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First Part: Model Risk on the Dependence:
Theory and Computational Approach via The

Rearrangement Algorithm

Second Part: Model Risk on the Aggregate
Variable
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A book to appear in January 2024...

L. Rüschendorf , S. Vanduffel, C. Bernard, Cambridge Univ. Press.
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Outline

Part 1: The Rearrangement Algorithm

• Minimizing variance of a sum with full dependence uncertainty

• Variance bounds

Part 2: Application to Model-Risk Assessment,
e.g., Uncertainty on Value-at-Risk

• With 2 risks and full dependence uncertainty

• With d risks and full dependence uncertainty

Part 3: Adding information on dependence

• Moment constraints

• Information on a subset...

Part 4: Using the RA to infer dependence

• Add information about the sum of the risks

• Application to explain the correlation risk premium

• Application to multivariate option pricing

Part 5: Improved Rearrangement Algorithm
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Part I

The Rearrangement Algorithm

Portfolio with minimum variance
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Background

Assumptions:

I Marginals known: Xi ∼ Fi for i = 1, 2, ..., n

I Dependence fully unknown (any dependence structure
(copula) is possible)

With f convex,

I In two dimensions n = 2, bounds on variance are obtained
using Fréchet-Hoeffding bounds or “extreme dependence”.

E [f (F−1
1 (U)+F−1

2 (1−U))] 6 E [f (X1+X2)] 6 E [f (F−1
1 (U)+F−1

2 (U))]

I When n > 2, the upper bound corresponds to the
comonotonic scenario,

E [f (X1+X2+...+Xn)] 6 E [f (F−1
1 (U)+F−1

2 (U)+...+F−1
n (U))]
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Results on the lower bound in dimensions n > 3

I If n > 3, the Fréchet-Hoeffding lower bound does not exist:

Definition: Complete mixability (Wang and Wang (2011))

X1 ∼ F1, ...,Xn ∼ Fn are completely mixable if there exists a
dependence structure between X1,...,Xn such that
X1 + X2 + ...+ Xn =

∑
i E [Xi ].

I Puccetti and Rüschendorf (2012): algorithm (RA)

• Inputs: X1 ∼ F1, ..., Xn ∼ Fn
• Goal: look for copulas that solve minE [f (X1 + X2 + ...+ Xn)]

for f convex
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Solving for the minimum variance

• Inputs: X1 ∼ F1, X2 ∼ F2 ..., Xd ∼ Fd
• Goal: look for a dependence such that

min var(X1 + X2 + ...+ Xd)

• Algorithm: Each Xj is sampled into n equiprobable values:
consider the realizations xij := F−1

j ( i−0.5
n ):

X = [X1,X2, . . . ,Xd ] =




x11 x12 . . . x1d

x21 x22 . . . x2d
...

...
...

...
xn1 xn2 . . . xnd




• Rearrange elements xij (by columns) such that after the
rearrangement variance of sum S is minimized?
• This is an NP complete problem (Haus (2014)). Brute force

search requires checking (n!)(d−1) rearrangements.
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Rearrangement Algorithm

N = 4 observations of d = 3 variables: X1, X2, X3

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

New set...

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1

Each column: marginal distribution.
Interaction among columns: dependence among the risks.
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Before the Rearrangement Algorithm...

Partition problem

Partition the multiset S of positive integers into two subsets S1

and S2 such that the difference between the sum of elements in S1

and the sum of elements in S2 is minimized.

Example: S = {8, 7, 6, 5, 4} would optimally be split as
S1 = {8, 7} and S2 = {6, 5, 4}.

Greedy Algorithm: iterates through the numbers in descending
order, assigning each of them to whichever subset has the smaller
sum.
S1 = {8, 5, 4} and S2 = {7, 6}
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Numerical example of the Greedy Algorithm
[

8 7 6 5 4
0 0 0 0 0

]

⇒
[

8 0 · · ·
0 7 · · ·

] [
8
7

]

⇒
[

8 0 0 · ·
0 7 6 · ·

] [
8

13

]

⇒
[

8 0 0 5 4
0 7 6 0 0

] [
17
13

]

In the Greedy algorithm, sort the elements of subsequent columns
in reverse order of the row sums taken across all previous columns

Carole Bernard Robust Risk Management 13



Assembly Line Crew Scheduling

Assembly Line Crew Scheduling problem

How to rearrange elements within columns of a matrix such that
variability among the row sums becomes minimum

Greedy algorithm works in higher dimensions

⇒




5 4 3
4 0 5
3 3 0







12
9
6




⇒




5 0 3
4 3 5
3 4 0







8
12
7




⇒




5 0 5
4 3 3
3 4 0







10
10
7




Coffman and Yannakis (MOR, 1984) and Hsu (MOR, 1984)
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Assembly Line Crew Scheduling

Assembly Line Crew Scheduling problem

How to rearrange elements within columns of a matrix such that
variability among the row sums becomes minimum

Rearrangement Algorithm (Rüschendorf, ZOR, 1983): sort the
elements of subsequent columns in reverse order of the row sums
taken across all other columns


5 4 3
4 0 5
3 3 0







12
9
6


 ⇒




3 4 3
4 0 5
5 3 0







10
9
8




⇒




3 3 3
4 0 5
5 4 0







9
9
9


 ⇒




3 3 3
4 0 5
5 4 0







9
9
9



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Same marginals, different dependence ⇒ Effect on the sum!

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 16, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13




X1 + X2 + X3


6 6 4
4 3 3
1 1 2
0 0 0


 SN =




16
10
3
0




(2)

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1

Aggregate Risk with Maximum Variance

comonotonic scenario Sc
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with d = 2 risks X1 and X2

Antimonotonicity: var(Xa
1 + X2) 6 var(X1 + X2).

How about in d dimensions?

Use of the rearrangement algorithm on the original matrix M.

Aggregate Risk with Minimum Variance

I Columns of M are rearranged such that they become
anti-monotonic with the sum of all other columns:

∀k ∈ {1, 2, ..., d},Xa
k antimonotonic with

∑

j 6=k

Xj .

I After each step, var
(

Xa
k +

∑
j 6=k Xj

)
6 var

(
Xk +

∑
j 6=k Xj

)

where Xa
k is antimonotonic with

∑
j 6=k Xj .
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Aggregate risk with minimum variance
Step 1: First column

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13




X1 + X2 + X3


6 6 4
4 3 3
1 1 2
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1
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Aggregate risk with minimum variance

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
1 6 2
4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2
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Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
1 6 2
4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
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4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2

The minimum variance of the sum is equal to 0! Ideal case of a
constant sum (complete mixability, see Wang and Wang (2011)).
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Block Rearrangement Algorithm

With more than 3 variables, we can improve the standard
algorithm (which proceeds column by column) by proceeding by
block!
ρ : Pearson correlation

Necessary condition to minimize variance

If var (
∑

i Xi ) is minimum then ρ
(∑

i∈Π Xi ,
∑

i∈Π̄ Xi

)
is minimum

for every partition of {1, 2, ..., n} into two sets Π and Π̄. However,
the converse does not hold in general.

Block Rearrangement Algorithm:
1 Select a random sample of nsim possible partitions of the

columns {1, 2, ..., n} into two non-empty subsets {Π, Π̄}.
2 For each partition, rearrange the second block so that SΠ̄ is

antimonotonic to the values of SΠ.
3 If there is no improvement in var(

∑
i Xi ) , output the current

matrix X, otherwise return to step 1.
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the converse does not hold in general.

