , σd(t, T)

are real analytic in the T -variable.

2. For each t, ω the functions

σ1(t, T), · · · , σd(t, T)

are linearly independent (as functions of

T).

Then, for each fixed t, it is possible to choose

volatilities T1, · · · , Td such that the matrix{
Si(t, Tj)

}
i,j

is nonsingular. Apart from a finite set of for-

bidden points these volatilities can be chosen

freely as long as they are distinct.
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Musiela parametrization

Parameterize forward rates by the time to ma-

turity (x), rather than time of maturity (T).

Def:

r(t, x) = f(t, t + x).

Q-dynamics:

df(t, T) = α(t, T)dt + σ(t, T)dV.

dr(t, x) = αm(t, x)dt + σm(t, x)dV.

What are the relations between drifts and volatil-

ities under Q?
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dr(t, x) = d [f(t, t + x)]

= df(t, t + x) + fT (t, t + x)dt

= {α(t, t + x) + rx(t, x)} dt + σ(t, t + x)dV

αm(t, x) = α(t, t + x) + rx(t, x)

σm(t, x) = σ(t, t + x).

HJM-condition:

α(t, T) = σ(t, T)
∫ T

t
σ(t, s)ds.

HJMM forward rate equation:

dr(t, x) =
{

∂

∂x
r(t, x) + σm(t, x)

∫ x

0
σm(t, y)dy

}
dt

+ σm(t, x)dV

This is an SDE in infinite dimensional space.
Connections to control theory.
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Forward Rate Models

Pro:

• Easy to model flexible volatility structure

for forward rates.

• Easy to include multiple factors.

Con:

• The short rate will typically not be a Markov

process.

• Computational problems.
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V

Change of Numeraire
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Change of Numeraire
(Geman, Jamshidian, El Karoui)

Valuation formula:

Π [t;X] = EQ
[
e−
∫ T
t r(s)ds × X

∣∣∣∣Ft

]

Hard to compute. Double integral.

Note: If X and r are independent then

Π [t;X] = EQ
[
e−
∫ T
t r(s)ds

∣∣∣∣Ft

]
· EQ [X |Ft] s

= p(t, T) · EQ [X| Ft] .

Nice! We do not have to compute p(t, T). It
can be observed directly on the market!
Single integral!

Sad Fact: X and r are (almost) never inde-
pendent!
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Idea: Use T -bond (for a fixed T) as numeraire.

Define the T-forward measure QT by the re-

quirement that

Π (t)

p(t, T)

is a QT -martingale for every price process Π(t).

Then

Π [t;X]

p(t, T)
= ET

[
Π [T ;X]

p(T, T)

∣∣∣∣∣Ft

]

Π[T ;X] = X, p(T, T) = 1.

Π[t;X] = p(t, T)ET [X |Ft] s

Do such measures exist?.
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“The forward measure takes care of the sto-

chastics over the interval [t, T ].”

Enormous computational advantages.

Useful for interest rate derivatives, currency

derivatives and derivatives defined by several

underlying assets.
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General change of numeraire.

Idea: Use a fixed asset price process S(t) as

numeraire. Define the measure QS by the re-

quirement that

Π (t)

S(T)

is a QS-martingale for every arbitrage free price

process Π (t).
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Constructing QS: Fix a T -claim X. From

general theory:

Π [0;X] = EQ

[
X

B(T)

]

Assume that QS exists and denote

L(t) =
dQS

dQ
, on Ft

Then

Π [0;X]

S(0)
= ES

[
Π [T ;X]

S(T)

]
= ES

[
X

S(T)

]

= EQ

[
L(T)

X

S(T)

]

Thus we have

Π [0;X] = EQ

[
L(T)

X · S(0)

S(T)

]
,
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Natural candidate:

L(t) =
dQS

t

dQt
=

S(t)

S(0)B(t)

Proposition:

Π(t) /B(t) is a Q-martingale.

⇓
Π(t) /S(t) is a Q?-martingale.
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Proof.

E?

[
Π(t)

S(t)

∣∣∣∣∣Fs

]
=

EQ
[
L(t)Π(t)

S(t)

∣∣∣Fs

]
L(s)

=
EQ

[
Π(t)

B(t)S(0)

∣∣∣Fs

]
L(s)

=
Π(s)

B(s)S(0)L(s)

=
Π(s)

S(s)
.

87



Result:

Π [t;X] = S(t)ES

[
X

S(T)

∣∣∣∣∣Ft

]

We can observe S(t) directly on the market.

Example: X = S(T) · Y
Π [t;X] = S(t)ES [Y | Ft]
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Several underlying:

X = Φ[S0(T), S1(T)]

Assume Φ is linearly homogeous. Transform

to Q0.

Π [t;X] = S0(t)E
0
[
Φ[S0(T), S1(T)]

S0(T)

∣∣∣∣∣Ft

]

= S0(t)E
0 [ϕ [Z(T)]| Ft]

ϕ [z] = Φ [1, z] , Z(t) =
S1(t)

S0(t)
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Exchange option:

X = max [S1(T) − S0(T), 0]

Π [t;X] = S0(t)E
0 [max [Z(T) − 1, 0]| Ft]

European Call on Z with strike price K. Zero

interest rate.

