

# Valuation Adjustments with an Affine-Diffusion-based Interest Rate Smile Utrecht University & Rabobank, the Netherlands

T. van der Zwaard

21st Winter School on Math. Finance - Soesterberg - January 23, 2024



## **Acknowledgements & Disclaimer**

Joint work with L. Grzelak (UU, Rabobank) & C. Oosterlee (UU).

#### Acknowledgements

This work has been financially supported by Rabobank.

#### **Disclaimer**

The views expressed in this work are the personal views of the authors and do not necessarily reflect the views or policies of their current or past employers.



#### **Outline**

Goal: incorporate smiles in Valuation Adjustments (xVAs).

### Steps:

- Introduction.
- Our contribution.
- 3 SDE with state-dependent drift / diffusion.
- 4 Randomized Affine Diffusion (RAnD).
- 6 Calibration, simulation and pricing.
- 6 Conclusions.



#### Introduction

- Background on xVAs:
  - Economic value risk-neutral value xVA.
  - **b** Valuation Adjustments (xVAs), e.g., CVA, DVA, FVA, MVA, KVA.
  - Computational challenges.
- Pocus on xVAs for IR derivatives.
- 3 Common xVA modeling setup in a Monte Carlo framework:
  - a Use one-factor short-rate model in Affine Diffusion class.
  - **b** Analytic tractability motivates use for xVA purposes.
  - © Example: Hull-White one-factor model (HW1F).



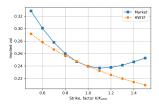
#### HW1F model

- 1 Impossible to fit to the whole market volatility surface (expiry  $\times$  tenor  $\times$  strike).
- 2 Time-dependent piece-wise constant volatility parameter used to calibrate the model to a strip of ATM co-terminal swaptions.
- § Forward rate under HW1F is shifted-lognormal: there is skew but it cannot be controlled.
- 4 The model does not generate volatility smile.
- **5** HW1F dynamics in the G1++ form:

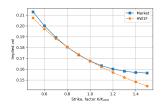
$$r(t) = x(t) + b(t), \quad \mathrm{d}x(t) = -a_{\mathsf{X}}x(t)\mathrm{d}t + \sigma_{\mathsf{X}}(t)\mathrm{d}W(t).$$



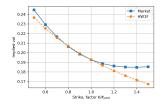
## Smile and skew: the market vs HW1F



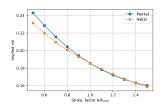
(a) 1Y expiry, 29Y tenor.



(c) 10Y expiry, 20Y tenor.



(b) 5Y expiry, 25Y tenor.



(d) 25Y expiry, 5Y tenor.

Figure: USD 30Y co-terminal swaption volatility strips (02/12/2022).



## Smile and skew: xVA

- 1 Smile and skew typically absent from xVA calculations.
- 2 Challenge: find a model that captures smile and skew, but also allows for efficient calibration and pricing.
- 3 Smile and skew can be relevant for xVA:
  - a Obvious case: derivatives that take into account smile.
  - Also for linear derivatives: legacy trades that are off-market and not primarily driven by ATM vols.
  - Larger effect expected on PFE as this is a tail metric.
- 4 Examples in literature:
  - a Andreasen used a four-factor Cheyette model with local and stochastic volatility [1].
  - **(b)** Quadratic Gaussian models (quadratic form for the short rate) also allow smile control [3, Section 16.3.2].



#### Our contribution

- Find SDE with state-dependent drift / diffusion that is consistent with the convex combination of N different HW1F models, where one model parameter is varied.
- 2 This model allows to capture market smile and skew.
- 3 Profit from the analytic tractability of Affine Diffusion dynamics.
- 4 The model allows for fast and semi-analytic swaption calibration.
- Monte Carlo pricing using regression methods.
- Ouse the idea of the RAnD method to parameterize the model: one additional degree of freedom for HW1F.



