Deep xVA under a structural model

Joint work: Kristoffer Andersson¹, Athena Picarelli & Alessandro Gnoatto

22nd Winter school on Mathematical Finance, January 20, 2025

¹Email address: kristofferherbert.andersson@univr.it

Table of contents

- A structural xVA model
- 2 A system of BSDEs describing the xVAs
- Approximations
- Numerical example

Financial setup

Consider a portfolio of $P \in \mathbb{N}^+$ derivatives (options, swaps, swaptions, etc.) traded between a bank (\mathcal{B}) and some financial counterparty (\mathcal{C}) . Clean values given by $\widehat{V}^1, \widehat{V}^2, \ldots, \widehat{V}^P$ and the portfolio value $\widehat{V} = \sum_{j=1}^P \widehat{V}^J$. Each derivative written on a subset of a $\mathbb{N}^+ \ni d$ -dimensional underlying assets process, \widehat{X} . Different maturities T_1, T_2, \ldots, T_P .

In an xVA context, we adjust \widehat{V} by:

- CVA/DVA (Credit/Debit Valuation Adjustment): default risk of the counterparty/bank,
- ColVA (Collateral VA): differing lending/borrowing rates for collateral,
- MVA (Margin VA): funding costs/benefits for Initial Margin,
- FVA (Funding VA): additional funding costs (e.g., hedging market risk).

Focus of this presentation: We concentrate on modeling

- (i) defaults (structural default model),
- (ii) initial margin (as a risk measure),
- (iii) a change of measure technique for rare events (particularly defaults).

A structural default model

In a *structural model* of default, the evolution of each firm's $(\mathcal{B}/\mathcal{C})$ assets is modeled directly, and default is triggered when the asset value falls below a specified boundary.

$$X_t^{\mathcal{B}} = 1 + \int_0^t b^{\mathcal{B}}(s, X_s^{\mathcal{B}}) ds + \int_0^s \sigma^{\mathcal{B}}(s, X_s^{\mathcal{B}}) dW_s^{\mathcal{B}}, \tag{1}$$

$$X_t^{\mathcal{C}} = 1 + \int_0^t b^{\mathcal{C}}(s, X_s^{\mathcal{C}}) ds + \int_0^s \sigma^{\mathcal{C}}(s, X_s^{\mathcal{C}}) dW_s^{\mathcal{C}},$$
 (2)

Default times given by the following stopping times

$$\tau^{\mathcal{B}} = \inf\{t \in (0, T] \colon X_t^{\mathcal{B}} \le \xi_t^{\mathcal{B}}\}, \quad \tau^{\mathcal{C}} = \inf\{t \in (0, T] \colon X_t^{\mathcal{C}} \le \xi_t^{\mathcal{C}}\}. \tag{3}$$

Moreover, define $\tau = \tau^{\mathcal{B}} \wedge \tau^{\mathcal{C}}$ and maturity of netting set given by $\tau \wedge T$.

Visualization of a structural default model

Counterparty defaults, $\tau = \tau^{\mathcal{C}}$, and portfolio maturity $\tau^{\mathcal{C}}$:

No default, $\tau > T$, and portfolio maturity T:

