Model-free and data-driven methods in mathematical finance

Antonis Papapantoleon

Collaborators: T. Lux; D. Bartl, M. Kupper, S. Eckstein; A. Neufeld, Q. Xiang; E. Dragazi, S. Liu

21st Winter School on Mathematical Finance • Soesterberg • 22-24 January 2024

A paradigm shift in mathematical finance

A paradigm shift in mathematical finance

'Old' paradigm:
You are given the model and your task is to compute option prices, value-at-risk, ...

A paradigm shift in mathematical finance

'Old' paradigm:
You are given the model and your task is to compute option prices, value-at-risk, ...
'New' paradigm:
You are not given the model and your task is to say something about option prices, value-at-risk, ...

A paradigm shift in mathematical finance

'Old' paradigm:
You are given the model and your task is to compute option prices, value-at-risk, ...
'New' paradigm:
You are not given the model and your task is to say something about option prices, value-at-risk, ... \rightsquigarrow compute bounds

A paradigm shift in mathematical finance, II

Motivation

Coin tossing / Dice rolling

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

Motivation

Coin tossing / Dice rolling

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

- Simplest choice: D_{1} and D_{2} are independent dices

Motivation

Coin tossing / Dice rolling

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

- Simplest choice: D_{1} and D_{2} are independent dices
- Choices with dependent dices:
- $D_{1}, D_{2}=D_{1}$ (comonotonicity)
- $D_{1}, D_{2}=7-D_{1}$ (countermonotonicity)
- $D_{1}, D_{2}=D_{1}+1$ ("permutation")
- ...

Motivation

We are rolling two dices D_{1}, D_{2} and are interested in the distribution of the sum.

- Simplest choice: D_{1} and D_{2} are independent dices
- Choices with dependent dices:
- $D_{1}, D_{2}=D_{1}$ (comonotonicity)
- $D_{1}, D_{2}=7-D_{1}$ (countermonotonicity)
- $D_{1}, D_{2}=D_{1}+1$ ("permutation")
- ...
- Dependence uncertainty: the marginal distributions are known, the dependence structure is not known

Motivation

- $\left(X_{1}, \ldots, X_{d}\right)$: random variables with marginal distributions $\left(F_{1}, \ldots, F_{d}\right)$
- Dependence structure: determined by joint distribution F or copula C
- Sklar's Theorem: given F, F_{1}, \ldots, F_{d}, there exists C s.t.

$$
F\left(x_{1}, \ldots, x_{d}\right)=C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) \quad \text { for all } x \in \mathbb{R}^{d}
$$

- Dependence uncertainty: the marginal distributions are known, the dependence structure is not known
- Main question: f 'nice' function, compute

$$
\inf \left\{\mathbb{E}_{C}[f]: C \text { copula }\right\} \quad \text { and } \quad \sup \left\{\mathbb{E}_{C}[f]: C \text { copula }\right\}
$$

- Recently, the problem was reformulated under additional constraints by Tankov

$$
\inf / \sup \left\{\mathbb{E}_{C}[f]: C \text { copula }+ \text { partial information on } C\right\}
$$

- Math Finance: d’Aspremont, Bertsimas, Deelstra, Denuit, Hobson, Laurence, Vyncke, Wang, ...

■ QRM / Insurance Math: Bernard, Embrechts, Puccetti, Rüschendorf, Vanduffel, Wang,

Outline

Outline

T. Lux

Improved Fréchet-Hoeffding bounds

T. Lux

Theorem

Let $S \subseteq \mathbb{I}^{d}$ be a compact set and Q^{*} be a d-quasi-copula. Consider the set

$$
\mathcal{Q}^{S, Q^{*}}:=\left\{Q \in \mathcal{Q}^{d}: Q(\mathbf{x})=Q^{*}(\mathbf{x}) \text { for all } \mathbf{x} \in S\right\}
$$