Block Rearrangement Algorithm:
1 Select a random sample of nsim possible partitions of the

columns {1, 2, ..., n} into two non-empty subsets {Π, Π̄}.
2 For each partition, rearrange the second block so that SΠ̄ is

antimonotonic to the values of SΠ.
3 If there is no improvement in var(

∑
i Xi ) , output the current

matrix X, otherwise return to step 1.
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A New Multivariate Measure

Definition

Let φ (X1,X2) be a measure of dependence between X1 and X2.
For a matrix of data X = [X1,X2, ...,Xn−1,Xn] with n columns,
define

%(X) :=
1

2n−1 − 1

∑

Π∈P
φ


∑

i∈Π

Xi ,
∑

i∈Π̄

Xi




where the sum is over the set P consisting of 2n−1 − 1 distinct
partitions of {1, 2, ..., n} into non-empty subsets Π and its
complement Π̄.

• Using a bivariate dependence measure that is minimum at -1
(Spearman’s rho, Kendall’s tau). Then, a necessary condition
to be at the minimum variance is that %(X) = −1.

• This condition can also be used as a stopping rule.
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Some observations on the Block Rearrangement Algorithm

1 In general, many local minima for the variance of the sum:

I not at the minimum variance but very close to it.

2 the BRA outperforms the RA by several order of magnitude
(variance is 10 to 100 times smaller, global minimum is
reached more often,...)

Information on the RA, R codes available from https:

//sites.google.com/site/rearrangementalgorithm/.
Matlab codes can be obtained from myself.
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Bounds on variance (theory)

Analytical Bounds on Standard Deviation

Consider d risks Xi with standard deviation σi

0 6 std(X1 + X2 + ...+ Xd) 6 σ1 + σ2 + ...+ σd .

Example with 20 normal N(0,1)

0 6 std(X1 + X2 + ...+ X20) 6 20,

in this case, both bounds are sharp and too wide for practical use!

And the dependence structures that achieve these bounds are
relatively easy to guess.
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Bounds on variance (theory)

Case of Bernoulli distributions:

• Xi takes value 1 with probability pi
• Define M such that∑

i E [Xi ] = µ := p1 + p2 + ...+ pN ∈ [M,M + 1[

• The dependence between Xi such that var(
∑

i Xi ) is minimum
is such that

∑
i Xi takes exactly two values M with probability

pM = M + 1−µ, and M + 1 with probability 1− pM = µ−M.

And the dependence structure that achieves this minimum bound
is relatively easy to guess.
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Bounds on variance (practice)

Case of Arbitrary Distributions

In general the dependence structure that minimizes the variance is
not easy to guess:

• Xi has distribution Fi
• Discretize Fi and put the values in a matrix.

• Apply the RA or the BRA

• The dependence between Xi such that var(
∑

i Xi ) is
minimum is obtained as the output of the algorithm.
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Part II-a

Introduction to Model Risk

• Due to Uncertainty on the Dependence

• Why the RA allows to quantify model risk on variance
estimation but also on many other risk measures
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Motivation on VaR aggregation with dependence uncertainty

Full information on marginal distributions:
Xj ∼ Fj

+

Full Information on dependence:
(known copula)

⇒

VaRq (X1 + X2 + ...+ Xd) can be computed!
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Motivation on VaR aggregation with dependence uncertainty

Full information on marginal distributions:
Xj ∼ Fj

+

Partial or no Information on dependence:
(incomplete information on copula)

⇒
VaRq (X1 + X2 + ...+ Xd) cannot be computed!

Only a range of possible values for VaRq (X1 + X2 + ...+ Xd).
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Model Risk

1 Goal: Assess the risk of a portfolio sum S =
∑d

i=1 Xi .

2 Choose a risk measure ρ(·): variance, Value-at-Risk...

3 “Fit” a multivariate distribution for (X1,X2, ...,Xd) and
compute ρ(S)

4 How about model risk? How wrong can we be?

Assume ρ(S) = var(S),

ρ+
F := sup

{
var

(
d∑

i=1

Xi

)}
, ρ−F := inf

{
var

(
d∑

i=1

Xi

)}

where the bounds are taken over all other (joint distributions of)
random vectors (X1,X2, ...,Xd) that “agree” with the available
information F
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Aggregation with dependence uncertainty:
Case of Variance - First Application of the RA

I Marginals known

I Dependence fully unknown

Minimum variance of the portfolio can be obtained using the RA.
Similarly, the uncertainty on any risk measure that is consistent
with convex order can be assessed.
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Part II-b

Another application of the Rearrangement Algorithm

VaR aggregation with dependence uncertainty

• Maximum Value-at-Risk is not caused by the comonotonic
scenario.

• Maximum Value-at-Risk is achieved when the variance is
minimum in the tail. The RA is then used in the tails only.

Carole Bernard Robust Risk Management 32



Risk Aggregation and full dependence uncertainty
Literature review

I Marginals known

I Dependence fully unknown

I Explicit sharp (attainable) bounds
• n = 2 (Makarov (1981), Rüschendorf (1982))
• Rüschendorf & Uckelmann (1991), Denuit, Genest & Marceau

(1999), Embrechts & Puccetti (2006),

I A challenging problem in n > 3 dimensions

I Approximate sharp bounds
• Puccetti and Rüschendorf (2012): algorithm (RA) useful to

approximate the minimum variance.
• Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to

find bounds on VaR
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Bounds with full dependence uncertainty

(Unconstrained bounds)
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TVaR Bounds with full dependence uncertainty

d∑

i=1

E [Xi ] 6 TVaR

(
d∑

i=1

Xi

)
6 TVaR

(
d∑

i=1

X c
i

)

in which X c
i denotes a randiom variable with the same distribution

Fi as Xi such that for all i

X c
i = F−1

i (U)

for some U uniformly distributed over (0, 1).
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VaR Bounds with full dependence uncertainty

(Unconstrained VaR bounds)
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“Riskiest” Dependence: maximum VaRq in 2 dims?

If X1 and X2 are U(0,1) comonotonic, then

VaRq(Sc) = VaRq(X1) + VaRq(X2) = 2q.

q

q

Note that TVaRq(Sc) =

∫ 1
q 2pdp

1−q = 1 + q.
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“Riskiest” Dependence: maximum VaRq in 2 dims

If X1 and X2 are U(0,1) and antimonotonic in the tail, then
VaRq(S∗) = 1 + q (which is maximum possible).

q

q

VaRq(S∗) = 1 + q > VaRq(Sc) = 2q

⇒ to maximize VaRq, the idea is to change the comonotonic
dependence such that the sum is constant in the tail
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VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 
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VaR at level q of the comonotonic sum w.r.t. q
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VaR at level q of the comonotonic sum w.r.t. q
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VaR at level q of the comonotonic sum w.r.t. q

p 
1 q 

VaRq(Sc) 

TVaRq(Sc) 

where TVaR (Expected shortfall):TVaRq(X ) =
1

1− q

∫ 1

q
VaRu(X )du q ∈ (0, 1)
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Riskiest Dependence Structure VaR at level q

p 
1 q 

VaRq(Sc) 

S* => VaRq(S*) =TVaRq(Sc)? 
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Analytic expressions (not sharp)

Analytical Unconstrained Bounds with Xj ∼ Fj

A = LTVaRq(Sc) 6 VaRq [X1 + X2 + ...+ Xn] 6 B = TVaRq(Sc)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 
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VaR Bounds with full dependence uncertainty

Approximate sharp bounds:

• Puccetti and Rüschendorf (2012): algorithm (RA) useful to
approximate the minimum variance.

• Embrechts, Puccetti, Rüschendorf (2013): algorithm (RA) to
find bounds on VaR
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Illustration for the maximum VaRq (1/3)

  8 0 3 
 10 1 4 
 11 7 7 
 12 8 9 

1-q 

q 

Sum= 11 

Sum= 15 

Sum= 25 

Sum= 29 
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Illustration for the maximum VaRq (2/3)

  8 0 3 
 10 1 4 
 11 7 7 
 12 8 9 

1-q 

q 

Sum= 11 

Sum= 15 

Sum= 25 

Sum= 29 

Rearrange within 
columns..to make the 
sums as constant as  
possible… 
B=(11+15+25+29)/4=20 

Carole Bernard Robust Risk Management 48



Illustration for the maximum VaRq (3/3)

  8 8 4 
 10 7 3 
 12 1 7 
 11 0 9 

1-q 

q 

Sum= 20 

Sum= 20 

Sum= 20 

Sum= 20 

=B!  
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Numerical Results for VaR, 20 risks N(0, 1)

When marginal distributions are given,

• What is the maximum Value-at-Risk?

