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Introduction

Data driven risk inference
Why has modern machine learning...
... already quite successfully entered the world of dynamic stochastic modeling,
mathematical finance and risk assessement?

One answer: it enables realistic data driven (financial) risk inference to
exploit upside risks and reduce downside risks.

What is inference? a conclusion reached on both, evidence and reasoning.

Evidence = Data

Time series data

Derivatives’ price data

Macro economic data

...

Reasoning

Recognition of universal structures
(statistics)

First principles, e.g. no arbitrage

Universal model classes and strategies

Combining machine learning with theory from mathematical finace allows to
conciliate both sides - modeling as close as possible to high dimensional data

while obeying well established principles.
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Introduction

Machine learning ingredients
What are the ingredients to achieve this?

1 Highly over parameterized and/or randomly initialized universal model
classes serving as regression bases. Examples include

I (random) signature to approximate paths functionals;
I artificial neural networks to approximate functions (also on infinite

spaces);
I kernel methods, etc.

2 Optimization criterion coming with a
I loss function taylored to the problem.

3 Algorithm used for training, typically
I (stochastic) gradient type algorithms;
I linear regression methods (if the regression basis is linear);
I tools from convex (quadratic) optimization (if the problem allows for

such a formulation).
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Introduction

Focusing on signature

We focus here on signature of some underlying stochastic process, used as
linear regression basis for path functionals allowing to build

1 universal strategies for optimal control problems; control problems in
finance comprise portfolio optimization, hedging, optimal execution,
optimal stopping, etc.

2 universal model classes of dynamic processes, being able to
approximate classical financial models.

The optimization criteria and loss functions depend on the problem and
include

I maximizing expected utility;
I minimizing a risk measure;
I maximizing over stopping times e.g. for pricing American options;
I minimizing certain distances to time series and option price data
⇒ calibration functionals.

As the regression basis is linear, many problems reduce to linear regression
or convex quadratic optimization problems.
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Introduction

Themes of this lecture

Part I Introduction to the theory of signature
Signature of continuous bounded variation paths and the Lie
group structures;
Continuous rough paths, continuous semimartingales as
continuous rough paths and their signature;
Universal approximation property of linear functions of the
signature in appropriate topologies on path space.

Part II Signature methods in stochastic portfolio theory
Signature-type portfolios,
Optimization tasks and approximation results;
Numerical results on simulated and real market data.
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Part III An affine and polynomial perspective to signature based models
An introduction to affine and polynomial processes
Signature based models as affine and polynomial processes

Part IV Signature based asset price models for the joint calibration
problem to SPX and VIX options

Theoretical model ingredients and pricing of VIX and SPX
options
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Lévy driven signature based asset price models;
Signature jump diffusions as affine and polynomial processes.

Christa Cuchiero (Vienna) Signatures in finance January 2024 6 / 61



Part I

Introduction to the theory of signature

partly based on Chapter 7 of “Multidimensional stochastic processes as
rough paths - Theory and Applications” by Friz & Victoir (2010)

Christa Cuchiero (Vienna) Signatures in finance January 2024 7 / 61



Signature for continuous bounded variation paths

Continuous paths of bounded variation

Let T > 0 and let D = {0 = t0 < t1 < · · · < tk = T} denote a partition of
[0,T ] and

∑
ti∈D the summation over all points in D.

We define the 1-variation of a path X ∈ C([0,T ],Rd ) by

‖X‖1−var := sup
D⊂[0,T ]

(∑
ti∈D
|Xti − Xti+1 |Rd

)
,

where | · |Rd denotes the Euclidian distance, i.e. |a|Rd =
√∑d

i=1(ai )2 for
a ∈ Rd .
We often write Xs,t for the increment Xt − Xs , so that we can also write
‖X‖1−var = supD⊂[0,T ](

∑
ti∈D |Xti ,ti+1 |Rd ).

If ‖X‖1−var <∞, we say that X is of bounded variation or of finite (1-)
variation on [0,T ].
The space of continuous paths of finite (1)-variation on [0,T ] with values in
Rd is denoted by C 1−var ([0,T ],Rd ).
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Signature for continuous bounded variation paths

Iterated integrals for continuous bounded variation paths

Definition
Let X : [0,T ]→ Rd be a continuous path of bounded variation. Moreover, for
n ∈ N let I = (i1, . . . , in) be a multi-index with entries in {1, . . . , d}.

For
0 ≤ s < t ≤ T , define the n-th iterated integrals of the path segment X[s,t] as

X(n)
s,t;I :=

∫ t

s

∫ un

s
· · ·
∫ u2

s
dX i1

u1
· · · dX in

un
∈ R

and denote by X(n)
s,t ∈ (Rd )⊗n ∼= Rdn the collection of such integrals for

multi-indices of length n. Then

Xs,t = (1,X(1)
s,t , . . . ,X

(n)
s,t , . . .)

is called signature of the path segment X[s,t] and XN
s,t denotes the step-N

signature, i.e. the signature truncated at level N.
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Signature for continuous bounded variation paths

Understanding the iterated integrals - simplest example

Consider the one-dimensional situation d = 1. In this case (R1)⊗n ∼= R.

We now compute the signature of the path t 7→ Xt = t.

Then we obtain via induction

X(1)
s,t =

∫ t

s
du = t − s

X(2)
s,t =

∫ t

s

∫ u2

s
du1du2 =

∫ t

s
(u2 − s)du2 = (t − s)2

2 .

...