# SDE with state-dependent drift / diffusion

1 General dynamics for r(t) for which we try to find the (potentially) state-dependent drift and diffusion:

$$dr(t) = \mu_r^{\mathbb{M}}(t, r(t))dt + \eta_r(t, r(t))dW^{\mathbb{M}}(t).$$
 (1)

2 We want to find  $\mu_r^{\mathbb{M}}(t, r(t))$  and  $\eta_r(t, r(t))$  s.t.  $\forall t$  the density is consistent with the convex combination of N densities of analytically tractable models  $r_n(t)$ :

$$f_{r(t)}^{\mathbb{M}}(y) := \sum_{n=1}^{N} \omega_n f_{r_n(t)}^{\mathbb{M}}(y), \tag{2}$$

$$\mathrm{d}r_n(t) = \mu_{r_n}^{\mathbb{M}}(t, r_n(t))\mathrm{d}t + \eta_{r_n}(t, r_n(t))\mathrm{d}W^{\mathbb{M}}(t). \tag{3}$$

- 3 Eq. (2) holds  $\forall M \ \forall t$ .
- **5** All dynamics are driven by the same Brownian motion  $W^{\mathbb{M}}(t)$ .



## Fokker-Planck: applied to our case

We derive dr(t) using the FP equation for both r(t) and  $r_n(t)$ . Using

$$f_{r(t)}^{\mathbb{M}}(y) := \sum_{n=1}^{N} \omega_n f_{r_n(t)}^{\mathbb{M}}(y), \tag{4}$$

and linearity of the derivative operator we obtain:

$$dr(t) = \mu_r^{\mathbb{M}}(t, r(t))dt + \eta_r(t, r(t))dW^{\mathbb{M}}(t),$$
 (5)

$$\mu_r^{\mathbb{M}}(t, \mathbf{y}) = \sum_{n=1}^N \mu_{r_n}^{\mathbb{M}}(t, \mathbf{y}) \Lambda_n^{\mathbb{M}}(t, \mathbf{y}), \tag{6}$$

$$\eta_r^2(t, \mathbf{y}) = \sum_{n=1}^N \eta_{r_n}^2(t, \mathbf{y}) \Lambda_n^{\mathbb{M}}(t, \mathbf{y}), \tag{7}$$

$$\Lambda_n^{\mathbb{M}}(t, \mathbf{y}) = \frac{\omega_n f_{r_n(t)}^{\mathbb{M}}(\mathbf{y})}{\sum_{i=1}^N \omega_i f_{r_i(t)}^{\mathbb{M}}(\mathbf{y})}.$$
 (8)

So an SDE with state-dependent drift and diffusion.



## The $r_n(t)$ dynamics

• We work with the HW1F model in the G1++ formulation, where each  $r_n(t)$  has a different mean-reversion  $a_x = \theta_n$ :

$$r_n(t) = x_n(t) + b_n(t), \tag{9}$$

$$dx_n(t) = -\theta_n x_n(t) dt + \sigma_x dW(t), \qquad (10)$$

$$b_n(t) = f^{\mathsf{M}}(0,t) - x_n(0)e^{-\theta_n t} + \frac{1}{2}\sigma_x^2 B_n^{\ 2}(0,T), \tag{11}$$

$$B_n(s,t) = \frac{1}{\theta_n} \left( 1 - e^{-\theta_n(t-s)} \right). \tag{12}$$

- $r_n(t) \sim \mathcal{N}\left(\mathbb{E}_s\left[x_n(t)\right] + b_n(t), \mathbb{V}ar_s\left(x_n(t)\right)\right)$  conditional on  $\mathcal{F}_s$ .
- So  $f_{r_n(t)}(y)$  is a normal pdf.



