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A paradigm shift in mathematical finance

‘Old’ paradigm:

You are given the model and your task is to compute option prices, value-at-risk, ...

‘New’ paradigm:

You are not given the model and your task is to say something about option prices,
value-at-risk, ... ~» compute bounds
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A paradigm shift in mathematical finance, I
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Motivation

Coin tossing / Dice rolling

We are rolling two dices Dy, D, and are interested in the distribution of the sum.
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We are rolling two dices Dy, D, and are interested in the distribution of the sum.

>

m Simplest choice: Dy and D, are independent dices
m Choices with dependent dices:

m Dy, D, = D; (comonotonicity)

m Dy, D, = 7 — D; (countermonotonicity)
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Coin tossing / Dice rolling

We are rolling two dices Dy, D, and are interested in the distribution of the sum.

>

m Simplest choice: Dy and D, are independent dices
m Choices with dependent dices:

m Dy, D, = D; (comonotonicity)

m Dy, D, = 7 — D; (countermonotonicity)
» Dy, D, = Dy + 1 (“permutation”)
m ...

» Dependence uncertainty: the marginal distributions are known, the
dependence structure is not known
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Motivation

Random variables

(X, ..., X4): random variables with marginal distributions (Fy,. .., Fy)
Dependence structure: determined by joint distribution F or copula C
Sklar’s Theorem: given F, Fq, ..., Fy, there exists C s.t.

F(x1,. .., xg) = C(Fi(x),- .., Fa(xq)) forall x € RY

Dependence uncertainty: the marginal distributions are known, the dependence
structure is not known

Main question: f ‘nice’ function, compute

inf{Ec[f] : C copula} and sup{Ec[f]: C copula}

Recently, the problem was reformulated under additional constraints by Tankov

inf / sup {Ec[f] : C copula + partial information on C}

Math Finance: d’Aspremont, Bertsimas, Deelstra, Denuit, Hobson, Laurence, Vyncke,
Wang, ...

QRM / Insurance Math: Bernard, Embrechts, Puccetti, Rischendorf, Vanduffel, Wang,
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Improved Fréchet—Hoeffding bounds

T. Lux

Theorem
Let S C 19 be a compact set and Q* be a d-quasi-copula. Consider the set
o5 = {Q € @%: Q(x) = Q*(x) forallx € S}.
Then it holds that
Q¥ (u) < Qu) < Q%Y (u) forallu €1

S Q* (M
and Q% a” (u) = Q(u) = (u) forallues
forallQ € oS ’Q*, where the bounds QS'Q* and Q sa" are provided by
(3 few-3w-u))
QS’Q* (u) = max (0, Z ui—d+ 1, max{ Q*(x) — Z(X’ —u)t
i=1 HES i=1 )

QS,Q* (u) = min (u1,..',ud,iﬂ€i2{Q Z i —x;) })

Furthermore, the bounds QS*Q* ,65’0 are d-quasi-copulas.
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Improved Fréchet-Hoeffding bounds, Il

+

Figure: lllustration of the set S.
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Improved Fréchet-Hoeffding bounds, I

Other types of additional information

Measures of association / option prices

Let p: Q¢ — R non-decreasing and continuous, and consider

Q% :={Qe Q" p(Q) =0}
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Improved Fréchet-Hoeffding bounds, I

Other types of additional information

Measures of association / option prices

Let p: Q¢ — R non-decreasing and continuous, and consider
0’ ={Qe Q" p(Q) =6}
Lower-dimensional copulas

Q'={ae0’q=q=q,j=1..k}
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Improved Fréchet—Hoeffding bounds, I

Other types of additional information

Measures of association / option prices

Let p: Q¢ — R non-decreasing and continuous, and consider

0’ ={Qe Q" p(Q) =6}

Lower-dimensional copulas

Distance to a reference copula

Let D: Q¢ x Q¢ — R be a statistical distance, C* be a reference copula, and
consider

o :={Qe Q': D(q,C") < §}.
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Roadmap

Define C/QY, partial order <

Find upper/lower bounds

6/g on Q7 wrt. <

Check whether Q/Q lie in C* |- --- > inf{Eq[f]|Q € Q!} = Eqlf]

' f

Define Eq[f] for Q € o

Y

Q X Q@ = Eqlf] < Eqlf]
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Numerical illustration
Model

m Let (S', 5%, S°) be asset prices that follow the Black-Scholes model, with
So=10,r=0ando; = 1.