X(n)
s,t =

∫ t

s
(
∫ un

s
· · ·
∫ u2

s
du1 · · · dun−1)dun

=
∫ t

s

(un − s)n−1

(n − 1)! dun = (t − s)n

n! .
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Signature for continuous bounded variation paths

Understanding the iterated integrals - 1d

Consider again the one-dimensional situation d = 1 with X a general
continous finite variation path.
Then we obtain again via induction

X(1)
s,t =

∫ t

s
dXu = Xt − Xs = Xs,t

X(2)
s,t =

∫ t

s

∫ u2

s
dXu1 dXu2 =

∫ t

s
(Xu2 − Xs)dXu2

= 1
2 (X 2

t − X 2
s )− Xs(Xt − Xs) = (Xt − Xs)2

2 .

...

X (n)
s,t =

∫ t

s

∫ u2

s
· · ·
∫ un

s
dXu1 · · · dXun =

∫ t

s
(
∫ u2

s
· · ·
∫ un

s
dXu1 · · · dXun−1 )dXun

=
∫ t

s

(Xun − Xs)n−1

(n − 1)! dXun = (Xt − Xs)n

(n)! .
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Signature for continuous bounded variation paths

Understanding the iterated integrals - 1d

This is nothing else than the polynomials used in the Taylor
expansion.

By the Taylor formula, a sufficiently regular function g(Xt) can be
approximated as a linear function in

Xn
s,t = (1,X(1)

s,t , . . . ,X
(n)
s,t ) =

(
1,Xt − Xs , . . . ,

(Xt − Xs)n

(n)!

)
,

where the i-th coefficient is given by the i-th derivative g (i)(Xs).

It is therefore not surprising that the signature serves also more
generally as a linear regression basis (on path space).
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Signature for continuous bounded variation paths

Understanding the iterated integrals - 2d

Consider now d = 2, for simplicity only up to order N = 2.

Then we get

X2
s,t =

(
1,
(∫ t

s dX 1
u∫ t

s dX 2
u

)
,

(∫ t
s
∫ u2

s dX 1
u1

dX 1
u2

∫ t
s
∫ u2

s dX 1
u1

dX 2
u2∫ t

s
∫ u2

s dX 2
u1

dX 1
u2

∫ t
s
∫ u2

s dX 2
u1

dX 2
u2

))
.

X2
s,t thus takes values in R⊕ R2 ⊕ R2×2.

For general d ∈ N and N ∈ N the step-N signature takes values in⊕N
n=0(Rd )⊗n.
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Tensor algebras

The extended and truncated tensor algebra

The signature takes values in the extended tensor algebra over Rd defined by

T ((Rd )) :=
∞∏

n=0
(Rd )⊗n,

with the convention (Rd )⊗0 := R.
Denoting elements of the extended tensor in “blackboard bold face”,
e.g. a = (a(n))∞n=0 ∈ T ((Rd )), T ((Rd )) can also be represented as

T ((Rd )) = {a = (a(0), a(1), . . . , a(n), . . . )|a(n) ∈ (Rd )⊗n for all n ∈ N},

The step-N signature takes values in the truncated tensor algebra, defined by

T N(Rd ) :=
N⊕

n=0
(Rd )⊗n.

Elements of T N(Rd ) are denoted in bold face, i.e. a = (a(n))N
n=0.

Elements in T ((Rd )) (and T N(Rd )) can also be written as formal sums, i.e.
a =

∑∞
n=0 a

(n) or a =
∑N

n=0 a
(n).
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Tensor algebras

Canonical basis elements

Let I = (i1, . . . , in) be a multi-index with entries in {1, . . . , d}. The
collection of all multi-indices of length n is denoted by In. We use the
notations,

|I| := n, S(I) := i1 + i2 + · · ·+ in.

Denoting by ε1, . . . , εd the canonical basis of Rd , we use the notations,

εI := εi1 ⊗ εi2 ⊗ · · · ⊗ εin .

Observe that (εI)I is the canonical orthonormal basis of (Rd )⊗n.

Denoting by ε∅ the basis element of (Rd )⊗0 we also set |∅| := 0.
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Tensor algebras

Some notation and linear functionals

Let πn : T ((Rd ))→ (Rd )⊗n be the map such that for a ∈ T ((Rd )),
πn(a) = a(n), and π≤N : T ((Rd ))→ T N(Rd ) be such that for a ∈ T ((Rd )),
π≤N(a) = a = (a(n))N

n=0.

Moreover, we introduce the symmetric and antisymmetric parts of
a(2) ∈ (Rd )⊗2:

Sym(a(2)) = 1
2 (a(2) + a(2)T ), Anti(a(2)) = 1

2 (a(2) − a(2)T ),

where, a(2)T denotes the transpose of a(2).

Given a ∈ T ((Rd )), we write aI := 〈εI , a〉.

We then define the following set

L := span{a 7→ aI : |I| ≥ 0},

and call elements of L linear functionals on T ((Rd )).
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Tensor algebras

Tensor multiplication

We equip T ((Rd )) and T N(Rd ) with the standard addition +, scalar
multiplication and tensor multiplication ⊗. In the case of T N(Rd ) it is
truncated at level N.
For a(n) =

∑
I∈In

aIεI ∈ (Rd )⊗n and b(k) =
∑

J∈Ik
bJεJ ∈ (Rd )⊗k , the

tensor multiplication a(n) ⊗ b(k) ∈ (Rd )⊗(n+k) is defined as follows

a(n) ⊗ b(k) =
∑

I∈In,J∈Ik

aIbJ (εI ⊗ εJ ).

For a,b ∈ T N(Rd ), we then have

a⊗ b =
∑

n+k≤N
a(n) ⊗ b(k),

which is equivalent to

πm(a⊗ b) =
m∑

i=0
a(m−i) ⊗ b(i), ∀m ∈ {0, 1, . . . ,N}.
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Tensor algebras

Algebra structure of T N(Rd)
It is thus straightforward to verify the following proposition.