xVA BSDEs

$$\begin{split} \widehat{V}_{t}^{j} &= -\int_{(t,T]} \mathrm{d}A_{s}^{j} - \int_{(t,T]} r_{s} \, \widehat{V}_{s}^{j} \, \mathrm{d}s - \int_{(t,T]} \widehat{Z}_{s}^{\mathcal{I}_{j}} \cdot \mathrm{d}\widehat{W}_{s}^{\mathcal{I}_{j}}, \quad j \in \{1,\ldots,P\}, \quad \widehat{V} = \sum_{j=1}^{r} \widehat{V}^{j}, \\ -\mathrm{ColVA}_{t} &= \int_{(t,\tau\wedge T)} (f^{\mathrm{ColVA}}(s,C_{s}) - r_{s} \, \mathrm{ColVA}_{s}) \, \mathrm{d}s - \int_{(t,\tau\wedge T)} Z_{s}^{\mathrm{ColVA}} \cdot \mathrm{d}W_{s}, \\ \mathrm{IM}_{t}^{\mathrm{FC}} &= \mathrm{VaR}_{\alpha} \left((\widehat{V}_{t+\mathrm{MPR}_{t}} - \widehat{V}_{t})^{+} \mid \widehat{\mathcal{F}}_{t} \right), \quad \mathrm{IM}_{t}^{\mathrm{TC}} &= -\mathrm{VaR}_{1-\alpha} \left((\widehat{V}_{t+\mathrm{MPR}_{t}} - \widehat{V}_{t})^{-} \mid \widehat{\mathcal{F}}_{t} \right), \\ \mathrm{CVA}_{t} &= \mathbf{1}_{\{\tau \leq T\}} \, \mathbf{1}_{\{\tau = \tau C\}} \, \mathrm{LGD}^{C} \, (\widehat{V}_{\tau} - C_{\tau} - \mathrm{IM}_{\tau}^{\mathrm{FC}})^{+} - \int_{(t,\tau\wedge T)} r_{s} \, \mathrm{CVA}_{s} \, \mathrm{d}s - \int_{(t,\tau\wedge T)} Z_{s}^{\mathrm{CVA}} \cdot \mathrm{d}W_{s}, \\ \mathrm{DVA}_{t} &= \mathbf{1}_{\{\tau \leq T\}} \, \mathbf{1}_{\{\tau = \tau B\}} \, \mathrm{LGD}^{B} \, (\widehat{V}_{\tau} - C_{\tau} - \mathrm{IM}_{\tau}^{\mathrm{TC}})^{-} - \int_{(t,\tau\wedge T)} r_{s} \, \mathrm{DVA}_{s} \, \mathrm{d}s - \int_{(t,\tau\wedge T)} Z_{s}^{\mathrm{DVA}} \cdot \mathrm{d}W_{s}, \\ -\mathrm{MVA}_{t} &= \int_{(t,\tau\wedge T)} (f^{\mathrm{MVA}}(s, \mathrm{IM}_{s}^{\mathrm{FC}}, \mathrm{IM}_{s}^{\mathrm{TC}}) - r_{s} \, \mathrm{MVA}_{s}) \, \mathrm{d}s - \int_{(t,\tau\wedge T)} Z_{s}^{\mathrm{MVA}} \cdot \mathrm{d}W_{s}, \\ \mathbf{XVA}_{t} &= (\mathrm{ColVA}_{t}, \mathrm{CVA}_{t}, \mathrm{DVA}_{t}, \mathrm{MVA}_{t}, \mathrm{FVA}_{t}). \end{split}$$

 $-\text{FVA}_t = \int_{C_s \to T_s^{-1}} \left(f^{\text{FVA}}(s, \hat{V}_s, C_s, \text{XVA}_s, \text{IM}_s^{\text{TC}}) - r_s \text{FVA}_s \right) ds - \int_{C_s \to T_s^{-1}} Z_s^{\text{FVA}} \cdot dW_s.$

General form of the BSDEs

Forward SDE given by $X \coloneqq \mathsf{Concat}(\widehat{X}, X^\mathcal{B}, X^\mathcal{C})$, where \widehat{X} is the d-dimensional underlying assets process.

Each xVA BSDE is on the form:

$$\begin{cases} X_t = x_0 + \int_0^t b(s, X_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \odot \mathrm{d}W_s, \\ Y_t = 1_{\{\tau \leq T\}} \chi_\tau - \int_{(t, \tau \wedge T]} \mathrm{d}\Lambda_s + \int_{(t, \tau \wedge T]} (f_s^Y - r_s Y_s) \, \mathrm{d}s - \int_{(t, \tau \wedge T]} Z_s \cdot \mathrm{d}W_s, \end{cases}$$

$$\tag{4}$$

Non-standard features:

- The process $(f_t^Y)_{t \in \{0, \tau \wedge T\}}$ could be reformulated as a Markovian function of X, $\mathcal{L}[\widehat{V}]$ (the IM). It is actually an **anticipated McKean–Vlasov BSDE**.
- **②** We have a random terminal time given by $\tau \wedge T$, a **BSDE** with stopping time.

BSDE under a new measure

Problem: Default events are rare and is not well captured by the neural network unless the training data is huge.

Solution: Use a change of measure technique to increase the default probabilities.

Subtract q from the drift in the forward SDE and compensate by $\langle q \oslash \sigma, Z \rangle$ in the BSDE driver:

$$\begin{cases}
X_t^q = x_0 + \int_0^t \left(b(s, X_s^q) - q(s, X_s^q) \right) ds + \int_0^t \sigma(s, X_s^q) \odot dW_s, \\
Y_t^q = \mathbb{I}_{\{\tau^q \le T\}} \chi_{\tau^q}^q - \int_{(t, \tau^q \land T]} d\Lambda_s^q \\
+ \int_{(t, \tau^q \land T]} \left(f_s^{Y,q} - r_s Y_s^q - \langle q(s, X_s^q) \oslash \sigma(s, X_s^q), Z_s^q \rangle \right) ds - \int_{(t, \tau^q \land T]} Z_s^q \cdot dW_s.
\end{cases} \tag{5}$$

For any q (regular enough), it holds that:

- The initial condition, $Y_0^q \equiv Y_0$,
- The associate PDE, with solution u, has the stochastic representation $Y_t^q = u(t, X_t^q)$, i.e., for any q, the associate PDE is the same.