• What is the minimum Value-at-Risk?

• A portfolio of 20 risks normally distributed N(0,1). Bounds on
VaRq (by the rearrangement algorithm applied on each tail)

q=95% ( -2.17 , 41.3 )

q=99.95% ( -0.035 , 71.1 )

I More examples in Embrechts, Puccetti, and Rüschendorf
(2013): “Model uncertainty and VaR aggregation,” Journal of
Banking and Finance

I Very wide bounds

I All dependence information ignored

Idea: add information on dependence from a fitted model or
from experts’ opinions
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Regulation challenge

The Basel Committee (2013) insists that a desired objective of a
Solvency framework concerns comparability:

“Two banks with portfolios having identical risk profiles apply the
frameworks rules and arrive at the same amount of risk-weighted

assets, and two banks with different risk profiles should
produce risk numbers that are different proportionally

to the differences in risk”
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Outline

Part 1: The Rearrangement Algorithm

• Minimizing variance of a sum with full dependence uncertainty

• Variance bounds

Part 2: Application to Model-Risk Assessment,
e.g., Uncertainty on Value-at-Risk

• With 2 risks and full dependence uncertainty

• With d risks and full dependence uncertainty

Part 3: Adding information on dependence

• Moment constraints

• Information on a subset...

Part 4: Using the RA to infer dependence

• Add information about the sum of the risks

• Application to explain the correlation risk premium

• Application to multivariate option pricing

Part 5: Improved Rearrangement Algorithm
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Part III

VaR Bounds with partial dependence uncertainty

VaR Bounds with Dependence Information...
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Aggregation with dependence uncertainty:
Example - Credit Risk

I Marginals known

I Dependence fully unknown

Consider a portfolio of 10,000 loans all having a default probability
p = 0.049. The default correlation is ρ = 0.0157 (for KMV).

KMV VaRq Min VaRq Max VaRq

q = 0.95 10.1% 0% 98%
q = 0.995 15.1% 4.4% 100%

Portfolio models are subject to significant model uncertainty
(defaults are rare and correlated events).
Using dependence information is crucial to try to get more
“reasonable” bounds.
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Adding dependence information

Finding minimum and maximum possible values for VaR of the
credit portfolio loss, S =

∑n
i=1 Xi , given that

• known marginal distributions of the risks Xi .
• some dependence information.

Example 1: Variance constraint - with Rüschendorf and Vanduffel

M := supVaRq [X1 + X2 + ...+ Xn] ,
subject to Xj ∼ Fj , var(X1 + X2 + ...+ Xn) 6 s2

Journal of Risk and Insurance (2017) and Chapter 6 from the book.
Example 2: Moments constraint - with Denuit, Rüschendorf,
Vanduffel, Yao

M := supVaRq [X1 + X2 + ...+ Xn] ,
subject to Xj ∼ Fj ,E(X1 + X2 + ...+ Xn)k = ck

European Journal of Finance (2015) and Chapter 6 from the book.
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Adding dependence information

Example 3: with Rüschendorf, Vanduffel and Wang

M := supVaRq [X1 + X2 + ...+ Xn] ,
subject to (Xj ,Z ) ∼ Hj ,

where Z is a factor.
Finance and Stochastics (2017) and Chapter 9 from the book.
Example 4: with Vanduffel

M := supVaRq [X1 + X2 + ...+ Xn] ,

where the joint distribution is known on a subset of Rn.
Journal of Banking and Finance (2015) and Chapter 7 from the
book.
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Examples

Example 1: variance constraint

M := supVaRq [X1 + X2 + ...+ Xn] ,
subject to Xj ∼ Fj , var(X1 + X2 + ...+ Xn) 6 s2

Example 2: Moments constraint

M := supVaRq [X1 + X2 + ...+ Xn] ,
subject to Xj ∼ Fj ,E(X1 + X2 + ...+ Xn)k 6 ck

for all k in 2,...,K

Carole Bernard Robust Risk Management 58



VaR bounds with moment constraints

I Without moment constraints, VaR bounds are attained if
there exists a dependence among risks Xi such that

S =

{
A probability q
B probability 1− q

a.s.

I If the “distance” between A and B is too wide then improved
bounds are obtained with

S∗=
{

a with probability q
b with probability 1− q

such that {
akq + bk(1− q) 6 ck
aq + b(1− q) = E [S ]

in which a and b are “as distant as possible while satisfying all
constraints”(for all k)
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Unconstrained Bounds with Xj ∼ Fj

A = LTVaRq(Sc) 6 VaRq [X1 + X2 + ...+ Xn] 6 B = TVaRq(Sc)

p 
1 q 

B:=TVaRq(Sc) 

A:=LTVaRq(Sc) 
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Analytical result for variance constraint

A and B: unconstrained bounds on Value-at-Risk, µ = E [S ].

Constrained Bounds with Xj ∼ Fj and variance 6 s2

a = max

(
A, µ− s

√
1− q

q

)
6 VaRq [X1 + X2 + ...+ Xn]

6 b = min

(
B, µ+ s

√
q

1− q

)

• If the variance s2 is not “too large” (i.e. when
s2 6 q(A− µ)2 + (1− q)(B − µ)2), then b < B.
• The “target” distribution for the sum: a two-point cdf that takes
two values a and b. We can write

X1 + X2 + ...+ Xn − S = 0

and apply the standard RA.
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… … … -a 

… … … -a 

… … … -a 

… … … -a 

  8 8 4 -b 

 10 7 3 -b 

 12 1 7 -b 

 11 0 9 -b 

1-q 

q 

Rearrange now 
within all 
columns such 
that all sums 
becomes close 
to zero 

Extended RA 
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Bounds on VaR of sum of Pareto (θ = 3) with ρ = 0.15

Panel A: Approximate sharp bounds obtained by the ERA
(md ,Md) n = 10 n = 100

VaR95% d = 1, 000 (4.118 ; 19.93) (42.55 ; 174.0)
VaR99.5% d = 1, 000 (4.868 ; 53.99) (47.07 ; 457.6)

Panel B: Variance-constrained VaR bounds (theoretical)

(md ,Md) n = 10 n = 100

VaR95%, d = 1, 000 (4.100 ; 20.35) (42.45 ; 175.9)
VaR99.5%, d = 1, 000 (4.662 ; 54.87) (47.06 ; 459.4)

VaR95%, d = +∞ (4.037 ; 23.30) (42.09 ; 200.3)
VaR99.5%, d = +∞ (4.702 ; 64.22) (47.56 ; 536.4)

Panel C: Unconstrained VaR bounds (theoretical)

(md ,Md) n = 10 n = 100

VaR95%, d = 1, 000 (3.642 ; 29.05) (36.42 ; 290.5)
VaR99.5%, d = 1, 000 (4.615 ; 64.06) (46.15 ; 640.6)

VaR95%, d = +∞ (3.647 ; 30.72) (36.47 ; 307.2)
VaR99.5%, d = +∞ (4.635 ; 77.72) (46.35 ; 777.2)
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Corporate portfolio

I a corporate portfolio of a major European Bank.

I 4495 loans mainly to medium sized and large corporate clients

I total exposure (EAD) is 18642.7 (million Euros), and the top
10% of the portfolio (in terms of EAD) accounts for 70.1% of
it.

I portfolio exhibits some heterogeneity.