Proposition
The vector space (T N(Rd ),+, ·) becomes an associative algebra under ⊗ with
neutral element

1 := ε∅ = (1, 0, . . . , 0) ∈ T N(Rd ).

Let us now define a norm on T N(Rd ). For any a ∈ T N(Rd ), we set
|a|T N (Rd ) := max

n=0,...,N
|a(n)|(Rd )⊗n ,

where for a(n) =
∑

I∈In
aIεI

|a(n)|(Rd )⊗n =
√∑

I∈In

|aI |2.

We denote by ρ the relative induced distance, i.e.
ρ(a,b) := max

n=0,...,N
|a(n) − b(n)|(Rd )⊗n , a,b ∈ T N(Rd ).
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Basic properties of the signature

The signature ODE
Given a continuous path of bounded variation X : [0,T ]→ Rd and a fixed
s ∈ [0,T ), then almost by definition, the path t 7→ XN

s,t satisfies an ODE on
T N(Rd ) driven by X .

Proposition
Let X : [0,T ]→ Rd be a continuous path of bounded variation, and let
s ∈ [0,T ) be fixed. Then

dXN
s,t = XN

s,t ⊗ dXt ,

XN
s,s = 1.

Remark: If we define the linear vector fields U i : T N(Rd )→ T N(Rd ) by
g 7→ g ⊗ εi , then we can rewrite the above ODE as

dXN
s,t =

d∑
i=1

U i (XN
s,t)dX i

t =
d∑

i=1
XN

s,t ⊗ εi dX i
t .
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Basic properties of the signature

Proof
Consider for n ≥ 1 the nth-level of the signature given by∫ t

s

∫ un

s
· · ·
∫ u2

s
dXu1 ⊗ · · · ⊗ dXun

=
∫ t

s

(∫ un

s
· · ·
∫ u2

s
dXu1 ⊗ · · · dXun−1

)
⊗ dXun

=
∫ t

s
πn−1(XN

s,u)⊗ dXu.

We thus have
XN

s,t = 1 +
∫ t

s
XN

s,u ⊗ dXu.

Remark: A similar statement holds true on T ((Rd )), i.e. the signature satisfies

dXs,t = Xs,t ⊗ dXt ,

Xs,s = 1.
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Basic properties of the signature

Signature under reparametrizations

Proposition
Let X : [0,T ]→ Rd be a continuous path of bounded variation,
ϕ : [0,T ]→ [T1,T2] a non-decreasing surjection, and write X ϕ

t := Xϕ(t)
for the reparametrization of X under ϕ. Then, for all s, t ∈ [0,T ],

XN
ϕ(s),ϕ(t) = Xϕ,N

s,t .

Proof: This is a simple consequence of ODE properties.
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Basic properties of the signature

Chen’s theorem

The following theorem shows how the signature of concatenated paths can be
computed.

Theorem
Let X : [0,T ]→ Rd be a continuous path of bounded variation and
0 ≤ s < t < u ≤ T . Then

XN
s,u = XN

s,t ⊗ XN
t,u.

This is called Chen’s relation.

Proof

We prove this by induction on N.

For N = 0, the equality is just 1 = 1⊗ 1 = 1.

Assume that it holds for N and all s < t < u. We now prove that it holds
for N + 1.
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Basic properties of the signature

Proof of Chen’s theorem (cont.)

First observe that in T N+1(Rd ),

XN+1
s,u = 1 +

∫ u

s
XN+1

s,r ⊗ dXr = 1 +
∫ u

s
XN

s,r ⊗ dXr .

due to the truncation up to level N + 1.
Similarly

XN+1
s,t ⊗

∫ u

t
XN

s,r ⊗ dXr = XN
s,t ⊗

∫ u

t
XN

s,r ⊗ dXr .

Hence, using the induction hyptothesis, splitting XN
s,r = XN

s,t ⊗ XN
t,r when

s < t < r < u, we get

XN+1
s,u = 1 +

∫ u

s
XN

s,r ⊗ dXr = 1 +
∫ t

s
XN

s,r ⊗ dXr +
∫ u

t
XN

s,t ⊗ XN
t,r ⊗ dXr

= XN+1
s,t + XN+1

s,t ⊗
∫ u

t
XN

t,r ⊗ dXr = XN+1
s,t ⊗ (1 + (XN+1

t,u − 1))

= XN+1
s,t ⊗ XN+1

t,u .
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Basic properties of the signature

Geometric properties

Consider the example of the step-2 signature with

X(2)
s,t,(i,j) =

∫ t

s

∫ u2

s
dX i

u1
dX j

u2
.

Then the product rule d(X i X j) = X i dX j + X jdX i implies that

Sym(X(2)
s,t )i,j = Sym(X(2)

s,t )j,i = 1
2

(∫ t

s
(X i

u − X i
s )dX j

u +
∫ t

s
(X j

u − X j
s )dX i

u

)
= 1

2 (X i
t − X i

s )(X j
t − X j

s ) = 1
2 X i

t,sX j
t,s ,

i.e. for the whole matrix

Sym(X(2)
s,t ) = 1

2 Xs,t ⊗ Xs,t .

This means that the symmetric part of X(2) is fully determined by X = X(1).
To get rid of this redundancy one could only consider Anti(X(2)).
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Basic properties of the signature

Geometric properties

Indeed, Anti(X(2)) has an appealing geometric interpretation.

By definition Anti(X(2)
s,t )i,j = 1

2

(∫ t
s (X i

u − X i
s )dX j

u −
∫ t

s (X j
u − X j

s )dX i
u

)
.

This is the area (with orientation taken into account) between the curve
{(X i

u,X j
u) : u ∈ [s, t]} and the chord from (X i

s ,X j
s ) to (X i

t ,X
j
t ).