## The r(t) dynamics

For the underlying HW1F dynamics we obtain the following SDE:

$$dr(t) = \mu_r^{\mathbb{M}}(t, r(t))dt + \eta_r(t, r(t))dW^{\mathbb{M}}(t), \tag{13}$$

$$\mu_r^{\mathbb{M}}(t, \mathbf{r(t)}) = \sum_{n=1}^{N} \left[ \frac{\mathrm{d} f^{\mathbb{M}}(0, t)}{\mathrm{d} t} + \theta_n f^{\mathbb{M}}(0, t) - \theta_n \mathbf{r(t)} + \mathbb{V} \mathrm{ar_0} \left( r_n(t) \right) \right] \cdot \Lambda_n^{\mathbb{M}}(t, \mathbf{r(t)}), \tag{14}$$

$$\eta_r(t,r(t)) = \sqrt{\sum_{n=1}^N \sigma_x^2 \cdot \Lambda_n^{\mathbb{M}}(t,r(t))} = \sigma_x, \tag{15}$$

as  $\sum_{n=1}^{N} \Lambda_n^{\mathbb{M}}(t, y) = 1 \ \forall y$ .

This means that the diffusion component  $\eta_r(t, r(t))$  is unchanged, whereas the drift  $\mu_r^{\mathbb{M}}(t, r(t))$  is state-dependent.



## Fast pricing equation for calibration

• We start from martingale pricing under each of the individual underlying affine models  $r_n(t)$ , i.e.,

$$V_{r_n}(t;T) = \mathbb{E}_t^{\mathbb{Q}_{r_n}} \left[ \frac{B_{r_n}(t)}{B_{r_n}(T)} V_{r_n}(T;T) \right]$$

$$= \mathbb{E}_t^{\mathbb{Q}_{r_n}} \left[ \frac{B_{r_n}(t)}{B_{r_n}(T)} H(T; r_n(T)) \right]$$

$$= P_{r_n}(t,T) \mathbb{E}_t^{\mathbb{Q}_{r_n}^T} \left[ H(T; r_n(T)) \right], \tag{16}$$

where  $V_{r_n}(t;T)$  denotes the time t value of the derivative that has payoff  $H(T;r_n(T))$  at time T.  $B_{r_n}(t)$  is the risk-neutral bank account and  $P_{r_n}(t,T)$  is the Zero Coupon Bond.



## Fast pricing equation for calibration

$$\sum_{n=1}^{N} \omega_{n} V_{r_{n}}(t;T) = \sum_{n=1}^{N} \omega_{n} P_{r_{n}}(t,T) \mathbb{E}_{t}^{\mathbb{Q}_{r_{n}}^{T}} [H(T;r_{n}(T))]$$

$$= P_{r}(t,T) \sum_{n=1}^{N} \omega_{n} \mathbb{E}_{t}^{\mathbb{Q}_{r}^{T}} [H(T;r_{n}(T))]$$

$$= P_{r}(t,T) \sum_{n=1}^{N} \omega_{n} \int_{\mathbb{R}} H(T;x) f_{r_{n}(T)}^{\mathbb{Q}_{r}^{T}}(x) dx$$

$$= P_{r}(t,T) \int_{\mathbb{R}} H(T;x) \sum_{n=1}^{N} \omega_{n} f_{r_{n}(T)}^{\mathbb{Q}_{r}^{T}}(x) dx$$

$$= P_{r}(t,T) \int_{\mathbb{R}} H(T;x) f_{r(T)}^{\mathbb{Q}_{r}^{T}}(x) dx$$

$$= P_{r}(t,T) \mathbb{E}_{t}^{\mathbb{Q}_{r}^{T}} [H(T;r(T))] = V_{r}(t;T). \tag{17}$$



## Fast pricing equation for calibration

Main result:

$$V_r(t; T) = \sum_{n=1}^{N} \omega_n V_{r_n}(t; T).$$
 (18)

- Both  $V_r(t; T)$  and  $V_{r_n}(t; T) \forall n$  are arbitrage-free, but only the former prices back the market.
- Eq. (18) only holds for non-path-dependent derivatives.
- For more complex derivatives, derive state-dependent (local-vol type) dynamics as before.
- We use it at t=0 for calibration purposes.
- Under the HW1F model,  $V_{r_n}(t; T)$  semi-analytic using Jamshidian decomposition.



