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Part IV

Signature based asset price models for the joint calibration problem
to SPX and VIX options

• based on joint work with Guido Gazzani, Janka Möller and Sara Svaluto-Ferro
(https://arxiv.org/abs/2301.13235)

Signatures in finance Christa Cuchiero



Introduction VIX options with signatures SPX options and hedging Joint calibration of SPX and VIX options References

Outline

• Introduction

• VIX options with signature based models

• SPX options and hedging

• Joint calibration of SPX and VIX options

Signatures in finance Christa Cuchiero



Introduction VIX options with signatures SPX options and hedging Joint calibration of SPX and VIX options References

Signature based models

Highly parametric and overparametrized models gain in importance: instead of a few
parameters, the goal is rather to learn the model’s characteristics as a whole from data.

Relying on different universal approximation theorems yields different classes of
models. We consider here ...

⇒ Signature based models:
the model itself or its characteristics are parameterized as linear functions of the
signature of an underlying process, in the simplest case Brownian motion. Compare
e.g. with

• I. Perez Arribas, C. Salvi, L. Szpruch (’20) “Sig-SDEs for quatitative finance”

• C.C., G. Gazzani, S.Svaluto-Ferro (’22) “Signature-based models: theory and
calibration”

• E. Abi-Jaber and L.Gérard “ Signature stochastic volatility models: pricing and
hedging with Fourier”

Other recent applications of signature methods in finance: Akyildirim et al. (’22),
Bayer et al. (’21), Bühler et al. (’20), Kalsi et al., Ni et al. (’20)), Salvi et al. (’21),
etc.
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Joint calibration problem and modeling framework

Goal: Find a model which calibrates jointly to options written on SPX and VIX,
accurately and numerically efficiently.

• This is still regarded as the holy grail of volatility modeling, even though
significant progress has been made recently (see below in the literature overview).

• The challenge is, especially for short maturities, to reconcile the large negative
skew of SPX options’ implied volatilities with relatively lower implied volatilities
arising from the VIX options.

Modeling framework:

• Stochastic volatility model under a risk-neutral probability measure Q, to describe
the discounted dynamics of the SPX for t > 0:

dSt (`) = St (`)σS
t (`)dBt , with σS

t (`) := 〈`, X̂t〉,

i.e. the volatility σS
t is a linear map of the signature of a time-extended

d-dimensional semimartingale X . The semimartingale X is fixed and its
parameters are not trained, but can be considered as hyperparameters.

• The parameters ` have to be learned from option price data on SPX and VIX.
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Implications of this modeling framework

• The modeling framework can in some sense be seen as universal in the class of
continuous non-rough stochastic volatility models. It nests e.g. the recent work
by Abi Jaber et al. (2022b) (apart from their additional input curve).

• If X is additionally a polynomial process, then VIX can be computed analytically
via a matrix exponential.

• Defining Ẑ := (t,X ,B), then not only σS (`) but also log(S(`)) can be expressed

as a linear function of the signature of Ẑ .

• A Monte Carlo approach for option pricing, potentially with variance reduction, is
tractable since we can compute offline the signature samples of Ẑ .
⇒ The calibration task can be split into an offline sampling and a standard
optimization.

• We illustrate that the joint calibration problem can be solved in this framework
without jumps and rough volatility (compare also Guyon and Lekeufack (2022);
Abi Jaber et al. (2022b)).
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VIX options with signature based models
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The VIX Index

• The VIX is a popular measure of the market’s expected volatility of the SPX, calculated and
published by the Chicago Board Options Exchange (CBOE). It is given by

VIXT :=

√
E
[
−

2

∆
log

(
ST +∆

ST

)
|FT

]
,

where ∆ = 30 days and S = (St )t≥0 denotes the SPX.

• Recall that we consider the following model

dSt = Stσ
S
t dBt , (SPX)

where B = (Bt )t≥0 is a one-dimensional Brownian motion and σS = (σS
t )t≥0 the volatility

process. Define additionally the instantanous variance process V = (σS )2 and suppose that

E[
∫ T

0
Vt dt] <∞.

As well known, under the above model choice, VIXT can be expressed as follows.