Then it holds that

$$
\begin{array}{lll}
& \underline{Q}^{S, Q^{*}}(\mathbf{u}) \leq Q(\mathbf{u}) \leq \bar{Q}^{S, Q^{*}}(\mathbf{u}) & \text { for all } \mathbf{u} \in \mathbb{I}^{d} \\
\text { and } & \underline{Q}^{S, Q^{*}}(\mathbf{u})=Q(\mathbf{u})=\bar{Q}^{S, Q^{*}}(\mathbf{u}) & \text { for all } \mathbf{u} \in S \tag{1}
\end{array}
$$

for all $Q \in \mathcal{Q}^{S, Q^{*}}$, where the bounds $\underline{Q}^{S, Q^{*}}$ and $\bar{Q}^{S, Q^{*}}$ are provided by

$$
\begin{align*}
& \underline{Q}^{S, Q^{*}}(\mathbf{u})=\max \left(0, \sum_{i=1}^{d} u_{i}-d+1, \max _{\mathbf{x} \in S}\left\{Q^{*}(\mathbf{x})-\sum_{i=1}^{d}\left(x_{i}-u_{i}\right)^{+}\right\}\right) \\
& \bar{Q}^{S, Q^{*}}(\mathbf{u})=\min \left(u_{1}, \ldots, u_{d}, \min _{\mathrm{x} \in S}\left\{Q^{*}(\mathbf{x})+\sum_{i=1}^{d}\left(u_{i}-x_{i}\right)^{+}\right\}\right) . \tag{2}
\end{align*}
$$

Furthermore, the bounds $\underline{Q}^{S, Q^{*}}, \bar{Q}^{S, Q^{*}}$ are d-quasi-copulas.

Improved Fréchet-Hoeffding bounds, II

Figure: Illustration of the set S.

Improved Fréchet-Hoeffding bounds, III

Other types of additional information

Measures of association / option prices
Let $\rho: \mathcal{Q}^{d} \rightarrow \mathbb{R}$ non-decreasing and continuous, and consider

$$
\mathcal{Q}^{\theta}:=\left\{Q \in \mathcal{Q}^{d}: \rho(Q)=\theta\right\} .
$$

Improved Fréchet-Hoeffding bounds, III

Other types of additional information

Measures of association / option prices
Let $\rho: \mathcal{Q}^{d} \rightarrow \mathbb{R}$ non-decreasing and continuous, and consider

$$
\mathcal{Q}^{\theta}:=\left\{Q \in \mathcal{Q}^{d}: \rho(Q)=\theta\right\} .
$$

Lower-dimensional copulas

$$
\mathcal{Q}^{\prime}=\left\{Q \in \mathcal{Q}^{d}: \underline{Q}_{j} \preceq Q_{l_{j}} \preceq \bar{Q}_{j}, j=1, \ldots, k\right\}
$$

Improved Fréchet-Hoeffding bounds, III

Measures of association / option prices
Let $\rho: \mathcal{Q}^{d} \rightarrow \mathbb{R}$ non-decreasing and continuous, and consider

$$
\mathcal{Q}^{\theta}:=\left\{Q \in \mathcal{Q}^{d}: \rho(Q)=\theta\right\} .
$$

Lower-dimensional copulas

$$
\mathcal{Q}^{\prime}=\left\{Q \in \mathcal{Q}^{d}: \underline{Q}_{j} \preceq Q_{l_{j}} \preceq \bar{Q}_{j}, j=1, \ldots, k\right\}
$$

Distance to a reference copula
Let $\mathcal{D}: \mathcal{Q}^{d} \times \mathcal{Q}^{d} \rightarrow \mathbb{R}_{+}$be a statistical distance, C^{*} be a reference copula, and consider

$$
\mathcal{Q}^{\mathcal{D}, \delta}:=\left\{Q \in \mathcal{Q}^{d}: \mathcal{D}\left(Q, C^{*}\right) \leq \delta\right\} .
$$