These properties from first order calculus imply that T N(Rd ) is actually too
big as state space for the signature and that we have to consider a smaller
space which has nice geometric properties.
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Lie group and Lie algebra structures

The Lie group T N
1 (Rd)

Recall that a Lie group is by definition a group which is also a smooth
manifold and in which the group operations are smooth maps.

Set
T N

c (Rd ) := {a ∈ T N(Rd ) : a∅ = c}.

Proposition
T N

1 (Rd ) is a Lie group under the tensor multiplication ⊗ (truncated to
level N).
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Lie group and Lie algebra structures

The Lie group T N
1 (Rd)

Proof of the above proposition
I For any g,h ∈ T N

1 (Rd ), we have g ⊗ h ∈ T N
1 (Rd ).

I As T N(Rd ) is associative with respect to ⊗, this is inheritated by
T N

1 (Rd ).
I The neutral element with respect to ⊗ is 1 = ε∅.
I Moreover, for any a = (1 + b) ∈ T N

1 (Rd ), with b ∈ T N
0 (Rd ), its

inverse is given by

a−1 =
N∑

k=0
(−1)kb⊗k .

For N = 2 we have for example
a−1 = (1,−b(1),−b(2) + b(1) ⊗ b(1)).

I T N
1 (Rd ) is an affine-linear subspace of TN(Rd ), hence a smooth

manifold. Let us remark that the manifold topology T N
1 (Rd ) is induced

by the metric ρ.
I The group operations ⊗ and −1 are smooth maps.
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Lie group and Lie algebra structures

The Lie algebra T N
0 (Rd)

The vector space T N
0 (Rd ) becomes itself an algebra under ⊗.

As in every algebra, the commutator, in our case

(g,h) 7→ [g,h] := g ⊗ h− h⊗ g ∈ T N
0 (Rd )

for g,h ∈ T N(Rd ) , defines a bilinear map which
I is anticommutative, i.e. [g,h] = −[h, g] and
I satisfies the Jacobi identity, i.e.

[g, [h, k]] + [h, [k, g]] + [k, [g,h]] = 0

Recalling that a vector space V equipped with a bilinear, anticommutative
map [·, ·] : V × V 7→ V which satisfies the Jacobi identity is called a Lie
algebra (the map [·, ·] is called the Lie bracket), we get ...

Proposition
(T N

0 (Rd ),+, ·, [·, ·]) is a Lie algebra.
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Lie group and Lie algebra structures

The exponential and logarithm maps

To introduce a further Lie group (via the exponential image of a sub
Lie-algebra of T N

0 (Rd )) we shall need the notion of the exponential and
logarithm maps defined as follows:

exp(N) : T N
0 (Rd )→ T N

1 (Rd ) log(N) : T N
1 (Rd )→ T N

0 (Rd )

b 7→ 1 +
N∑

k=1

b⊗k

k! , 1 + b 7→
N∑

k=1
(−1)k+1 b⊗k

k! .

For example in the case of N = 2 the logarithm is given by

log(2)(1 + b) = (0,b(1),b(2) − 1
2b(1) ⊗ b(1)).

A direct calculation shows that exp(N)(log(N)(1 + b)) = b, and
log(N)(exp(N)(b)) = b for all b ∈ T N

0 (Rd ) .
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Lie group and Lie algebra structures

The exponential and logarithm maps - Example

Note that the definitions of exp(N) and log(N) are precisely via their classical
power series with usual powers replaced by “tensor powers” and the infinite
sums replaced by finite ones up to level N .

Fix some a ∈ Rd and consider the path [0, 1] 3 t 7→ Xt = at. Then its
step-N signature computes as follows

XN
0,1 := 1 +

N∑
n=1

∫ 1

0

∫ un

0
· · ·
∫ u2

0
dXu1 ⊗ · · · ⊗ dXun

1 +
N∑

n=1
a⊗n

∫ 1

0

∫ un

0
· · ·
∫ u2

0
du1 · · · dun

1 +
N∑

n=1

a⊗n

n! = exp(N)(a),

where a = (0, a, 0, . . .) ∈ T N
0 .
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Lie group and Lie algebra structures

The free step-N nilpotent Lie algebra and Lie group
Definition
Define gN(Rd ) ⊂ T N

0 (Rd ) as the smallest sub-Lie algebra which contains
π1(T N

0 (Rd )) = Rd . That is,

gN(Rd ) = Rd ⊕ [Rd ,Rd ]⊕ · · · ⊕ [Rd , [. . . , [Rd ,Rd ]].

We call it the free step-N nilpotent Lie algebra.

By the so-called Campbell-Baker-Hausdorff formula (Theorem 7.26 in Friz &
Victoir)

log(exp(g)⊗ exp(h)) ∈ gN(Rd ), g,h ∈ gN(Rd ).
It follows that exp(N)(gN(Rd )) is a subgroup of T N

1 (Rd ) with respect to ⊗.

Definition
The image of gN(Rd ) through the exponential map is a subgroup of T N

1 (Rd )
with respect to ⊗. It is called free step-N nilpotent Lie group and is denoted by

exp(N)(gN(Rd )).
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Lie group and Lie algebra structures

Chow’s theorem

As was seen in the above example, the step-N signature of the path
t 7→ Xt = at for a ∈ Rd is precisely exp(N)(a) ∈ T N

1 (Rd ).

A piecewise linear path, precisely X : [0,m]→ Rd with
Xi − Xi−1 = Xi−1,i = ai ∈ Rd , i = 1, . . . ,m for m ∈ N and linear between
these integer times, is just the concatenation of such paths and by Chen’s
theorem its step-N signature is of the form

exp(N)(a1)⊗ · · · ⊗ exp(N)(am) ∈ T N
1 (Rd )

with ai = (0, ai , 0, . . .) and i = 1, . . . ,m.

