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Part 1: Randomization and GMDBs

In this talk, we will mainly focus upon the Randomization and guaranteed
minimum death benefits in a general regime switching model:

• We focus upon an underlying financial return process X which follows a
regime switching Brownian motion with two-sided phase-type jumps (see also
Asmussen [2003], Jiang and Pistorius [2008] ) while the density functions of
the random payments times τ can be approximated by a Laguerre series
expansion or a combination of Erlang distributions

• This talk is based upon:
Deelstra, G., Hieber, P., (2023), Randomization and the valuation of
guaranteed minimum death benefits, European journal of operational
research, Vol. 309, Issue 3, 1218-1236.
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1) Introduction: Regime-Switching Models

Regime-switching models

• Hamilton (1989): financial models should account for the cyclical pattern of
boom and recession.

• allow the model (or the model parameters) to switch at certain times by
means of a Markov process whose states represent the different regimes or
“phases”.
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Introduction: Regime-Switching Models

Regime-switching models

• turn out to be convenient in a lot of fields: optimal control in Finance (see, e.g.,
Korn et al. (2017), Jin et al. (2020), cyclical patterns in temperature and/or
electricity modeling (see, e.g. Elias et al. (2014), Benth, Deelstra, Kozpınar S.
(2023, 202x)), or GMDB or pension fund modeling in Insurance (see, e.g., Hainaut
(2014), Deelstra and Hieber (2023)).

• have been extensively used for option pricing:

• Elliott et al. (2005), Elliott and Siu (2009), Konikov and Madan (2002),
Elliott and Osakwe (2006), Ramponi (2012), Elliott and Lian (2013), Shen
and Siu (2013a,b,c), Chen et al. (2014), Deelstra and Simon (2017), Fan et al.
(2017), Cao et al. (2018), Deelstra, Simon, Kozpinar (2018), Tour et al.
(2018), Deelstra, Latouche and Simon (2020), Bao and Zhao (2019), Xie and
Deng (2022),...
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Randomization, Erlangization

• Randomization: In Finance, Carr [1998] approximates a fixed maturity T by
an Erlang random time τN,µ for high N .

• The method has also been used for both American-type and barrier option pricing in a no
regime-switching framework, see e.g. Avram et al. (2002) and Boyarchenko and
Levendorski (2012).

• In finance, it is also referred to as the “Canadization” method, see Mijatović et al. (2015).
• The technique is also known in risk theory as Erlangization (see e.g. Asmussen and

Albrecher (2010), Ch. IX.8).

• Deelstra, Latouche and Simon [2020] apply randomizaton to study the pricing of
path-dependent options like digital options and down-and-out call options in a
Markov modulated Brownian motion framework in the presence of two-sided
phase-type jumps.

• We replace the maturity T by a random variable q ∼ Erlang(N, N
T
) where N ∈ N0.

The expectation of q equals T and its variance T 2/N goes to zero as N goes to
infinity.

• Using fluid embedding (see e.g. Jiang and Pistorius [2008]) and Erlangization to
obtain explicit expressions for different quantities related to the path properties of the
MMBM up to time q, the approximating option prices followed. Compared to other
existing methods, this approach does not require the inversion of Laplace (or Fourier)
transforms.

• By choosing a large enough number of Erlangization intervals, the obtained precision
turns out to be very high.
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Discounted density and GMDB

• Recall: In Finance, Carr [1998] approximates a fixed maturity T by an Erlang
random time τN,µ for high N .

• In Insurance, the contract payoffs often depend on a financial risk process
while claim dates are random events like death or the occurence of a claim or
natural catastrophe.

• Gerber et al. [2012], [2013] introduced the discounted density approach for
GMDB valuation.

• Several frameworks and generalizations have been studied for GMDBs:
regime-switching jumps and volatility (e.g. Siu et al. [2015], Ciu et al.
[2017]), different types of payoffs (e.g. Kirkby [2021]) and different types of
random time approximations (Zhang and Yong [2019]).
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In this talk

• In this talk, we focus upon an underlying financial return process X which
follows a regime switching Brownian motion with two-sided phase-type jumps
while the density functions of the random payments times τ can be
approximated by a Laguerre series expansion or a combination of Erlang
distributions, see e.g. Zhang and Yong [2019].

• We obtain the (discounted) density of Xτ in closed-form by a Laurent series.
(European-type guarantees, also risk measures, e.g. VaR)

• We deal with path-dependent GMDBs semi closed-form via Sylvester
equations (quadratic, easy-to-solve).

• We avoid any Fourier/Laplace inversion, and obtain very fast calculations.
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Motivation: Basic calculus and Black-Scholes model

• This is simple calculus following Gerber et al. [2012], Asmussen [2003].