Summary statistics of a corporate portfolio

Minimum Maximum Average

Default probability 0.0001 0.15 0.0119
EAD 0 750.2 116.7
LGD 0 0.90 0.41
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Comparison of Industry Models

VaRs of the corporate portfolio under different industry models

q = Comon. KMV Credit Risk+ Beta

95% 393.5 340.6 346.2 347.4
ρ = 0.10 99% 2374.1 539.4 513.4 520.2

99.5% 5088.5 631.5 582.9 593.5
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VaR bounds with Moments Information

Model risk assessment of the VaR of the corporate portfolio

(we use ρ = 0.1 to construct moments constraints)

q = KMV Comon. Unconstrained K = 2 K = 3
95% 340.6 393.3 (34.0 ; 2083.3) (97.3 ; 614.8) (100.9 ; 562.8)
99% 539.4 2374.1 (56.5 ; 6973.1) (111.8 ; 1245) (115.0 ; 941.2)

99.5% 631.5 5088.5 (89.4 ; 10120) (114.9 ; 1709) (117.6 ; 1177.8)

• Obs 1: Comparison with analytical bounds

• Obs 2: Significant bounds reduction with moments
information

• Obs 3: Significant model risk
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Objectives and Findings in Example 4:

Example 4: with Vanduffel

M := supVaRq [X1 + X2 + ...+ Xn] ,

where the joint distribution is known on a subset of Rn.
Journal of Banking and Finance (2015) and Chapter 7 from the
book.

• Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d dependent risks.

I Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

• Findings / Implications:

I Current VaR based regulation is subject to high model risk,
even if one knows the multivariate distribution “almost
completely”.
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Illustration with 2 risks with marginals N(0,1)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X
1

X
2
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Illustration with 2 risks with marginals N(0,1)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X
1

X
2

Assumption: Independence on F =
2⋂

k=1

{qβ 6 Xk 6 q1−β} .
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Our assumptions on the cdf of (X1,X2, ...,Xd)

F ⊂ Rd (“trusted” or “fixed” area)
U =Rd\F (“untrusted”).
We assume that we know:

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., d ,

(ii) the distribution of (X1,X2, ...,Xd) | {(X1,X2, ...,Xd) ∈ F}.
(iii) P ((X1,X2, ...,Xd) ∈ F) .

I When only marginals are known: U = Rd and F = ∅.
I Our Goal: Find bounds on ρ(S) := ρ(X1 + ...+ Xd) when

(X1, ...,Xd) satisfy (i), (ii) and (iii).
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (pf = 3/8).

as trustworthy than the initial one (note indeed that we do not know the dependence be-
tween the Xi, conditionally on (X1, X2, ..., Xd) ∈ U). Without loss of generality, we can
thus always assume that the matrix UN depicts a comonotonic dependence (in each column,
the values are sorted in decreasing order, that is such that xm1k � xm2k � ... � xm�uk

for all k = 1, 2, ..., d). Finally, for FN (and thus also for the corresponding part of XN )
we can assume that the �f observations (xij1, xij2...xijd) appear in such a way that for the
sums of the components, ie, sj := xij1 + xij2 + ... + xijd ( j = 1, 2, ..., �f) it holds that
s1 �s2 �...� s�f .

From now on, without any loss of generality, the observed data points are reported in
the following matrix M

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi11 xi12 ... xi1d

xi21 xi22 ... xi2d

...
...

...
...

xi�f 1 xi�f 2 ... xi�f d

xm11 xm12 ... xm1d

xm21 xm22 ... xm2d

...
...

...
...

xm�u1 xm�u2 ... xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where the grey area reflects FN and the white area reflects UN . The corresponding vec-
tors Sf

N and Su
N consisting of sums of the components for each observation in the trusted

(respectively untrusted) part:

[
Sf
N

Su
N

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
s2
...

s�f
s̃1 := xm11 + xm12 + ...+ xm1d

s̃2 := xm21 + xm22 + ...+ xm2d

...
s̃�u := xm�u1 + xm�u2 + ...+ xm�ud

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

While s1 �s2 �...� s�f are trusted, the sums s̃i change when varying the choice of depen-
dence in UN . In fact, the set {i1, ..., i�f } can be seen as the collection of states (scenarios)
in which the corresponding observations are trusted whereas the set {m1, ...,m�u} provides
the states in which there is doubt on the dependence structure.

We now provide a simple example of this setup for pedagogical purpose. It will be used
throughout the paper to illustrate each algorithm that we propose. This toy example is not
meant to represent a realistic set of observations as in true applications, there is a large
number of observations (here N = 8) and possibly a large number of variables (here d = 3).
The 8 observations are given as follows with 3 observations trusted (�f = 3), which appear
in the grey area of the matrix.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
1 1 1
0 3 2
0 2 1
2 4 2
3 0 1
1 1 2
4 2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

SN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
3
5
3
8
4
4
9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

15
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Example: N = 8, d = 3 with 3 observations trusted

Maximum variance:

Without loss of generality we can then consider for further analysis the following matrix
M and the vectors of sums Sf

N and Su
N as follows.

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
4 3 3
3 2 2
1 1 2
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

10
7
4
3
1

⎤
⎥⎥⎥⎥⎦

(19)

Finally, with some abuse of notation (completing by 0 so that Sf
N and Su

N take 8 values)
one also has the following representation of SN ,

SN = ISf
N + (1− I)Su

N (20)

where I =1 if if (xi1, xi2...xid) ∈ FN (i = 1, 2, ..., N). In fact, Sf
N can be readily seen as the

sampled counterpart of the T that we used before (see Definition 4 and Proposition 2.9)

whereas Su
N is a comonotonic sum and corresponds to the sampled version of

∑d
i=1 Zi. In

this paper, we aim at finding worst case dependences allowing for a robust risk assessment
of the portfolio sum S (SN ). This amounts to rearranging the outcomes in the columns of
the untrusted part UN such that the risk measure at hand for SN becomes maximized (resp.
minimized).

3.3 Bounds on standard deviation

From Proposition 2.2 it is clear that in order to maximize the variance of SN one needs a
comonotonic scenario on UN . However, we have initialized a comonotonic structure already
(without loss of generality) and the corresponding values of the sums are exactly the values
s̃i (i = 1, 2, ..., �u) reported for Su

N in (17)). The upper bound on variance is then computed
as

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃i − s̄)2

⎞
⎠ (21)

where the average sum s̄ is given by

s̄ =
1

N

N∑

i=1

d∑

j=1

xij =
1

N

⎛
⎝

�f∑

i=1

si +

�u∑

i=1

s̃i

⎞
⎠ (22)

To achieve the minimum variance bound found in Proposition 2.2, the values of Su
N must be

as close as possible to each other, ideally Su
N must be constant. In this respect the concept

of complete mixability appears as a theoretical device. “Complete mixability” refers to
the dependence structure which makes the sum Su

N constant (Wang and Wang (2011)).
To do so, in practice, we apply the rearrangement algorithm of Embrechts, Puccetti, and
Rüschendorf (2013) on the matrix UN (untrusted part) to be as close as possible to the
complete mixability condition. For completeness, the algorithm is presented in Appendix B
of this paper. Denote by s̃mi the corresponding values of the sums of Su

N after applying the
RA. We then compute the minimum variance as follows

1

N

⎛
⎝

�f∑

i=1

(si − s̄)2 +

�u∑

i=1

(s̃mi − s̄)2

⎞
⎠ (23)

16

Minimum variance:

where s̄ is computed as in (22).

