Completeness, arbitrage and optimal portfolio strategy in an Itô-Markov additive market

Anna Sulima

Wrocław University of Economics and Business

anna.sulima@ue.wroc.pl

Winter Seminar on Mathematical Finance, January 24, 2022

Joint work with prof. Z. Palmowski and prof. L. Stettner.

Market model

Let

- $(\Omega, \mathcal{F}, \mathbb{P})$ be complete probability space,
- $\mathbb{T} := [0, T]$, for fixed $0 < T < \infty$,
- $J:=\{J(t):t\in\mathbb{T}\}$ be the observable and continuous-time Markov chain with a finite,canonical state space $E:=\{\mathbf{e}_1,\ldots,\mathbf{e}_N\}$,
- $[\lambda_{ij}]_{i,j=1}^N$ be the intensity matrix of the Markov chain J.

Risk-free asset

We describe the dynamic of the price process of risk-free asset B as follows:

$$dB(t) = r(t)B(t)dt, \quad B(0) = 1.$$

Here r is the interest rate of B and it is modulated by Markov chain J

$$r(t) := \langle \mathbf{r}, J(t) \rangle = \sum_{i=1}^{N} r_i \langle \mathbf{e}_i, J(t) \rangle,$$

where $\mathbf{r}=(r_1,\ldots,r_N)'\in\mathbb{R}_+^N$ and $\langle\cdot,\cdot\rangle$ is a scalar product in \mathbb{R}^N . The value $r_i>0$ represents the value of the interest rate when the Markov chain is in the state space \mathbf{e}_i .

Itô-Markov additive process

We define the process X as follows:

$$X(t) = \overline{\overline{X}}(t) + \overline{X}(t),$$

where

$$\overline{\overline{X}}(t) := \sum_{i=1}^N \Psi_i(t)$$

for

$$\Psi_i(t) := \sum_{n\geqslant 1} U_n^{(i)} \mathbf{1}_{\{J(T_n)=\mathbf{e}_i, \ T_n\leqslant t\}}$$

and for the jump epochs $\{T_n\}$ of J. Here $U_n^{(i)}$ $(n\geqslant 1, 1\leqslant i\leqslant N)$ are independent random variables such that for every fixed i, the random variables $U_n^{(i)}$ are identically distributed. We can express the process Ψ_i as follows:

$$\Psi_i(t) = \int_0^t \int_{\mathbb{R}} x \; \Pi_U^i(\mathrm{d} s, \mathrm{d} x)$$

for the point measure

$$\Pi^{i}_{U}([0,t],\mathrm{d}x) := \sum_{n \geq 1} \mathbf{1}_{\{U^{(i)}_{n} \in \mathrm{d}x\}} \mathbf{1}_{\{J(T_{n}) = \mathbf{e}_{i}, \ T_{n} \leqslant t\}}, \quad i = 1, \ldots, N.$$

Itô-Markov additive process

An Itô-Lévy process has the following decomposition:

$$\overline{X}(t) := \overline{X}(0) + \int_0^t \mu_0(s) \mathrm{d}s + \int_0^t \sigma_0(s) \mathrm{d}W(s) + \int_0^t \int_{\mathbb{R}} \gamma(s-,x) \bar{\Pi}(\mathrm{d}s,\mathrm{d}x),$$

where W denotes the standard Brownian motion independent of J and $\bar{\Pi}(\mathrm{d}t,\mathrm{d}x):=\Pi(\mathrm{d}t,\mathrm{d}x)-\nu(\mathrm{d}x)\mathrm{d}t$ is the compensated Poisson random measure which is independent of J and W. Furthermore,

$$\mu_0(t) := \langle \boldsymbol{\mu}_0, J(t) \rangle = \sum_{i=1}^N \mu_0^i \langle \mathbf{e}_i, J(t) \rangle, \qquad \sigma_0(t) := \langle \boldsymbol{\sigma}_0, J(t) \rangle = \sum_{i=1}^N \sigma_0^i \langle \mathbf{e}_i, J(t) \rangle,$$

$$\gamma(t,x) := \langle \gamma(x), J(t) \rangle = \sum_{i=1}^{N} \gamma_i(x) \langle \mathbf{e}_i, J(t) \rangle$$

for some vectors $\mu_0 := (\mu_0^1, \dots, \mu_0^N)' \in \mathbb{R}^N$, $\sigma_0 := (\sigma_0^1, \dots, \sigma_0^N)' \in \mathbb{R}_+^N$ and the vector-valued measurable function $\gamma(x) := (\gamma_1(x), \dots, \gamma_N(x))$.

