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The LIBOR reform

London Interbank Offered Rate (LIBOR), computed as the trimmed average
of rates reported by a panel of banks, for five currencies (CHF, EUR, GBP,
JPY, USD) and seven tenors (1D, 1W, 1M, 2M, 3M, 6M, 1Y).

Starting from 2010, the volume of uncollateralized loans in the interbank
market shrinked significantly, mainly because of counterparty risk.

2012: evidence of LIBOR manipulation by several major banks.

July 2017: The future of LIBOR speech by Andrew Bailey (FCA):
LIBOR discontinuation after 2021.

Transition towards transaction-based overnight rates as benchmark rates.
ARRC, June 2017: Secured Overnight Funding Rate (SOFR) in the US.

FCA, March 2021: complete LIBOR cessation after June 2023.

Claudio Fontana 21st Winter School on Mathematical Finance, Soesterberg, 22-24 January 2024 2 / 27



The LIBOR reform

London Interbank Offered Rate (LIBOR), computed as the trimmed average
of rates reported by a panel of banks, for five currencies (CHF, EUR, GBP,
JPY, USD) and seven tenors (1D, 1W, 1M, 2M, 3M, 6M, 1Y).

Starting from 2010, the volume of uncollateralized loans in the interbank
market shrinked significantly, mainly because of counterparty risk.

2012: evidence of LIBOR manipulation by several major banks.

July 2017: The future of LIBOR speech by Andrew Bailey (FCA):
LIBOR discontinuation after 2021.

Transition towards transaction-based overnight rates as benchmark rates.
ARRC, June 2017: Secured Overnight Funding Rate (SOFR) in the US.

FCA, March 2021: complete LIBOR cessation after June 2023.

Claudio Fontana 21st Winter School on Mathematical Finance, Soesterberg, 22-24 January 2024 2 / 27



The LIBOR reform

London Interbank Offered Rate (LIBOR), computed as the trimmed average
of rates reported by a panel of banks, for five currencies (CHF, EUR, GBP,
JPY, USD) and seven tenors (1D, 1W, 1M, 2M, 3M, 6M, 1Y).

Starting from 2010, the volume of uncollateralized loans in the interbank
market shrinked significantly, mainly because of counterparty risk.

2012: evidence of LIBOR manipulation by several major banks.

July 2017: The future of LIBOR speech by Andrew Bailey (FCA):
LIBOR discontinuation after 2021.

Transition towards transaction-based overnight rates as benchmark rates.
ARRC, June 2017: Secured Overnight Funding Rate (SOFR) in the US.

FCA, March 2021: complete LIBOR cessation after June 2023.

Claudio Fontana 21st Winter School on Mathematical Finance, Soesterberg, 22-24 January 2024 2 / 27



Adoption of overnight rates

Source: ISDA-Clarus RFR adoption indicator, November 2023.
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SOFR
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Alternative risk-free rates and stochastic discontinuities

Alternative risk-free rates (RFRs) are (nearly) risk-free overnight rates;

SOFR (US), SONIA (UK), TONA (JP), SARON (CH), e STR (EU);

Being risk-free, RFRs are aligned to policy rates:

as documented by Backwell and Hayes (2022), most of the variation in
SONIA over the years 2016-2020 occurs in correspondence to the meeting
dates of the Monetary Policy Committee of the Bank of England.

The meeting dates follow a predetermined calendar.

Upward/downward spikes at regulatory reporting dates:
SOFR was on average 20.25 bps higher at quarter-ends compared to other
dates (source: Klingler and Syrstad (2021), period: 08/2014 - 12/2019).

These facts provide evidence of stochastic discontinuities:
new information arriving at pre-determined dates that affects overnight rates.
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SOFR: spikes and hikes

SOFR time series from 01/01/2018 until 12/12/2022 (source: Refinitiv).

