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Market model

Let

(Ω,F ,P) be complete probability space,

T := [0,T ], for fixed 0 < T <∞,

J := {J(t) : t ∈ T} be the observable and continuous-time Markov chain
with a finite,canonical state space E := {e1, . . . , eN},
[λij ]

N
i,j=1 be the intensity matrix of the Markov chain J.



Risk-free asset

We describe the dynamic of the price process of risk-free asset B as follows:

dB(t) = r(t)B(t)dt, B(0) = 1.

Here r is the interest rate of B and it is modulated by Markov chain J

r(t) := 〈r, J(t)〉 =

N∑
i=1

ri 〈ei , J(t)〉,

where r = (r1, . . . , rN)′ ∈ RN
+ and 〈·, ·〉 is a scalar product in RN . The value

ri > 0 represents the value of the interest rate when the Markov chain is in the
state space ei .



Itô-Markov additive process

We define the process X as follows:

X (t) = X (t) + X (t),

where

X (t) :=

N∑
i=1

Ψi (t)

for
Ψi (t) :=

∑
n­1

U(i)
n 1{J(Tn)=ei , Tn¬t}

and for the jump epochs {Tn} of J. Here U
(i)
n (n ­ 1, 1 ¬ i ¬ N) are

independent random variables such that for every fixed i , the random variables
U

(i)
n are identically distributed. We can express the process Ψi as follows:

Ψi (t) =

∫ t

0

∫
R
x Πi

U(ds, dx)

for the point measure

Πi
U([0, t],dx) :=

∑
n­1

1{U(i)
n ∈dx}

1{J(Tn)=ei , Tn¬t}, i = 1, . . . ,N.



Itô-Markov additive process

An Itô-Lévy process has the following decomposition:

X (t) := X (0) +

∫ t

0

µ0(s)ds +

∫ t

0

σ0(s)dW (s) +

∫ t

0

∫
R
γ(s−, x)Π̄(ds,dx),

where W denotes the standard Brownian motion independent of J and
Π̄(dt, dx) := Π(dt, dx)− ν(dx)dt is the compensated Poisson random measure
which is independent of J and W . Furthermore,

µ0(t) := 〈µ0, J(t)〉 =

N∑
i=1

µi
0〈ei , J(t)〉, σ0(t) := 〈σ0, J(t)〉 =

N∑
i=1

σi
0〈ei , J(t)〉,

γ(t, x) := 〈γ(x), J(t)〉 =

N∑
i=1

γi (x)〈ei , J(t)〉

for some vectors µ0 := (µ10, . . . , µ
N
0 )′ ∈ RN , σ0 := (σ10 , . . . , σ

N
0 )′ ∈ RN

+ and the
vector-valued measurable function γ(x) :=

(
γ1(x), . . . , γN(x)

)
.

A bivariate process (J,X ) with above decomposition is called Itô-Markov
additive process.



Risky asset

We assume the evolution of the price process of the risky asset S0 is governed
by the Itô-Markov additive process as follows:

dS0(t) = S0(t−)

[
µ0(t)dt + σ0(t)dW (t) +

∫
R γ(t−, x)Π̄(dt, dx)

+
N∑
i=1

∫
R xΠ̄i

U(dt, dx)

]
,

S0(0) = s0 > 0.

We interpret the coefficient µ0 as the appreciation rate and σ0 as the volatility
of the risky asset for each i = 1, . . . ,N.



Markovian jump securities

We define a marked point process Φj by

Φj(t) := Φ([0, t]× ej) =
∑
n­1

1{J(Tn)=ej , Tn¬t}, j = 1, . . . ,N.

Let φj be the compensator of Φj , thus the process

Φj(t) := Φj(t)− φj(t), j = 1, . . . ,N,

is a martingale and it is called the jth Markovian jump martingale.
The dynamics of prices of the Markovian jump securities Sj (for j = 1, . . . , N)
is described as follows:{

dSj(t) = Sj(t−)
[
µj(t)dt + σj(t−)dΦj(t)

]
,

Sj(0) > 0,

where the appreciation rate µj and the volatility σj are determined by the
Markov chain J as previously.



Markovian power-jump securities

We introduce the power-jump processes as follows:

X (k)(t) :=
∑
0<s¬t

(∆X (s))k , k ­ 2,

where ∆X (s) = X (s)− X (s−). We set X (1)(t) = X (t). We have

E
[
X (k)(t)

∣∣Jt

]
=

∫ t

0

∫
R
γk(s−, x)ν(dx)ds <∞,

P− a.e. for k ­ 2 and Jt := σ{J(s) : s ¬ t}. Hence the processes

X
(k)

(t) := X (k)(t)−
∫ t

0

∫
R
γk(s−, x)ν(dx)ds, k ­ 2,

are martingales.
The price process of Markovian kth-power-jump assets S (k) is described by:{

dS (k)(t) = S (k)(t−)
[
µ(k)(t)dt + σ(k)(t−)dX

(k)
(t)
]
,

S (k)(0) > 0,

where the coefficients are determined by the Markov chain J as previously.