Roadmap

Numerical illustration

- Let $\left(S^{1}, S^{2}, S^{3}\right)$ be asset prices that follow the Black-Scholes model, with $S_{0}^{i}=10, r=0$ and $\sigma_{i}=1$.
■ Observe market prices of single asset options \rightsquigarrow known marginals
- Observe market prices of bivariate options $H\left(S^{i}, S^{j}\right)=1_{\left\{\max \left\{S^{i}, S^{j}\right\}<K\right\}}$ for $K=2,4, \ldots, 16$ and $i, j=1,2,3$

■ Observed market prices are expectations under a risk-neutral measure \mathbb{Q} :

$$
\mathbb{E}_{\mathbb{Q}}\left[H\left(S^{j}, S^{j}\right)\right]=\mathbb{Q}\left(S^{i}<K, S^{j}<K\right) \quad \Longrightarrow \quad \text { Prescription on compact set }
$$

- Reference model: multivariate log-normal (Gaussian copula) with

$$
\rho^{i, j}=\operatorname{Corr}\left(S^{i}, S^{j}\right)
$$

- Arbitrage bounds for $f\left(S^{1}, S^{2}, S^{3}\right)=1_{\left\{\max \left\{S^{1}, S^{2}, S^{3}\right\}<K\right\}}$

Numerical illustration

Example: $\rho^{i, j}=-0.3$ (left) and $\rho^{1,2}=-0.5, \rho^{1,3}=0.5, \rho^{2,3}=0$ (right)

Figure: Arbitrage bounds as functions of K

- Application I: bounds for VaR (Lux \& P., IME, 2019)
- Application II: detection of arbitrages (P. \& Yanez, DEMO, 2021)

Questions - open problems

1 The 'nice' functions are Δ-tonic - basket options are excluded ...
2. The improved Fréchet-Hoeffding bounds are not sharp for $d>2$, although ...

- Tankov showed that they are copulas for $d=2$,
- Bernard et al. strengthened this result $(d=2)$.

Are they pointwise sharp, e.g. $\bar{Q}(u)=\sup _{Q \in \mathcal{Q}_{\star}} Q(u)$?
The marginals are known. Is that realistic?

Outline

D. Bartl, M. Kupper, T. Lux, S. Eckstein

Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$
Classical ingredients:
■ $f_{1}, \ldots, f_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')

- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int f_{1} \mathrm{~d} \nu_{1}+\cdots+\int f_{d} \mathrm{~d} \nu_{d}: f_{1}+\cdots+f_{d} \geq f\right\}
$$

Transport and relaxed transport duality

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$

Classical ingredients:
$\square f_{1}, \ldots, f_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')

- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int f_{1} \mathrm{~d} \nu_{1}+\cdots+\int f_{d} \mathrm{~d} \nu_{d}: f_{1}+\cdots+f_{d} \geq f\right\}
$$

New ingredients

- π^{i} price of multi-asset digital $1_{A^{i}}, A^{i}=\times_{j=1}^{d}\left(-\infty, A_{j}^{i}\right], i \in I$
- a^{i} amount invested in $1_{A^{i}}$

Transport and relaxed transport duality, II

Figure: Illustration of the relation between the sets S and $\left(A^{i}\right)_{i \in I}$.

Transport and relaxed transport duality

Duality under additional information
Define
$\Theta(f):=\left\{\left(f_{1}, \ldots, f_{d}, a\right): f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)+\sum_{i \in l} a^{i} 1_{A^{i}}(x) \geq f(x)\right.$, for all $\left.x \in \mathbb{R}^{d}\right\}$, and

$$
\pi\left(f_{1}, \ldots, f_{d}, a\right):=\int_{\mathbb{R}} f_{1} \mathrm{~d} \nu_{1}+\cdots+\int_{\mathbb{R}} f_{d} \mathrm{~d} \nu_{d}+\sum_{i \in l}\left(a^{i+} \bar{\pi}^{i}-a^{i-} \underline{\pi}^{i}\right)
$$