We illustrate the upper and lower bounds (21) and (23) for the variance derived above
with the matrix M of observations given in (19). We then use the comonotonic structure

for the untrusted part of the matrix M and compute the vectors of sums Sf
N and Su

N as
defined above in (19). The average sum is s̄ = 5.5. The maximum variance is equal to

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃ci − s̄)2

)
≈ 8.75

For the lower bound, we apply the RA on UN and we obtain

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 1
2 4 2
0 2 1
1 1 3
0 3 2
1 2 2
3 1 1
4 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Sf
N =

⎡
⎣

8
8
3

⎤
⎦ , Su

N =

⎡
⎢⎢⎢⎢⎣

5
5
5
5
5

⎤
⎥⎥⎥⎥⎦

(24)

With an average sum s̄ = 5.5, the minimum variance can be calculated as

1

8

(
3∑

i=1

(si − s̄)2 +

5∑

i=1

(s̃mi − s̄)2

)
≈ 2.5

3.4 Bounds on TVaR

Assume that we want the TVaR at probability level p so that for ease of exposition

k := N(1− p) (25)

where k is integer. Similarly to the case of maximizing the variance it follows from Proposi-
tion 2.4, that in order to obtain the maximum TVaR one needs a comonotonic scenario on
UN . Hence, we just need to select the k highest values from Sf

N and Su
N as computed in (17).

Let us label these values by s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and we can then easily

compute the maximum TVaR at probability level p. Also the minimum TVaR is obtained
similarly as the minimum variance. First apply the RA on the untrusted part UN to get
the variance on the (new) sum Su

N as small as possible. Then select the k highest values

out of Sf
N and Su

N , say: s∗1,s
∗
2,...,s

∗
k (ranked in decreasing order) and compute the minimum

TVaR.

Let us consider the previous example again. Let us choose p = 5/8, so that k = 3.
The highest k = 3 values are 8, 8 and 10 and the maximum TVaR is then 26/3 (≈ 8.67).
After application of the RA we obtain (24) for Su

N and thus the highest 3 outcomes that we

observe for Su
N and Sf

N are 8, 8 and 5. Hence, the minimum TVaR is 21/3 = 7.

3.5 Bounds on VaR

To compute the maximum VaR, we present an algorithm that can be applied directly on the
matrix M of the observed data, and thus leads to non-parametric bounds on VaR. Recall
that the first �f rows of the matrix M correspond to FN whereas �u denotes the number

of rows of UN (N = �f + �u). In the algorithm, we also make use of Sf
N and Su

N that we
consider as random variables. To compute the VaR at probability level p, we define

k := N(1− p) (26)

17
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Example d = 20 risks N(0,1)

I (X1, ...,X20) independent N(0,1) on

F := [qβ, q1−β]d ⊂ Rd pf = P ((X1, ...,X20) ∈ F)

(for some β 6 50%) where qγ : γ-quantile of N(0,1).

I β = 0%: no uncertainty (20 independent N(0,1)).

I β = 50%: full uncertainty.

U = ∅ pf ≈ 98% pf ≈ 82% U = Rd

F = [qβ , q1−β]d β = 0% β = 0.05% β = 0.5% β = 50%
ρ = 0 4.47 (4.4 , 5.65) (3.89 , 10.6) (0 , 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!
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U = ∅ pf ≈ 98% pf ≈ 82% U = Rd
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Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!
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Information on the joint distribution

• Can come from a fitted model

• Can come from experts’ opinions

• Dependence “known” on specific scenarios
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Illustration with marginals N(0,1)
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Illustration with marginals N(0,1)

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X
1

X
2

F1 =
2⋂

k=1

{qβ 6 Xk 6 q1−β}

Carole Bernard Robust Risk Management 77



Illustration with marginals N(0,1)

F1 =
2⋂

k=1

{qβ 6 Xk 6 q1−β} F =
2⋃

k=1

{Xk > qp}
⋃
F1

Carole Bernard Robust Risk Management 78



Illustration with marginals N(0,1)

F1 =contour of MVN at β F =
2⋃

k=1

{Xk > qp}
⋃
F1
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Comments on bounds on variance with partial information

I Model risk for variance of a portfolio of risks with given
marginals but partially known dependence.

I Same method applies to TVaR (expected Shortfall) or any
risk measure that satisfies convex order (but not for
Value-at-Risk).
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Adding information for VaR bounds

Information on a subset

VaR bounds when the joint distribution of (X1,X2, ...,Xn) is known
on a subset of the sample space.
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Our assumptions on the cdf of (X1,X2, ...,Xn)

F ⊂ Rn (“trusted” or “fixed” area)
U =Rn\F (“untrusted”).
We assume that we know:

(i) the marginal distribution Fi of Xi on R for i = 1, 2, ..., n,

(ii) the distribution of (X1,X2, ...,Xn) | {(X1,X2, ...,Xn) ∈ F}.
(iii) P ((X1,X2, ...,Xn) ∈ F)

I Goal: Find bounds on VaRq(S) := VaRq(X1 + ...+ Xn)
when (X1, ...,Xn) satisfy (i), (ii) and (iii).
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Numerical Results, 20 correlated N(0, 1) on F = [qβ, q1−β]n

U = ∅ pf ≈ 98% pf ≈ 82% U = Rn

F β = 0% β = 0.05% β = 0.5% β = 50%
q=95% 12.5 ( 12.2 , 13.3 ) ( 10.7 , 27.7 ) ( -2.17 , 41.3 )

q=99.5% 19.6 ( 19.1 , 31.4 ) ( 16.9 , 57.8 ) ( -0.29 , 57.8 )

q=99.95% 25.1 ( -0.035 , 71.1 )

• U = ∅ : 20 correlated standard normal variables (ρ = 0.1).

VaR95% = 12.5 VaR99.5% = 19.6 VaR99.95% = 25.1

ff The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

ff For VaR at high probability levels (q = 99.95%), despite all
the added information on dependence, the bounds are
still wide!
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U = ∅ pf ≈ 98% pf ≈ 82% U = Rn
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q=99.5% 19.6 ( 19.1 , 31.4 ) ( 16.9 , 57.8 ) ( -0.29 , 57.8 )

q=99.95% 25.1 ( 24.2 , 71.1 ) ( 21.5 , 71.1 ) ( -0.035 , 71.1 )

• U = ∅ : 20 correlated standard normal variables (ρ = 0.1).

VaR95% = 12.5 VaR99.5% = 19.6 VaR99.95% = 25.1

I The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

I For VaR at high probability levels (q = 99.95%), despite
all the added information on dependence, the bounds
are still wide!
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With Pareto risks

Consider d = 20 risks distributed as Pareto with parameter θ = 3.
• Assume we trust the independence conditional on being in F1

F1 =
d⋂

k=1

{qβ 6 Xk 6 q1−β}

where qβ = (1− β)−1/θ − 1.
U = ∅ U = Rd

F1 β = 0% β = 0.05% β = 0.5% β = 0.5
α=95% 16.6 ( 16 , 18.4 ) ( 13.8 , 37.4 ) ( 7.29 , 61.4 )
α=99.95% 43.5 ( 26.5 , 359 ) ( 20.5 , 359 ) ( 9.83 , 359 )
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Incorporating Expert’s Judgements

Consider d = 20 risks distributed as Pareto θ = 3.
• Assume comonotonicity conditional on being in F2

F2 =
d⋃

k=1

{Xk > qq}

Comonotonic estimates of Value-at-Risk
VaR95%(Sc) = 34.29,VaR99.95%(Sc) = 231.98

U = ∅
F2 (Model) q = 99.5% q = 99.9% q = 99.95%

α=95% 16.6 ( 8.35 , 50 ) ( 7.47 , 56.7 ) ( 7.38 , 58.3 )
α=99.95% 43.5 ( 232 , 232 ) ( 232 , 232 ) ( 180 , 232 )
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Comparison

Independence within a rectangle F1 =
⋂d

k=1 {qβ 6 Xk 6 q1−β}
U = ∅ U = Rd

F1 β = 0% β = 0.05% β = 0.5% β = 0.5
α=95% 16.6 ( 16 , 18.4 ) ( 13.8 , 37.4 ) ( 7.29 , 61.4 )
α=99.95% 43.5 ( 26.5 , 359 ) ( 20.5 , 359 ) ( 9.83 , 359 )

Comonotonicity when one of the risks is large
F2 =

⋃d
k=1 {Xk > q}

U = ∅
F2 (Model) q = 99.5% q = 99.9% p = 99.95%

α=95% 16.6 ( 8.35 , 50 ) ( 7.47 , 56.7 ) ( 7.38 , 58.3 )
α=99.95% 43.5 ( 232 , 232 ) ( 232 , 232 ) ( 180 , 232 )
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With Pareto risks
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Incorporating Expert’s Judgements

Consider d = 20 risks distributed as Pareto θ = 3.
• Assume comonotonicity conditional on being in F2

F2 =
d⋃

k=1

{Xk > qp}
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Comparison

Independence within a rectangle F1 =
⋂d
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Some Remaining Challenges

Challenges:

I Choosing the trusted area F
I N too small: possible to improve the efficiency of the

algorithm by re-discretizing using the fitted marginal f̂i .

