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“Instead of considering marginals and correlations separately
...might also be sensible to consider whether the question of
interest permits the estimation problem to be reduced to a

one-dimensional one. For example, if we are really interested in
the behaviour of the sum we might consider directly

estimating its univariate distribution.”

Embrechts, McNeil and Straumann (1998), Correlation and
Dependency in Risk Management.
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First Part: Model Risk on the Dependence:
Theory and Computational Approach via The

rearrangement algorithm

Second Part: Model Risk on the Aggregate
Variable
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Papers I will focus on in this second part

• Rodrigue Kazzi (2023), “Advancing Model Uncertainty Assessment
to Address Actuarial Modelling Challenges.” PhD thesis at Vrije
Universiteit Brussel.

• Bernard, C., Kazzi R., Vanduffel, S. (2020). Range Value-at-Risk
bounds for unimodal distributions under partial information.
Insurance: Mathematics and Economics.

• Bernard, C., Kazzi R., Vanduffel, S. (2022). Model uncertainty
assessment for symmetric and right-skewed distributions. Working
paper.

• Bernard, C., Kazzi R., Vanduffel, S.(2023). Impact of model
misspecification on the Value-at-Risk of unimodal T-symmetric
distributions. Working paper.

• Bernard, C., Kazzi R., Vanduffel, S. (2023). Incorporating robust
information into model risk assessment. Working paper.

• Bernard, C., Pesenti, S., Vanduffel, S. (2024) Robust Distortions
Measures, Mathematical Finance, forthcoming.
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Model risk assessment is indispensable

Actuarial Association of Europe (2017): ” ... model risk
cannot be disregarded. There will be many models that are
consistent with the used data. So, in the end, the specific choice
of model will be subjective.”

Basel Committee on Banking Supervision (2019): ”Banks
are encouraged to review and provide evidence on the uncertainty
around the outcomes of the capital requirement model ... by
identifying the most significant assumptions and estimating
uncertainty bounds ...”
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A look into model risk

Fully trusted information + Additional assumptions

Adopted model

Fully trusted information + No additional assumptions

Best-case model Worst-case model

Model risk can be assessed by comparing the value of a risk
measure under adopted model to its value under the best-case
model and the worst-case model.
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A look into model uncertainty

F is LogNormal(µ, σ)

ρ

ρ(F )
for some measure ρ : F → R
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A look into model uncertainty

F is LogNormal(µ, σ)

ρ

ρ(F )
for some measure ρ : F → R

Unimodality

Log-symmetry

Median

Mean

Variance
...
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A look into model uncertainty

F is LogNormal(µ, σ)

ρ(F )

Unimodality

Log-symmetry

Median

Mean

Variance
...

V = {F : F is consistent with some assumptions}
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A look into model uncertainty

F is LogNormal(µ, σ)

ρ(F )

Unimodality

Log-symmetry

Median

Mean

Variance
...

V

ρ

supF∈V ρ(F )

infF∈V ρ(F )

.

.

.

Such problems are dealt with in the first main part of this talk.
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A look into model uncertainty for heavy-tailed risks

=⇒ We need to incorporate information on some robust quantities
to assess model uncertainty in heavy-tailed distributions
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A look into model uncertainty for heavy-tailed risks

=⇒ We need to incorporate information on some robust
quantities.

This is the main objective of the last part of this talk.
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What was missing?

Omission of assumptions that could be fully trusted

Wide bounds

Not very meaningful

Fully trusting assumptions that are hard to collect

Not very practical
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Outline

1 Problem Formulation

2 Developed Methodology

3 Two examples with Risk Bounds with Moments Information

4 Risk Bounds for Heavy-Tailed Risks
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VaR, RVAR, ES

For a random variable X ∼ FX and 0 < α < β < 1 we have

• Value-at-Risk:
VaRα(X ) = F−1X (α).

• Range-Value-at-Risk:

RVaRα,β(X ) =
1

β − α

∫ β

α
VaRu(X )du.