Piece of cake!
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Identifying the Girsanov
Transformation

Assume Q-dynamics of S known as

dS(t) = r(t)S(t)dt + S(t)v(t)dW (t)

L(t) =
S(t)

S(0)B(t)

Thus

dL(t) = L(t)v(t)dW (t).

The Girsanov kernel is given by the numeraire

volatility v(t).
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Forward Measures

Use price of T -bond as numeraire.

LT (t) =
p(t, T)

p(0, T)B(t)

dp(t, T) = r(t)p(t, T)dt + p(t, T)v(t, T)dW (t),

dLT (t) = LT (t)v(t, T)dW (t)

Result:

Π [t;X] = p(t, T)ET [X| Ft]

Common Conjecture: “The forward rate is
an unbiased estimator of the future spot rate:”

Lemma:

f(t, T) = ET [r(T)| Ft]
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A new look on option pricing
(Geman, El Karoui, Rochet)

European call on asset S with strike price K

and maturity T .

X = max [S(T) − K, 0]

Π [0;X] = S(0) · QS [S(T) ≥ K]

− K · p(0, T) · QT [S(T) ≥ K]
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Analytical Results

Assumption: Assume that ZS,T , defined by

ZS,T(t) =
S(t)

p(t, T)
,

has dynamics

dZS,T (t) = ZS,T(t)mS
T (t)dt + ZS,T(t)σS,T (t)dW,

where σS,T(t) is deterministic.

We have to compute

QT [S(T) ≥ K]

and

QS [S(T) ≥ K]
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QT (S(T) ≥ K) = QT

(
S(T)

p(T, T)
≥ K

)

= QT
(
ZS,T(T) ≥ K

)

By definition ZS,T is a QT -martingale, so QT -

dynamics are given by

dZS,T (t) = ZS,T(t)σS,T (t)dWT ,

with the solution

ZS,T(T) =

S(0)

p(0, T)
×exp

{
−1

2

∫ T

0
σ2

S,T(t)dt +
∫ T

0
σS,T(t)dWT

}

Lognormal distribution!
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The integral

∫ T

0
σS,T (t)dWT

is Gaussian, with zero mean and variance

Σ2
S,T (T) =

∫ T

0
‖σS,T(t)‖2dt

Thus

QT (S(T) ≥ K) = N [d2],

d2 =
ln
(

S(0)
Kp(0,T)

)
− 1

2Σ
2
S,T(T)√

Σ2
S,T (T)
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QS (S(T) ≥ K) = QS

(
p(T, T)

S(T)
≤ 1

K

)

= QS
(
YS,T(T) ≤ 1

K

)
,

YS,T(t) =
p(t, T)

S(t)
=

1

ZS,T(t)
.

YS,T is a QS-martingale, so QS-dynamics are

dYS,T(t) = YS,T(t)δS,T (t)dWS.

YS,T = Z−1
S,T

⇓

δS,T(t) = −σS,T(t)
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YS,T(T) =

p(0, T)

S(0)
exp

{
−1

2

∫ T

0
σ2

S,T(t)dt −
∫ T

0
σS,T(t)dWS

}
,

QS (S(T) ≥ K) = N [d1],

d1 = d2 +

√
Σ2

S,T(T)
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Proposition: Price of call is given by

Π [0;X] = S(0)N [d2] − K · p(0, T)N [d1]

d2 =
ln
(

S(0)
Kp(0,T)

)
− 1

2Σ
2
S,T(T)√

Σ2
S,T(T)

d1 = d2 +

√
Σ2

S,T(T)

Σ2
S,T(T) =

∫ T

0
‖σS,T(t)‖2dt
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Hull-White

Q-dynamics:

dr = {Φ(t) − ar} dt + σdW.

Affine term structure:

p(t, T) = eA(t,T)−B(t,T)r(t),

B(t, T) =
1

a

{
1 − e−a(T−t)

}
.

Ckeck if Z has deterministic volatility

Z =
S(t)

p(t, T1)
, S(t) = p(t, T2)

Z(t) =
p(t, T2

p(t, T1)
,

Z(t) = exp {∆A(t) − ∆B(t)r(t)} ,
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Z(t) = exp {∆A(t) − ∆B(t)r(t)} ,

∆A(t) = A(t, T2) − A(t, T1),

∆B(t) = B(t, T2) − B(t, T1),

dZ(t) = Z(t) {· · ·} dt + Z(t) · σz(t)dW,

σz(t) = −σ∆B(t) =
σ

a
eat

[
e−aT1 − e−aT2

]

Deterministic volatility!
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VI

Some New Directions
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1. LIBOR Models
(Miltersen-Sandman-Sondermann,

Brace-Gatarek-Musiela )

Problem: Many popular interest rate models

(Vasicec, Hull-White) lead to negative interest

rates with positive probability.

The Dothan model

dr = ardt + σrdV,

gives a lognormal short rate of interest.