I Possible to amplify the tails of the marginals
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Conclusions

• Maximum Value-at-Risk is not caused by comonotonicity.

• Maximum Value-at-Risk is achieved when the variance is
minimum in the tail. The RA is then used in the tails only.

• Bounds on Value-at-Risk at high confidence level stay wide
even if the multivariate dependence is known in 98% of the
space!

I Assess model risk with partial information and given marginals

I Design algorithms for bounds on variance, TVaR and VaR and
many more risk measures.

I A regulation challenge...
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Outline

Part 1: The Rearrangement Algorithm

• Minimizing variance of a sum with full dependence uncertainty

• Variance bounds

Part 2: Application to Model-Risk Assessment,
e.g., Uncertainty on Value-at-Risk

• With 2 risks and full dependence uncertainty

• With d risks and full dependence uncertainty

Part 3: Adding information on dependence

• Moment constraints

• Information on a subset...

Part 4: Using the RA to infer dependence

• Add information about the sum of the risks

• Application to explain the correlation risk premium

• Application to multivariate option pricing

Part 5: Improved Rearrangement Algorithm
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Part IV-A

Use of the Rearrangement Algorithm when
one knows marginals and information on the

sum to find a possible dependence...
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Method: Block RA to infer the dependence

I Inputs:
• X1 ∼ F1, ... Xd ∼ Fd

• X1 + ...+ Xd ∼ G

I Method (use the fact that X1 + X2 + ..+ Xn − Sum = 0):
• Matrix m rows (discretization step) by n = d + 1 columns.
• In each of the first d columns

F−1
j

(
i

m + 1

)
, i = 1, 2, ...,m

• In the last column

−G−1

(
i

m + 1

)
, i = 1, 2, ...,m

• Apply the Block RA on the full matrix

I Output: Extract the d first columns, and they describe a
discrete copula that is consistent with the cdfs of the risks
and of their sum.
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Using the Block RA to infer the dependence

I find the dependence between two uniformly distributed
variables that makes the distribution of the sum of two
uniform statistically indistinguishable from a normal
distribution
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joint density of the first two columns
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How can it be useful?
• When we have information on the distribution of the sum, of

linear combinations and of the marginal distributions?

• Infer the dependence between business lines assuming that
you have access to individual performance of business lines
and of the aggregate performance of the company. In this
case you typically are unable to observe the joint distribution.
• When you have information on options on an index and

options on its components:
• Study the properties of the dependence in the risk neutral

world of the 9 sectors comprising the SP 500 index
• Infer a possible model to price basket options when you know a

few basket option prices and you want to give a quote of a
basket option on an underlying that is a basket with different
weights
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Rearrangement Algorithm and Maximum
Entropy, Annals of Operational Research, 2018 with Oleg
Bondarenko and Steven Vanduffel.

A Model-free Approach to Multivariate
Option Pricing , Review of Derivatives Research, 2021
with Oleg Bondarenko and Steven Vanduffel.

Option Implied Dependence and Correlation
Risk Premium , Journal of Financial and Quantitative
Analysis, 2023 with Oleg Bondarenko.
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Algorithm to infer dependence

Inputs

• Option prices written on Xi for i = 1, 2, ..., d

• Basket option prices on the index S

Output

I A joint distribution of (X1,X2, ...,Xd)
• compatible with inputs
• that maximizes “entropy”

How?

Using the Rearrangement Algorithm...
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Inferring Dependence

• Inputs: d r.v. X1 ∼ F1, ..., Xd ∼ Fd and their sum S ∼ FS .

• Sample Xj and S into n equiprobable values, arranged in an
n × (d + 1) matrix (si = F−1

S ((i − 0.5)/n)):

[X1, . . . ,Xd ,−S ] =




x11 x12 . . . x1d −s1

x21 x22 . . . x2d −s2
...

...
. . .

...
...

xn1 xn2 . . . xnd −sn


 .

• Apply BRA on [X1, . . . ,Xd ,−S ].

• Row sums of the rearranged matrix are close to zero, i.e. a
compatible dependence has been found.
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Properties of the output dependence?

• We run BRA K times to obtain different solutions X(k)

(k = 1, ...,K ). Let R(k) denote the correlation matrix of X(k):

R(k) :=




1 ρ
(k)
12 . . . ρ

(k)
1d

ρ
(k)
21 1 . . . ρ

(k)
2d

...
...

. . .
...

ρ
(k)
d1 ρ

(k)
d2 . . . 1



.

• We compute ∆(k) := det[R(k)]
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Possible correlation matrices

• Standard deviations σ1, . . . , σd and σS are fixed (since F1, ...,Fd and
FS are given) and related by

σ2
S =

d∑

i=1

σ2
i + 2

d−1∑

i=1

∑

j>i

σiσjρij ,

• Hence for all possible dependences, the average (implied) correlation
ρimp is constant,

ρimp =

∑d−1
i=1

∑
j>i σiσjρij∑d−1

i=1

∑
j>i σiσj

.

• Let C(ρimp) denote the set of correlation matrices R with average
correlation ρimp.
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Constrained set C(ρimp), d = 3

Figure: The set of correlation matrices (ρ12, ρ12, ρ23) is intersected by the plane
σ1σ2(ρ12 − ρimp) + σ1σ3(ρ13 − ρimp) + σ2σ3(ρ23 − ρimp) = 0.
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Maximum Determinant and Maximum Entropy

• Entropy refers to disorder of a system, Shannon (1948).

• Let f be the density of a multivariate distribution of (X1, ...,Xd),
then the entropy is defined as

H(X1, ...,Xd) = −E(log(f (X1, ...,Xd))).

Proposition: Maximum entropy for a given correlation matrix

The entropy of the multivariate distribution of a random vector
(X1, ...,Xd) and invertible correlation matrix R satisfies

H(X1, ..,Xd) 6 d

2
(1 + ln(2π)) +

1

2

d∑

i=1

ln
(
σ2
i

)
+

1

2
ln (det(R))

where the equality holds iff (X1, ...,Xd) is multivariate Gaussian.

• We are interested in ∆M := maxR∈C(r) det[R] and the
correlation matrix RM that achieves it.
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Gaussian Case

• Gaussian margins Xi ∼ N[0, σ2
i ], i = 1, ..., d , and Gaussian

sum S ∼ N[0, σ2
S ].

• Standard deviations σi are linearly decreasing from 1 to 1/d .

• Set σS such that ρimp = 0.8.

• Number of components d ranges from 3 to 10.

• Discretization level n from 1,000 to 10,000.

• Run BRA K = 500 times.

• For each run k, correlation matrix R(k) and its determinant
∆(k)

• Compare with correlation matrix RM and its maximum
determinant ∆M(ρimp)
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Stability of BRA

Figure: K = 500 blue dots correspond to different runs of BRA. Shaded gray
area is constrained set C(ρimp); red star is maximal correlation matrix RM . Left
panel shows realizations of correlations ρ12, ρ13, and ρ23. Right panel shows the
relation of ∆ versus ρ12.
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Stability of BRA

Figure: K = 500 blue dots correspond to different runs of BRA. Shaded gray
area is constrained set C(ρimp); red star is maximal correlation matrix RM . Left
panel shows realizations of correlations ρ12, ρ13, and ρ23. Right panel shows the
relation of ∆ versus ρ12.
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Robustness Check

1 Robustness to Initial Conditions ( supplement )

I Start from a particular candidate solution
I Introduce small noise, by randomly swapping 0.2% of rows:
I Check where K = 500 runs of BRA converge.