A bivariate process (J, X) with above decomposition is called **Itô-Markov** additive process.

We assume the evolution of the price process of the risky asset S_0 is governed by the Itô-Markov additive process as follows:

$$\begin{cases} \mathrm{d}S_0(t) = S_0(t-) \left[\mu_0(t) \mathrm{d}t + \sigma_0(t) \mathrm{d}W(t) + \int_{\mathbb{R}} \gamma(t-,x) \bar{\Pi}(\mathrm{d}t,\mathrm{d}x) \right. \\ + \sum_{i=1}^{N} \int_{\mathbb{R}} x \bar{\Pi}_U^i(\mathrm{d}t,\mathrm{d}x) \right], \\ S_0(0) = s_0 > 0. \end{cases}$$

We interpret the coefficient μ_0 as the appreciation rate and σ_0 as the volatility of the risky asset for each $i=1,\ldots,N$.

Markovian jump securities

We define a marked point process Φ_j by

$$\Phi_j(t) := \Phi([0,t] \times \mathbf{e}_j) = \sum_{n \geqslant 1} \mathbf{1}_{\{J(T_n) = \mathbf{e}_j, \ T_n \leqslant t\}}, \ \ j = 1, \dots, N.$$

Let ϕ_j be the compensator of Φ_j , thus the process

$$\overline{\Phi}_j(t) := \Phi_j(t) - \phi_j(t), \quad j = 1, \ldots, N,$$

is a martingale and it is called the *j*th Markovian jump martingale. The dynamics of prices of the Markovian jump securities S_j (for j = 1, ..., N) is described as follows:

$$\begin{cases} dS_j(t) = S_j(t-) \Big[\mu_j(t) dt + \sigma_j(t-) d\overline{\Phi}_j(t) \Big], \\ S_j(0) > 0, \end{cases}$$

where the appreciation rate μ_j and the volatility σ_j are determined by the Markov chain J as previously.

Markovian power-jump securities

We introduce the power-jump processes as follows:

$$X^{(k)}(t) := \sum_{0 \le s \le t} (\Delta \overline{X}(s))^k, \qquad k \geqslant 2,$$

where $\Delta \overline{X}(s) = \overline{X}(s) - \overline{X}(s-)$. We set $X^{(1)}(t) = \overline{X}(t)$. We have

$$\mathbb{E}\big[X^{(k)}(t)\big|\mathcal{J}_t\big] = \int_0^t \int_{\mathbb{R}} \gamma^k(s-,x)\nu(\mathrm{d}x)\mathrm{d}s < \infty,$$

 $\mathbb{P}-a.e.$ for $k\geqslant 2$ and $\mathcal{J}_t:=\sigma\{J(s):s\leqslant t\}.$ Hence the processes

$$\overline{X}^{(k)}(t) := X^{(k)}(t) - \int_0^t \int_{\mathbb{R}} \gamma^k(s-,x) \nu(\mathrm{d}x) \mathrm{d}s, \qquad k \geqslant 2,$$

are martingales.

The price process of Markovian kth-power-jump assets $S^{(k)}$ is described by:

$$\begin{cases} \mathrm{d}S^{(k)}(t) = S^{(k)}(t-) \Big[\mu^{(k)}(t) \mathrm{d}t + \sigma^{(k)}(t-) \mathrm{d}\overline{X}^{(k)}(t) \Big], \\ S^{(k)}(0) > 0, \end{cases}$$

where the coefficients are determined by the Markov chain J as previously.

Impulse regime switching securities

We define

$$\Psi_i^{(I)}(t) := \sum_{n\geqslant 1} \left(U_n^{(i)}\right)^I \mathbf{1}_{\{J(\mathcal{T}_n) = \mathbf{e}_i, \ \mathcal{T}_n\leqslant t\}}.$$

The compensated version of $\Psi_i^{(l)}$ is called an **impulse regime switching** martingale:

$$\overline{\Psi}_i^{(I)}(t) := \Psi_i^{(I)}(t) - \mathbb{E}(U_n^{(i)})^I \phi_i(t).$$

We characterize the evolution of impulse regime switching securities $S_i^{(l)}$ as follows:

$$\begin{cases} \mathrm{d}S_i^{(l)}(t) = S_i^{(l)}(t-) \left[\mu_i^{(l)}(t) \mathrm{d}t + \sigma_i^{(l)}(t-) \mathrm{d}\overline{\Psi}_i^{(l)}(t) \right], \\ S_i^{(l)}(0) > 0, \end{cases}$$

where the coefficients are determined by the Markov chain J as previously.