Claudio Fontana 21st Winter School on Mathematical Finance, Soesterberg, 22-24 January 2024 6 / 27



SOFR: spikes and hikes
Let us consider the spike observed on 17/09/2019.
According to Anbil et al. (2020):

Strains in money markets in September seem to have originated
from routine market events, including a corporate tax payment date
and Treasury coupon settlement. The outsized and unexpected
moves in money market rates were amplified by a number of factors.

This analysis of Anbil et al. (2020) suggests that the date of the spike was
known in advance, while the size of the jump was obviously not predictable.

Presence of stochastic discontinuities in the RFR dynamics.
This phenomenon is playing an important role in recent works:

I Andersen and Bang (2020): spikes in the SOFR dynamics, both at expected
and unexpected times.

I Gellert and Schlögl (2021): diffusive HJM model for instantaneous forward
rates, with jumps/spikes at fixed times in the short rate.

I Brace et al. (2022): diffusive HJM model with stochastic volatility.
I Backwell and Hayes (2022): short-rate model for the SONIA rate, based on a

pure jump process with expected and unexpected jump times.
I Schlögl et al. (2023): joint model for policy and overnight benchmark rates.
I Kim and Wright (2014): short rate model with jumps at fixed times.
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Outline of the talk

1 Numéraire, backward-looking and forward-looking rates;

2 an extended HJM framework;

3 the affine semimartingale setup;

4 hedging via local risk-minimization.
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The RFR numéraire

We consider a continuous-time RFR process ρ = (ρt)t≥0. In line with
empirical evidence, ρ is allowed to have expected and unexpected jumps.

Numéraire:
S0
t = exp

(∫
(0,t]

ρu η(du)

)
,

where η(du) = du +
∑

n∈N δ{tn}(du).

The set T := {tn; n ∈ N} of roll-over dates, at which S0 is expected to jump.

Depending on the specification of ρ and η, this setup includes:
I classical short-rate approach (corresponding to T = ∅);
I discretely updated bank account at overnight frequency:

S0
t =

∏
tn+1≤t

(
1 + rtn (tn+1 − tn)

)
,

where rtn is the overnight rate for the time interval [tn, tn+1].

P(t,T ): zero-coupon bond (ZCB) price at time t for maturity T .
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Backward-looking and forward-looking rates

LIBOR rates are term rates: how to use RFRs to replace them?

Setting-in-arrears rate:

R(S ,T ) :=
1

T − S

( ∏
n∈N(S,T )

1

P(tn, tn+1)
− 1

)
,

where N(S ,T ) := {n ∈ N : S ≤ tn < tn+1 ≤ T}.
According to the ISDA protocol, R(S ,T ) is adopted as LIBOR fallback,
up to an additive spread determined from historical data.

This rate is backward-looking, since its value is known only at T .

Forward-looking rate F (S ,T ): rate K such that the single-period swap (SPS)
delivering R(S ,T )− K at maturity T has zero value at time S .

CME Term SOFR and Refinitiv Term SONIA are forward-looking rates.
12/29/2021: ARRC endorsed CME term SOFR as forward-looking rate.

The use of term SOFR for derivatives is currently restricted by ARRC, but
there is increasing market demand for derivatives referencing term SOFR.
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Forward term rates

As in Lyashenko and Mercurio (2019), we can consider two types of forward rates:

1 Backward-looking forward rate R(t,S ,T ): rate K such that the SPS
delivering R(S ,T )− K at maturity T has zero value at t.

2 Forward-looking forward rate F (t,S ,T ): rate K such that the SPS
delivering F (S ,T )− K at maturity T has zero value at t.

Consequence of the above definitions:

F (t,S ,T ) = R(t,S ,T ), for all t ∈ [0,S ].

The forward-looking forward rate F (t,S ,T ) stops evolving at time S , while the
backward-looking forward rate R(t,S ,T ) continues to evolve until time T , with

R(T ,S ,T ) = R(S ,T ).