Impulse regime switching securities

We define
Ψ

(l)
i (t) :=

∑
n­1

(
U(i)

n

)l
1{J(Tn)=ei , Tn¬t}.

The compensated version of Ψ
(l)
i is called an impulse regime switching

martingale:
Ψ

(l)
i (t) := Ψ

(l)
i (t)− E

(
U(i)

n

)l
φi (t).

We characterize the evolution of impulse regime switching securities S
(l)
i as

follows: {
dS (l)

i (t) = S
(l)
i (t−)

[
µ
(l)
i (t)dt + σ

(l)
i (t−)dΨ

(l)
i (t)

]
,

S
(l)
i (0) > 0,

where the coefficients are determined by the Markov chain J as previously.



A enlarged Itô-Markov additive market



dB(t) = r(t)B(t)dt,

dS0(t) = S0(t−)

[
µ0(t)dt + σ0(t)dW (t) +

∫
R γ(t−, x)Π̄(dt, dx)

+
N∑
i=1

∫
R xΠ̄i

U(dt, dx)

]
,

dSj(t) = Sj(t−)
[
µj(t)dt + σj(t−)dΦj(t)

]
,

dS (k)(t) = S (k)(t−)
[
µ(k)(t)dt + σ(k)(t−)dX

(k)
(t)
]
,

dS (l)
i (t) = S

(l)
i (t−)

[
µ
(l)
i (t)dt + σ

(l)
i (t−)dΨ

(l)
i (t)

]
,

for i , j = 1, . . . ,N, k ­ 2 and l ­ 1.



Asymptotic completeness of the enlarged market

A market is said to be complete if each claim can be replicated by a strategy,
that is, the claim can be represented as a stochastic integral with respect to
the asset prices.
In the case of market models with an infinite number of assets, we define
completeness in terms of approximate replication of claims.
A market is asymptotically complete in the sense that for every contingent
claim A we can set up a sequence of finite self-financing portfolios whose final
values converge to A.

Theorem 1. [Palmowski Z., Stettner L., S. A., 2019]
The enlarged Itô-Markov additive market is asymptotically complete.



Asymptotic arbitrage

We say that there is an asymptotic arbitrage opportunity if we have a
sequence of strategies such that, for some real number c > 0, the value process
V n on a finite market satisfies:

V n(t) ­ −c for each 0 < t ¬ T and for each n ∈ N,

V n(0) = 0 for each n ∈ N,

lim inf
n→∞

V n(T ) ­ 0, P-a.s,

P
(

lim inf
n→∞

V n(T ) > 0
)
> 0.

Proposition 1. [ Björk, T. and Näslund, B., 1998] If there exists a martingale
measure Q equivalent to P then the market is asymptotic-arbitrage-free.



Density process for the martingale measure Q

Let L2(W ) be the set of all predictable, {Ft}-adapted processes ξ such that
E
∫ T

0
ξ2(s)ds <∞ and ξ ∈ L1(φj) iff ξ is predictable, {Ft}-adapted and

satisfies E
∫ T

0
|ξ(s)|λjds <∞.

Proposition 2. [Boel, R. and Kohlmann, M., 1980]
Let ψ0 ∈ L2(W ), ψj ∈ L1(φj) for all j = 1, . . . ,N and ψj(s) > −1. Then

`(t) := exp

[∫ t

0

ψ0(s)dW (s)− 1
2

∫ t

0

ψ20(s)ds −
N∑
j=1

∫ t

0

ψj(s)φj(ds)

]

×
N∏
j=1

∏
J(t−) 6=J(t)
J(t)=ej

(1 + ψj(t))

is a non-negative local martingale. If additionally E`(t) = 1 then it is a true
martingale. Let Q be the probability measure defined by the Radon-Nikodym
derivative

`(t) =
dQ
dP


Ft

.



Girsanov’s theorem for jump-diffusion processes

Theorem 2. [Boel, R. and Kohlmann, M., 1980] The process X under the new
martingale measure Q has the form

X
Q

(t) =

∫ t

0

σ0(s)dW Q(s) +

∫ t

0

∫
R
γ(s−, x)Π̄(ds, dx),

where

W Q(t) = W (t)−
∫ t

0

ψ0(s)ds

is a standard Q-Brownian motion.
Moreover,

Φ
Q
j (t) = Φj(t)−

∫ t

0

(
1 + ψj(s)

)
φj(ds),

φQ
j (t) =

∫ t

0

(
1 + ψj(s)

)
φj(ds).

and
Ψ

(l),Q
j (t) = Ψ

(l)
j (t)− E

(
U(i)

n

)l
φQ
j (t).