A enlarged Itô-Markov additive market

for $i, j = 1, \ldots, N, k \ge 2$ and $l \ge 1$.

$$\begin{cases} \mathrm{d}B(t) = r(t)B(t)\mathrm{d}t, \\ \mathrm{d}S_0(t) = S_0(t-) \bigg[\mu_0(t)\mathrm{d}t + \sigma_0(t)\mathrm{d}W(t) + \int_{\mathbb{R}} \gamma(t-,x)\overline{\Pi}(\mathrm{d}t,\mathrm{d}x) \\ + \sum_{i=1}^N \int_{\mathbb{R}} x\overline{\Pi}_U^i(\mathrm{d}t,\mathrm{d}x) \bigg], \\ \mathrm{d}S_j(t) = S_j(t-) \bigg[\mu_j(t)\mathrm{d}t + \sigma_j(t-)\mathrm{d}\overline{\Phi}_j(t) \bigg], \\ \mathrm{d}S^{(k)}(t) = S^{(k)}(t-) \bigg[\mu^{(k)}(t)\mathrm{d}t + \sigma^{(k)}(t-)\mathrm{d}\overline{X}^{(k)}(t) \bigg], \\ \mathrm{d}S^{(l)}_i(t) = S^{(l)}_i(t-) \bigg[\mu^{(l)}_i(t)\mathrm{d}t + \sigma^{(l)}_i(t-)\mathrm{d}\overline{\Psi}_i^{(l)}(t) \bigg], \end{cases}$$

Asymptotic completeness of the enlarged market

A market is said to be **complete** if each claim can be replicated by a strategy, that is, the claim can be represented as a stochastic integral with respect to the asset prices.

In the case of market models with an infinite number of assets, we define completeness in terms of approximate replication of claims.

A market is **asymptotically complete** in the sense that for every contingent claim A we can set up a sequence of finite self-financing portfolios whose final values converge to A.

Theorem 1. [Palmowski Z., Stettner L., S. A., 2019] The enlarged Itô-Markov additive market is asymptotically complete.

Asymptotic arbitrage

We say that there is an **asymptotic arbitrage** opportunity if we have a sequence of strategies such that, for some real number c > 0, the value process V^n on a finite market satisfies:

- $V^n(t) \geqslant -c$ for each $0 < t \leqslant T$ and for each $n \in \mathbb{N}$,
- $V^n(0) = 0$ for each $n \in \mathbb{N}$,
- $\liminf_{n\to\infty} V^n(T) \geqslant 0$, \mathbb{P} -a.s,
- $\mathbb{P}\left(\liminf_{n\to\infty}V^n(T)>0\right)>0.$

Proposition 1. [Björk, T. and Näslund, B., 1998] If there exists a martingale measure $\mathbb Q$ equivalent to $\mathbb P$ then the market is asymptotic-arbitrage-free.

Density process for the martingale measure $\ensuremath{\mathbb{Q}}$

Let $\mathcal{L}^2(W)$ be the set of all predictable, $\{\mathcal{F}_t\}$ -adapted processes ξ such that $\mathbb{E}\int_0^T \xi^2(s)\mathrm{d}s < \infty$ and $\xi \in \mathcal{L}^1(\phi_j)$ iff ξ is predictable, $\{\mathcal{F}_t\}$ -adapted and satisfies $\mathbb{E}\int_0^T |\xi(s)|\lambda_j\mathrm{d}s < \infty$.

Proposition 2. [Boel, R. and Kohlmann, M., 1980] Let $\psi_0 \in \mathcal{L}^2(W)$, $\psi_i \in \mathcal{L}^1(\phi_i)$ for all j = 1, ..., N and $\psi_i(s) > -1$. Then

$$\ell(t) := \exp\left[\int_0^t \psi_0(s) \mathrm{d}W(s) - \frac{1}{2} \int_0^t \psi_0^2(s) \mathrm{d}s - \sum_{j=1}^N \int_0^t \psi_j(s) \phi_j(\mathrm{d}s)\right]$$

$$\times \prod_{j=1}^{N} \prod_{\substack{J(t-)\neq J(t)\\J(t)=\mathbf{e}_{i}}} (1+\psi_{j}(t))$$

is a non-negative local martingale. If additionally $\mathbb{E}\ell(t)=1$ then it is a true martingale. Let $\mathbb Q$ be the probability measure defined by the Radon-Nikodym derivative

$$\ell(t) = rac{\mathrm{d} \mathbb{Q}}{\mathrm{d} \mathbb{P}} \, igg|_{\mathcal{F}_t}.$$

Girsanov's theorem for jump-diffusion processes

Theorem 2. [Boel, R. and Kohlmann, M., 1980] The process \overline{X} under the new martingale measure $\mathbb Q$ has the form

$$\overline{X}^{\mathbb{Q}}(t) = \int_0^t \sigma_0(s) dW^{\mathbb{Q}}(s) + \int_0^t \int_{\mathbb{R}} \gamma(s-,x) \overline{\Pi}(ds,dx),$$

where

$$W^{\mathbb{Q}}(t) = W(t) - \int_0^t \psi_0(s) \mathrm{d}s$$

is a standard $\mathbb{Q}\text{-}\mathsf{Brownian}$ motion.