Lemma

Let S = (St )t≥0 be a price process described by Equation (SPX). Then,

VIXT =

√
1

∆
E
[∫ T +∆

T

Vtdt|FT

]
.
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Modeling assumptions

Our modeling choices are as follows:

Assumption (on σS )

Fix n > 0 and consider
σ

S
t := `∅ +

∑
0<|I|≤n

`I 〈eI , X̂t〉, (vol)

where

• X = (X 1, . . . ,X d ) is a d-dimensional continuous semimartingale and X̂ its time-extension.
Denoting Z = (X ,B), then the correlation matrix between X and B is given by

ρij =
[Z i , Z j ]√
[Z i ]
√

[Z j ]
∈ [−1, 1],

for all i, j = 1, . . . , d + 1, where [·, ·] denotes the quadratic variation.

• ` := {`I ∈ R : |I | ≤ n} the collection of parameters of the model, i.e., ` ∈ R(d+1)n .

Alternative model formulation

Alternatively the volatility process can also be specified a

σ
S
t := `∅ +

∑
0<|I|≤n

`I 〈eI , X̂t−δ,t〉,

where X̂t−δ,t denotes the signature of X̂ between t − δ and t for some lag δ > 0. This yields
similar tractability features, e.g. in view of explicit formulas of the VIX.
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Modeling X as a polynomial diffusion

Assumption (on the underlying semimartingale X )

We assume that X is a d-dimensional polynomial diffusion process, i.e.

dXt = b(Xt )dt +
√

a(Xt )dWt , (poly-process)

where

• b, a are polynomials of order one and two, respectively.

• W = (Wt )t≥0 is a d-dimensional Brownian motion.

Theorem (C.C., G. Gazzani, J. Möller, S. Svaluto-Ferro)

Let (Xt )t≥0 be a polynomial diffusion process of form (poly-process). Then the truncated

signature (X̂n
t )t≥0 is also polynomial diffusion process. Moreover, let G ∈ R(d+1)n×(d+1)n be the

matrix representative of the infinitesimal generator of (X̂n
t )t≥0. Then for each t, x ≥ 0 it holds

E[vec(X̂n
t+x )|Ft ] = exp(xG>)vec(X̂n

t ),

where exp ( · ) denotes the matrix exponential.

The pool of processes X satisfying (poly-process) is rather large: correlated Brownian motions,
geometric ones, Ornstein-Uhlenbeck processes, CIR processes, Jacobi processes, all affine
processes,...
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Analytic expression for the VIX

Theorem (C.C., G. Gazzani, J. Möller, S. Svaluto-Ferro (’23))

Let S and σS satisfy (SPX) and (vol) with X being a polynomial diffusion process.
Then,

VIXT (`) =

√
1

∆
`>Q(T )`, (VIX-model)

where, for an injective labeling function L : In
d+1 → {1, . . . , (d + 1)n},

QL (I ),L (J)(T ) = E
[
〈(eI � eJ )⊗ e0, X̂T +∆〉|FT

]
− 〈(eI � eJ )⊗ e0, X̂T 〉

= vec((eI � eJ )⊗ e0)(e∆G> − Id) · vec(X̂2n+1
T ),

with G ∈ R(d+1)2n+1×(d+1)2n+1 being the matrix representative of the infinitesimal
generator of X̂2n+1

t .

The matrix Q(T ) admits a Cholesky decomposition such that Q(T ) = U(T )U(T )>,
whence

VIXT (`) =
1
√

∆
‖UT `‖
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Pricing of VIX options

• Note that VIX options are written on future contracts whose price at time at time
t ∈ [0,T ] is given by F T

t := E [VIXT |Ft ] .

• Hence, in a calibration, also the futures’ prices should be calibrated (see Pacati
et al. (2018); Guyon (2020)), as model implied volatilites should be computed
with model future prices.

• Let T be a set of maturities and K a set of strikes. We then compute the model
prices via

πmodel
VIX (`,T ,K) :=

e−rT

NMC

NMC∑
i=1

(VIXT (`, ωi )− K)+,

F model
VIX (`,T ) :=

1

NMC

NMC∑
i=1

VIXT (`, ωi ),

with VIXT (`, ω) = 1√
∆
‖UT (ω)`‖ and where NMC denotes the number of Monte

Carlo samples.