• Consider a guaranteed amount G and an underlying stock {St}t≥0 with
Black-Scholes dynamics, namely

St = S0e
Xt with Xt ∼ N

(
(r − σ2

2
)t, σ2t

)
.

• The guaranteed amount is due at the time of death τ which follows an
exponential distribution τ ∼ Exp(µ) and is independent of {St}t≥0.

• The valuation is done the standard way, assuming independence between τ
and X:

EQ
[
e−rτ max(G− Sτ , 0)

]
=

∫ ∞

0

EQ[e
−rt max(G− St, 0)]︸ ︷︷ ︸

financial risk integration

·fτ (t) dt

︸ ︷︷ ︸
insurance risk integration

.
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Motivation: Basic calculus and Black-Scholes model

• Can we do better than that?

• (Discounted) Laplace transform obtained as (β in suitable range):

φ(β) = EQ

[
e−rτeβXτ

]
= EQ

[
EQ

[
e−rτeβXτ

∣∣∣ τ = t
]]

= EQ

[
e

((
r−σ2

2

)
β+ 1

2σ
2β2−r

)
τ
]

=
µ

(µ+ r)−
((
r − σ2

2

)
β + 1

2σ
2β2
)

=
µ

− 1
2σ

2(α1 − β)(β1 − β)

=
−µ

(µ+ r)(β1 − α1)

(
α1 ·

β1

β1 − β
− β1 ·

α1

α1 − β

)
.

where α1 < 0 and β1 > 0 are roots of −σ2β2

2 −
(
r − σ2

2

)
β + (µ+ r) = 0.
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Motivation: Basic calculus and Black-Scholes model

• Using − 1
2σ

2α1β1 = µ+ r (constant in quadratic equ.), we arrived to:

φ(β) =
−µ

(µ+ r)(β1 − α1)

(
α1 ·

β1

β1 − β
− β1 ·

α1

α1 − β

)
.

• This shows that the corresponding density is composed of two
exponential densities − for the negative, respectively positive, part.

• With a little bit of algebra, this leads to the (discounted) density
f
(r)
Xτ

(x) =
∫∞
0

e−rtfXt
(x)fτ (t)dt (see Gerber et al. [2012]):

f
(r)
Xτ

(x) =



µ

µ+ r

−α1β1

β1 − α1︸ ︷︷ ︸
constant C

·e−α1x , if x ≤ 0 ,

µ

µ+ r

−α1β1

β1 − α1︸ ︷︷ ︸
constant C

·e−β1x , if x > 0 .
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Motivation: Basic calculus and Black-Scholes model

Under the hypothesis of independence of X and τ :

φ(β) = EQ

[
e−rτeβXτ

]
=

∫ ∞

−∞

∫ ∞

0

e−rteβxfXt
(x)fτ (t)dtdx

=

∫ ∞

−∞
eβxf

(r)
Xτ

(x)dx
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Motivation: Basic calculus and Black-Scholes model

• Let‘s look at the OTM put option with S0 > G:

EQ
[
e−rτ max(G− Sτ , 0)

]
=

∫ ∞

−∞
max(G− S0 · ex, 0) f (r)

Xτ
(x) dx

= S0 · C
∫ ln(G/S0)

−∞

( G

S0
− ex

)
e−α1x dx

=
C ·G

α1(α1 − 1)

(
G

S0

)−α1

.

• Compare this to:

EQ
[
e−rτ max(G− Sτ , 0)

]
=

∫ ∞

0

EQ[e
−rt max(G− St, 0)]︸ ︷︷ ︸

financial risk integration

·fτ (t) dt

︸ ︷︷ ︸
insurance risk integration

.
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Motivation: Basic calculus and Black-Scholes model

• Computation times in Matlab (using tictoc function):

expression computation time

Ge−rtΦ
( ln( G

S0
)−(r−σ2

2
)t

σ
√
t

)
− S0Φ

( ln( G
S0

)−(r+σ2

2
)t

σ
√
t

)
6.4ms

∞∫
0

EQ[e
−rt max(G− St, 0)] · fτ (t) dt 33.4ms

C·G
α1(α1−1)

(
G
S0

)−α1
3.2ms

=⇒ This is about 10-times faster using the discounted density approach.

• The ITM put option: via the call-put parity
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Motivation: Basic calculus and Black-Scholes model

• We can generalize the exponential distributions to Erlang distributions
(= sum of N independent exponentials):

fτN,µ
(t) =

µ(µt)N−1

(N − 1)!
e−µt , t > 0 . (1)

• If τ is an Erlang(n, µ) r.v. independent of X, then the (discounted) density is
still available analytically (see Gerber et al. [2012]):

f
(r)
Xτ

(x) =


Cne−α1x

n∑
j=1

(2n−j−1
n−j )(−x)j−1

(j−1)!(β1−α1)n−j , if x ≤ 0 ,

Cne−β1x
n∑

j=1

(2n−j−1
n−j )(x)j−1

(j−1)!(β1−α1)n−j , if x > 0 .
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Phase-type distributions

The distribution function of a Phase-type distributed random variable
Y ∼ PH(α, A) with A a square matrix and α and a = −A1 vectors (with the
same number of components as rows in A) is

P(Y ≤ t) = 1−αeAt1,

and its density function is

fY (t) = αeAta for t ≥ 0.