• Expected Shortfall:

ESα(X ) =
1

1− α

∫ 1

α
VaRu(X )du.
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VaR, RVAR, ES
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VaR and ES

VaRα V̂aRα VaRα

ESα ÊSα ESα
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Problem Formulation
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Problem formulation

Basic Problem

sup
F∈V

ρ(F ) and inf
F∈V

ρ(F )

for some measure ρ : F → R and set V where

V = {F : F is consistent with some assumptions}
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Problem formulation

Basic Problem

sup
F∈V

ρ(F ) and inf
F∈V

ρ(F )

for some measure ρ : F → R and set V where

V = {F : F is consistent with some assumptions}

Measures of interest

For some (α;β) ∈ (0, 1)× (α, 1), (x1, x2) ∈ R× (x1,+∞),

• VaRα(F ) = F−1(α)

• TVaRα(F )

• VaRβ(F )− VaRα(F )

• RVaRα,β(F ) = 1
β−α

∫ β
α
F−1(p)dp

• F (x2)− F (x1)

• E [g(F )] for some g(.)
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Assumptions of interest

Concave

transformation
T(.)

Assumptions

• Unimodality

• Symmetry

• T-unimodality

• T-symmetry

• Non-negativity / Support

• Moments on the original distribution

• Moments on the transformed
distribution

• Robust and quantile-based measures
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Examples of robust and quantile-based measures

For 0 < α1 < α2 < 1,

• A specific quantile, e.g., F−1(0.75)

• Interpercentile range: F−1(α2)− F−1(α1)

• Truncated/trimmed moments: 1
α2−α1

∫ α2

α1
h
(
F−1(p)

)
dp for

some function h

E.g., 1
α2−α1

∫ α2

α1
F−1(p)dp and 1

α2−α1

∫ α2

α1

(
F−1(p)

)2
dp

• Moor’s kurtosis: F−1(7/8)−F−1(5/8)+F−1(3/8)−F−1(1/8)
F−1(6/8)−F−1(2/8)

• ...
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Developed Methodology
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Tool: Convex ordering

Convex ordering is a type of stochastic ordering that compares
the variability of risks.

Definition

X is said to be smaller than Y in the convex order, denoted as
X 6cx Y , if and only if

E [v(X )] 6 E [v(Y )] for all convex functions v : R→ R,

provided the expectations exist.
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Tool: Convex ordering

• First result:
X 6cx Y ⇒ var [X ] 6 var [Y ]

• Second result:{
E [X ] = E [Y ],

and F−1Y up-crosses F−1X exactly once.
⇒ X 6cx Y
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General approach

Mathematical challenge: The optimization is non-parametric
Solution: Reduce it to a parametric optimization via stochastic
ordering

F1
F2

G1

G2

V : non-parametric set

ρ(F1) 6 ρ(G1)

ρ(F2) 6 ρ(G2) V ′ : parametric set
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Two examples of application of this methodology:

1 VaR bounds with unimodality and moment constraints

2 RVaR bounds
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Reduction to a parametric optimization

VU(µ, s) : set of r.v. with unimodal dist. with first moment µ and
maximum variance s2.
UR : set of random variables whose quantile is flat-linear.
We show that

∀S∗ ∈ VU(µ, s), there exists YR ∈ UR ∩ VU(µ, s)

such that
VaRα(YR) = VaRα(S∗).

Hence,

sup
S∈VU(µ,s)

VaRα(S) = sup
S∈UR∩VU(µ,s)

VaRα(S).
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Definition of Yc (case α > m)

F−1(p)

p1m

F−1S∗ (α)

α

c

F−1
Yc

F−1
S∗
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Yc is smaller than S∗ in convex order

F−1(p)

p1m

F−1S∗ (α)

α

c

F−1
Yc

F−1
S∗

E [Yc ] = E [S∗],

and F−1S∗ up-crosses F−1Yc
exactly once.

}
⇒ Yc 6cx S∗

⇒ var [Yc ] 6 var [S∗] 6 s2
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Definition of YR

F−1(p)

p1

F−1S∗ (α)

α

a

b

c

F−1
YR

F−1
Yc
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YR is an element of VU(µ, s)

F−1(p)

p1

F−1S∗ (α)

α

a

b

c

F−1
YR

F−1
Yc

YR 6cx Yc ⇒ var [YR ] 6 var [Yc ]⇒ YR ∈ VU(µ, s)

and
VaRα(YR) = VaRα(S∗)
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Further developments

• A similar approach is done for α < m. A comparison leads to
the VaR upper bounds.