Forward-looking and backward-looking forward rates can be consolidated into a
single process R(·,S ,T ). We call this process the forward term rate.
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Forward term rates

Payoff 1 + (T − S)R(S ,T ) at maturity T can be statically replicated as follows:

buy-and-hold strategy in one ZCB with maturity S ;

at time S , invest 1 in a roll-over strategy remunerated at the overnight rate.

This implies the following (classical) representation of forward term rates:

R(t,S ,T ) =
1

T − S

(
P(t,S)

P(t,T )
− 1

)
,

for all t ∈ [0,T ], extending ZCB bond prices beyond maturity by setting

P(t,S) =
P(t, tn(t))

P(tn(t)−1, tn(t))

∏
n∈N(S,t)

1

P(tn, tn+1)
, for t > S ,

with n(t) := inf{n ∈ N : tn > t}.

Similarly to classical (single-curve) interest rate models, the family of ZCB prices
{P(·,T );T > 0} constitutes the fundamental basis of the term structure model.
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An extended HJM framework
We start by specifying ZCB prices as follows:

P(t,T ) = exp
(
−
∫

(t,T ]

f (t, u)η(du)
)
,

where we recall that η(dt) = dt +
∑

n∈N δ{tn}(dt) and assume that

f (t,T ) = f (0,T ) +

∫ t

0

α(s,T )ds +

∫ t

0

ϕ(s,T )dWs + V (t,T ),

with W a d-dim. Brownian motion and V (·,T ) a pure jump process such that

{∆V (·,T ) 6= 0} ⊆ Ω× S, where S = {s1, . . . , sM}.

The set S contains expected jump dates, i.e., dates at which the RFR ρ and
forward term rates are expected to jump.

Remarks:

Lévy-type jumps can be included;

we do not exclude the case S ∩ T 6= ∅;
S can be generalized to a countable family of predictable times.
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Martingale representation

In the representation of forward rates, we are implicitly using the following.

Assumption

There exists a family (ξ1, . . . , ξM) of random variables taking values in (X ,BX )
such that ξi is Fsi -measurable, for each i = 1, . . . ,M, and every local martingale
N = (Nt)t≥0 can be represented as

N = N0 +

∫ ·
0

θtdWt +
M∑
i=1

fi (ξi )1[[si ,+∞[[,

where fi (·) : Ω× X → R is a (Fsi− ⊗ BX )-measurable function such that

E [fi (ξi )|Fsi−] = 0 a.s.
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Technical assumptions

The following conditions hold a.s.:

(i) the initial forward curve T → f (0,T ) is (F0 ⊗ BR+ )-measurable, real-valued

and satisfies
∫ T

0
|f (0, u)|du < +∞, for all T > 0;

(ii) the drift process α : Ω× R2 → R is progressively measurable, satisfies
α(t,T ) = 0 for T < t, and∫ T

0

∫ u

0

|α(s, u)|ds η(du) < +∞, for all T > 0;

(iii) the volatility process ϕ : Ω× R2
+ → Rd is progressively measurable and

satisfies ϕ(t,T ) = 0 for T < t, and

d∑
i=1

∫ T

0

(∫ u

0

|ϕi (s, u)|2ds
)1/2

η(du) < +∞, for all T > 0;

(iv) the stochastic discontinuity process V (·,T ) satisfies
∫ T

0
|∆V (s, u)|du < +∞

for all s ∈ S and ∆V (t,T ) = 0 for T < t.
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An extended HJM framework

Goal: characterize when Q is a risk-neutral measure, i.e., S0-denominated ZCB
prices are local martingales under Q. This ensures absence of arbitrage in the
sense of no asymptotic free lunch with vanishing risk (NAFLVR, see Cuchiero et al.
(2016)), with respect to the numéraire S0.