Moreover,

$$egin{aligned} \overline{\Phi}_j^\mathbb{Q}(t) &= \Phi_j(t) - \int_0^t \Big(1 + \psi_j(s)\Big) \phi_j(\mathrm{d} s), \ \phi_j^\mathbb{Q}(t) &= \int_0^t \Big(1 + \psi_j(s)\Big) \phi_j(\mathrm{d} s). \end{aligned}$$

and

$$\overline{\Psi}_{j}^{(I),\mathbb{Q}}(t)=\Psi_{j}^{(I)}(t)-\mathbb{E}ig(U_{n}^{(i)}ig)^{I}\phi_{j}^{\mathbb{Q}}(t).$$

Theorem 3. [Palmowski Z., Stettner L., S. A., 2019] Assume that $\mu_j^j = r_j$ for all j = 1, ..., N and

$$\left\{egin{aligned} \psi_0(t) &= rac{r(t-)-\mu_0(t-)}{\sigma_0(t-)},\ \psi_j(t) &= rac{r(t-)-\mu_j(t-)}{\sigma_j(t-)\lambda_j(t)}, \quad j=1,\ldots,N. \end{aligned}
ight.$$

Then, the discounted price processes of the securities, in the enlarged ltô-Markov additive market, are martingales under $\mathbb Q$ and this market is asymptotic-arbitrage-free.

Optimal portfolio selection in a complete Itô-Markov additive market

We denote a portfolio strategy by

$$\pi(t) = (\pi_0(t), \pi_1(t), \dots, \pi_N(t), \pi^{(2)}(t), \dots, \pi_1^{(1)}(t), \pi_2^{(1)}(t), \dots).$$

The wealth process R_{π}^{K} for the first K assets is governed by:

$$\frac{\mathrm{d}R_{\pi}^{K}(t)}{R_{\pi}^{K}(t-)} := \left(r(t) + \sum_{j=0}^{N} \pi_{j}(t) \left(\mu_{j}(t) - r(t)\right) + \sum_{k=2}^{K} \pi^{(k)}(t) \left(\mu^{(k)}(t) - r(t)\right)\right) \\
+ \sum_{i=1}^{N} \sum_{l=1}^{K} \pi_{i}^{(l)}(t) \left(\mu_{i}^{(l)}(t) - r(t)\right) dt + \pi_{0}(t) \sigma_{0}(t-) dW(t) \\
+ \int_{\mathbb{R}} \left(\pi_{0}(t) \gamma(t-,x) + \sum_{k=2}^{K} \pi^{(k)}(t) \sigma^{(k)}(t-) \gamma^{k}(t-,x)\right) \bar{\Pi}(dt,dx) \\
+ \sum_{i=1}^{N} \int_{\mathbb{R}} \left(x \pi_{0}(t) + \sum_{l=1}^{K} x^{l} \pi_{i}^{(l)}(t) \sigma_{i}^{(l)}(t-)\right) \bar{\Pi}_{U}^{i}(dt,dx) \\
+ \sum_{i=1}^{N} \pi_{j}(t) \sigma_{j}(t-) d\bar{\Phi}_{j}(t).$$

Portfolio selection problem

Let U denote a utility function of the investor.

Then the value function of the investor's portfolio selection problem is defined by

$$V(t,z,\mathbf{e}_i) := \sup_{\pi \in \mathcal{A}} V^{\pi}(t,z,\mathbf{e}_i) = \sup_{\pi \in \mathcal{A}} \mathbb{E}_{t,z,i} \big[\mathit{U}(\mathit{R}_{\pi}(\mathit{T})) \big]$$

where $\mathbb{E}_{t,z,i}$ is the conditional expectation given $R_{\pi}(t) = z$ and $J(t) = \mathbf{e}_i$ under \mathbb{P} .