• Note that for every ` the same samples of X2n+1
T (ω) to determine UT (ω) can be

used.
⇒ No simulation during the optimization task.
⇒ Variance reduction by using polynomials of VIX squared.
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Calibration task for VIX options

The calibration functional reads as follows,

LVIX(`) :=
∑
T ,K

L
(
πmodel
VIX (`,T ,K),F model

VIX (`,T ), πmkt,b,a
VIX (T ,K),F mkt

VIX(T )
)

where L denotes some loss function and πmkt,b,a
VIX (T ,K),F mkt

VIX(T ) are the market’s
option bid/ask prices and market’s futures’ prices, respectively.

Our choice:

L
(
πmodel
VIX (`,T ,K),F model

VIX (`,T ), πmkt,b,a
VIX (T ,K),F mkt

VIX(T )
)

=

1

(υmkt (σmkt,a − σmkt,b))2

((
β1̃{π/∈[πmkt,b,πmkt,a]} + (1− β)

)∣∣π − (πmkt,a + πmkt,b)/2
∣∣

+
∣∣δmkt (e−rT F model

VIX (`,T )− e−rT F mkt
VIX(T ))

∣∣)2
,

where β ∈ {0, 1}, 1̃ is a smoothed version of the indicator function, δmkt and υmkt are
the market delta and vega ans σmkt,a,b the market implied bid/ask volatilities.
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Numerical results I

As a model for X , we use here a two-dimensional OU-process with the following parameters and
take the truncation in its signature n = 3.

κ = (0.1, 25)>, θ = (0.1, 4)>, σ = (0.7, 10)>, ρ =

1 −0.577 0.3
· 1 −0.6
· · 1



T1 = 0.0383 T2 = 0.0767 T3 = 0.1342 T4 = 0.2108 T5 = 0.2875 T6 = 0.3833

(90%,250%) (90%,250%) (80%,310%) (80%,300%) (75%,395%) (80%,405%)
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T1 = 0.0383 T2 = 0.0767 T3 = 0.1342

εT1
= 7.0× 10−6 εT2

= 2.1× 10−3 εT3
= 1.3× 10−5

T4 = 0.2108 T5 = 0.2875 T6 = 0.3833

εT4
= 1.5× 10−4 εT5

= 1.9× 10−6 εT6
= 1.3× 10−6
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SPX options and hedging
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SPX options with signatures

Signature-based models for the SPX of the form

Sn(`)t = `∅ +
∑

0<|I |≤n

`I 〈eI , X̂t〉,

can be used to calibrate efficiently to SPX options (see e.g. Perez Arribas et al.
(2020), Cuchiero et al. (2022)).

Goal: Obtain a tractable (in terms of sampling) form for S satisfying

dSt (`) = St (`)σS
t (`)dBt ,

where σS
t (`) =

∑
|I |≤n `I 〈eI , X̂t〉, such that S(`) can be expressed in terms of the

signature of Ẑ = (X̂ ,B), allowing again to precompute all samples and use them for
every `.
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A signature based model for SPX

Theorem (C.C., G. Gazzani, J. Möller, S. Svaluto-Ferro (’23))

Let S = (St )t≥0 and σS = (σS
t )t≥0 satisfy (SPX) and (vol) with X being a polynomial diffusion

process. Then, with Z = (X ,B)

St (`) = S0 exp

{
−

1

2
`
>Q0(t)` +

∑
|I|≤n

`I 〈ẽB
I , Ẑt〉

}
, (SPX-sig-model)

where ẽB
∅ := ed+1 and ẽB

I a transformation of eI (involving the coefficients of the quadratic
variation of X ).

The components of the matrix Q0(t) ∈ R(d+1)n×(d+1)n are given, for a labeling function
L : I → {1, . . . , (d + 1)n}, by

Q0
L (I ),L (J)(t) = 〈(eI � eJ )⊗ e0, X̂t〉.

Remark: Note that log(St ) can also be rewritten as

d log(St ) = −
1

2
`
>Q̃(t)`dt + `

>vec(X̂n
t )dBt ,

where Q̃ is given by Q̃L (I )L (J)(t) := 〈eI � eJ , X̂t〉.

⇒ (log S, X̂2n) is a 1 + (d + 1)2n-dimensional polynomial Markov process.