Theorem 3. [Palmowski Z., Stettner L., S. A., 2019]
Assume that µj

j = rj for all j = 1, . . . ,N and
ψ0(t) =

r(t−)− µ0(t−)

σ0(t−)
,

ψj(t) =
r(t−)− µj(t−)

σj(t−)λj(t)
, j = 1, . . . ,N.

Then, the discounted price processes of the securities, in the enlarged
Itô-Markov additive market, are martingales under Q and this market is
asymptotic-arbitrage-free.



Optimal portfolio selection in a complete Itô-Markov additive market

We denote a portfolio strategy by

π(t) = (π0(t), π1(t), . . . , πN(t), π(2)(t), . . . , π
(1)
1 (t), π

(1)
2 (t), . . .).

The wealth process RK
π for the first K assets is governed by:

dRK
π (t)

RK
π (t−)

:=

(
r(t) +

N∑
j=0

πj(t)
(
µj(t)− r(t)

)
+

K∑
k=2

π(k)(t)
(
µ(k)(t)− r(t)

)
+

N∑
i=1

K∑
l=1

π
(l)
i (t)

(
µ
(l)
i (t)− r(t)

))
dt + π0(t)σ0(t−)dW (t)

+

∫
R

(
π0(t)γ(t−, x) +

K∑
k=2

π(k)(t)σ(k)(t−)γk(t−, x)

)
Π̄(dt, dx)

+

N∑
i=1

∫
R

(
xπ0(t) +

K∑
l=1

x lπ
(l)
i (t)σ

(l)
i (t−)

)
Π̄i

U(dt, dx)

+

N∑
j=1

πj(t)σj(t−)dΦj(t).



Portfolio selection problem

Let U denote a utility function of the investor.
Then the value function of the investor’s portfolio selection problem is defined
by

V (t, z , ei ) := sup
π∈A

V π(t, z , ei ) = sup
π∈A

Et,z,i

[
U(Rπ(T ))

]
where Et,z,i is the conditional expectation given Rπ(t) = z and J(t) = ei under
P.



Logarithmic utility U(z) = log(z)

Theorem 4. The optimal portfolio strategy for the portfolio selection problem
with logarithmic utility function of wealth satisfy following equations:

r(t−)− µ0(t−) = π?0 (t)σ20(t−) +

N∑
i=1

r(t−)− µ(1)
i (t−)

σ
(1)
i (t−)

+

∫
R
γ(t−, x)

((
1

+π?0 (t)γ(t−, x) +

∞∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)−1)

ν(dx),

π?j (t) =
µj(t−)− r(t−)(

r(t−)− µj(t−)
)
σj(t−) + λj(t)σ2j (t−)

,

r(t−)− µ(k)(t−)

σ(k)(t−)
=

∫
R
γk(t−, x)

((
1 + π?0 (t)γ(t−, x)

+

∞∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)−1
− 1

)
ν(dx),

r(t−)− µ(l)
i (t−)

σ
(l)
i (t−)

=

∫
R
x l

((
1 + xπ?0 (t) +

∞∑
l=1

π
(l)?
i (t)σ

(l)
i (t−)x l

)−1
− 1

)
η(dx).



Power utility U(z) = zα for α ∈ (0, 1)

Theorem 5. The optimal portfolio strategy for the portfolio selection problem
with power utility function of wealth satisfy following equations:

r(t−)− µ0(t) = (α− 1)π?0 (t)σ20(t−) +

N∑
i=1

µ
(1)
i (t−)− r(t−)

σ
(1)
i (t−)

+

∫
R

((
π?0 (t)

+

∞∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)α−1

− 1

)
ν(dx),

π?j (t) =

(
1− µj (t−)−r(t−)

λi (t)σj (t−)

) 1
α−1

− 1

σj(t−)
,

r(t−)− µ(k)(t) =

∫
R
σ(k)(t−)γk(t−, x)

((
1 + π?0 (t)γ(t−, x)

+

∞∑
k=2

π(k)?(t)σ(k)(t−)γk(t−, x)
)α−1

− 1

)
ν(dx),

r(t−)− µ(l)
i (t) =

∫
R
σ
(l)
i (t−)x l

(( ∞∑
l=1

π
?(l)
i (t)x lσ

(l)
i (t−)

)α−1
− 1

)
λi (t)η(dx).
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