m Observe market prices of single asset options ~» known marginals

m Observe market prices of bivariate options H(S', §') = Timax{si,si}<k} for
K=24,...,16and i,j=1,2,3

m Observed market prices are expectations under a risk-neutral measure Q:
Eo[H(S,5)] = Q(S' < K, < K) == Prescription on compact set
m Reference model: multivariate log-normal (Gaussian copula) with

p" = Corr(§',§)

» Arbitrage bounds for f(S', 5%, S°) = 1max(s1,52, 51 <k}

12/39

3
TUDelft



Numerical illustration
= —0.5,p"° = 0.5, p>* = 0 (right)

Example: p'/ = —0.3 (left) and p'*?
= = Upper Fréchet = = Upper Fréchet
0.9/ = Upper narrowed| 0.9/ = Upper narrowed|
= Black-Scholes - = Black-Scholes ———
—Lowernamowed| ___.===" 0sl| —Llowernamowed ___-=="
" = = Lower Fréchet "

08
= = Lower Fréchet

12

s 8 10
Strike
Figure: Arbitrage bounds as functions of K

» Application I: bounds for VaR (Lux & P., IME, 2019)
» Application Il: detection of arbitrages (P. & Yanez, DEMO, 2021)
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Questions — open problems

The ‘nice’ functions are A-tonic — basket options are excluded ...

m Tankov showed that they are copulas for d = 2,
= Bernard et al. strengthened this result (d = 2).

Are they pointwise sharp, e.g. Q(u) = supgco, Q(u)?

The marginals are known. Is that realistic?

3
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The improved Fréchet-Hoeffding bounds are not sharp for d > 2, although ...
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Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for f(X) ~ E[f(X)]

Classical ingredients:

® fi,...,fs : R = R bounded, measurable functions (‘put options’)
m vy, ...,V marginal distributions, i joint distribution
Then

:g_p_/fdu:inf{/ﬁdm+---+/fddud;ﬁ+-~~+fd2f}
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Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for f(X) ~ E[f(X)]

Classical ingredients:

® fi,...,fs : R = R bounded, measurable functions (‘put options’)
m vy, ...,V marginal distributions, i joint distribution
Then

:é._p_/fduzinf{/ﬁdm+---+/fddud;ﬁ+-~~+fd2f}

New ingredients
m 7' price of multi-asset digital 1,;, A" = Xf=1(—oo,Aj':], i€l

m a amount invested in 1,
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Transport and relaxed transport duality, Il

+

Figure: Illustration of the relation between the sets S and (A’);¢;.

z 9
TUDelft 17/39



Transport and relaxed transport duality

Duality under additional information

Define
o(f) == {(ﬁ,...,fd, @) i)+ fala) £ D a1 () 2 £(x), for aleE]Rd}
and

w(fi, .-, fd,Q) ::/Rﬁdm—i—- /fddud—}-z HE - d ).

iel

1=

Theorem

Letf: RY — R be an upper semicontinuous and bounded function, then

max/Rdfd,uz inf{z(fi,....fs;a): (fis---,fa,a) € O()},

HEQ

where

Q= {u ccaf (R :pr=vr, ..., pa=vaandz < p(A) <7, forallie I}.
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Transport and relaxed transport duality, Il

Duality under additional information, relaxed version
Shortselling costraints:

O4(f) = {(ﬂ,...,fd,a)E@(f):ﬁ,...,deOandaiZO, foralliel},

w(fi, - fd,a) ::/ﬁdm+~~—|—/fddl/d—|—2ai+ﬁi.
R R

i€l

Theorem

Letf: RY — R be an upper semicontinuous and bounded function, then

max /Rdfd,u =inf{r(fi,...,fa,a) : (fi,---,f1,a) € OL(f)}, 3)

HEQL

where
Q= {u € ca;(Rd) S < vy e g < vaand p(A) < T, foralli € I}.

~» Uncertainty in the dependence structure and the marginals!

z 9/39
TUDelft 19/39



Results

Copula bounds vs Optimal Transport bounds (a la Eckstein-Kupper) [M. Ntaoutis, MSc Thesis, NTUA]

Digital 01 Maximum Bounds
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Figure: Bounds on option prices

1 1

» Pointwise sharpness of the improved Fréchet—Hoeffding bounds for relaxed

Fréchet classes

» Counterexample, even for d = 2, when the conditions of Tankov / Bernard et

al. are violated
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Questions — open problems

The additional information is not stemming from traded assets, i.e.
multi-asset digital options are not (liquidly) traded ...