Conversely, any element in exp(N)(gN(Rd )) arises as step-N signature of a
piecewise linear path of X of the above form (If one prefers, the
reparametrization X̃t = Xtm defines a piecewise linear path on [0, 1] with
identical signature).
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Lie group and Lie algebra structures

Chow’s theorem
Theorem
Let g ∈ exp(gN(Rd )) . Then, there exist a1, . . . , am ∈ Rd such that

g = exp(N)(a1)⊗ · · · ⊗ exp(N)(am).

Equivalently, there exists a piecewise linear path X : [0, 1]→ Rd with signature g,
i.e. g = XN

0,1.

This implies that
exp(gN(Rd )) = 〈exp(Rd )〉,

where 〈exp(Rd )〉 = {
⊗m

i=1 exp(ai ),m ≥ 1, ai = (0, ai , 0, . . .), ai ∈ Rd .}
Note that since gN(Rd ) is closed in T N

0 (Rd ), exp(gN(Rd )) is also closed in
T N

1 (Rd ).
Therefore by approximating continuous bounded variation paths by piecewise
linear ones it follows that

exp(gN(Rd )) = {XN
0,1 | signatures of cont. finite variation paths X} =: GN(Rd ).
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Lie group and Lie algebra structures

Towards the Carnot-Caratheodory norm

Chow’s theorem tells that for all elements g ∈ GN(Rd ) , there exists a
continuous path X of finite length such that XN

0,1 = g.

One may ask for the shortest path (and its length) which has the correct
signature.

For instance, given a > 0, we can ask for the shortest path with step-2
signature

exp(2)
(

0 +
(

0
0

)
+
(

0 a
−a 0

))
= (1,

(
0
0

)
,

(
0 a
−a 0

)
) ∈ G2(R2),

or, equivalently, the shortest path in R2 which ends where it starts and
wipes out area a.

As it is well known the shortest such path is given by a circle (with area a)
whose length is given by 2

√
πa.
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Lie group and Lie algebra structures

The Carnot-Caratheodory norm

Theorem
For every g ∈ GN(Rd ) , the so-called “Carnot–Caratheodory norm”

‖g‖CC := inf{
∫ 1

0
|dXu| : X ∈ C 1−var ([0, 1],Rd ) and XN

0,1 = g}

is finite and achieved at some minimizing path X∗ , i.e. ‖g‖CC =
∫ 1

0 |dX∗u | and
(X∗N)0,1 = g.

Remark
By invariance of length and signatures under reparametrizaion, X∗ need not be
defined on [0, 1] but may be defined for any interval [s, t] with non-empty interior.
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Lie group and Lie algebra structures

Carnot-Caratheodory metric

The Carnot-Caratheodory norm ‖ · ‖CC induces a metric via

dCC (a,h) := ‖a−1 ⊗ h‖CC , a,h ∈ GN(Rd ).

We shall most of the time equip GN(Rd ) with dCC , making it a metric space.

The topology on GN(Rd ) induced by Carnot–Caratheodory distance
coincides with the original topology of GN(Rd ) induced by ρ.
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The shuffle product

Polynomials of the signature are linear functions

Consider as example the following identity

〈ε(i,i),Xt〉 =
∫ t

0

(∫ s

0
dX i

r

)
dX i

s =
∫ t

0
(X i

s − X i
0)dX i

s = 1
2 (X i

t − X i
0)2

= 1
2 〈εi ,Xt〉2.

This shows that the quadratic expression on the right hand side has a linear
representation.

This property generalizes to every polynomial function. For the precise
statement we first need to introduce a very important operation on the
space of multi-indices, namely the shuffle product.
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The shuffle product

The shuffle product
For a multi-index I denote by I ′ = (i1, . . . , in−1).

Definition
For every two multi-indices I := (i1, . . . , in) and J := (j1, . . . , jm) the shuffle
product is defined recursively as

εI � εJ := (εI′ � εJ )⊗ εin + (εI � εJ′)⊗ εjm ,

with εI � ε∅ := ε∅ � eI = eI . It extends to a,b ∈ T (Rd ) as

a� b =
∑
|I|,|J|≥0

aIbJ (εI � εJ ).

Examples:
ε1 � ε2 = ε(∅,1) � ε(∅,2) = ε(2,1) + ε(1,2)

ε1 � ε(2,3) = ε(2,3,1) + ε(1,2,3) + ε(2,1,3)

ε(1,2)� ε(3,4) = ε(3,4,1,2) + ε(1,3,4,2) + ε(3,1,4,2) + ε(1,3,2,4) + ε(3,1,2,4) + ε(1,2,3,4)
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The shuffle product

The shuffle product property for the signature

Proposition
Let X be continous path of bounded variation and I, J two multi-indices. Then

〈εI ,Xs,t〉〈εJ ,Xs,t〉 = 〈εI � εJ ,Xs,t〉.

Proof: The result follows by induction using integration by parts.