Logarithmic utility $U(z) = \log(z)$

Theorem 4. The optimal portfolio strategy for the portfolio selection problem with logarithmic utility function of wealth satisfy following equations:

$$r(t-) - \mu_{0}(t-) = \pi_{0}^{*}(t)\sigma_{0}^{2}(t-) + \sum_{i=1}^{N} \frac{r(t-) - \mu_{i}^{(1)}(t-)}{\sigma_{i}^{(1)}(t-)} + \int_{\mathbb{R}} \gamma(t-,x) \left(\left(1 + \pi_{0}^{*}(t)\gamma(t-,x) + \sum_{k=2}^{\infty} \pi^{(k)*}(t)\sigma^{(k)}(t-)\gamma^{k}(t-,x) \right)^{-1} \right) \nu(\mathrm{d}x),$$

$$\pi_{j}^{*}(t) = \frac{\mu_{j}(t-) - r(t-)}{\left(r(t-) - \mu_{j}(t-)\right)\sigma_{j}(t-) + \lambda_{j}(t)\sigma_{j}^{2}(t-)},$$

$$\frac{r(t-) - \mu_{i}^{(k)}(t-)}{\sigma^{(k)}(t-)} = \int_{\mathbb{R}} \gamma^{k}(t-,x) \left(\left(1 + \pi_{0}^{*}(t)\gamma(t-,x) + \sum_{k=2}^{\infty} \pi^{(k)*}(t)\sigma^{(k)}(t-)\gamma^{k}(t-,x) \right)^{-1} - 1 \right) \nu(\mathrm{d}x),$$

$$\frac{r(t-) - \mu_{i}^{(l)}(t-)}{\sigma_{i}^{(l)}(t-)} = \int_{\mathbb{R}} x^{l} \left(\left(1 + x\pi_{0}^{*}(t) + \sum_{k=2}^{\infty} \pi_{i}^{(l)*}(t)\sigma_{i}^{(l)}(t-)x^{l} \right)^{-1} - 1 \right) \eta(\mathrm{d}x).$$

Power utility $U(z) = z^{\alpha}$ for $\alpha \in (0,1)$

Theorem 5. The optimal portfolio strategy for the portfolio selection problem with power utility function of wealth satisfy following equations:

$$r(t-) - \mu_{0}(t) = (\alpha - 1)\pi_{0}^{\star}(t)\sigma_{0}^{2}(t-) + \sum_{i=1}^{N} \frac{\mu_{i}^{(1)}(t-) - r(t-)}{\sigma_{i}^{(1)}(t-)} + \int_{\mathbb{R}} \left(\left(\pi_{0}^{\star}(t) + \sum_{i=1}^{\infty} \pi^{(k)\star}(t)\sigma_{i}^{(k)}(t-)\gamma^{k}(t-,x)\right)^{\alpha-1} - 1\right)\nu(\mathrm{d}x),$$

$$+ \sum_{k=2}^{\infty} \pi^{(k)\star}(t)\sigma^{(k)}(t-)\gamma^{k}(t-,x)\right)^{\frac{1}{\alpha-1}} - 1$$

$$\pi_{j}^{\star}(t) = \frac{\left(1 - \frac{\mu_{j}(t-) - r(t-)}{\lambda_{i}(t)\sigma_{j}(t-)}\right)^{\frac{1}{\alpha-1}} - 1}{\sigma_{j}(t-)},$$

$$r(t-) - \mu^{(k)}(t) = \int_{\mathbb{R}} \sigma^{(k)}(t-)\gamma^{k}(t-,x)\left(\left(1 + \pi_{0}^{\star}(t)\gamma(t-,x)\right) + \sum_{k=2}^{\infty} \pi^{(k)\star}(t)\sigma^{(k)}(t-)\gamma^{k}(t-,x)\right)^{\alpha-1} - 1\right)\nu(\mathrm{d}x),$$

$$r(t-) - \mu_{i}^{(l)}(t) = \int_{\mathbb{R}} \sigma_{i}^{(l)}(t-)x^{l}\left(\left(\sum_{l=1}^{\infty} \pi_{i}^{\star(l)}(t)x^{l}\sigma_{i}^{(l)}(t-)\right)^{\alpha-1} - 1\right)\lambda_{i}(t)\eta(\mathrm{d}x).$$

References

Palmowski, Z., Stettner, L. and Sulima A. (2019) Optimal Portfolio Selection in an Itô-Markov Additive Market, *Risks*, vol. 7, nr 1, p.1–32.

Palmowski, Z., Stettner, L. and Sulima A. (2018) A note on chaotic and predictable representations for Itô-Markov additive processes, *Stochastic Analysis and Applications*, vol. 36, p. 622–638.

Boel, R. and Kohlmann, M. (1980) Semimartingale models of stochastic optimal control, with applications to double Martingales. *SIAM Journal on Control and Optimization*, vol. 18, p. 511–533.

Thank you for your attention!