Theorem

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an upper semicontinuous and bounded function, then

$$
\max _{\mu \in \mathcal{Q}} \int_{\mathbb{R}^{d}} f \mathrm{~d} \mu=\inf \left\{\pi\left(f_{1}, \ldots, f_{d}, a\right):\left(f_{1}, \ldots, f_{d}, a\right) \in \Theta(f)\right\},
$$

where

$$
\mathcal{Q}:=\left\{\mu \in \operatorname{ca} a_{1}^{+}\left(\mathbb{R}^{d}\right): \mu_{1}=\nu_{1}, \ldots, \mu_{d}=\nu_{d} \text { and } \underline{\pi}^{i} \leq \mu\left(A^{i}\right) \leq \bar{\pi}^{i}, \text { for all } i \in I\right\}
$$

Transport and relaxed transport duality, II

Duality under additional information, relaxed version

Shortselling costraints:

$$
\begin{gathered}
\Theta_{+}(f):=\left\{\left(f_{1}, \ldots, f_{d}, a\right) \in \Theta(f): f_{1}, \ldots, f_{d} \geq 0 \text { and } a^{i} \geq 0, \text { for all } i \in I\right\}, \\
\\
\pi\left(f_{1}, \ldots, f_{d}, a\right):=\int_{\mathbb{R}} f_{1} \mathrm{~d} \nu_{1}+\cdots+\int_{\mathbb{R}} f_{d} \mathrm{~d} \nu_{d}+\sum_{i \in I} a^{i+} \bar{\pi}^{i} .
\end{gathered}
$$

Theorem
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an upper semicontinuous and bounded function, then

$$
\begin{equation*}
\max _{\mu \in \mathcal{Q}_{+}} \int_{\mathbb{R}^{d}} f \mathrm{~d} \mu=\inf \left\{\pi\left(f_{1}, \ldots, f_{d}, a\right):\left(f_{1}, \ldots, f_{d}, a\right) \in \Theta_{+}(f)\right\} \tag{3}
\end{equation*}
$$

where

$$
\mathcal{Q}_{+}:=\left\{\mu \in c a_{\leq 1}^{+}\left(\mathbb{R}^{d}\right): \mu_{1} \leq \nu_{1}, \ldots, \mu_{d} \leq \nu_{d} \text { and } \mu\left(A^{i}\right) \leq \bar{\pi}^{i}, \text { for all } i \in I\right\}
$$

\rightsquigarrow Uncertainty in the dependence structure and the marginals!

Results

Copula bounds vs Optimal Transport bounds (á la Eckstein-Kupper) [M. Ntaoutis, MSc Thesis, NTUA]

Figure: Bounds on option prices

- Pointwise sharpness of the improved Fréchet-Hoeffding bounds for relaxed Fréchet classes
- Counterexample, even for $d=2$, when the conditions of Tankov / Bernard et al. are violated

Questions - open problems

1 The additional information is not stemming from traded assets, i.e. multi-asset digital options are not (liquidly) traded ...
2 Can we replace the additional information with traded asset prices, e.g. basket options?

Outline

E. Dragazi, S. Liu

Transport duality under option-implied information

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$

Classical ingredients:

- $f_{1}, \ldots, f_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')
- ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution

Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int f_{1} \mathrm{~d} \nu_{1}+\cdots+\int f_{d} \mathrm{~d} \nu_{d}: f_{1}+\cdots+f_{d} \geq f\right\}
$$

Transport duality under option-implied information

Aim: upper bound - superhedging strategy for $f(\mathbf{X}) \rightsquigarrow \mathbb{E}[f(\mathbf{X})]$

Classical ingredients:

- $f_{1}, \ldots, f_{d}: \mathbb{R} \rightarrow \mathbb{R}$ bounded, measurable functions ('put options')

■ ν_{1}, \ldots, ν_{d} marginal distributions, μ joint distribution
Then

$$
\sup _{\mu \in \ldots} \int f \mathrm{~d} \mu=\inf \left\{\int f_{1} \mathrm{~d} \nu_{1}+\cdots+\int f_{d} \mathrm{~d} \nu_{d}: f_{1}+\cdots+f_{d} \geq f\right\}
$$