Fix the multi-index I and let J = ∅. Then

〈εI ,Xs,t〉〈ε∅,Xs,t〉 = 〈εI ,Xs,t〉 = 〈εI � ε∅,Xs,t〉

Now suppose that it holds true for I and J ′ as well as for I ′ and J .
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The shuffle product

The shuffle product property for the signature - Proof
continued

Then by the integration by parts formula

〈εI ,Xs,t〉〈εJ ,Xs,t〉 =
∫ t

s
〈εI′ ,Xs,u〉dX in

u

∫ t

s
〈εJ′ ,Xs,u〉dX jm

u

=
∫ t

s

∫ u

s
〈εI′ ,Xs,r 〉dX in

r︸ ︷︷ ︸
〈εI ,Xs,u〉

〈εJ′ ,Xs,u〉dX jm
u

+
∫ t

s

∫ u

s
〈εJ′ ,Xs,r 〉dX jm

r︸ ︷︷ ︸
〈εJ ,Xs,u〉

〈εI′ ,Xs,u〉dX in
u

=
∫ t

s
〈εI � εJ′ ,Xs,u〉dX jm

u +
∫ t

s
〈εJ � εI′ ,Xs,u〉dX in

u

= 〈εI � εJ ,Xs,t〉.
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The shuffle product

Group-like elements

We define the set of group-like elements as follows

G((Rd )) := {a ∈ T ((Rd )) | π≤N(a) ∈ GN(Rd ) for all N}.

Let a ∈ G((Rd )) be a group-like element and I ∈ {1, . . . , d}n,
J ∈ {1, . . . , d}m two multi-indices.

Then, we have as a consequence of Chow’s theorem that

〈εI , a〉〈εJ , a〉 = 〈εI � εJ , a〉.
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P-variation norms

p-variation norms

Let (E , d) be a metric space equipped with metric d .
Let D = {0 = t0 < t1 < · · · < tk = T} denote again a partition of [0,T ].
For p > 0, we define the p-variation of a path X ∈ C([0,T ],E ) by

‖X‖p−var := sup
D⊂[0,T ]

(∑
ti∈D

d(Xti ,Xti+1 )p

) 1
p

.

We denote the space of all continuous paths of finite p-variation by
Cp([0,T ],E ).
As a special case of (E , d) we consider (GN(Rd ), dCC ).
For X ∈ C([0,T ],GN(Rd )), we denote the group path increment via
Xs,t := X−1

s ⊗ Xt . Consistently with the notation previously used we set

‖X‖p−var := sup
D⊂[0,T ]

(∑
ti∈D

dCC (Xti ,Xti+1 )p

) 1
p

= sup
D⊂[0,T ]

(∑
ti∈D
‖Xti ,ti+1‖

p
CC

) 1
p

.
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P-variation norms

p-variation norms for two-parameter functions

Additionally, we also consider two-parameter functions A : ∆T → V , where
(V , ‖ · ‖) is a normed vector space and ∆T := {(s, t) ∈ [0,T ]2 | s ≤ t}.

In this case the p-variation is defined as follows

‖A‖p−var := sup
D⊂[0,T ]

(∑
ti∈D
‖Ati ,ti+1‖p

) 1
p

.

We stress that if X is a path, then Xs,t denotes the increment Xt − Xs .
Instead, if A is a two-parameter function defined on ∆T , As,t denotes the
evaluation of A at the pair of times (s, t) ∈ ∆T .
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Rough paths

Rough paths

Definition
Let p ∈ [2, 3) and ∆T := {(s, t) ∈ [0,T ]2 | s ≤ t}. A pair X = (X ,X(2)) is called
p-rough path over Rd , in symbols X ∈ Cp([0,T ],Rd ), if

X : [0,T ]→ Rd , X(2) : ∆T → (Rd )⊗2

satisfy:
1 The map [0,T ] 3 t 7→ (X0,t ,X(2)

0,t ) ∈ Rd ⊕ (Rd )⊗2 is continuous.
2 Chen’s relation holds:

X(2)
s,u = X(2)

s,t + X(2)
t,u + Xs,t ⊗ Xt,u for 0 ≤ s < t < u ≤ T .

3 X = (X ,X(2)) is of finite p-variation in the rough path sense:

|||X|||p−var := ‖X‖p−var + ‖X(2)‖1/2
p/2−var <∞.
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Rough paths

Some remarks

‖X‖p−var is the p variation norm for a path with values in Rd while
‖X(2)‖p/2−var is the p variation distance for a two-parameter function.
Note that Chen’s relation is exactly the same as we got in the signature
equation (up to level 2). Indeed, it was given by

X2
s,u = X2

s,t ⊗ X2
t,u = (1,Xs,t ,X(2)

s,t )⊗ (1,Xt,u,X(2)
t,u),

which yields for the second level X(2)
s,u = X(2)

s,t + X(2)
t,u + Xs,t ⊗ Xt,u.

Consider the Lie group valued path t 7→ Xt := (1,X0,t ,X(2)
0,t ) ∈ T 2

1 (Rd ).
Define as above the path increments via

Xs,t := X−1
s ⊗ Xt = (1,−X0,s ,−X(2)

0,s + X⊗2
0,s )⊗ (1,X0,t ,X(2)

0,t ).

and observe that Xs,t = (1,Xs,t ,X(2)
s,t ) where X(2)

s,t is given by

X(2)
s,t = X(2)

0,t − X(2)
0,s − X0,s ⊗ Xs,t ,

which is in line with Chen’s relation.
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Rough paths

Some remarks and weakly geometric rough paths

Notice that Xt = X0,t , and for 0 ≤ s < t < u ≤ 1 Xs,u = Xs,t ⊗Xt,u.

Hence, this definition of the path increments in T 2
1 (Rd ) allows to get

intrinsically Chen’s relation on the level of the group valued path.

To mimick the first order calculus, the set of weakly geometric rough
paths is introduced as follows:

Definition
Let p ∈ [2, 3) and X ∈ Cp([0,T ],Rd ).
X is said to be a weakly geometric p-rough path over Rd , in symbols
X ∈ Cp

g ([0,T ],Rd ), if for all 0 ≤ s < t ≤ 1

Sym(X(2)
s,t ) = 1

2 Xs,t ⊗ Xs,t .
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Rough paths

Relation to geometric rough path

There is also the notion of geometric p-rough path, which are precisely
limits with respect to the p-variation distance of truncated signatures of
order 2 of smooth paths, i.e. a sequence of (X2,k)k∈N steming from a
smooth path X .