## Randomized Affine Diffusion

Randomized Affine Diffusion (RAnD) method [4, 5]:

- 1 Take an Affine Diffusion (AD) model.
- Pick model parameter  $\vartheta$  to randomize.
- 3 The r.v.  $\vartheta$  is defined on domain  $D_{\vartheta} := [a, b]$  with PDF  $f_{\vartheta}(x)$  and CDF  $F_{\vartheta}(x)$ , and realization  $\theta$ ,  $\vartheta(\omega) = \theta$ , with finite moments.
- 4 For valuation, we use Gauss-quadrature weights  $\{\omega_n, \theta_n\}_{n=1}^N$ where the nodes  $\theta_n$  are based on  $F_{\vartheta}(x)$ , see [5, Appendix A.2]. Then, for the valuation:

$$V_{r(t;\vartheta)}(t;T) = \int_{[a,b]} V_{r(t;\theta)}(t;T) dF_{\vartheta}(\theta) \approx \sum_{n=1}^{N} \omega_n V_{r(t;\theta_n)}(t;T).$$

Compare with the result we derived before:

$$V_r(t;T) = \sum_{n=1}^{N} \omega_n V_{r_n}(t;T).$$
 (19)



## RAnD for model parametrization

- Use the idea of the RAnD method to reduce dimensionality of our model parameters.
- We do not suffer from the quadrature error when pricing Europeans.
- 3 We work with the HW1F dynamics.
- 4 We choose  $\vartheta = a_x$ , i.e., the mean-reversion parameter.
- **6** Impose  $\mathcal{N}\left(\mu_{\vartheta}, \sigma_{\vartheta}^2\right)$  as randomizer (constant over time).
- **6** N=5 suitable when  $\vartheta$  follows a normal (or uniform) distribution.
- **7** Key advantage: one additional degree of freedom w.r.t. HW1F.



# Calibration of the r(t) dynamics

- **1** Calibration of the  $r_n(t)$  HW1F dynamics in the usual way.
- 2 Mean-reversion parameterized as  $a_{x} \sim \mathcal{N}\left(\mu_{\vartheta}, \sigma_{\vartheta}^{2}\right)$ . For each choice of  $\mu_{\vartheta}$  and  $\sigma_{\vartheta}^{2}$ :
  - a Compute collocation points (Gauss-quad weights)  $\{\omega_n, \theta_n\}_{n=1}^N$ .
    - **b** Initialize *N* HW1F models with mean-reversion parameter  $a_x = \theta_n$ .
- Use fast valuation

$$V_r(0;T) = \sum_{n=1}^N \omega_n V_{r_n}(0;T).$$

- **4** Calibrate the parametrization of the mean-reversion  $a_x \sim \mathcal{N}\left(\mu_{\vartheta}, \sigma_{\vartheta}^2\right)$  according to the desired strategy:
  - a Fit the initial coterminal smile.
  - 6 Fit all coterminal smiles.
- **6** Bootstrap calibration of piece-wise constant model volatility to get a good ATM fit to the coterminal swaption strip.



#### Calibration results

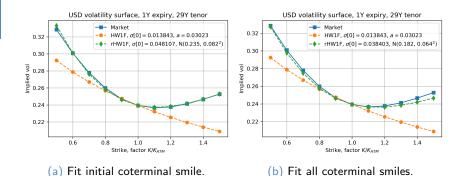


Figure: Initial coterminal smile. USD market data from 02/12/2022.