New ingredients

- p^{i} price of multi-asset option with payoff ϕ^{i}
- b^{i} amount invested in ϕ^{i}

Transport duality under option-implied information, II

Define

$$
\Theta(f):=\left\{\left(f_{1}, \ldots, f_{d}, b\right): f_{1}\left(x_{1}\right)+\cdots+f_{d}\left(x_{d}\right)+\sum_{i \in l} b^{i} \phi^{i} \geq f(x), \text { for all } x \in \mathbb{R}^{d}\right\}
$$

and

$$
\pi\left(f_{1}, \ldots, f_{d}, b\right):=\int_{\mathbb{R}} f_{1} \mathrm{~d} \nu_{1}+\cdots+\int_{\mathbb{R}} f_{d} \mathrm{~d} \nu_{d}+\sum_{i \in I} b^{i} p^{i}
$$

Theorem

Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be an upper semicontinuous and bounded function, then

$$
\max _{\mu \in \mathcal{Q}} \int_{\mathbb{R}^{d}} f \mathrm{~d} \mu=\inf \left\{\pi\left(f_{1}, \ldots, f_{d}, b\right):\left(f_{1}, \ldots, f_{d}, b\right) \in \Theta(f)\right\},
$$

where

$$
\mathcal{Q}:=\left\{\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right): \mu_{1}=\nu_{1}, \ldots, \mu_{d}=\nu_{d} \text { and } \int \phi^{i} \mathrm{~d} \mu=\pi^{i}, \text { for all } i \in I\right\} .
$$

Numerical scheme - penalization and neural networks

Eckstein \& Kupper (AMO, 2019)

We would like to approximate the function

$$
\Phi(f)=\inf \left\{\sum_{j} \int f_{j} \mathrm{~d} \nu_{j}+\sum_{i} b^{i} p^{i} \mid \sum f_{j}+\sum b^{i} \phi^{i} \geq f\right\}
$$

Numerical scheme - penalization and neural networks

We would like to approximate the function

$$
\Phi(f)=\inf \left\{\sum_{j} \int f_{j} \mathrm{~d} \nu_{j}+\sum_{i} b^{i} p^{i} \mid \sum f_{j}+\sum b^{i} \phi^{i} \geq f\right\}
$$

Step 1: Penalization

$$
\Phi_{\beta, \theta}(f)=\inf \left\{\sum_{j} \int f_{j} \mathrm{~d} \nu_{j}+\sum_{i} b^{i} p^{i}-\int \beta\left(f-\sum f_{j}+\sum b^{i} \phi^{i}\right) \mathrm{d} \theta\right\}
$$

Numerical scheme - penalization and neural networks

Eckstein \& Kupper (AMO, 2019)

We would like to approximate the function

$$
\Phi(f)=\inf \left\{\sum_{j} \int f_{j} \mathrm{~d} \nu_{j}+\sum_{i} b^{i} p^{i} \mid \sum f_{j}+\sum b^{i} \phi^{i} \geq f\right\}
$$

Step 1: Penalization

$$
\Phi_{\beta, \theta}(f)=\inf \left\{\sum_{j} \int f_{j} \mathrm{~d} \nu_{j}+\sum_{i} b^{i} p^{i}-\int \beta\left(f-\sum f_{j}+\sum b^{i} \phi^{i}\right) \mathrm{d} \theta\right\}
$$

Step 2: Neural network approximation

$$
\Phi_{\beta, \theta}^{m}(f)=\inf _{f_{j} \in \mathcal{C}^{m}}\left\{\sum_{j} \int f_{j} \mathrm{~d} \nu_{j}+\sum_{i} b^{i} p^{i}-\int \beta\left(f-\sum f_{j}+\sum b^{i} \phi^{i}\right) \mathrm{d} \theta\right\}
$$

Results

3 assets; work in progress

- 3 assets; Black-Scholes dynamics with Gaussian copula
- Additional information (ϕ) and payoff (f) : call-on-max, i.e.