As a preliminary to the next result, let us define

ᾱ(t,T ) :=

∫
[t,T ]

α(t, u)η(du),

ϕ̄(t,T ) :=

∫
[t,T ]

ϕ(t, u)η(du),

V̄ (t,T ) :=

∫
[t,T ]

∆V (t, u)η(du).
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HJM-type conditions
Theorem

Q is a risk-neutral measure if and only if (suitable integrability properties hold) and
the following four conditions are satisfied:

(i)
f (t, t) = ρt ,

(ii)

ᾱ(t,T ) =
1

2
‖ϕ̄(t,T )‖2

(iii) for every j = 1, . . . ,N it holds that

f (tj−, tj) = ρtj− − log
(
E [e−∆ρtj |Ftj−]

)
,

(iv) for every i = 1, . . . ,M it holds that

E
[
e−∆ρsi δT (si )

(
e
−

∫
(si ,T ]

∆V (si ,u)η(du) − 1
)∣∣∣Fsi−

]
= 0.

Remark: if S ∩ T = ∅, then conditions (i) and (iii) can be jointly written as

f (t, t) = ρt , η(dt)⊗ dQ-a.e.
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Example: a Cheyette-type model
An extension of the Cheyette model with stochastic discontinuities:

for simplicity, no roll-over dates (T = ∅), so that S0 = exp(
∫ ·

0
rudu);

instantaneous forward rates:

f (t,T ) = f (0,T ) +

∫ t

0

α(s,T )ds +

∫ t

0

ϕ(s,T )dWs +
∑
si≤t

(
αi (T ) + ξigi (T )

)
,

with independent ξi ∼ N (µi , σ
2
i ), for i = 1, . . . ,M;

separable volatility structure (1-factor, for illustration):

ϕ(t,T ) =
a(T )

a(t)
b(t) and gi (T ) = a(T )Bi .

Under this volatility structure, it holds that

f (t,T ) = f (0,T ) +
a(T )

a(t)
Xt + U(t,T ),

where X is a mean-reverting Gaussian Markov process with mean-reversion
speed ∂t log(a(t)), diffusion coefficient b and jumps at dates {s1, . . . , sM},
and U(t,T ) is a deterministic function.
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The affine framework
The presence of expected jump times requires an extension of affine processes:
affine semimartingales generalize affine processes by allowing for jumps at fixed
times with possibly state-dependent jump sizes (see Keller-Ressel et al. (2019)).

An affine semimartingale X = (Xt)t≥0 taking values in Rm
+ × Rn satisfies

E
[
e〈u,XT 〉|Ft

]
= exp

(
φt(T , u) + 〈ψt(T , u),Xt〉

)
,

for all u ∈ U = Cm
− × iRn, where the functions φt(T , u) and ψt(T , u) satisfy

generalized Riccati equations.

Short-rate approach: let the RFR be given by

ρt = `(t) + 〈Λ,Xt〉, for all t ≥ 0,

where the function ` fits the initially observed term structure.

Proposition

The joint process (X ,
∫ ·

0
ρu η(du)) is an affine semimartingale.

Similar to the enlargement of the state-space approach of Duffie et al. (2003).

Fourier-based methods for pricing a variety of interest rate derivatives.
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The affine framework
The presence of expected jump times requires an extension of affine processes:
affine semimartingales generalize affine processes by allowing for jumps at fixed
times with possibly state-dependent jump sizes (see Keller-Ressel et al. (2019)).
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E
[
e〈u,XT 〉|Ft

]
= exp

(
φt(T , u) + 〈ψt(T , u),Xt〉

)
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An example: an extended Hull-White model
Assume that ρ = (ρt)t≥0 satisfies

dρt =
(
α(t) + βρt

)
dt + σdWt + dJt ,

where J is a pure jump process independent of W :

J =
M∑
i=1

ξi1[[si ,+∞[[,

In the Gaussian case (i.e., (ξi )i=1,...,M independent and Gaussian):
explicit formula for ZCB prices;
Black-type formula for post-Libor caplets/floorlets.
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Hedging with stochastic discontinuities

Stochastic discontinuities induce market incompleteness.

We therefore make use of the concept of local risk-minimization.

Recall that, in our setup, every local martingale N can be represented as

N = N0 +

∫ ·
0

θtdWt +
M∑
i=1

fi (ξi )1[[si ,+∞[[.