Here and in the following we will use the notation 1 and 0 for vectors with each
component equal to 1 and 0, respectively.

ej a vector where the i-th component is the Kronecker delta δji.

The matrix exponential of a matrix B ∈ Ck×k is defined via the power series
exp(B) :=

∑∞
n=0 B

n/n!
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Phase-type distributions

• Let φ̃ = {φ̃(t)|t ∈ R+} be a Markov process defined on a state space
S ∪ {⋆}, where S contains a finite number states, all transient, and ⋆ is an
absorbing state. The generator of φ̃ is of the form

G =


0 0

a A

 (2)

where A is a square |S| × |S| matrix containing the transition rates between
the transient states and a is the vector containing the transition rates from
the transient states to the absorbing state.

• Denote by τ⋆ the absorption time in this process:

τ⋆ = inf{t ≥ 0 | φ̃(t) = ⋆}
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Phase-type distributions

• Let α be the initial probability vector of |S| components with

αi = P(φ̃(0) = i) ∀i ∈ S.

• We say that a random variable Y has a phase-type distribution with
parameters α and A if Y is distributed as τ⋆:

Y ∼ PH(α, A)
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Phase-type distributions

• Phase-type distributions have been introduced by Neuts (1975, 1981).

• The most basic example is the exponential distribution Exp(µ), for which
A = −µ and α = 1.

• Another classical example is the Erlang distribution Erlang(N,µ) with
parameters N ∈ N and µ, which can be interpreted as the time needed by a
Markov process φ̃ to go through N states, the sojourn time in each of them
being distributed as an Exp(µ).
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2) Regime-switching model: two-sided phase-type jumps

• St = S0e
Xt .

• A process φ = {φt}t≥0 governs the diffusion states of the process X. It is
defined on a finite state space with M ∈ N phases, that is at any time t > 0,
φt = j, where j ∈ Sσ := {1, 2, . . . ,M}.

• When φt = j, the level X evolves like a Brownian motion with drift dj ∈ R
and variance σ2

j > 0.

• We assume that the process Xt starts in a diffusion state and that φ0 has
initial distribution π ∈ RM×1.

• When φt = j ∈ Sσ, two kinds of transitions are possible: or jumps or
instantaneous transitions from j to a different diffusion state v ∈ Sσ at a rate
{Q}jv, which are collected in the subgenerator matrix Q.

• Jumps can be positive or negative; we group the different jumps in two state
spaces S+ = {s+1 , s

+
2 , . . . , s

+
n } and S− = {s−1 , s

−
2 , . . . , s

−
m} for n,m ∈ N.
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A MMBM with two-sided Phase-type jumps
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A MMBM X with two-sided phase-type jumps

• Regime-switching model with two-sided phase-type jumps.

Xt = X0 +

∫ t

0

dφsds+

∫ t

0

σφsdBs +

∫ t

0

J+
φs
dNφs,+

s −
∫ t

0

J−
φs
dNφs,−

s

If J+
j and J−

j represent the absolute size of an upward and downward
jump that occurred in phase j, then for all x ≥ 0,

P(J+
j ∈ dx, φ = i after the jump) =

1

(Wσ+1)j

(
Wσ+e

R+xV+σ

)
ji

dx ,

P(J−
j ∈ dx, φ = i after the jump) =

1

(Wσ−1)j

(
Wσ−e

R−xV−σ

)
ji

dx .
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• In the diffusion state j ∈ Sσ, the processes {N j,+
t }t≥0 and {N j,−

t }t≥0 define
the arrival of jumps. More specifically, the arrival rate of an upward jump
k ∈ S+ (respectively k ∈ S− for a downward jump) is the constant {Wσ+}jk
(respectively {Wσ−}jk).

• The jumps may be accompanied by a change in diffusion state.

• If a jump k ∈ S+ appears, {V+σ}ki is the rate at which the jump terminates
and the process returns to the diffusion state i ∈ Sσ (analogous the rate is
{V−σ}ki after a downward jump k ∈ S−).

• The upward jumps have phase-type distribution represented by a
subgenerator matrix R+ ∈ Rn×n on the state space S+, and the downward
jumps have phase-type distribution represented by a subgenerator matrix
R− ∈ Rm×m on the state space S−.
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A MMBM with two-sided Phase-type jumps
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• For later use, we also define the transition matrices W ∈ RM×(n+m) and
V ∈ R(n+m)×M :

W =
[
Wσ+ Wσ−

]
, V =

[
V+σ

V−σ

]
.

