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Market model

Let
e (Q,F,P) be complete probability space,
e T:= [0, T], for fixed 0 < T < o0,

e J:={J(t) : t € T} be the observable and continuous-time Markov chain
with a finite,canonical state space E := {ei,...,en},

o [Aj]"=1 be the intensity matrix of the Markov chain J.



Risk-free asset

We describe the dynamic of the price process of risk-free asset B as follows:
dB(t) = r(t)B(t)dt, B(0) =1.

Here r is the interest rate of B and it is modulated by Markov chain J

N

r(t) = (rnJ() = > rifes, (b)),

i=1

where r = (ri,...,ry) € RY and (-, -) is a scalar product in RY. The value
ri > 0 represents the value of the interest rate when the Markov chain is in the
state space e;.



It6-Markov additive process

We define the process X as follows:
X(t) = X(£) + X(2),
where

X(1) =Y wi(t)

for
Vi) ==Y UL, sty

n>1

and for the jump epochs {T,} of J. Here % (n>1,1<i<N)are
independent random variables such that for every fixed i, the random variables
U,S') are identically distributed. We can express the process V; as follows:

t
\U,-(t):/ /x My (ds, dx)
o Jr
for the point measure

My([0, ¢, dx) == 10 can HTer, Tty i =1, .

n>1



It6-Markov additive process

An 1t3-Lévy process has the following decomposition:

X(t) = X(O)—i—/otuo(s)ds—&-/otao(s YAW (s / / s—, x)M(ds, dx),

where W denotes the standard Brownian motion independent of J and
Mn(dt,dx) := MN(dt, dx) — v(dx)dt is the compensated Poisson random measure
which is independent of J and W. Furthermore,

po(t) = (o, J Zuo e (1), oo(t) = (0, ] Zao ei, (1)),

Y(t, x) = {v(x), J(t Zm(x e;,J

for some vectors gy 1= (g, - .., 1) € RY, a0 := (03, ...,0) € RY and the
vector-valued measurable function v(x) := (Vl(x) ..,ny(x)).

A bivariate process (J, X) with above decomposition is called Ité6-Markov
additive process.



We assume the evolution of the price process of the risky asset Sy is governed
by the It6-Markov additive process as follows:

dSo(t) = So(t—) {uo(t)dt + oo(t)dW(t) + fR y(t—, x)A(dt, dx)

N -
+ > [, xAy(dt, dx)] ,
i=1
50(0) =5 > 0.

We interpret the coefficient uo as the appreciation rate and oy as the volatility
of the risky asset for each i =1,..., N.



Markovian jump securities

We define a marked point process ®; by
q)J(t) = d)([O: t] X ej) = Z l{J(T,,):ej-, Ta<t}s ./ = 17 RS} N.
n>1
Let ¢; be the compensator of ®;, thus the process
;(t) == &i(t) — #;(t), j=1,...,N,

is a martingale and it is called the jth Markovian jump martingale.
The dynamics of prices of the Markovian jump securities S; (for j =1, ..., N)
is described as follows:

dSi(6) = Si(t-) [ru(E)de + (e )dBy (1),
5(0) >0,

where the appreciation rate y; and the volatility o; are determined by the
Markov chain J as previously.



Markovian power-jump securities

We introduce the power-jump processes as follows:

xW(e) =Y (aX(s), k=2

0<s<t

where AX(s) = X(s) — X(s—). We set XI(t) = X(t). We have

E[X®(t)| 7] // (s—, x)v(dx)ds < oo,

P — a.e. for k > 2 and J;: := o{J(s) : s < t}. Hence the processes

Wty = X(k)(t)/t/fyk(s,x)y(dx)ds, k> 2,

are martingales.
The price process of Markovian kth-power-jump assets S is described by:

as®(t) = S(k)(tf){u(”(t)durg ()XY (¢ )}
51(0) >0,

where the coefficients are determined by the Markov chain J_as previously.



Impulse regime switching securities

We define N
WO ()= () 1iir)=e, Tusey-

n>1

The compensated version of \IJ,(-’) is called an impulse regime switching
martingale:

V() = W (1) —E(UD) oi(2).

We characterize the evolution of impulse regime switching securities S,.(/) as
follows:

as0(e) = SO [ () + o (e)aT(0)],
5:(0) > o,

where the coefficients are determined by the Markov chain J as previously.



A enlarged [t6-Markov additive market

dB(t) = r(t)B(t)dt,

dSo(t) = So(t—) |:,LL0(t)dt + oo(t)dW(t) + fR y(t—, x)M(dt, dx)
+ XN: Jz xM,(dt, dx):| ,

ds;(t) :,;(t_) [Mj(t)dt + Uj(t—)d@(f)} ;

as®(t) = SW(t-) [u(k)(t)dt n a(k)(t—)dy(k)(t)} :

as?(t) = s (¢-) [ﬂ?”( t)de + af”(rf)dﬁﬁ”(t)] )

fori,j=1,...,N, k>2and /> 1.



Asymptotic completeness of the enlarged market

A market is said to be complete if each claim can be replicated by a strategy,
that is, the claim can be represented as a stochastic integral with respect to
the asset prices.