• This method can lead to risk bounds in case we assume
• Having a non-negative unimodal portfolio loss with known

mean and maximum variance
• Having a non-negative unimodal distribution with known mean

and infinite variance

• This method can be amended to derive bounds of other risk
measures, like the Range Value-at-Risk (and Tail
Value-at-Risk).
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Value-at-Risk bounds

sup
S∈VU(µ,s)

VaRα(S) =

 µ+ s
√

4
9(1−α) − 1 for α ∈ [5/6; 1[,

µ+ s
√

3α
4−3α for α ∈]0; 5/6[.

⇓

inf
S∈VU(µ,s)

VaRα(S) =

 µ− s
√

1−α
1/3+α for α ∈]1/6; 1[,

µ− s
√

4
9α − 1 for α ∈]0; 1/6].

(Li, Shao, Wang and Yang (2018) derived this upper bound for
α ∈ [5/6; 1[.)
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Maximum distance between the mean and its robust
estimator

Denote by Qα the quantile function, we have that

∣∣∣Qα+Q1−α
2 − µ

∣∣∣
s

6



√
4

9(1−α)−1 +
√

1−α
1/3+α

2 for α ∈ [5/6; 1[,√
3α

4−3α
+
√

1−α
1/3+α

2 for α ∈]1/6; 5/6[,√
3α

4−3α
+
√

4
9α
−1

2 for α ∈]0; 1/6].

For α = 0.5, the maximum distance between the median and the
mean of a unimodal distribution derived by Basu and Dasgupta
(1997) is recovered.
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VaR upper bounds for non-negative portfolio losses

Let

V+
U (µ, s) = {X : X is unimodal, E [X ] = µ, var[X ] 6 s2, X is non-negative},

and

W+
U (µ) = {X : X is unimodal, E [X ] = µ, var[X ] is infinite, X is non-negative}.

We have that, for α > m,

sup
S∈V+

U (µ,s)

VaRα(S) =


µ

2(1−α) for (α, s) ∈
]
1
2 ; 1
[
×
[
µ
√

α−1/3
1−α ; +∞

[
,

... for (α, s) ∈ ...,
µ for (α, s) ∈

]
0; 1

2

]
× [0; +∞[ ,

and

sup
S∈W+

U (µ)

VaRα(S) 6

{ µ
2(1−α) for α ∈

]
1
2 ; 1
[
,

µ for α ∈
]
0; 1

2

]
.
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Another example of the reduction technique

• Fully trusted assumptions: unimodality, mean, maximum
standard deviation, and non-negativity.

• Risk measure: Range Value-at-Risk.

• The best- and worst-case models correspond to a mixture of a
point mass and a uniform.
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Arbitrary element F of V

p1m

F−1(α)

α β

F−1(β)
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Construction of G1

G−1
1

F−1

p1m

F−1(α)

α β

F−1(β)

c
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G1 is smaller than F in convex order

G−1
1

F−1

p1m

F−1(α)

α β

F−1(β)

c

E [G1] = E [F ],

and F−1 up-crosses G−11 exactly once.

}
⇒ G1 6cx F
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RVaRα,β(G1) > RVaRα,β(F )

G−1
1

F−1

pm

F−1(α)

α β

F−1(β)

(β − α)RVaRα,β(G1) = E [G1]−
α∫

0

VaRp(G1)dp −
1∫
β

VaRp(G1)dp

> E [F ]−
α∫

0

VaRp(F )dp −
1∫
β

VaRp(F )dp
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Construction of G2

G−1
1

G−1
2

p1m α β

c
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If E [G2] < E [G1], we construct G3a

G−1
1

G−1
3a

p1m α β

c
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If E [G2] < E [G1], we define G3a

G−1
1

G−1
3a

p1m α β

c

• G3a 6cx G1 6cx F

• RVaRα,β(G3a) =
RVaRα,β(G1) >
RVaRα,β(F )

• G3a is non-negative

• G3a is a mixture of a
point mass and uniform
and hence is unimodal

• G3a is parametric
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If E [G2] > E [G1], we construct G3b

F−1(p)

p1

F−1(α)

α

c ′

G−1
3b

F−1
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If E [G2] > E [G1], we define G3b

F−1(p)

p1

F−1(α)

α

c ′

G−1
3b

F−1
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If E [G2] > E [G1], we define G3b

p1α

c ′

G−1
3b

F−1

Again, we have

• G3b 6cx F

• RVaRα,β(G3b) >
RVaRα,β(F )

• G3b is non-negative

• G3b is a mixture of a
point mass and uniform
and hence is unimodal

• G3b is parametric
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End of the proof

The optimization problem can be reduced to a parametric one.
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Numerical Example
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Numerical example

Characteristics of a credit portfolio:

• S
Total exposure ∼ Beta distribution

• Size = 10000 loans of amount 1 millions Euros each.