#### **Calibration results**

```
MSE Impvol surf: HW1F = 1.81e-04 & rHW1F = 2.96e-03 MSE Impvol ATM: HW1F = 5.83e-05 & rHW1F = 2.86e-03 MSE Impvol init smile: HW1F = 5.07e-04 & rHW1F = 8.78e-06 MSE Impvol cot smiles: HW1F = 8.15e-05 & rHW1F = 2.62e-06
```

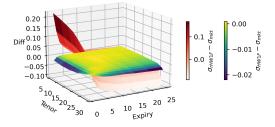


Figure: Difference in ATM implied vols when calibrating to all coterminal smiles. USD market data from 02/12/2022.



1 Euler-Maruyama discretization always works:

$$r(t_{i+1}) = r(t_i) + \mu_r(t_i, r(t_i))\Delta t + \eta_r(t, r(t_i))\sqrt{\Delta t}Z, \qquad (20)$$
 where  $Z \sim \mathcal{N}(0, 1)$ .

2 Ideally we make large time steps. Hence, we integrate dr(t) to obtain an expression for r(t) conditional on r(s) for s < t, i.e.,

$$r(t) = r(s) + \int_{s}^{t} \mu_{r}(u, r(u)) du + \int_{s}^{t} \eta_{r}(u, r(u)) dW(u).$$
 (21)

The integrated drift is difficult to compute:

$$\begin{split} &\int_s^t \mu_r(u, r(u)) \mathrm{d} u = f^\mathsf{M}(0, t) - f^\mathsf{M}(0, s) \\ &+ \int_s^t \sum_{n=1}^N \left[ \theta_n f^\mathsf{M}(0, u) - \theta_n r(u) + \mathbb{V} \mathsf{ar}_0 \left( r_n(u) \right) \right] \Lambda_n(u, r(u)) \mathrm{d} u. \end{split}$$

4 Alternatively: machine learning, e.g., Seven-League scheme [6].



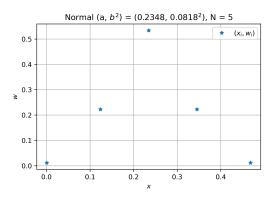


Figure: Example of quadrature points.



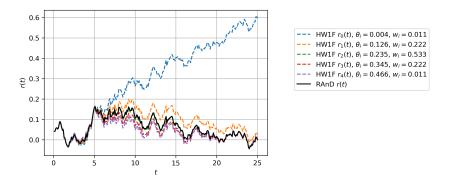
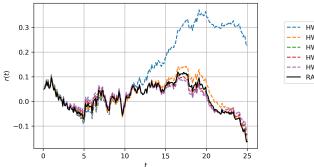


Figure: Path example: regular paths.





 $\begin{array}{lll} & --- & \text{HW1F } r_0(t), \ \theta_i = 0.004, \ w_i = 0.011 \\ & --- & \text{HW1F } r_1(t), \ \theta_i = 0.126, \ w_i = 0.222 \\ & --- & \text{HW1F } r_2(t), \ \theta_i = 0.235, \ w_i = 0.533 \\ & --- & \text{HW1F } r_4(t), \ \theta_i = 0.345, \ w_i = 0.201 \\ & --- & \text{HW1F } r_4(t), \ \theta_i = 0.466, \ w_i = 0.011 \\ \hline & & \text{RAnD } r(t) \\ \end{array}$ 

Figure: Path example: path ending low.



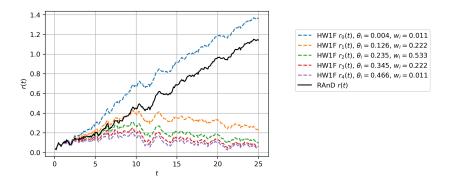


Figure: Path example: path ending high.



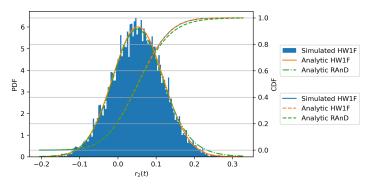


Figure: r(t) vs  $r_2(t)$ .