Visualization of the structural default model under a measure change

Under original measure: No default, $\tau > T$, and portfolio maturity T **Under new measure**: Counterparty defaults, $\tau^q = \tau^{\mathcal{B},q}$, and portfolio maturity $\tau^{\mathcal{B},q}$

Equivalent formulation as a variational problem

The deep BSDE method relies on the reformulation of the FBSDE into the variational problem:

$$\begin{cases} \inf_{\mathbf{y_0},(\mathbf{Z}_t^q)_{t\in[\mathbf{0},T]}} \mathbb{E}\Big[\big| \mathbb{I}_{\{\tau^q \leq T\}} \chi_{\tau^q}^q - \Delta \Lambda_{\tau^q \wedge T}^q - Y_{\tau^q \wedge T}^q \big|^2 \Big], & \text{where,} \\ X_t^q = x_0 + \int_0^t \big(b(s, X_s^q) - q(s, X_s^q) \big) \mathrm{d}s + \int_0^t \sigma(s, X_s^q) \odot \mathrm{d}W_s, \\ Y_t^q = y_0 + \int_{(0,t]} \mathrm{d}\Lambda_s^q - \int_{(0,t]} \big(f_s^{Y,q} - r_s Y_s^q - \langle q(s, X_s^q) \oslash \sigma(s, X_s^q), Z_s^q \rangle \big) \, \mathrm{d}s \\ + \int_{(0,t]} Z_s^q \cdot \mathrm{d}W_s. \end{cases}$$
(6)

Motivation:

- A solution to (5) (the FBSDE) solves (6),
- By well-posedness of the FBSDE, this solution is unique.

Variational problem for multiple FBSDEs

We want to solve the FBSDE under multiple different measures generated by shifting the drift by q_1,q_2,\ldots,q_K

$$\begin{cases} \inf_{y_0,(Z_t^{q_1},\dots,Z_t^{q_K})} \sum_{i=1}^K \mathbb{E}\Big[\big| \mathbb{I}_{\{\tau^{q_i} \leq T\}} \chi_{\tau^{q_i}}^{q_i} - \Delta \Lambda_{\tau^{q_i} \wedge T}^{q_i} - Y_{\tau^{q_i} \wedge T}^{q_i} \big|^2 \Big], \\ \text{where for } i \in \{1,2,\dots,K\} : \\ X_t^{q_i} = x_0 + \int_0^t \big(b(s,X_s^{q_i}) - q_i(s,X_s^{q_i}) \big) \mathrm{d}s + \int_0^t \sigma(s,X_s^{q_i}) \odot \mathrm{d}W_s, \\ Y_t^{q_i} = y_0 + \int_{(0,t]} \mathrm{d}\Lambda_s^{q_i} - \int_{(0,t]} \big(f_s^{Y,q_i} - r_s Y_s^{q_i} - \langle q_i(s,X_s^{q_i}) \oslash \sigma(s,X_s^{q_i}), Z_s^{q_i} \rangle \big) \, \mathrm{d}s \\ + \int_{(0,t]} Z_s^{q_i} \cdot \mathrm{d}W_s. \end{cases}$$

- All BSDEs have the same initial condition, hence only one y_0^* ,
- Functional form Z is the same for all q_i , i.e., $Z_t^{q_i} = Z(t, X_t^{q_i})$,
- Solving multiple BSDEs makes default modeling more accurate. Can also increase robustness.