The set of geometric paths is strictly smaller than weakly geometric paths.
(The situation is similar to the classical situation of the set of Cp functions
being strictly larger than the closure of smooth functions under the
p-variation norm).
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Rough paths

Weakly geometric rough paths as G2(Rd) valued paths

For a weakly geometric rough path X, it can be deduced that the path
t 7→ Xt = (1,X0,t ,X(2)

0,t ) ∈ T 2
1 (Rd ) actually takes values in the

G2(Rd ) ⊂ T 2
1 (Rd ).

Indeed, recall that G2(Rd ) = exp(2)(g2(Rd )), and g2(Rd ) = Rd ⊕ [Rd ,Rd ],
with [Rd ,Rd ] := span{εi ⊗ εj − εj ⊗ εj , 1 ≤ i , j ≤ d}, where {εi , 1 ≤ i ≤ d}
denotes the standard basis of Rd . Thus, [Rd ,Rd ] is nothing but the space of
antisymmetric d × d matrices, and we have that

Xt = (1,X0,t ,
1
2 X⊗2

0,t + Anti(X(2)
0,t )) = exp(2)(X0,t ,Anti(X(2)

0,t )) ∈ G2(Rd ).

Finally the analytic condition on the p-variation in the definition of a rough
path can be equivalently expressed by means of the CC distance dCC on
G2(Rd ).
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Rough paths

Weakly geometric rough paths as G2(Rd) valued paths

After the previous remarks, we can adopt a Lie group valued-paths point of
view.

Recall that T 1
1 (Rd ) = G1(Rd ) = {1} ⊕ Rd .

Definition
Let p ∈ [1, 3). A continuous path X : [0,T ]→ G [p](Rd ) ⊂ T [p]

1 (Rd ) is said to be
a weakly geometric p-rough path over Rd if ‖X‖p−var <∞ with ‖ · ‖p−var defined
via the CC-distance.

Also for the Lie group valued point of view we denote the set of rough path by
Cp([0,T ),Rd ).
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Rough paths

Towards signature - Lyons lift

Theorem (Lyons (1998))
Let p ∈ [2, 3) and N 3 N > 2. A weakly geometric p-rough path
X : [0,T ]→ G2(Rd ) admits a unique extension to a path XN : [0,T ]→ GN(Rd ),
i.e. π≤2(XN) = X, such that

XN starts from 1 ∈ GN(Rd ),

it is of finite p-variation, with respect to the Carnot-Caratheodory metric
dCC on GN(Rd ).

Remark:

A proof can also be found in Friz & Victoir, Theorem 9.5.
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Rough paths

A rough differential equation for the Lyons’ lift

Theorem
Let p ∈ [2, 3), N 3 N > 2, and X : [0,T ]→ G2(Rd ) be a weakly geometric
p-rough path. The Lyon’s extension XN with values in GN(Rd ) satisfies the
following linear rough differential equation (RDE)

dXN
s,t = XN

s,t ⊗ dXt ,

XN
s,s = 1 ∈ GN(Rd ),

which reads in integral form as

XN
s,t = 1 +

∫ t

s
XN

s,u ⊗ dXu,

where the integral is understood as rough integral.

We refer to Friz & Victoir for the definition of the rough integral.
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Rough paths

Definition of the signature for a p-rough path

As a result the following definition of the signature of a weakly geometric
p-rough path follows without ambiguity.

Definition
Let p ∈ [2, 3) and X : [0,T ]→ G2(Rd ) be a weakly geometric p-rough
path. The signature of X, denoted by X, is the unique solution to the
RDE in the extended tensor algebra

dXs,t = Xs,t ⊗ dXt

Xs,s = (1, 0, 0, . . . ) ∈ T ((Rd )).
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Semimartingales

Semimartingales as rough paths

Continous semimartingales fit well into the theory of rough paths. Indeed, every
semimartingale admits a canonical lift which is a.s. a weakly geometric p-rough
path for any p ∈ (2, 3).

Proposition
Let p ∈ (2, 3) and X be a continuous Rd -valued semimartingale and [X ,X ]c its
(Rd )⊗2-valued continuous quadratic variation. Then,
X(ω) = (X (ω),X(2)(ω)) ∈ Cp

g ([0,T ],Rd ) a.s., where, for 0 ≤ s ≤ t ≤ T ,

X(2)
s,t :=

∫ t

s
Xs,r ⊗ dXr + 1

2 [X ,X ]cs,t =
∫ t

s
Xs,r ⊗ ◦dXr

and the first integral is understood in Itô’s sense and the second in Stratonovich
sense. The lift is called Stratonovich lift.
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Semimartingales

Signature Stratonovich SDE
Proposition
Let X be a continuous Rd -valued semimartingale and X its Stratonovich lift. It
holds that the above linear RDE for the signature coincides a.s. with the following
T ((Rd ))-valued Stratonovich SDE

dXs,t = Xs,t ⊗ ◦dXt

Xs,s = (1, 0, 0, . . . ) ∈ T ((Rd )).

The explicit solution of this SDE are simply the interated integrals in Stratonovich
sense, collected in the following T ((Rd )) (or rather G((Rd ))) valued object

Xs,t =1 +
∫ t

0
Xs,r ⊗ ◦dXr ,

which in coordinate form, for a mulit-index I = (i1, . . . , in), reads as

X(n)
s,t;I :=

∫ t

s

∫ un

s
· · ·
∫ u2

s
dX i1

u1
◦ · · · ◦ dX in

un
∈ R.
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Semimartingales

Signature of continuous Rd -valued semimartingales

Hence the signature of an Rd -valued continuous semimartingale X can be
defined via

Xs,t :=
(

1,
∫ t

s
◦dXs ,

∫ t

s

∫ u2

s
◦dXu1 ⊗ ◦dXu2 , . . . ,

· · ·
∫ t

s

∫ un

s
· · ·
∫ u2

s
◦dXu1 ⊗ · · · ⊗ ◦dXun , . . .