Suppose that the market contains a single risky asset with price process

X = X0 + A + M,
where

I A is process of finite variation;
I M =

∫ ·
0
ηtdWt +

∑
si≤· wi (ξi ) is a square-integrable martingale, with η > 0.

For instance, X can represent the price process of a SOFR future contract
(currently the most liquid SOFR contract).
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Hedging with stochastic discontinuities

Let H ∈ L2 be an FT -measurable payoff. We denote by Θ the set of predictable

processes ζ such that E [
∫ T

0
ζ2
ud〈M〉u + (

∫ T

0
|ζudAu|)2] < +∞.

Definition

An H-admissible strategy is a pair ϕ = (ζ,V ), where ζ = (ζt)t∈[0,T ] ∈ Θ and
V = (Vt)t∈[0,T ] is an adapted process such that VT = H a.s.

An H-admissible strategy ϕ = (ζ,V ) is locally risk-minimizing if the
associated cost process

Ct(ϕ) := Vt −
∫ t

0

ζudXu, t ∈ [0,T ],

is a square-integrable martingale orthogonal to M.

Remarks:

ζt and Vt represent respectively the position in the traded asset and the
portfolio value at time t, for all t ∈ [0,T ];

if X satisfies the structure conditions and A is continuous, this definition can
be shown to be equivalent to the original definition of Schweizer (1991).
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Hedging with stochastic discontinuities
By absence of arbitrage, there exists a predictable process λ such that
A =

∫ ·
0
λu d〈M〉u. This implies that

∆Asi = λsiE [(∆Msi )
2|Fsi−] a.s., for all i = 1, . . . ,M.

Assume that Ẑ := E(−
∫ ·

0
λudMu) is a strictly positive square-integrable

martingale and define the minimal martingale measure by dQ̂ = ẐTdP.

We can then define the Q̂-martingale Ĥ = (Ĥt)t∈[0,T ] by

Ĥt := Ê [H|Ft ], for all t ∈ [0,T ],

where we denote by Ê the expectation with respect to Q̂.

By Bayes’ formula, Ĥ = N/Ẑ , with Nt := E [ẐTH|Ft ], for all t ∈ [0,T ].

As a consequence of the martingale representation assumption, we have that

N = N0 +

∫ ·
0

θudWu +
∑
si≤·

∆Nsi .

We can then write

H = ĤT = Ĥ0 +

∫ T

0

ζHu dXu +
∑
si≤T

(∆Ĥsi − ζHsi ∆Xsi ) = Ĥ0 +

∫ T

0

ζH
u dXu +LH

T .
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Hedging with stochastic discontinuities
Theorem

Let H be an FT -measurable random variable such that supt∈[0,T ] Ĥt ∈ L2.
Define the predictable process

ζHt :=
(
Ẑ−1
t− η

−1
t θt + Ĥt−λt

)
δSc (t) +

E [∆Ĥt∆Mt |Ft−]

E [(∆Mt)2|Ft−]
δS(t).

If ζH ∈ Θ, then the strategy ϕH = (ζH ,V H) is locally risk-minimizing, where

V H
t = Ĥt , for all t ∈ [0,T ].

Remarks:

perfect replication at all times t ∈ [0,T ] \ S, when the only active source of
randomness is the Brownian motion W ;

at the expected jump dates S = {s1, . . . , sM}, the strategy ζHsi is determined

by a linear regression of ∆Ĥsi onto ∆Xsi , conditionally on Fsi−:

ζHsi =
Cov(∆Ĥsi ,∆Xsi |Fsi−)

Var(∆Xsi |Fsi−)
,

One can then obtain, e.g., explicit formula for the locally risk-minimizing
strategy of a term SOFR caplet with respect to a SOFR future.
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Thank you for your attention
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Duffie, D., Filipović, D. and Schachermayer, W. (2003), ‘Affine processes and applications in
finance’, Annals of Applied Probability 13(3): 984–1053.
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