In the case of market models with an infinite number of assets, we define
completeness in terms of approximate replication of claims.

A market is asymptotically complete in the sense that for every contingent
claim A we can set up a sequence of finite self-financing portfolios whose final
values converge to A.

Theorem 1. [Palmowski Z., Stettner L., S. A., 2019]
The enlarged It6-Markov additive market is asymptotically complete.



Asymptotic arbitrage

We say that there is an asymptotic arbitrage opportunity if we have a
sequence of strategies such that, for some real number ¢ > 0, the value process
V" on a finite market satisfies:

@ V'(t) > —c for each 0 < t < T and for each n € N,

e V"(0) =0 for each n € N,
liminf V'(T) > 0, P-a.s,

n—oo

P(liminf V"(T) > 0) > 0.

Proposition 1. [ Bjork, T. and Naslund, B., 1998] If there exists a martingale
measure Q equivalent to P then the market is asymptotic-arbitrage-free.



Density process for the martingale measure Q

Let £L?(W) be the set of all predictable, {F;}-adapted processes ¢ such that
E fOT €2(s)ds < oo and € € LY(¢)) iff £ is predictable, {F;}-adapted and
satisfies EfOT [&(s)|Ajds < 0.

Proposition 2. [Boel, R. and Kohlmann, M., 1980]

Let 1o € L2(W), o € L(¢;) for all j=1,..., N and ;(s) > —1. Then

) pl [ wteawes) -5 [ vias-d [ w,-(s)@(ds)]

is a non-negative local martingale. If additionally E£(t) = 1 then it is a true
martingale. Let QQ be the probability measure defined by the Radon-Nikodym
derivative

d
ot) = £

Fi



Girsanov's theorem for jump-diffusion processes

Theorem 2. [Boel, R. and Kohlmann, M., 1980] The process X under the new
martingale measure Q has the form

x%(t) = /O oo(s)dW2(s) / / ~y(s—, x)(ds, dx),
= W(t)/otwo(s)ds

is a standard Q-Brownian motion.
Moreover,

where

=00~ [ (1406)) o),

50 = [ (1+006)) o9

and

W0 =0 B(U0) 450



Theorem 3. [Palmowski Z., Stettner L., S. A., 2019]
Assume that i} = r; for all j=1,..., N and

(t=) = po(t-)

I

vn() = - oo(t—)

r(t=) —p(t=) .
()= I WD) g
! oj(t=)X(t)
Then, the discounted price processes of the securities, in the enlarged
[t6-Markov additive market, are martingales under Q and this market is
asymptotic-arbitrage-free.



Optimal portfolio selection in a complete It6-Markov additive market

We denote a portfolio strategy by

7(t) = (mo(t), mi(t), ..., 7n(t), 72(0), ..., 71 (e), =i (1), .. ).

The wealth process RX for the first K assets is governed by:

K N
Rl = (104 Xm0 (0~ 0 +Zﬂ W) ~ r(e)

+ 3 7w (u(r) - r(t))> dt 4 mo(t)oo(t—)dW(t)
+ / (Wo(t)’y(t—,x) + Zﬂ(k)(t)a(k)(t—)’yk(t—,x)) f(dt, dx)

+ Z / <x7ro(t) + Zx’wf”(t)af”(t—)) A}, (dt, dx)

—|—Z7rj Yoi(t—)dd;(t).



Portfolio selection problem

Let U denote a utility function of the investor.
Then the value function of the investor’'s portfolio selection problem is defined
by
V(t,z,e;) ;= sup V" (t,z,e;) = sup Et,z,,[U(Rﬁ(T))]
TEA TEA
where E; , ; is the conditional expectation given R:(t) = z and J(t) = e; under
P.



Logarithmic utility U(z) = log(z)

Theorem 4. The optimal portfolio strategy for the portfolio selection problem
with logarithmic utility function of wealth satisfy following equations:

r(6-) ~ olt-) = i +Z ) )( = /Rw(t—,x)((l

() (t— x)+zw(k>* (=, X)) 1>I/(dx),

p(t —) - r(t )
(r(t=) = mi(t=)) o (t=) + Ai()o? (=)

ni—)— ) (t— k *
¢ ik)(‘if)(t ) /RV (t—vx)((1+7ro(t)v(t—,><)
+Z7r ()0 (t=)y (t,x))_11>u(dx),
r(t=) — i (t-) _ I . N N\t
Al = /Rx ((1—|—X7r0(t)+lz_1:7ri (00 (t-)x') —1)n(dx).

Trf(t) =




Power utility U(z) = z* for « € (0,1)

Theorem 5. The optimal portfolio strategy for the portfolio selection problem
with power utility function of wealth satisfy following equations:

Ny (e
) = pote) = o= Dmiegei(e) + 30 D= [ (g

i=1 O; (tf)

m = o)

Mﬂ—MWU—/HWFhW<A<O+ﬁm%FJ)
R

+ iﬂ(k)*(t)o(k)(t—)'yk(t—,X))a_l - 1) V(dx),
r(t—) — MS’)(t) = / ((i *(/) N (’ (t— )) o 1> Ai(t)n(dx).
R
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