⇒ Path-dependent factor model in spirit of Guyon and Lekeufack (2022).
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An affine process point of view

Applying the results from ‘Signature SDEs from an affine and polynomial perspective’
(see C.C., S.Svaluto-Ferro and J.Teichmann (’23)), here in the case when X is a
polynomial diffusion, we obtain:

Theorem (C.C., G. Gazzani, J. Möller, S. Svaluto-Ferro (’23))

The process (log(S(`)), X̂) is an R× T ((Rd ))-valued affine process.

Suppose that the
corresponding T ((Rd ))-Riccati ODE ∂tψ(t, u, v) = R(ψ(t, u, v)) has a solution for
appropriate u ∈ C and v ∈ T ((Rd )). Then under certain moment conditions it holds

E[exp(u log ST + 〈v, X̂T 〉)|Ft ] = exp(u log St + 〈ψ(T − t, u, v), X̂t〉).

In the case (for simplicity) of X being an d-dimensional OU-process of the form

dX j
t = κj (θj − X j

t )dt + σj dW j
t , X j

0 = 0, j = 1, . . . , d ,

with W a d-dimensional Brownian motion independent of B, the function R reads as

R(u, v) =
∑

0≤|I |,|J|≤n

1

2
(u2 − u)`I `J eJ � eI

+
d∑

j=0

∑
|I |≥0

(
κjθj v(Ij)eI + κj v(Ij)ej � eI +

1

2
(σj )2(v(Ijj)eI + v2

(Ij)eI � eI )

)
.
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Towards a hedging formula - expressing X̂ via the forward variance curve

• Therefore Fourier pricing can be applied and it implies that for any sufficiently
integrable payoff of the form h(ST ,VIXT ) its price at time t is given by some

function H(T − t, St , X̂t ). The price of the SPX call at time t is denoted by

C(T − t,St , X̂t ).

• In order to use this for hedging we express now X̂ via the forward variance.

• Note that the forward variance is given by

E[Vu |Ft ] = `>Q̂(u − t, X̂t )`, u ≥ t

where Q̂L (I ),L (J)(u − t, X̂t ) = vec(eI � eJ )e(u−t)G>vec(X̂2n
t ), whence we have a

linear dependence of the forward variance on vec(X̂2n).

• From the forward variance curve (E[Vu |Ft ])u≥t we can thus get – via linear

regression – estimates of X̂2n. Using e.g. an OLS estimator we get

X̂2n
t ≈ gt ((E[Vuj |Ft ])j∈J ),

where for each t ≥ 0, gt is a linear function of (E[Vuj |Ft ])j∈J for some index
set J.
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A hedging formula

Inspired by Rosenbaum and El Euch (2018) and by expressing X̂ as above by the forward variance,
the following approximate hedging formula becomes feasible by hedging with the asset S and the
forward variances (E[Vr+xj

|Fr ])j∈J .

Corollary

Under the above assumptions, the following approximate hedging formula for the SPX call holds:

C(T − t, St , X̂t ) ≈
∫ t

0

∂S C 2n(T − r , Sr , gr ((E[Vr+xj
|Fr ])j∈J ))dSr

+

∫ t

0

∑
j∈J

∂j C
2n(T − r , Sr , gr ((E[Vr+xj

|Fr ])j∈J ))dE[Vr+xj
|Fr ],

where

• C 2n denotes the function C obtained via Fourier pricing when X̂ is restricted to X̂2n (which
means to truncate the characteristics exponent ψ accordingly);

• the corresponding derivatives can be explicitly computed from the Fourier prices C 2n;

• dE[Vs |Fr ] denotes the Itô differential at time r of the martingale Mr = E[Vs |Fr ], r ≤ s.
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Joint calibration of SPX and VIX options
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A non exhaustive literature review

• One of the first approaches was via a double CEV model, in Gatheral (2008).

• Jumps literature: Sepp (2012); Papanicolaou and Sircar (2014); Baldeaux and
Badran (2014); Pacati et al. (2018).

• Optimal transport: Guo et al. (2020); Guyon (2020, 2021); Guyon and Bourgey
(2022).

• Within rough volatility models Gatheral et al. (2020); Rømer (2022); Jacquier
et al. (2021); Abi Jaber et al. (2022a) and more recently Bondi et al. (2022) with
additional jumps.

• Machine learning techniques for rough volatility and neural SDEs: Rosenbaum
and Zhang (2021); Rømer (2022); Guyon and Mustapha (2022).