• Probability of default on the loan = 0.1%

•
√

var [S]

E [S] = 1.3
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Numerical example

Com. Inf. µ & s µ & s & U +non-neg. +[0; 0.75]

α VaRα(S) VaRc
α VaRα VaR+

α VaRp
α

75% 13.546 32.517 24.741 21.465 13.546
90% 26.106 49 34.127 34.127 30.85
95% 36.182 66.666 46.513 46.513 42.94

99.5% 71.290 193.388 131.874 131.874 89.232

Table: Upper bounds of the Value-at-Risk under different scenarios
regarding the distributional information that is available. The first
column depicts the ”true” risk measure assuming complete information.
All figures are in million Euros.
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T-unimodal T-symmetric distributions
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T-unimodal T-symmetric distributions

• We know that the distribution becomes unimodal symmetric
after a concave strictly increasing transformation T (.).

• We can incorporate information on the moments of the
original and transformed distribution, as well as information
on the median, interquartile range, and the support.

• The best- and worst-case models correspond to a mixture of a
point mass and a convex transformation of a uniform.
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Unimodal T-symmetric distributions

• The distribution is
unimodal, T-symmetric.

• Same set of information can
be incorporated as in the
previous slide.

• Assuming unimodality
instead of T-unimodalidy
can significantly improve the
bounds.

• The optimization of VaRα
for high α’s can be reduced
to a parametric optimization
over distribution functions
whose quantiles are of this
shape:

pα1− α 1

G−1

F−1

0.5
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General liability claims dataset (Frees and Valdez (1998))

• The dataset comprises 1,500 general liability claims.

• The loss distribution is unimodal, log-unimodal, and
log-symmetric.

• Median = 20,113, Mean = 53,797, Std.dev. = 116,942, and
Interquartile Range = 41,720.
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Comparison of VaR bounds
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Comparison of VaR bounds
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Risk bounds for heavy tailed risks
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Information that can be incorporated

• Unimodality

• Symmetry

• T-unimodality

• T-symmetry

• Non-negativity / Support

• Moments on the original distribution

• Moments on the transformed
distribution

• Robust and quantile-based measures
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Examples of robust and quantile-based measures

For 0 < α1 < α2 < 1,

• A specific quantile, e.g., F−1(0.75)

• Interpercentile range: F−1(α2)− F−1(α1)

• Truncated/trimmed moments: 1
α2−α1

∫ α2

α1
h
(
F−1(p)

)
dp for

some function h

E.g., 1
α2−α1

∫ α2

α1
F−1(p)dp and 1

α2−α1

∫ α2

α1

(
F−1(p)

)2
dp

• Moor’s kurtosis: F−1(7/8)−F−1(5/8)+F−1(3/8)−F−1(1/8)
F−1(6/8)−F−1(2/8)

• ...

Carole Bernard Robust Risk Management 56



Arbitrary element F of V

F−1(α)

α

F−1(p1)

p1 p2
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Construction of G−1
1

F−1(α)

α

F−1(p1)

p1 p2

G−1
1

F−1
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G1 vs F

F−1(α)

α

F−1(p1)

p1 p2

G−1
1

F−1

∫ p2
p1

G−11 (p)dp =
∫ p2
p1

F−1(p)dp

and F−1 up-crosses G−11 exactly once on [p1, p2]

=⇒
∫ p2

p1

h
(
G−11 (p)

)
dp 6

∫ p2

p1

h
(
F−1(p)

)
dp for any convex h
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Similarly for G2 vs G1

F−1(α)

α

F−1(p1)

p1 p2

G−1
1

G−1
2
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For every F ∈ V , there exists G2 such that

αp1 p2

G−1
2

F−1

• G2 is parametric on [p1, p2]