The process does not contain an absorbing state, that is the diagonal entries
of Q are determined such that [Q W ]1 = 0.

• Finally, we define the drift D = diag(dj)j∈Sσ
and volatility matrix

Σ = diag(σj)j∈Sσ
.
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A MMBM with two-sided Phase-type jumps
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Example 1 (Regime switching Kou model)

In Kou’s model, in state j ∈ Sσ, the MMBM process X has dynamics

dXt = djdt+ σjdWt + dJ
(j)
t , (3)

where {Wt}t≥0 denotes a standard Brownian motion and {J (j)
t }t≥0 is an

independent compound Poisson process with a constant arrival rate λj ≥ 0 and
random double-exponential jump sizes

νj(dy) =
(
pjα−,je

α−,jy1y<0 + (1− pj)α+,je
−α+,jy1y≥0

)
dy ,

Positive and negative jump sizes are exponentially distributed with intensity
α+,j > 0 and α−,j > 0, and with probability pj ∈ [0, 1] jumps are negative.

In our notation, the regime switching Kou model is obtained as
V+σ = −R+ = diag(α+,j)j∈Sσ

, V−σ = −R− = diag(α−,j)j∈Sσ
,

Wσ− = diag(pjλj)j∈Sσ , Wσ+ = diag((1− pj)λj)j∈Sσ and
Q = Q0 − diag(W1) = Q0 − diag(λj)j∈Sσ . Given the matrix Q introduced
earlier, the matrix Q0 := Q+ diag(W1) is a generator matrix.
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Example 2 (A MMBM with Phase type downward jumps)

See also Robert and Boudec [1997] and Deelstra et al. [2020] for a more detailed
analysis and motivation. We consider two phases (M = 2). The jump with
transition from phase 1 to phase 2 is defined by a more general phase-type
distribution with subgenerator matrix with size na:

R− =


−(c+ sa) 1/a (1/a)2 · · · (1/a)na−1

b/a −b/a 0 · · · 0
(b/a)2 0 −(b/a)2 · · · 0

... 0
(b/a)na−1 0 0 · · · −(b/a)na−1


with na ∈ N, a > max(1, b), b, c > 0 and sa = 1/a+ 1/a2 + . . . 1/ana−1. The
other matrices are chosen as follows for parameters λ > 0, q1 > 0, q2 > 0,
R+ = −λ, φ0 = 1, V+σ =

[
λ 0

]
, V−σ =

[
0 −R−1

]
,

Q =

[
−q1 0
0 −q2

]
, Wσ− =

[
q1 0 · · · 0
0 0 · · · 0

]
, Wσ+ =

[
0
q2

]
.
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Example: Phase-type jumps compared to Pareto

In the figure, the quantiles of a Pareto distribution with density
f(x) = αxα

m/xα+11x≥xm , α > 1, are compared to three phase-type approximations
PH(e1, R−) with parameters (a, b, c, na). The means of the distribution are chosen to

be equal: E[|X|] =
√

2/π = αxm/(α− 1) = 1
c

∑na−1
l=0

(
1
b

)l
, see also Deelstra et al.

[2020].
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Comparison with absolute value of a stand. Normal distrib.

In the figure, the quantiles of the absolute value of a standard Normal distribution are
compared to a Pareto distribution with density f(x) = αxα

m/xα+11x≥xm , α > 1, and
three phase-type approximations with parameters (a, b, c, na). The means of the

distribution are chosen to be equal to E[|X|] =
√

2/π = αxm/(α− 1) = 1
c

∑na−1
l=0

(
1
b

)l
.
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3) Derivatives: GMDB payoff

• Remaining lifetime for a person (currently) aged x, denoted by Tx,
independent from financial risk and also the underlying Markov process.

• We are interested in evaluating quantities of the form

EQ

[
e−

∫ Tx
0

θ(φs)dsb(STx
, Tx,MTx

,mTx
)
]
, (4)

where b is a payoff function and the running minimum and maximum of the
process Xt is defined as

Mt := sup
s∈[0,t]

Xs , mt := inf
s∈[0,t]

Xs . (5)

• Here, one uses given a vector of constants θ := (θ(1), θ(2), . . . , θ(M)) ∈ RM ,
the process

θt =
∑
j∈Sσ

θ(j) · 1φt=j = θ(φt) , where φt ∈ Sσ .

that is constant in each phase φt. We define Θ = diag(θ(j))j∈Sσ
.