2 Robustness to Distributional assumptions - Skewed
distributions? ( supplement )
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Part IV-B

Inferring Dependence: Applications to Options
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Application to Implied Correlation Premium

1 Example in 2 dimensions with specified distributions for two
variables and for their sum

2 Study of the dependence among the 9 sectors of the SP 500
index

I Extracting a compatible risk neutral 10-dimensional
distribution among the 9 sectors and the SP 500 that is
consistent with all option prices written on these 10 underlying
variables

I Study some of its properties
I New insights about the correlation risk premium
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Illustration when X1, X2 are N(0, σi) and S is N(0, σS)
such that implied correlation is 0.
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Illustration when X1, X2 are N(0, σi) and S is N(0, σS)
such that implied correlation is 0.97.
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Illustration when X1, X2 are N(0, σi) and S is skewed.
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Empirical Application – S&P 500 Sectors

• SPDR ETFs, S&P 500 Index and its 9 sectors:
Description Ticker Abbreviation

SPDR S&P 500 ETF Trust SPY spx
Consumer Discretionary Sector SPDR Fund XLY cdi

Consumer Staples Sector SPDR Fund XLP cst
Energy Sector SPDR Fund XLE ene

Financial Sector SPDR Fund XLF fin
Health Care Sector SPDR Fund XLV hea

Industrial Sector SPDR Fund XLI ind
Materials Sector SPDR Fund XLB mat

Technology Sector SPDR Fund XLK tec
Utilities Sector SPDR Fund XLU uti

• 9 sectors that do not overlap and that cover entire S&P 500

• Daily option data from CBOE

• Sample: 04/2007 - 09/2017
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S&P 500 Sectors
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Figure: Sector weights in September 2016.
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S&P 500 Sectors
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Figure: Sector weights over time. Pink vertical lines indicate Financial crisis.
Green vertical lines: 08-Sep-08, 20-Nov-08, and 06-May-10.
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Implementation Details

• Daily frequency, τ is at least 30 days, or closest available

• Estimate RNDs for S and each Xj from traded options on SPY and
d = 9 Sector ETFs

• Estimate RNDs nonparametrically with Positive Convolution
Approximation (PCA), Bondarenko (2003)

• Discretize each distribution into n = 1000 equiprobable returns and
arrange them in n × (d + 1) matrix:

M = [X1, . . . ,Xd ,−S ] =




x11 x12 . . . x1d −s1

x21 x22 . . . x2d −s2

...
...

. . .
...

...
xn1 xn2 . . . xnd −sn


 .

• Apply BRA on matrix M to infer dependence structure
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Implementation Details

• Compute various dependence statistics:

• Pairwise correlations and their value-weighted average

• Correlations conditional on various events
ρ(Ri ,Rj |Scenario), which can depend on the aggregate
market or other factors:

• localized or “corridor” correlation: Scenario = {q1 6 RS 6 q2}
for some quantiles q1, q2

• Down and Up correlations: Let RM
S be the median of RS

ρd,Qi,S = corrQ(Ri ,RS |RS 6 RM
S )

ρu,Qi,S = corrQ(Ri ,RS |RS > RM
S ),

• Also Spearman’s rho – not affected by changes in marginal
distributions (not sensitive to changes in volatility)

Spearman’s rho(Ri ,Rj) = ρ(Fi (Ri ),Fj(Rj))

• Other tail indices
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Selective Date: 08-Sep-2008
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Figure: Implied Dependence.
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Selective Date: 08-Sep-2008
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Figure: Implied Correlations.
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Selective Date: 20-Nov-2008
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Selective Date: 20-Nov-2008

Correlation Matrix
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Up and down average pairwise correlations

From option prices, we estimate:

ρg ,Qi ,j = corrQ(Ri ,Rj)

ρd ,Qi ,j = corrQ(Ri ,Rj |RS 6 RM
S )

and
ρu,Qi ,j = corrQ(Ri ,Rj |RS > RM

S ),

We then average

ρx ,Q =

∑
i<j πiπjρ

x ,Q
i ,j∑

i<j πiπj
,

with πi = ωiσi
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Implied Correlation
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Up and down correlation risk premia

From option prices, we estimate:

ρd ,Qi ,j = corrQ(Ri ,Rj |RS 6 RM
S )

and
ρu,Qi ,j = corrQ(Ri ,Rj |RS > RM

S ),

From corresponding stock prices daily returns

ρd ,Pi ,j = corrP(Ri ,Rj |RS 6 RM
S )

and
ρu,Pi ,j = corrP(Ri ,Rj |RS > RM

S ),

Correlation risk premium (global, up and down):

ρg ,Pi ,j − ρ
g ,Q
i ,j , ρu,Pi ,j − ρ

u,Q
i ,j , ρd ,Pi ,j − ρ

d ,Q
i ,j
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Implied and Realized Correlation
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Results

What we observe

ρu,Qi ,j < ρu,Pi ,j < ρd ,Pi ,j < ρd ,Qi ,j

Asymmetry under P was observed in the literature: Longin
and Solnik (JOF 2001), Ang and Bekaert (RFS 2002), Hong, Tu
and Zhou (RFS 2007), Jondeau (CSDA, 2016)... higher
correlations in “bear markets”

Under Q, this asymmetry is amplified and we give evidence that
this asymmetry in the correlations comes from an asymmetry in
the dependence and not from properties of the marginal
distributions.
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Margins or Dependence?
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Additional Elements To Be Found in the Paper

• Implied dependence is non-Gaussian, time-varying, and
asymmetric

• Global Correlation Risk Premium disappears when computed
with Spearman’s Rho, whereas the Down (resp. Up)
Correlation Risk Premium stays significantly negative (resp.
positive)

• Alternative semi-parametric approach to our model-free
approach to model the joint distribution of assets in the
risk-neutral world:
• Fit margins with model-free approach
• Fit dependence using a two-parameter Skewed Normal

Copula

Model sufficiently flexible to re-obtain the results on the
global, down and up correlation risk premia
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Conclusions on the Analysis of the Correlation Risk
Premium

• A novel algorithm to infer the dependence among variables given
their marginal distributions and distribution of the sum

• Consistent with maximum entropy. This is a desirable property: a
dependence with lower entropy would mean that we use information
that we do not possess

• Application to S&P 500 Sector options:

• Implied dependence is non-Gaussian, time-varying, and
asymmetric

• Down correlation is larger than Up correlation
• Correlation risk premium: Down (strongly negative), Up

(positive), Global (negative)
• Parsimonious multivariate model with a two-parameter copula
• Evidence of extreme events / left tail dependence
• Correlation indices (down, up), improving on CBOE index
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Other Potential Applications

A number of potential applications:

• Identify properties of a “good” multivariate model to reproduce
option prices available in the market (such as stochastic correlation,
asymmetry between average up and down correlation, etc).

• A new approach to price any path-independent multivariate
derivatives (basket options and correlation swaps). Joint work with
Oleg Bondarenko and Steven Vanduffel.

• Detection of arbitrage opportunities – Dispersion arbitrage

• Disentangle modelling of volatility (margins) and of the
dependence (copula)

• New forward-looking indicators of contagion/tail risk

• Covariance matrix estimation / Optimal portfolio construction
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Outline

Part 1: The Rearrangement Algorithm

• Minimizing variance of a sum with full dependence uncertainty

• Variance bounds

Part 2: Application to Model-Risk Assessment,
e.g., Uncertainty on Value-at-Risk

• With 2 risks and full dependence uncertainty

• With d risks and full dependence uncertainty

Part 3: Adding information on dependence

• Moment constraints

• Information on a subset...