• G−12 (p1) = F−1(p1)

• VaRα(G2) = VaRα(F )

• RVaRα,p2(G2) =
RVaRα,p2(F )

• ∫ p2
p1

G−12 (p)dp =
∫ p2
p1

F−1(p)dp

• ∫ p2
p1

h
(
G−12 (p)

)
dp 6

∫ p2
p1

h
(
F−1(p)

)
dp

for any convex h
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End of the proof

The optimization problem can be reduced to a parametric one.
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Generalization

αp1 p2

G−1
2

F−1

The construction of G2 on [p1, p2]
is the unique construction such
that:

• G−12 is composed of two
consecutive linears on
[p1, p2] with α belonging to
the second linear

• G−12 (p1) = F−1(p1)

• VaRα(G2) = VaRα(F )

• RVaRα,p2(G2) =
RVaRα,p2(F )

• ∫ p2
p1

G−12 (p)dp =
∫ p2
p1

F−1(p)dp
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Generalization

αp1 p2

G−1
2

F−1

Let us define two sets of functionals:

• F6(F , α, p1, p2) = {ρ : ρ (G2) 6 ρ (F )}
• F>(F , α, p1, p2) = {ρ : ρ (G2) > ρ (F )}

For example:

• Trimmed moments belong to
F6(F , α, p1, p2)

• For β ∈ (α, p2),RVaRα,β(.) ∈
F>(F , α, p1, p2)

• RVaRα,p2(.) ∈
F6(F , α, p1, p2) ∩ F>(F , α, p1, p2)
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Generalization

Assume information is available on F of the type

• f (F ) 6 k ∈ R for f ∈ F6(F , α, p1, p2)

• g(F ) > l ∈ R for g ∈ F>(F , α, p1, p2)

And denote by

• Cα the set of distributions that respect this available
information

• VU the set of unimodal distributions

• Vl the set of distribution whose quantiles are as G−12
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Generalization

Assume information is available on X of the type

• f (F ) 6 k ∈ R for f ∈ F6(F , α, p1, p2)

• g(F ) > l ∈ R for g ∈ F>(F , α, p1, p2)

And denote by

• Cα the set of distributions that respect this available
information

• VU the set of unimodal distributions

• Vl(α) the set of distribution whose quantiles are as G−12

Then
sup

F∈VU∩Cα
ρ1(F ) = sup

F∈Vl (α)∩Cα
ρ1(F )

and
inf

F∈VU∩Cα
ρ2(F ) = inf

F∈Vl (α)∩Cα
ρ2(F ),

where ρ1 ∈ F>(F , α, p1, p2) and ρ2 ∈ F6(F , α, p1, p2)
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SAS OpRisk Global dataset

• The dataset contains 39,359 operational losses exceeding
$0.1 million, recorded from March 1971 to April 2023
worldwide.

• The losses are adjusted for inflation and expressed in millions
of USD.

• Mean ≈ 107, std.dev. ≈ 1,022, and 75th percentile ≈ 30.

• Truncated moments between 75th and 99.9th percentiles:
mean ≈ 313 and std.dev. ≈ 798.

Carole Bernard Robust Risk Management 67



Upper bounds: unimodal + lower quantile + truncated
mean

For 0.5 6 p1+p2
2 < α < β 6 p2 < 1 and q1, µ1,t ∈ R+, we have

that

sup
F unimodal
F−1(p1)=q1∫ p2

p1
F−1(p)dp6µ1,t

VaRα(F ) = q1
p2 + p1 − 2α

2(p2 − α)
+ µ1,t

p2 − p1
2(p2 − α)

,

sup
F unimodal
F−1(p1)=q1∫ p2

p1
F−1(p)dp6µ1,t

RVaRα,β(F ) = q1
p2 + p1 − α− β

2p2 − α− β
+µ1,t

p2 − p1
2p2 − α− β

.
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Comparison of VaR upper bounds - 1
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Comparison of VaR upper bounds - 2
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Comparison of RVaR upper bounds
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Main takeaways

• Model uncertainty assessment can accommodate various
actuarial modelling contexts and be practical.
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Main takeaways

• Model uncertainty assessment can accommodate various
actuarial modelling contexts and be practical.

• Using risk bounds, we get to fix the source of model
uncertainty.
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