)
.
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Universal approximation theorem

Towards the universal approximation theorem (UAT)

Define the following set

Ĉp
g ([0,T ],Rd+1) :={X̂ = (X̂ , X̂(2)) ∈ Cp

g ([0,T ],Rd+1) |
the first component of X̂ is t}.

We adapt again the Lie group valued-paths point of view to this set. The
index of the first component corresponding to t is denoted by −1.
Consider Cp([0,T ],GN(Rd )) equipped with the p-variation norm defined via
the CC -metric defined above, i.e.

‖X̂‖p−var := sup
D⊂[0,T ]

(∑
ti∈D

dCC (X̂ti , X̂ti+1 )p

) 1
p

= sup
D⊂[0,T ]

(∑
ti∈D
‖X̂ti ,ti+1‖

p
CC

) 1
p

.

From this the following distance is deduced via

dp−var (X,Y) := sup
D⊂[0,T ]

(∑
ti∈D

dCC (Xti ,ti+1 ,Yti ,ti+1 )p

) 1
p

,
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Universal approximation theorem

Universal approximation theorem for continuous
functionals of weakly geometric rough paths

Theorem
Let K ⊂ Ĉp

g ([0,T ],Rd+1) be a subset which is compact and let f : K → R be
continuous, both with respect the above p-variation norm. For each X̂ ∈ K,
denote by X̂ its signature. Then, for every ε > 0 there exists a linear functional `
such that

sup
X̂[0,T ]∈K

|f (X̂[0,T ])− `(X̂0,T )| ≤ ε.

Remark: For a version for càdlàg rough paths we refer to C.C, F.Primavera and
S.Svaluto-Ferro, 2022.
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Universal approximation theorem

Proof

Apply the Stone-Weierstrass theorem to the set A given by
A := span{` : K → R ; X̂ 7→ 〈εI , X̂0,T 〉 : |I| ≥ 0}.

Therefore, we have to prove that A
1 ... is a linear subspace of continuous functions from K to R. This is a

consequence of the fact that the Lyons lift
(K , dp−var )→ (Cp([0,T ],GN(Rd+1)), dp−var ),

X̂ 7→ X̂N

is continuous for every N ≥ 3 (Friz-Victoir,2010, Corollary 9.11). As
the evaluation map X̂N 7→ X̂N

0,T is continuous as well, the claim follows.

2 ... is a sub-algebra containing a non-zero constant function. This is
true by the shuffle-property, as X̂N

0,T is a group like element.
3 ... separates points, which follows from the fact that for a continuous

function f : [0, 1]→ R with f (0) = 0 and
∫ 1

0 f (s)sn ds = 0 for all
n ∈ N, it holds that f ≡ 0.
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Universal approximation theorem

Proof of point separation

More precisely, let us consider X̂, Ŷ ∈ K , with X̂ 6= Ŷ.

Assume by contradiction that their signature is the same.

Now note that
∫ T

0 X̂ i
s

sn

n! ds is a linear function of X̂0,T . Indeed it is given by∫ T

0
X̂ i

s
sn

n! ds = 〈(εi � ε⊗n
−1)⊗ ε−1, X̂0,T 〉.

The assumption that the signature of X̂, Ŷ is the same implies∫ T

0
X̂ i

s
sn

n! ds =
∫ T

0
Ŷ i

s
sn

n! ds,

hence X̂ = Ŷ by the statement on the previous slide.

A simlar argument yields X̂(2) = Ŷ(2) and thus X̂ = Ŷ (for details see C.C,
F.Primavera and S.Svaluto-Ferro, 2022). Hence a contradiction.
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Universal approximation theorem

Remarks

The above proof shows that the inclusion of time allows to easily
show point separation and to avoid so-called tree-like equivalences.

One essential step is that the Lyons lift is a continuous map from a
compact set of rough path with respect to some topology. It works
also for the Hölder spaces.

For applications one crucial point which is often hard to satisfy is the
compactness requirement.

⇒ Universal approximation on weighted function spaces where the
growth of the functions is controlled by some admissible weight
function ψ such that one gets a global approximation result.
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Universal approximation theorem

Weighted UAT for linear functions of the signature

Without introducing all relevant notation, for the weighted function space

Bψ(Ĉα([0,T ]; Gb1/αc(Rd+1)))

where Ĉα([0,T ]; Gb1/αc(Rd+1)) denotes α-Hölder continuous paths with values
in Gb1/αc(Rd+1)) one can prove the following global UAT.

Theorem (C.C., P. Schmocker, J. Teichmann (’23))
Let ψ = exp(‖ · ‖γCC ,α) for γ > b1/αc be the admissible weight function. The
linear span of the set

{
X̂ 7→ 〈εI , X̂T 〉 : I ∈ {0, ..., d}n, n ∈ N

}
is dense in

Bψ(Ĉα([0,T ]; Gb1/αc(Rd+1))), i.e. for every f ∈ Bψ(Ĉα([0,T ]; Gb1/αc(Rd+1)))
and ε > 0 there exists a linear function ` of the signature such that

sup
X̂[0,T ]∈Ĉα

∣∣∣f (X̂[0,T ])− `(X̂0,T )
∣∣∣

ψ(X̂[0,T ])
< ε.
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