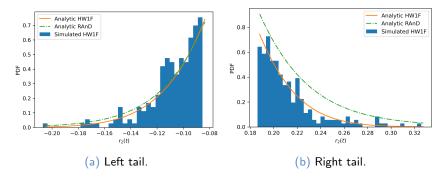


Figure: r(t) vs  $r_2(t)$ .



# Pricing under the r(t) dynamics

- Valuation as convex combination of underlying prices only for Europeans.
- 2 In general, we can use Monte Carlo with regression:
  - ⓐ For example, we simulate r from  $t_0$  to t and at this point we want to compute  $P_r(t,T) = \mathbb{E}_t \left[ \mathrm{e}^{-\int_t^T r(s) \mathrm{d}s} \right]$ .
  - **b** For each  $P_r(t, T)$  we need for pricing, it is regressed on r(t).
  - For example, an *n*-th order polynomial can be used as regression function, or something of exponential form.
- 3 These regression-based methods lend themselves naturally for xVA calculations, also known as American Monte Carlo.



# Pricing a swaption under the r(t) dynamics

- 1 Swaption with 10k notional, 5y expiry, on a 5y payer swap with annual payments.
- 2 Use 10<sup>5</sup> MC paths (antithetic variates turned on) and 100 simulation dates per year.
- 3 Polynomial regression of degree 1 or 2.

|                                   | Value     | Imp.vol  |
|-----------------------------------|-----------|----------|
| HW1F: analytic                    | 328.63814 | 0.221863 |
| Fast pricing eq: analytic         | 581.86990 | 0.401957 |
| Fast pricing eq: MC regressed ZCB | 581.72496 | 0.401850 |
| RAnD dynamics: MC regressed ZCB   | 582.26208 | 0.402247 |
| Abs diff                          | 0.53711   | 0.000397 |

Table: Results for all coterminal smiles calibration. Diff between fast pricing eq. and RAnD dynamics values using the MC with regressed ZCB. RAnD 95% conf.int.: (580.09, 584.43).



#### **Conclusions**

- find SDE with state-dependent drift / diffusion that is consistent with the convex combination of N different HW1F models, where one model parameter is varied.
- This model allows to capture market smile and skew.
- Profit from the analytic tractability of Affine Diffusion dynamics.
- 4 The model allows for fast and semi-analytic swaption calibration.
- Monte Carlo pricing using regression methods.
- 6 Use the idea of the RAnD method to parameterize the model: one additional degree of freedom for HW1F.





# Valuation Adjustments with an Affine-Diffusion-based Interest Rate Smile Utrecht University & Rabobank, the Netherlands

T. van der Zwaard

21st Winter School on Math. Finance - Soesterberg - January 23, 2024



#### References I

[1] J. Andreasen. CVA on an iPad Mini - Part 2: The Beast. Aarhus Kwant Factory PhD Course, January 2020.

[2] D. Brigo and F. Mercurio. A mixed-up smile. Risk, pages 123–126, September 2000.

[3] A. Green. XVA: Credit, Funding and Capital Valuation Adjustments. John Wiley & Sons, first edition, November 2015. ISBN 978-1-118-55678-8.



#### References II

## [4] L.A. Grzelak.

On Randomization of Affine Diffusion Processes with Application to Pricing of Options on VIX and S&P 500. arXiv Electronic Journal, August 2022.

## [5] L.A. Grzelak.

Randomization of Short-Rate Models, Analytic Pricing and Flexibility in Controlling Implied Volatilities. arXiv Electronic Journal. November 2022.

## [6] S. Liu, L.A. Grzelak, and C.W. Oosterlee.

The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations. Risks, 10(47), February 2022.



#### References III

- [7] C.W. Oosterlee and L.A. Grzelak. Mathematical Modeling and Computation in Finance. World Scientific, first edition, November 2019. ISBN 978-1-78634-794-7.
- [8] V. Piterbarg. Mixture of Models: A Simple Recipe for a ... Hangover? SSRN Electronic Journal, July 2003.