This implies r > 0. (Good!)

Lognormality also implies E [B(t)] = +∞ (Bad!)

This also implies infinite values for Eurodollar

futures (Ouch!)
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A dilemma

• Lognormal modelling of instantaneuos for-

ward rates implies exploding forward rates,

infinite interest rates, zero bond prices and

arbitrage possibilities.

• Despite this, the market continues happily

to use Black type formulas, which assumes

lognormality.

• If you cannot beat them, join them.

• Construct a model which leads to theoret-

ically sound pricing formulas of the Black

type!
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Main Idea:

Focus on (non-infinitesimal) market forward

rates (LIBOR rates).

L(t, T ; δ) =
p(t, T) − p(t, T + δ)

δ · p(t, T + δ)

Typically δ = 1/4 i.e. three months.

Model, for a fixed compounding period δ, the

LIBOR rates “lognormally” as

dL(t, T) = µ(t, T)dt + γ(t, T)L(t, T)dW,

where γ is deterministic.

Note:

Under the forward measure QT+δ the LIBOR

rate L(t, T) = L(t, T, T + δ) is a martingale
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Caps

Basic idea: Buy an insurance against high in-
terest rates in the future.

1. The contract is written at t = 0. At that
time also the principal, K, and the fixed
cap rate, R are determined.

2. A cap is a sum of elementary contracts, so
called caplets.

3. A caplet is active over the period [T, T +δ],

4. At time T + δ the holder of the caplet re-
ceives

X = Kδ max [LT − R,0] = Kδ (LT − R)+

where Lt is the simple forward rate (LI-
BOR) for the period [T, T + δ], i.e.

Lt = L(t, T, T + δ)
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Pricing a caplet

At time T + δ the holder of the caplet receives

X = Kδ max [L − R,0] = Kδ (L − R)+

Π [t;X] = p(t, T + δ)KδET+δ
[
(L − R)+

∣∣∣Ft

]

QT+δ dynamics of Lt = L(t, T, T + δ):

dLt = γ(t, T)LtdWt

where W is QT+δ Wiener.

• If γ is deterministic we have lognormal for-

ward rates under Qt+δ.

• We can use Black-Scholes type formulas.

• Calibrate γ from the cap curve.
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2. Interest Rates with Jumps
(Shirakawa, Björk-Kabanov-Runggaldier,

Jarrow-Madan, Duffie-Singelton)

BKR model:

df(t, T) = α(t, T)dt + σ(t, T)dW (t)

+
∫
E

δ(t, T, x)µ(dt, dx)

dr(t) = a(t)r(t)dt+b(t)dW (t)+
∫
E

q(t, x)µ(dt, dx),
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Results.

• Need to consider measure valued portfo-

lios.

• HJM type drift condition.

• Uniqueness of MG-measure only implies hedge-

ability on dense subspace.

• The hedging equation is generically ill posed.

• Existence of Affine Term Structures.

• Hard computational problems.
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3. Risky Bonds

τ = time of default

X = nominal claim at time T

X · I {τ > T} = actual pay-out at time T

How to model default?

• Default is triggered when the underlying

value of the firm hits a barrier. (τ is pre-

dictable ). Longstaff-Schwartz, Merton.

• Default is triggered by a Poisson type point

event. (τ is totally inaccessible ). Jarrow,

Lando, Turnbull.
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The simplest intensity model

Assumption:

The default time τ is the first jump time of a

Cox process N with intensity process λ. The

process λ is independent of r and X.

Result:

Denote risky bond price by q(t, T). Then we

have

q(0, T) = EQ
[
e−
∫ T
0 R(s)ds · X

]

where

R(s) = r(s) + λ(s).

“Risk adjusted discount factor”
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Q
(
N(t) = k

∣∣∣Fλ
t

)
= e−

∫ T
0 λ(s)ds ·

(∫ T
0 λ(s)ds

)k

k!

q(0, T) = EQ
[
e−
∫ T
0 r(s)ds · X · I {NT = 0}

]

= EQ
[
EQ

[
e−
∫ T
0 r(s)ds · X · I {NT = 0}

∣∣∣∣Fλ,r,X
T

]]

= EQ
[
e−
∫ T
0 r(s)ds · X · EQ

[
I {NT = 0}| Fλ

T

]]

= EQ
[
e−
∫ T
0 r(s)ds · X · e−

∫ T
0 λ(s)ds

]

= EQ
[
e−
∫ T
0 R(s)ds · X

]
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Markov chain models

• The company is described by a finite state

Markov Chain (state = credit rating).

• The default state is absorbing.

• Easy to obtain good P -statistics for the

intensity matrix. Hard to get Q-statisatics.

• Jarrow-Lando-Turnbull, Duffie-Singleton.
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4. Further topics

• The potential approach to interest rates.

(Rogers, Jin-Glasserman)

• Functional models. (Hunt-Kennedy-Pelsser)

• Positive interest rates. (Brody-Hughston)

• The geometric approach to the HJMM equa-

tion. (Björk, Christenssen, Filipovič, Lan-

den, Svensson, Teichmann).
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