$$
\left(\max \left(S^{1}, S^{2}, S^{3}\right)-K, 0\right)^{+}
$$

Figure: Bounds on option prices

Questions - open problems

1 We are still assuming that marginals are fully known. Is that realistic?
[Can we have a fully data-driven approach?

Outline

A. Neufeld, Q. Xiang

Data-driven approach, I

Traded prices

- Stocks, single- and multi-asset derivatives with known bid and ask prices
- Notation: $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ stands for $x_{i},\left(x_{i}-K\right)^{+},\left(\sum_{i} x_{i}-K\right)^{+}, \ldots$

Modeling \mathcal{Q} - option-implied measures μ

- Information on the marginals μ_{i} :

$$
\underline{\pi}_{j} \leq \int_{\mathbb{R}_{+}} g_{j} \mathrm{~d} \mu_{i} \leq \bar{\pi}_{j}, \quad j \in \mathcal{J}_{i}, i=1, \ldots, d .
$$

- Information on the joint law μ :

$$
\underline{\pi}_{j} \leq \int_{\mathbb{R}_{+}^{d}} g_{j} \mathrm{~d} \mu \leq \bar{\pi}_{j}, \quad j \in \mathcal{J} .
$$

- Aggregate:

$$
\mathcal{Q}:=\left\{\mu \in \mathcal{P}\left(\mathbb{R}_{+}^{d}\right): \underline{\pi}_{j} \leq \int_{\mathbb{R}_{+}^{d}} g_{j} \mathrm{~d} \mu \leq \bar{\pi}_{j}, \text { for } j \in\left(\cup_{i} \mathcal{J}_{i}\right) \cup \mathcal{J}\right\} .
$$

Data-driven approach, II

Portfolios of traded assets

The value of a portfolio of traded assets with weights $y \in \mathbb{R}^{m}$ equals

$$
\pi(y):=\sum_{j=1}^{m} y_{j}^{+} \bar{\pi}_{j}-y_{j}^{-} \underline{\pi}_{j}
$$

and we define the functional $\phi(f)$ as follows:

$$
\phi(f):=\inf \left\{c+\pi(y): c \in \mathbb{R}, y \in \mathbb{R}^{m}, c+\langle y, g\rangle \geq f\right\}
$$

Theorem: Superhedging duality
Under a no-arbitrage assumption, the following superhedging duality holds

$$
\phi(f)=\sup _{\mu \in \mathcal{Q}} \int_{\mathbb{R}_{+}^{d}} f \mathrm{~d} \mu .
$$

LSIP formulation

The minimization problem $\phi(f)$ is equivalent to the linear semi-infinite problem (LSIP)

$$
\begin{align*}
\phi(f)=\quad \text { minimize } & c+\left\langle y^{+}, \bar{\pi}\right\rangle-\left\langle y^{-}, \underline{\pi}\right\rangle \\
\text { subject to } & c+\left\langle y^{+}-y^{-}, g(x)\right\rangle \geq f(x), \forall x \in \mathbb{R}_{+}^{d} \tag{4}\\
& c \in \mathbb{R}, y^{+} \geq 0, y^{-} \geq 0
\end{align*}
$$

Aim

Develop numerical methods for the computation of upper and lower bounds that are ε-optimal, i.e.

$$
\phi(f)^{L B} \leq \phi(f) \leq \phi(f)^{U B} \text { and } \phi(f)^{U B}-\phi(f)^{L B} \leq \varepsilon, \quad \varepsilon>0
$$

A crucial ingredient

Continuous piece-wise affine (CPWA) functions

We call a function $h: \mathbb{R}^{d} \mapsto \mathbb{R}$ a CPWA function if it can be represented as

$$
\begin{equation*}
h(x)=\sum_{k=1}^{K} \xi_{k} \max \left\{\left\langle a_{k, i}, x\right\rangle+b_{k, i}: 1 \leq i \leq I_{k}\right\}, \tag{5}
\end{equation*}
$$

where $K \in \mathbb{N}, I_{k} \in \mathbb{N}$ for $k=1, \ldots, K$, and $a_{k, i} \in \mathbb{R}^{d}, b_{k, i} \in \mathbb{R}, \xi_{k} \in\{-1,1\}$ for $i=1, \ldots, I_{k}, k=1, \ldots, K$.