Can we replace the additional information with traded asset prices, e.g.
basket options?
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Transport duality under option-implied information

Aim: upper bound - superhedging strategy for f(X) ~ E[f(X)]

Classical ingredients:

= fi,...,fs : R = R bounded, measurable functions (‘put options’)
m vy, ...,Vq marginal distributions, y joint distribution
Then

:g_p_/fduzinf{/ﬁdu1+---+/fddud;ﬁ+~~~+fd2f}
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Transport duality under option-implied information

Aim: upper bound - superhedging strategy for f(X) ~ E[f(X)]

Classical ingredients:
= fi,...,fs : R = R bounded, measurable functions (‘put options’)
® vy,..., V4 marginal distributions, p joint distribution

Then

:g_p_/fdu:inf{/ﬁdu1+---+/fddud;ﬁ+-~~+fd2f}

New ingredients

m p' price of multi-asset option with payoff ¢’

m b’ amount invested in ¢’
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Transport duality under option-implied information, Il

Define

o(f) = {(ﬂ,...,fd,b) i)+ fala) + S B0 > f(x), forall x € ]R"},

icl
and

7(fi,- .. fua, b) ::/ﬁdy1+---+/ﬂ,dyd+2b"p’.
R R

icl

Theorem

Letf: RY — R be an upper semicontinuous and bounded function, then

max/Rdfdﬂ=inf{vr(ﬁ,...,fd,b) (h, - f1,b) € O(F)},

HEQ

where

Q= {,u ePRY =, ..., pta = vg and /q&'ﬂ,u =7, forallie I}.
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Numerical scheme — penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

o(f mf{ /fdu,+2b'p'(2ﬁ+zb'¢ >f}

25/39
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Numerical scheme — penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

o) =inf { 3 [ oy + 0| s+ b = 1
Step 1: Penalization

¢5,9(f)=inf{2/ﬁduj+zi:bi ’—/ﬂ(f—ZﬁJer'gb")da}
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Numerical scheme — penalization and neural networks
Eckstein & Kupper (AMO, 2019)

We would like to approximate the function

o) =inf { = [ v, + LA WL > 1
S ———
®5.0(f) = inf { Z/ﬁduj + Y by - /5(f ~Sf+ Zb"¢")d9}
; ,
Stz 2 N0l ek approdmaiien

o7 4(f) =f/i€ngm{Z/ﬁdl/j—l—zi:bipi—/ﬂ(f—ij—FZbicbi)d@}



Results

3 assets; work in progress
m 3 assets; Black-Scholes dynamics with Gaussian copula

m Additional information (¢) and payoff (f): call-on-max, i.e.

(max(s', %, 8%) — k,0)"

model-free upper bound of option price

5 BN e o4 ety gl

| -=-- Reference value 7"~ .
—— base
— casel
— case2
14— case3
—— cased

0 5000 10000 15000 20000 25000
iterations

Figure: Bounds on option prices
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Questions — open problems

We are still assuming that marginals are fully known. Is that realistic?

Can we have a fully data-driven approach?
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Data-driven approach, |

Traded prices

m Stocks, single- and multi-asset derivatives with known bid and ask prices
= Notation: g : R — R stands for x;, (x; — K)*, (3, xi — K)*, ...

Modeling Q — option-implied measures

m Information on the marginals p;:
z,-S/ Gl <7, €Ty i=1,...,d.
Ry
= Information on the joint law p:
E,-S/Rdgjduﬁﬂ jeJ.
+

= Aggregate:

Q.= {“GP(Ri):EJS/d gidu <7, forj € (u,»j,«)uj}.
]R+

29/39



Data-driven approach, Il

Portfolios of traded assets

The value of a portfolio of traded assets with weights y € R™ equals

y)_zyjﬂ'j yj_j7

j=1

and we define the functional ¢(f) as follows:

o(f) :==inf{c+7(y): ceR,y eR", c+(y,8) > f}.

