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A structural xVA model

Financial setup

Consider a portfolio of P € NT derivatives (options, swaps, swaptions, etc.) traded
between a bank (B) and some financial counterparty (C). Clean values given by
\71, \72, cee VP and the portfolio value V= ZJ’;I V7. Each derivative written on a
subset of a Nt 5 d-dimensional underlying assets process, X. Different maturities
T, Ts, ..., Tp.

In an xVA context, we adjust v by:
o CVA/DVA (Credit/Debit Valuation Adjustment): default risk of the
counterparty/bank,
o ColVA (Collateral VA): differing lending/borrowing rates for collateral,
o MVA (Margin VA): funding costs/benefits for Initial Margin,
e FVA (Funding VA): additional funding costs (e.g., hedging market risk).

Focus of this presentation: We concentrate on modeling
(i) defaults (structural default model),
(ii) initial margin (as a risk measure),

(iii) a change of measure technique for rare events (particularly defaults).
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A structural xVA model

A structural default model

In a structural model of default, the evolution of each firm's (13/C) assets is modeled
directly, and default is triggered when the asset value falls below a specified boundary.

t s
xF:1+/ bB(s,XsB)ds—f—/ o5 (s, XB)dWE, (1)
0] 0
t s
X¢ :1+/ bc(s,xf)ds+/ (s, XE)dWE, 2)
0 0

Default times given by the following stopping times
P =inf{t € (0, T]: XE <P}y, +°=inf{t e (0,T]: X <¢&F}. 3)

Moreover, define 7 = 78 A 7€ and maturity of netting set given by 7 A T.
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A structural xVA model

Visualization of a structural default model

Counterparty defaults, 7 = 7€, and portfolio maturity 7¢:
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No default, 7 > T, and portfolio maturity T:
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xVA BSDEs

P
P : . T, —T; ~ i
v{——/ AJS—/ rsvgds—/ ZJ AW, jed{l,...,P}, V=)V,
(&7 (t.7] (7] =
—ColVA, = / (FCOIVA(s, C5) — 1 ColVAs) ds — / zEOVA L dwy,
(t,7TAT) (t,7AT]
FC o o 2 TC o oy | E
IM; © = VaRa (Vesmpr, — Vo)V | Fe), IM{C = —VaRi_o (Vermpr, — Vo)™ | ),
CVAr =1r,<7y1, _ ¢, LGD® (V; — ¢, —IMLO)F — / rs CVAgds — / ZzEVA L dws,
S {r=r") (t.7AT] (t.7AT]
DVA: = 1(, <1y 1,,_ g, LGD® (V, — ¢, — MT9)~ — / rsDVA,ds — / ZPVA aw,,
= {r=r"} (t,7AT] (t,7AT]
—MVA, / (FMVA (s, IMFC  TMTC) — 1 MVAS) ds — / ZMVA g,
(t,7AT] (t,7AT]
XVA; = (ColVA;, CVA;, DVA;, MVA;, FVA,),
—FVA,; = / (FFVA (s, Vs, Cs, XVAS, IMTC) — r; FVA,) ds — / ZEVA Cdws.
(t,7AT] (t,7AT]
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General form of the BSDEs

Forward SDE given by X := Concat()zXB,Xc) , where X is the d-dimensional
underlying assets process.

Each xVA BSDE is on the form:

t t
X: = xo + / b(s,Xs) ds + / U(S,Xs) © dWs,
0 0

Yt = 1{7—<T}X‘r — / d/\s + / (f;y — Is Ys) ds — / ZS~dW5,
- (t, TAT] (t, TAT] (t, TAT]

(4)

Non-standard features:

© The process (fty)te{oyﬂq} could be reformulated as a Markovian function of X,
£[\7] (the IM). It is actually an anticipated McKean—Vlasov BSDE.

© We have a random terminal time given by 7 A T, a BSDE with stopping time.
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A system of BSDEs describing the xVAs

BSDE under a new measure

Problem: Default events are rare and is not well captured by the neural network unless
the training data is huge.

Solution: Use a change of measure technique to increase the default probabilities.