• If θ(φs), for s ≥ 0, is the (regime-dependent) risk-free rate, this corresponds
to the valuation of, for example, European, digital and lookback options
under a given risk-neutral measure under a martingale condition.
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Discounted Laplace transform

For β ∈ R, we denote the discounted Laplace transform of the process X as:

ϕ
(j)
t (β) := E

[
e−

∫ t
0
θ(φs) dseβXt

∣∣∣φ0 = j
]
. (6)

Lemma 3 (Discounted Laplace transform)

Set φ0 = j ∈ Sσ. Let λ
+
0 be the largest eigenvalue of the subgenerator matrix

R+, that is λ
+
0 := max{λ : λ eigenvalue of R+}. For β < −λ+

0 , the matrix
discounted Laplace transform (6) is given by

ϕ
(j)
t (β) = e′j exp (Ψ(β,Θ)t) 1 , (7)

with Laplace exponent matrix:

Ψ(β,Θ)=Q+Dβ−Θ+
1

2
Σ2β2+Wσ−(βIm−R−)

−1V−σ−Wσ+(βIn+R+)
−1V+σ

(8)
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Martingale condition

Lemma 4 (Martingale condition)

If the model parameters satisfy the relation

Ψ(1,Θ)1 = 0 , (9)

where Ψ(β,Θ) is as in (8) with Θ = diag(θ(j))j∈Sσ
, then the process

{e−
∫ t
0
θ(φs)dsSt}t≥0 is a martingale, that is E

[
e−

∫ t
0
θ(φs) dsSt

∣∣φ0 = j
]
= S0.
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Example 5 (Regime switching Kou model (continued))

Given the Laplace exponent matrix

Ψ(β,Θ)

=Q+Dβ −Θ+
1

2
Σ2β2 +Wσ−(βIM −R−)

−1V−σ −Wσ+(βIM +R+)
−1V+σ

=Q0 +Dβ −Θ+
1

2
Σ2β2 + diag

(
λjpj

α−,j

α−,j + β
+ λj(1− pj)

α+,j

α+,j − β
− λj

)
,

the martingale condition Ψ(1,Θ)1 = 0 is simplified to:

dj = θ(j) − 1

2
σ2
j −

(
λjpj

α−,j

α−,j + 1
+ λj(1− pj)

α+,j

α+,j − 1
− λj

)
(10)

for j ∈ Sσ.
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4) Distribution of remaining lifetime

In the following, we denote by fTx
the density of the remaining lifetime Tx.

1) Approximation by a combination of Erlang densities

fTx(t) ≈
KB∑
k=0

Bk · fτnk,µk
(t) =: f̂Tx(t) , (11)

for constants KB ∈ N, Bk ∈ R with
∑KB

k=0 Bk = 1.

Using the independence of Tx and X, one find for a European-type payoff b(STx):

E
[
e−

∫ Tx
0

θ(φs)dsb
(
STx

)]
≈

KB∑
k=0

Bk

∫ ∞

0

E
[
e−

∫ t
0
θ(φs)dsb

(
St

)]
fτnk,µk

(t) dt

=

KB∑
k=0

BkE
[
e−

∫ τnk,µk
0 θ(φs)dsb

(
Sτnk,µk

)]
,

for nk ∈ N and µk > 0.
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As in for example Zhang and Yong [2019], we calibrate these approximations to a
life table, minimizing the root mean squared error between the true data and the
approximations, that is we solve

argmin(Bk,nk,µk)∈R3,k=1,2,...,KB

L∑
t=1

∣∣∣FTx
(t)−

KB∑
k=1

Bk · Fτnk,µk
(t)
∣∣∣2 , (12)

subject to
∑KB

k=1 Bk = 1, where FTx
(t) is the distribution function corresponding

to fTx
(t) and the distribution function of an Erlang random variable is

FτN,µ
(t) = 1−

∑N−1
k=1

1
k!e

−µt(µt)k .
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2) Approximation by Laguerre series expansion

The advantage of the Laguerre series expansion is that it allows for an error
analysis of the truncation error, see also Zhang and Yong [2019].

• Form a complete orthonormal basis of L2.

• Error control possible.

• Coefficients can be computed (rather) easily (no optimization).

Laguerre functions are defined as

Ψk(t) :=
√
2µ e−µt

k∑
N=0

(−1)N

(
k
N

)
(2µt)N

N !
=

k∑
N=0

(−2)N
√

2

µ

(
k
N

)
︸ ︷︷ ︸

“weights“

fτN+1,µ
(t)︸ ︷︷ ︸

Erlang densities

,

for k = 1, 2, . . . and t > 0.
We can expand the density fTx

∈ L2(R+) as:

fTx(t) =

∞∑
k=0

Ak ·Ψk(t) ≈
KA∑
k=0

Ak ·Ψk(t) =: f̃Tx(t) . (13)

This approximation by Laguerre series is a also a combination of Erlang
distributions.
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Indeed, we exploit that the optimal coefficients Ak = ⟨Ψk(t), fTx
(t)⟩ in (13) can

be computed explicitly. For a discrete life table, we obtain:

Ak =
〈
Ψk(t), fTx

(t)
〉
=
√
2µ

k∑
N=0

(
k

N

)
(−2µ)

N

N !