Part 4: Using the RA to infer dependence

• Add information about the sum of the risks

• Application to explain the correlation risk premium

• Application to multivariate option pricing

Part 5: Improved Rearrangement Algorithm
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Part V
Improved block rearrangement algorithm

with Jinghui Chen, Ludger Rüschendorf and Steven
Vanduffel
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Block rearrangement algorithm (BRA)
d = 4 variables: X1, X2, X3, X4, n = 5 values with probability 1

5




1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5




The yellow block size rt = 1:





X1 ↓ X2 + X3 + X4

X2 ↓ X1 + X3 + X4

X3 ↓ X1 + X2 + X4

X4 ↓ X1 + X2 + X3




1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5




The yellow block size rt = 2:





X1 + X2 ↓ X3 + X4

X1 + X3 ↓ X2 + X4

X1 + X4 ↓ X2 + X3

Applications: Model risk on VaR, TVaR, variance and so on
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n × d matrix X = (X1,X2, . . . ,Xd)

Sample rt ∈ {1, . . . , b d2 c} from a distribution Ft

Select I ⊂ {1, . . . , d} uniformly with |I | = rt

Separate two blocks X1 = (Xj)j∈I and X2 = (Xj)j∈I c from X

Rearrange the rows of X1 so that
∑

j∈I Xj ↓
∑

j∈I c Xj

Is A true?X
∗Stop

yes no

A:
∑

j∈I Xj ↓
∑

j∈I c Xj for all possible I .
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We expect that the performance of BRA may be affected by two
factors:

1 the cardinality of subset I in each step, i.e., the number rt of
columns of X1;

2 the maximum number of iterations T .
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2.3 Effect of block size

Definition (BRA Unif)

A BRA is called BRA Unif if each Ft is a discrete uniform
distribution with support {1, 2, . . . , bd2 c}.

when d = 4:
BRA Unif: P(rt = 1) = P(rt = 2) = 1

2 at each BRA step
standard BRA: P(rt = 1) = 4

7 , P(rt = 2) = 3
7

To measure the performance of BRA, we use

δt = log Var(X1 + X2 + · · ·+ Xd)

to denote the log variance after t steps of BRA.
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Figure: Uniform Risks: δt with k = 100, T = 2000, n = 1000 and
d = 500. The left figure displays the δt during the first 100 steps, while
the right displays the δt after 100 steps.
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Our observations suggest the need for a BRA design that behaves
similarly to the standard BRA at the beginning, and more like the
RA towards the end, achieving better performance overall.

when

d = 100:
RA: P(rt = 1) = 1
standard BRA: P(rt = 1) = 100

299−1
≈ 0 and P(rt = 50) = 7.96%

BRA Unif: P(rt = 1) = 1
50 and P(rt = 50) = 1

50
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Our observations suggest the need for a BRA design that behaves
similarly to the standard BRA at the beginning, and more like the
RA towards the end, achieving better performance overall. when
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BRA Beta

Definition (BRA Beta)

A BRA is called BRA Beta if Ft is the distribution where a random
variable, rt ∼ Ft , takes integer parts of numbers sampled from
Beta(αt , βt). The parameters αt and βt are

αt = A−
(

t − 1

T − 1

) 1
B

(A− 1),

βt = 1 +

(
t − 1

T − 1

) 1
B

(A− 1),

(1)

where A and B are two constants.
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Figure: Average rt of the Beta distributions as a function of t. The graph
shows the average rt from the corresponding Beta distribution for
d = 100, T = 1000 and some examples of A and B.
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Figure: Uniform risks: The heatmaps of δT with k = 100, T = 2000,
n = 1000 and d = 100 when implementing the BRA Beta for different A
and B.

The best choices for A and B are A = 0.3d and B = 50.
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Figure: Uniform risks: The heatmaps of δT with k = 100, T = 2000,
n = 1000 and d = 100 when implementing the BRA Beta for different A
and B.

The best choices for A and B are A = 0.3d and B = 50.
Carole Bernard Robust Risk Management 142



Figure: Uniform risks: The effect of four types of BRA on the trajectory
of δt with k = 100 and T = 2000 as a function of t.
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Robustness to Initial Conditions ( back )

Figure: K = 500 blue dots correspond to different runs of BRA. Each run starts
at a particular solution (green star), but with 2 random rows swapped. Shaded
gray area is constrained set C(ρimp), red star is maximal correlation matrix RM .
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Robustness to Initial Conditions ( back )

Figure: K = 500 blue dots correspond to different runs of BRA. Each run starts
at a particular solution (green star), but with 6 random rows swapped. Shaded
gray area is constrained set C(ρimp), red star is maximal correlation matrix RM .
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Robustness to Initial Conditions ( back )

Figure: K = 500 blue dots correspond to different runs of BRA. Each run starts
at a particular solution (green star), but with 20 random rows swapped. Shaded
gray area is constrained set C(ρimp), red star is maximal correlation matrix RM .
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Robustness to Distributional Assumptions ( back )

• A d-dimensional random vector X is a normal mean-variance
mixture, if X ∼ µ + Yγ +

√
YZ where Z ∼ Nd(0,W), Y > 0 is a

scalar random variable independent of Z, and γ ∈ Rd and µ ∈ Rd

are constants.

• We consider a special case where Y is Inverse Gamma,
Y ∼ IG (ν/2, ν/2). This corresponds to a Skewed-t distribution
X ∼ Skewd(ν,µ,W,γ)

• The sum S as well as the components Xi (i = 1, 2, . . . , d) follow
one-dimensional Skewed-t distribution. In particular,

S ∼ Skew1

(
ν,
∑

i

µi , 1W1t ,
∑

i

γi

)
.
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Multivariate Skewed-t Distribution ( back )
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Figure: Histogram and QQ-plot for sum S generated with multivariate
Skewed-t distribution when d = 3 and n = 1000.
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Stability of BRA: Multivariate Skewed-t Distribution ( back )

Figure: K = 500 blue dots correspond to different runs of the BRA. The
shaded gray area is the constrained set C(ρimp); the red star is the maximal
matrix RM . The left panel shows realizations of the correlations ρ12, ρ13, and
ρ23. The right panel shows the relation ∆ versus ρ12.
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Pairwise correlations ( back )

We recover the dependence among the variables including pairwise
correlations

d = 3 d = 10

ρ12, ρ13, . . . , ρd−1d for all runs. The plots confirm that the different candidate solutions
are all similar and have maximum entropy.
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Case d = 5
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Figure 4.2: Normal case with d = 3 and d = 5. Each black dot represents one of K = 500 BRA

runs. The first three panels show PE1(
d
√
∆(k)), V (k), and PE2(

d
√
∆(k)) with respect to PE(ρ̂(k)).

The black dashed lines indicate sample averages. The right bottom panel shows the 5th, 50th

and 95th percentiles of distributions of correlations ρ
(k)
ij generated by K runs. The percentiles

are shown along 1
2d(d − 1) vertical lines, corresponding to correlations ρ12, ρ13, . . . , ρd−1d. The

red dots are the corresponding correlations for the maximal matrix RM .
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Case d = 7
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Case d = 10
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Figure 4.3: Normal case with d = 7 or d = 10. Each black dot represents one of K = 500 RA

runs. The first three panels show PE(
d
√
∆(k)), V (k), and PE(ξ(k)) versus PE(ρ̂(k)). The black

dashed lines indicate sample averages. The right bottom panel shows the 5th, 50th and 95th

percentiles of distributions of correlations ρ
(k)
ij generated by K runs. The percentiles are shown

along along 1
2d(d − 1) vertical lines, corresponding to correlations ρ12, ρ13, . . . , ρd−1d. The red

dots are the corresponding correlations for the maximal matrix RM .
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