• Gaussian polynomial volatility models: Abi Jaber et al. (2022a,b).

• Multi-factor (rough) models: Rømer (2022).

• Path-dependent models: Guyon and Lekeufack (2022).
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Joint calibration of SPX and VIX options

• Denote by LSPX(`) the SPX calibration functional, where

LSPX(`) :=
∑

T∈T ,K∈K
L(πmodel

SPX (`,T ,K), πmkt,b
SPX (T ,K), πmkt,a

SPX (T ,K)).

• Then, in order to achieve a joint calibration of the SPX/VIX options and VIX futures, we
have to minimize for λ ∈ (0, 1)

Ljoint(`, λ) := λLSPX(`) + (1− λ)LVIX(`).

• Maturity and moneyness specifications:

TVIX
1 = 0.0383 TVIX

2 = 0.0767

(90%,220%) (90%,220%)

T SPX
1 = 0.0383 T SPX

2 = 0.1205 T SPX
3 = 0.1588

(92%,105%) (70%,105%) (80%,120%)

• As a model for X , we here us a three dimensional OU-process with the following parameters
and take the truncation in its signature n = 3.

κ = (0.1, 25, 10)>, θ = (0.1, 4, 0.08)>, σ = (0.7, 10, 5)>,

ρ =

1 0.213 −0.576 0.329
· 1 −0.044 −0.549
· · 1 −0.539
· · · 1

 , X0 = (1, 0.08, 2)>,
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Numerical results II

We calibrate to the same day as in Guyon and Lekeufack (2022).

In blue the calibrated implied volatilities smiles from top-left at maturities
T SPX

1 ,TVIX
1 ,T SPX

2 ,T SPX
3 ,TVIX

2 . In red the corresponding bid-ask spreads.
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Simulation of time-series of SPX and VIX

• Let `? ∈ R85 be the parameters calibrated to SPX and VIX options.

• We sample trajectories for (Vt (`?))t∈[0,T ], (VIXt (`?))t∈[0,T ], (St (`?))t∈[0,T ].

• Even though `∗ was only calibrated to option prices, the trajectories are economically
reasonable and also in line with several stylized facts, such as negative correlation between
SPX and VIX or volatility clustering.

Figure: On the top: one realization of the calibrated model S(`?) for the SPX (in blue) and the
corresponding calibrated VIX (in red). On the bottom: the corresponding realization of the
calibrated variance process V (`?).
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Numerical results III

Using time varying parameters we can first jointly calibrate the maturities T SPX
1 ,TVIX

1 ,T SPX
2 and

then add the following new maturities and strikes:

TVIX
2 = 0.1342 TVIX

3 = 0.2875 TVIX
4 = 0.3833

(90%,330%) (78%,395%) (80%,405%)

T SPX
3 = 0.2163 T SPX

4 = 0.3696 T SPX
5 = 0.4654

(75%,125%) (60%,135%) (50%,145%)

Figure: On the left hand side: SPX smiles, in blue the calibrated implied volatilities and in red the
bid-ask spreads. On the right hand side: VIX smiles, in blue the calibrated implied volatilities and
in red the bid-ask spreads.
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Conclusion

• Universal modeling framework in the class of continuous non-rough stochastic
volatility models.

• σS (`) and log(S(`)) are expressed as a linear function of the signature of some

underlying process Ẑ .

• Within the polynomial specification VIX can be computed analytically via a
matrix exponential.

• Viewing (log S(`), X̂) as affine process allows to obtain approximate hedging
formulas.

• A Monte Carlo approach for option pricing, potentially with variance reduction, is
tractable since we can compute offline the signature samples of Ẑ .

• For several short maturities the joint calibration problem can be solved with
non-time dependent parameters. By using time-varying parameters we can also fit
longer ones.

• Outlook:

• Verification of the assumptions to get the affine transform formula and in turn the
hedging formula for specific model choices

• Identification (canoncial form)/ economic meaning of primary process
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• Within the polynomial specification VIX can be computed analytically via a
matrix exponential.

• Viewing (log S(`), X̂) as affine process allows to obtain approximate hedging
formulas.

• A Monte Carlo approach for option pricing, potentially with variance reduction, is
tractable since we can compute offline the signature samples of Ẑ .
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