Semi-discrete variational problem

Equidistant time grid $\pi := \{0 = t_0, t_1, \dots, t_N = T\}$, with $h = t_{n+1} - t_n$ and Brownian increments $\Delta W_n = W_{n+1} - W_n$. The discretized stopping times are given by $n_{-\mathcal{B}}^i = \inf\{n \in \mathbb{N}^+ : [X_n^{\pi,q_i}]_{d+1} \le \xi_{t_n}^1\}, \quad n_{-\mathcal{C}}^i = \inf\{n \in \mathbb{N}^+ : [X_n^{\pi,q_i}]_{d+2} \le \xi_{t_n}^2\}.$

Time discrete formulation:

Time discrete formulation:
$$\begin{cases} \mathcal{J}(y_0, \mathbf{Z}) := \inf_{y_0, \mathbf{Z}} \sum_{i=1}^K \mathbb{E} \Big[\big| \mathbb{I}_{\{n_n^i \leq N\}} \chi_{n_n^i}^{\pi, q_i} - \Delta \Lambda_{n_n^i \wedge N}^{\pi, q_i} - Y_{n_n^i \wedge N}^{\pi} \big|^2 \Big], \text{ s.t. for } i \in \{1, \dots, K\} : \\ X_n^{\pi, q_i} = x_0 + \sum_{k=0}^{n-1} \Big[b(t_k, X_k^{\pi, q_i}) - q_i(t_k, X_k^{\pi, q_i}) \Big] h + \sum_{k=0}^{n-1} \sigma(t_k, X_k^{\pi, q_i}) \odot \Delta W_k, \\ Y_n^{\pi, q_i} = y_0 + \sum_{k=0}^{n-1} \Delta \Lambda_k^{\pi, q_i} + \sum_{k=0}^{n-1} Z_k^{\pi, q_i} \cdot \Delta W_k \\ - \sum_{k=0}^{n-1} \left(f_k^{\pi, Y, q_i} - r_k^{\pi} Y_k^{\pi, q_i} - \langle q_i(t_k, X_k^{\pi, q_i}) \otimes \sigma(t_k, X_k^{\pi, q_i}), Z_k^{\pi, q_i} \rangle \right) h \\ Z_n^{\pi, q_i} = \mathbf{Z}(t_n, X_n^{\pi, q_i}), \end{cases}$$

Represent y_0 with a trainable parameter and represent \mathcal{Z} with a neural network. Optimize subject to objective functional \mathcal{J} .

- Stopping times approximated √,
- Still no approximation of initial margin (McKean–Vlasov components) X.

Initial margin approximations

Reformulate VaR as an optimization problem:

$$\mathsf{VaR}_{lpha}\left(\widehat{V}_{t+\mathrm{MPR}_{t}}-\widehat{V}_{t}\,\middle|\,\widehat{\mathcal{F}}_{t}
ight) = \operatorname*{\mathsf{arg\,min}}_{q\in\mathbb{R}}\,\mathbb{E}\left[arkappa^{lpha}(q;\,\widehat{V}_{t+\mathrm{MPR}_{t}}-\widehat{V}_{t})\,\middle|\,\widehat{\mathcal{F}}_{t}
ight],$$

where $\varkappa^{\alpha}(q;x) = \max(\alpha \cdot (x-q), (\alpha-1) \cdot (x-q)).$

$$\begin{cases} \underset{q_{n}^{+},q_{n}^{-}}{\text{minimize}} & \mathbb{E}\left[\varkappa^{\alpha}\left(q_{n}^{+}(\widehat{X}_{n}^{\pi},\widehat{V}_{n}^{\pi,*});(\widehat{V}_{n+\mathrm{MPR}_{n}^{\pi}}^{\pi,*}-\widehat{V}_{n}^{\pi,*})^{+}\right)\right] \\ & + \mathbb{E}\left[\varkappa^{\alpha}\left(q_{n}^{-}(\widehat{X}_{n}^{\pi},\widehat{V}_{n}^{\pi,*});(\widehat{V}_{n+\mathrm{MPR}_{n}^{\pi}}^{\pi,*}-\widehat{V}_{n}^{\pi,*})^{-}\right)\right], & \text{where} \end{cases}$$

$$\begin{cases} \widehat{X}_{n}^{\pi} = x_{0} + \sum_{k=0}^{n-1}\widehat{b}(t_{k},\widehat{X}_{k}^{\pi})h + \sum_{k=0}^{n-1}\widehat{\sigma}(t_{k},\widehat{X}_{k}^{\pi})\cdot\Delta\widehat{W}_{k}, \\ \widehat{V}_{n}^{j,\pi,*} = F_{n}^{\widehat{V}^{j}}(\widehat{X}_{0:n-1}^{\pi},\widehat{V}_{0:n-1}^{j,\pi,*},\widehat{Z}_{0:n-1}^{j,\pi,*},\Delta\widehat{W}_{0:n-1}^{\mathcal{I}_{j}}), & \widehat{V}_{0}^{j,\pi,*} = \widehat{V}_{0}^{j}, & j \in \{1,2,\ldots,P\} \end{cases}$$

$$\widehat{V}^{\pi,*} = \sum_{j=1}^{p}\widehat{V}_{n}^{j,\pi,*}, & \widehat{Z}_{n}^{j,\pi,*} = \left[\mathcal{Z}^{*}(t_{n},\widehat{X}_{n}^{\pi})\right]_{i=\mathcal{J}_{j}}^{\mathcal{J}_{j}+d_{j}}, & j \in \{1,2,\ldots,P\}. \end{cases}$$

. (8)

Here $\widehat{V}^{j,\pi,*}$ is approximate clean value of derivative j. Represent (q_n^+,q_n^-) and optimize subject to objective function.