∫ ω−x

0

tNe−µtfTx
(t)dt

≈
√

2µ

k∑
N=0

(
k

N

)
(−2µ)

N

N !

ω−x∑
t=1

tNe−µtP
(
Tx ∈ (t− 1, t]

)
see also Zhang and Yong [2019]. Here, ω denotes the maximum possible age in
the life table and x the (current) age of the person.

The fact that Laguerre polynomials are uniformly bounded and form an
orthonormal basis allows to get theoretical bounds for the approximation error. It
holds that: ∣∣fTx

(t)− f̃Tx
(t)
∣∣2 ≤

∞∑
k=KA+1

A2
k ,

see also Zhang and Su [2018] and Zhang and Yong [2019]. We can use this result
to provide an upper bound for the total calibration error∑L

t=1 |fTx
(t)− f̃Tx

(t)|2 ≤ L ·
∑∞

k=KA+1 A
2
k.
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Calibration to a mortality table

1 2 3 4 5 6 7 8

number of terms  K

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

1
0
 s

q
u

a
re

d
 e

rr
o

r

series of exponential r.v.

series of Erlang r.v.

Laguerre series

0 5 10 15 20 25

time  t

0

1

2

3

4

5

6

a
b

s
o

lu
te

 e
rr

o
r

10
-4

series of exponential r.v. (K=5)

series of Erlang r.v. (K=5)

Laguerre series (K=15)

We calibrate sums of exponential / Erlang density via
∑KB

k=1 Bk = 1.
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Calibration to a mortality table
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5) European-type GMDBs and Laurent series expansion

In the following, we focus on the case where the remaining lifetime Tx is an
Erlang distributed random variable τN,µ.

At time Tx = τN,µ, the payoff is a function b of the risky asset price STx = SτN,µ
.

The time-0 value of this product is

PV(S0) = E
[
e−

∫ τN,µ
0 θ(φs)dsb(SτN,µ

)
]
. (14)

An example is a simple guarantee product with guarantee level K ≥ 0, that is

b(SτN,µ
) = max(SτN,µ

−K, 0).

We want to first obtain the density of XτN,µ
= ln(SτN,µ

/S0).

Lemma 6 (Laplace transform of Erlang-subordinated process)

Consider an Erlang random variable (r.v.) τN,µ. Assume that β ≤ −λ+
0 where

λ+
0 := max{λ : λ eigenvalue of R+}. Further assume that the eigenvalues of

Ψ(β,Θ) have nonpositive real part only. For j ∈ Sσ:

ϕ(j)
τN,µ

(β):=E
[
e−

∫ τN,µ
0 θ(φs) dseβXτN,µ

∣∣∣φ0 = j
]
= e′j

(
µN
(
µIM −Ψ(β,Θ)

)−N
)
1 .

(15)
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Lemma 7 (Laurent series expansion of ϕ
(j)
τN,µ(β))

(a) The Laplace transform

ϕ(j)
τN,µ

(β) = e′j

(
µN
(
µIM −Ψ(β,Θ)

)−N
)
1

can be written as the quotient p(β)/q(β) of two polynomials p(β) and q(β).

(b) Denote by {αi} and {βk} the (by assumption simple) roots of the polynomial
q(β) in (a) with negative and positive real part, respectively. We can expand

ϕ
(j)
τN,µ(β) in terms of its Laurent series:

ϕ(j)
τN,µ

(β) =
∑
i

N∑
z=1

aiz
(αi − β)z

+
∑
k

N∑
z=1

bkz
(βk − β)z

. (16)

The coefficients aiz, bkz are uniquely determined solving:

aiz =
(−1)z

(N − z)!
lim

β→αi

dN−z

dβN−z

(
(β − αi)

Nϕ(j)
τN,µ

(β)
)
, and (17)

bkz =
(−1)z

(N − z)!
lim

β→βk

dN−z

dβN−z

(
(β − βk)

Nϕ(j)
τN,µ

(β)
)
. (18)
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Theorem 8 (Laurent series expansion)

(a) If Θ = 0, the density of XτN,µ
is a series of Erlang densities:

fXτN,µ
(x) =


∑
i

N∑
z=1

(−aiz)
xz−1

(z−1)! e
−αix, x < 0

∑
k

N∑
z=1

bkz
xz−1

(z−1)! e
−βkx, x ≥ 0

(19)

The coefficients aiz, bkz are uniquely determined by (17)-(18).