Theorem: Superhedging duality

Under a no-arbitrage assumption, the following superhedging duality holds

o(f) = 325/Rd+fd“'

3 3 9
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LSIP formulation

The minimization problem ¢(f) is equivalent to the linear semi-infinite problem
(LSIP)

¢(f) = minimize ¢+ (y",7) —(y",x)
subjectto ¢+ (y" —y 7, g(x)) > f(x),Vx € RE, (4)
ceR,y">0,y” >0.

Aim

Develop numerical methods for the computation of upper and lower bounds that
are e-optimal, i.e.

o(f) < o(f) < o(f)” and o(f)” — o(f)"* <e, e>o.

31/39



A crucial ingredient

Continuous piece-wise affine (CPWA) functions
We call a function h : RY — R a CPWA function if it can be represented as

K
h(x) = &emax {{awi, x) + b 1< i < I}, (5)
=1

where K €N, [y € Nfork=1,...,K,and a;; € R?, by ; € R, & € {—1, 1} for
i=1,...hk=1,...,K

Examples

Many popular payoff functions in finance belong to the class of CPWA functions.

= Call option
h(x) = max{x; — k,0} = (x; — k)"

u Basket option

d d
h(x) = max{ Z wiX; — n,O} = (Z WiX; — n)+.
i=1 i=1

m Spread option, call-on-max, call-on-min option, best-of-call option, ...
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The exterior cutting plane (ECP) algorithm

Assumptions

B Q={x€RI:0< x<X}forx:= (X1,...,%4)" > 0.
= f and (gj)j=1:m are CPWA functions on .

m The ECP algorithm is based on a discretization of the domain by a growing finite
subset, thus relaxing the original optimization problem.

= The inner problem:
x* = argminxeRic 4 <y+ —y,8(x)) — f(x)

is solved via mixed-integer linear programming.

Theorem: Properties of ECP algorithm

= Under a no-arbitrage assumption, the ECP algorithm terminates after finitely many
iterations with an =-optimal solution (c¢*, y*) of the LSIP problem.

m The ECP algorithm produces an e-optimizer u* of the primal problem sup,,c o fodu.
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Numerical experiments

Setting
m Assets: d = 5and d = 60

m Derivatives: m = 439 and m = 400 (include assets, vanila calls, baskets,
spreads and calls-on-min)

= Target payoffs: f(x) = (e Vxs Vxa — k) and f(x) = (i A+ Axso — 5) T
m Traded prices: bid and ask prices of the traded options are simulated from a
pre-specified model (log-normal + t-copula).

Notation
m V:only vanilla options;
m V+B: vanilla and basket options;
m V+B+S: vanilla, basket, and spread options;

m V+B+S5+R: vanilla, basket, spread and call-on-max (rainbow) options .

"r‘U Delft 34/39



Numerical experiments |
d = 5, “fixed” model

ECP Magnified
s 22
reference bid price reference bid price
45 reference ask price. 2 reference ask price
cee LB (V) -
4D\ —uBY) 18
LB (V+B) LB (V+B)
———UB (V+B) 16 ———UB (V+B)
LB (V4B+S) RN LB (V+B+S)
UB (V+B+S) UB (V+B+S)
LB (V+B+S+R) 14f LB (V4B+S+R)
UB (V4+B+S+R) 3 UB (V+B4+S4R)
B12
1
08
06
04
0 . . . . . . ! 7 rr—— . . . . . . . .
0 1 2 3 4 5 6 7 8 9 10 28 3 32 34 36 38 4 42
strike strike

m Additional information (known prices) ~» reduction of model risk / NA gap

m Structure of additional information is important
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Numerical experiment Il

d =60

price

0.8

0.7

0.6

0.5

ECP

»»»»»»»» simulated bid price
imulated ask price
LB (V+B+S)
UB (V+B+S)
LB (V+B+S+R)
UB (V+B+S+R)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
strike
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Numerical experiments Il1
30 assets, DJIA, DIA ETF

Basket call option f;

Basket call option f,

60 - 80
LB V(25%) LB V(25%)
| e w -
——— UBV(50%) — UB V(50%)
LB V(100%) 60 LB V(100%)
UB V(100%) UB V(100%)
401 LB V(100%)+B LB V(100%)+B
—— UB V(100%)+B 50 —— UB V(100%)+B
g g
230 2 40
& &
30
20
20
10
10
0 0 . S
220 280 280 300 320 340 360 380 400
strike strike
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