High-level picture of full algorithm

Deeper layers depend on approximations obtained from higher layers.

- Approximation of the clean value BSDE,
- Approximation of the mapping generating the risk measure value at risk,
- 3 Approximation of the ColVA, CVA, DVA and MVA BSDEs,
- Approximation of the FVA BSDE,
- (Approximation of the KVA BSDE).

In this presentation we focus on: Clean Values \widehat{V} , Initial Margins, $\mathrm{IM}^{\mathrm{TC}}$ and $\mathrm{IM}^{\mathrm{FC}}$, and Margin Valuation Adjustment, MVA.

- Model the underlying processes with a 7-dimensional Geometric Brownian Motion,
- A portfolio of P = 33 European basket options,
- In total, 93 dimensional problem,

$$\sigma = \begin{pmatrix} 0.2 \\ 0.25 \\ 0.25 \\ 0.25 \\ 0.3 \\ 0.2 \\ 0.3 \end{pmatrix}, \quad \rho = \begin{pmatrix} 1.0 & 0.9 & 0.2 & 0.5 & 0.1 & 0.1 & 0.2 \\ 0.9 & 1.0 & 0.4 & 0.3 & 0.2 & 0.3 & 0.2 \\ 0.2 & 0.4 & 1.0 & 0.2 & 0.75 & 0.15 & 0.25 \\ 0.5 & 0.3 & 0.2 & 1.0 & 0.35 & 0.05 & 0.15 \\ 0.1 & 0.2 & 0.75 & 0.35 & 1.0 & 0.15 & 0.05 \\ 0.1 & 0.3 & 0.15 & 0.05 & 0.15 & 1.0 & 0.25 \\ 0.2 & 0.2 & 0.25 & 0.15 & 0.05 & 0.25 & 1.0 \end{pmatrix}$$

$$T^{P} = \{1, 1, 1, 0.8, 0.8, 0.6, 0.6, 0.4, 0.4, 0.2, 0.2, 1, 1, 1, 0.7, 0.7, 0.5, 0.5, 0.3, 0.3, 0.1, 0.1, 1, 0.7, 0.7, 0.5, 0.5, 0.3, 1, 0.8, 0.8, 0.6, 0.6\},$$

 $\mathcal{K}^{\mathcal{P}} = \{1.05, 1.1, 1.05, 1.05, 0.7, 0.7, 0.75, 0.75, 1, 0.9, 0.8, 0.9, 1.1, 1.05, 0.85, 0.9, \\ 0.9, 1.05, 1, 1, 0.9, 0.95, 1.05, 0.7, 0.7, 0.75, 0.75, 1, 0.9, 0.8, 0.9, 1.1, 1.05\}, \text{ and}$

$$\mathcal{I} = \{\mathcal{I}_{1}, \mathcal{I}_{2}, \dots, \mathcal{I}_{33}\}$$

$$= \{[1, 2, 3, 4, 5], [2, 3, 4, 5], [1, 3, 4, 5], [1, 2, 4, 5], [1, 2, 3, 5], [1, 2, 3, 4], [1, 2, 3], [1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5], [2, 3, 4], [2, 3, 5], [3, 4, 5], [1, 2], [2, 3], [1, 3], [1], [2], [3], [4], [5], [1, 2], [2, 3], [1, 3], [1], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [2, 3, 4, 5], [1, 2, 3], [2, 3]\}.$$

Clean values

Figure: Approximate portfolio values compared with their analytical counterparts. Left: Three representative samples. Right: Empirical mean, 99th and 1st percentiles.

Initial Margin

Figure: Three representative samples of approximate IM compared with reference solutions obtained by nested Monte–Carlo sampling.

Margin Valuation Adjustment - the control process

The control process with and without applying the measure change technique.

Figure: Left: When default probability is moderate/low. Right: When default probability is unrealisticly high.

Margin Valuation Adjustment

Figure: Dynamic MVA for a rare event of early default with the measure change technique applied.

Numerical example

Email address: kristofferherbert.andersson@univr.it