(b) If Θ ̸= 0, i.e. if at least one of the θ(j)s is positive, the Markov chain is
absorbing and the absorption probability is given by
P
(
φτN,µ

= ⋆
)
= 1−

∫
R fXτN,µ

(x) dx with fXτN,µ
(x) as in (19). In this case,

the density of XτN,µ
is composed of a point mass at the absorbing state

φτN,µ
= ⋆ and the (defective) density (19) of the “survived” paths.

• The proof follows arguments as in Asmussen (2003), Gerber et al. (2013),
Eustice and Klamkin (1979).

• With this, we compute risk measures (as e.g. VaR or CTE), and values for
any maturity guarantee product.

• This includes results of e.g. Gerber et al. (2012) and of Siu et al. (2015).
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5) European-type GMDBs

European-type GMDBs with payoff b(St), paid at an Erlang random time
t = τN,µ, can be written as:

V (µ, r) := E
[
e−

∫ τN,µ
0 θ(φs)dsb

(
SτN,µ

)]
= E

[
E
[
e−

∫ τN,µ
0 θ(φs)dsb

(
S0e

XτN,µ
) ∣∣∣φ, τN,µ

]]
= E

[
E
[
0 ·
(
1− e−

∫ τN,µ
0 θ(φs)ds

)
+

∫
R
b
(
S0e

x
)
fXτN,µ

(x) dx
∣∣∣φ, τN,µ

]]
=

∫
R
b
(
S0e

x
)
fXτN,µ

(x) dx , (20)

with the (defective) density fXτN,µ
(x) from (19).
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Theorem 9 (European-type GMDBs)

Consider European-type GMDBs with payoff b(St), paid at an Erlang random time
t = τN,µ. Their fair value is given by

V (µ, r) := E
[
e−

∫ τN,µ
0 θ(φs)dsb

(
SτN,µ

)]
=

∑
i

N∑
z=1

∫ 0

−∞
b(S0e

x) · (−aiz)
xz−1

(z − 1)!
e−αix dx

+
∑
k

N∑
z=1

∫ ∞

0

b(S0e
x) · bkz

xz−1

(z − 1)!
e−βkx dx . (21)

The case of one state M = 1 relates to the discounted density approach by Gerber et al.
(2012, 2013).

Note that our case of a regime-dependent discount factor leads to a dependence between
discount factor and asset value SτN,µ .
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Out-of-the-money call option valuation

Example 10

For b(St) = max(St −K, 0), Re(h) > 1 and S0 ≤ K, we obtain:

C(h, z) :=

∫ ∞

0
e−hx xz−1

(z − 1)!
max(S0e

x −K, 0)dx

=

∫ ∞

ln(K/S0)
e−hx xz−1

(z − 1)!
(S0e

x −K)dx

= S0 · η
(
ln(K/S0), h− 1, z

)
−K · η

(
ln(K/S0), h, z

)
,

where we use that for y ≥ 0, we can apply partial integration to obtain

η(y, h, z) =

∫ ∞

y
e−hx xz−1

(z − 1)!
dx =

z∑
i=1

e−hy 1

hz+1−i

yi−1

(i− 1)!
.

From (21), we finally obtain:

C(S0) := E
[
e−

∫ τN,µ
0 θsdsb

(
SτN,µ

)]
=
∑
k

N∑
z=1

bkz C(βk, z) , (22)

where the coefficients bkz are given by (18) and βk are the (non-removable) singularities with
positive real part of ϕτN,µ (β). Note that the singularities βk and the coefficients bkz depend on
the discount factor via the matrix Θ.
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Fourier price PV(S0) time Our price PV(S0) time True price PV(S0)
φ0 = 1 φ0 = 2 φ0 = 1 φ0 = 2 φ0 = 1 φ0 = 2

K = 100 1.8476 2.7552 0.4583s 1.8476 2.7552 0.0310s 1.8848 2.7624

K = 105 2.0492 3.0207 0.4198s 2.0492 3.0207 0.0295s 2.0823 3.0231

K = 110 2.2667 3.2964 0.4346s 2.2667 3.2964 0.0295s 2.2912 3.2928

K = 115 2.4998 3.5819 0.4346s 2.4998 3.5819 0.0303s 2.5113 3.5712

K = 120 2.7474 3.8767 0.4240s 2.7474 3.8767 0.0297s 2.7421 3.8580

K = 125 3.0081 4.1805 0.5004s 3.0082 4.1805 0.0298s 2.9831 4.1529

K = 130 3.2808 4.4929 0.4463s 3.2808 4.4929 0.0291s 3.2338 4.4555

Table: Values of Eur. GMDBs, OTM call options following a 2-dim regime switching
Kou model and a sum-of-Erlang remaining lifetime distribution (KB = 5, L = 80).