Examples

Many popular payoff functions in finance belong to the class of CPWA functions.

- Call option

$$
h(x)=\max \left\{x_{i}-\kappa, 0\right\}=\left(x_{i}-\kappa\right)^{+}
$$

- Basket option

$$
h(x)=\max \left\{\sum_{i=1}^{d} w_{i} x_{i}-\kappa, 0\right\}=\left(\sum_{i=1}^{d} w_{i} x_{i}-\kappa\right)^{+}
$$

- Spread option, call-on-max, call-on-min option, best-of-call option, ...

The exterior cutting plane (ECP) algorithm

Assumptions

- $\Omega=\left\{x \in \mathbb{R}^{d}: 0 \leq x \leq \bar{x}\right\}$ for $\bar{x}:=\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)^{\top}>0$.
- f and $\left(g_{j}\right)_{j=1: m}$ are CPWA functions on Ω.
- The ECP algorithm is based on a discretization of the domain by a growing finite subset, thus relaxing the original optimization problem.
- The inner problem:

$$
x^{\star}=\operatorname{argmin}_{x \in \mathbb{R}_{+}^{d}} c+\left\langle y^{+}-y^{-}, g(x)\right\rangle-f(x)
$$

is solved via mixed-integer linear programming.

Theorem: Properties of ECP algorithm

- Under a no-arbitrage assumption, the ECP algorithm terminates after finitely many iterations with an ε-optimal solution (c^{\star}, y^{\star}) of the LSIP problem.
- The ECP algorithm produces an ε-optimizer μ^{\star} of the primal problem $\sup _{\mu \in \mathcal{Q}} \int_{\Omega} f \mathrm{~d} \mu$.

Numerical experiments

Setting

- Assets: $d=5$ and $d=60$
- Derivatives: $m=439$ and $m=400$ (include assets, vanila calls, baskets, spreads and calls-on-min)
- Target payoffs: $f(x)=\left(x_{2} \vee x_{3} \vee x_{4}-\kappa\right)^{+}$and $f(x)=\left(x_{1} \wedge \cdots \wedge x_{50}-\kappa\right)^{+}$
- Traded prices: bid and ask prices of the traded options are simulated from a pre-specified model (log-normal + t-copula).

Notation

- V : only vanilla options;
- $V+B$: vanilla and basket options;
- $V+B+S$: vanilla, basket, and spread options;
- $V+B+S+R$: vanilla, basket, spread and call-on-max (rainbow) options .

Numerical experiments I

```
d = 5, "fixed" model
```


- Additional information (known prices) \rightsquigarrow reduction of model risk / NA gap
- Structure of additional information is important

Numerical experiment II

$d=60$

Numerical experiments III

30 assets, DJIA, DIA ETF

Bibliography

References
D. Bartl, M. Kupper, T. Lux, A. Papapantoleon, S. Eckstein:

Marginal and dependence uncertainty: bounds, optimal transport, and sharpness
SIAM Journal on Control and Optimization 60, 410-434, 2022.
E. Dragazi, S. Liu, A. Papapantoleon:

Improved model-free bounds for multi-asset options using option implied information and deep learning
in preparation

T. Lux, A. Papapantoleon:

Improved Frechét-Hoeffding bounds on d-copulas and applications in model-free finance Annals of Applied Probability 27, 3633-3671, 2017
T. Lux, A. Papapantoleon:

Model-free bounds on Value-at-Risk using extreme value information and statistical distances Insurance: Mathematics and Economics 86, 73-83, 2019
A. Neufeld, A. Papapantoleon, Q. Xiang:

Model-free bounds for multi-asset options using option-implied information and their exact computation
Management Science 69, 2051-2068, 2023

$$
\text { 戸 } \quad \text { - }
$$

教
．
\square