Parameter set from Siu et al. (2005):
S0 = 100, θ1 = θ2 = r = 0.05, σ1 = 0.1, α+,1 = 40, α−,1 = 60, p1 = 0.25, λ1 = 2, σ2 = 0.4,
α+,2 = 60, α−,2 = 70, p2 = 0.75, λ2 = 0.5, and Q0 = [−0.1 0.1; 0.2 − 0.2].
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6) Exotic GMDBs (lookback, dynamic fund protection)

Fluid embedding technique
The process Xt is converted into a continuous process Yt for which jumps are
replaced by straight lines . We extend the underlying Markov process φ(t)
regulating the diffusion part to a process ζt with phases in Sσ ∪ S+ ∪ S−.

See e.g. Rogers (1994), Jiang and Pistorius (2008), Asmussen and Albrecher
(2010), Deelstra et al. (2020)
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Exponential time τ1,µ

• Define the upper (+) and lower (−) first-passage time of our (fluidized)
asset process (Yt, ζt), for x ≥ 0:

τ±x (i) := inf
{
t > 0 |Yt = 0, Y0 = ∓x, ζ0 = i ∈ S

}
,

• For i ∈ Sσ ∪ S+ and j ∈ Sσ ∪ S−, we further introduce the limiting cases
limx→0 τ

+
x (i) = τ+0 (i) = 0 and limx→0 τ

−
x (j) = τ−0 (j) = 0, respectively.

• For j ∈ S, define

{E(1)
± (x)}ij := E

[
e−

∫ τ±
x (i)

0 θ(φs)ds1ζ
τ
±
x (i)

=j

]
for x ≥ 0, i, j ∈ Sσ ∪ S+ and i, j ∈ Sσ ∪ S−, respectively.

• Let us define the matrices{
Ψ

(1)
±
}
ij

=
{
E

(1)
± (0)

}
ij

= E

[
e−

∫ τ
±
0 (i)

0 θ(φs)ds1ζ
τ
±
0 (i)

=j

]
,

for i ∈ S, j ∈ Sσ ∪ S+ and j ∈ Sσ ∪ S−, respectively.
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• We also introduce the parameterization:

E
(1)
± (x) := exp

(
U

(1)
± x

)
:= exp

([
U

(1)
σσ U

(1)
σ±

U
(1)
±σ U

(1)
±±

]
x

)
, (23)

where exp( · ) denotes the matrix exponential.

• The matrices U
(1)
± and Ψ

(1)
± can be derived in terms of Sylvester equations.

• Again, we have the (discounted) Laplace transform: convenient for exponential / Erlang
time change.
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Theorem 11 (Sylvester equations: Exponential time τ1,µ)

The matrices (Ψ
(1)
− , Ψ

(1)
+ , U

(1)
− , U

(1)
+ ) are uniquely defined by a system of

Sylvester equations

Υ
(
U

(1)
− , Ψ

(1)
− , P(Θ), Σ̂, D̂

)
= 0, Υ

(
−U

(1)
+ , Ψ

(1)
+ , P(Θ), Σ̂, D̂

)
= 0 , (24)

where

Υ
(
U , Ψ, P , Σ̂, D̂

)
=

1

2
Σ̂ ·Ψ ·U2 + D̂ ·Ψ ·U +P ·Ψ ,

Ψ
(1)
− =

[
IM 0

Ψ
(1)
+σ

Ψ
(1)
+−

0 Im

]
,Ψ

(1)
+ =

[
IM 0
0 In

Ψ
(1)
−σ

Ψ
(1)
−+

]
, Σ̂ =

[
Σ2 0 0
0 0 0
0 0 0

]
, D̂ =

[
D 0 0
0 In 0
0 0 −Im

]
.

Proof: See the work by Rogers, Asmussen, Jiang, Pistorius, Ivanovs and others.
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Generalization to our purpose

• Sylvester equations can be solved by fixed point iterations or eigenvalue
algorithms (pre-implemented in many software like Matlab).

• Discounting is used as an absorbing state (very convenient).

• This can be generalized to Erlang random variables.

• Deelstra, Latouche, Simon [2020]: Barrier-type financial derivatives with high
values of N (much larger matrix dimension for Sylvester equations; necessary
for approximating fixed maturity dates).

• We apply this approach and extend results to lookback GMDBs, dynamic
fund protection, dynamic withdrawal benefits.
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7) Discussion and conclusion

• We discuss the valuation and risk management of death-linked
contingent claims.

• Based on Laurent series, respectively Sylvester equations, we avoid
numerical Fourier inversion (see the motivating example).

• Mortality table is approximated by Erlang distributions and by Laguerre series
(convenient error control, parameters known).

• “Merging“ mortality and financial risk makes computations (semi)
closed-form and much faster.

More details in:
Deelstra, G., Hieber, P., (2023), Randomization and the valuation of guaranteed
minimum death benefits, European journal of operational research, Vol. 309, Issue
3, 1218-1236.

Thanks
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Thank you for your attention!

Back
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