Subtract g from the drift in the forward SDE and compensate by (¢ @ o, Z) in the BSDE
driver:
t

t
X3 = xo + / (b(s, X7) — q(s, X)) ds + / o(s, X3) @ dW,
0 0

Ytq = H{T"ST}X?—Q —/ d./\;7
(t,79NAT]

+/ (9~ YT — (q(s, X%) @ o(s, XT), Z7)) ds — / 29 dw..
(t,79NT] (t,79NT]
(5)

For any g (regular enough), it holds that:
@ The initial condition, Yy = Yo,
@ The associate PDE, with solution u, has the stochastic representation
Y = u(t,X{), i.e., for any g, the associate PDE is the same.
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A system of BSDEs describing the xVAs

Visualization of the structural default model under a measure change

Under original measure: No default, 7 > T, and portfolio maturity T
Under new measure: Counterparty defaults, 79 = 759, and portfolio maturity 759

Bank & Counterparty Asset Simulation
With and Without Additional Negative Drift

—— Bank (original drift)
—— Counterparty (original drift)
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A system of BSDEs describing the xVAs

Equivalent formulation as a variational problem

The deep BSDE method relies on the reformulation of the FBSDE into the variational
problem:

. 2
o (Zgr;f .71 E“H{T"ST}XL - AA?—Q/\T - Y—f—]q/\T| ]7 where,
) t/Jte(0,
t t
Xt =0+ [ (b(s. X9 — a5, X0N)ds + [ als.x8) @ dw,
0] 0 (6)
YO = o+ /(0 ang - /(0 | (£ — 1 YS — (q(s,XT) @ o(s, XT), Z7)) ds
ot ot

+/ Z3 - dWs.
(0,1]

Motivation:
@ A solution to (5) (the FBSDE) solves (6),
o By well-posedness of the FBSDE, this solution is unique.
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Variational problem for multiple FBSDEs

We want to solve the FBSDE under multiple different measures generated by shifting the
drift by g1, g2, ..., gk

K
inf E[‘H{T"iST}Xf—iQ,' - AAZVIQ/'/\T — Y‘f%"AT|2i|,

q: q,
¥0,(Z* .2 Vecro, 1 o

where for i € {1,2,...,K} :
t

t
X0 =0t [ (bl X) s, x)ds + [ ot X 0w,
0 0

YO = yo t / AT — / (% Y3 — (qi(s, XT) @ o (s, XY, Z0)) ds
(0,¢] (0,t]

+ / Z9 . dW,.
(0.4

o All BSDEs have the same initial condition, hence only one yg,

@ Functional form Z is the same for all q;, i.e., Z = Z(t, X",

@ Solving multiple BSDEs makes default modeling more accurate. Can also increase
robustness.
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Semi-discrete variational problem

Equidistant time grid 7 := {0 = to, t1,...,ty = T}, with h = to41 — t, and Brownian
in'crements AW, = Why1 — W,. The disc‘retized stopping times are given by
n s =inf{n € N": [X;%g11 <&}, nle=inf{neN": X7 g2 <&}

Time discrete formulation:

T(yo, Z) = yiorjfZZleEU]I{,,,-TgN}X:iq' AN = YTl ] st. forie {1,...,K}:
X7 % = x0 4+ Y020 [b(ti, X%) = qi(te, X{ %) h+ 0Zg o(ti, X7%) © AW,
Yoo —yo—i—Z" o AN] AR o Z8N - AW,
LT = YT — (a6 X0 ) (b X7, Z0) b
zZme = Z(tn,Xn i),

()
Represent yo with a trainable parameter and represent Z with a neural network.
Optimize subject to objective functional 7.

@ Stopping times approximated v,

@ Still no approximation of initial margin (McKean—Vlasov components) X.
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Approximations

Initial margin approximations

Reformulate VaR as an optimization problem:

VaR, (\ZH\/IPRt A | ]?t) =argmin E {%a(q; VerMPR, — \7t) fr] ,
g€ER
where »%(g; x) = max(a - (x — q), (¢ — 1) - (x — q)).
minimize E[ (qn (Xn", V,f *); (VnJr’MpR,r \7:’*) )]
an +an
-HE[%a(q,, (X7, V), (V,ZL;,IPPJr \7,?‘*)_)], where
. nflA N n—1 N e
X =x+ Y b(ti, XQ)h+ Y 5(t, X7) - AW,
k=0 k=0
VI = BV (Xeper, VB, Z5m AW ), V™ =%, je{l,2,...,P}
{7, V), S, * o\ Jj+d; .
Ver =NV 8 = (27 (e, Xy )],.:Jjja jef{1,2,...,P}.
j=1
(8)

Here V/™* s approximate clean value of derivative j. Represent (q,f, q;) and optimize

subject to objective function.
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High-level picture of full algorithm

Deeper layers depend on approximations obtained from higher layers.

@ Approximation of the clean value BSDE,

@ Approximation of the mapping generating the risk measure value at risk,
© Approximation of the ColVA, CVA, DVA and MVA BSDEs,

@ Approximation of the FVA BSDE,

@ (Approximation of the KVA BSDE).

In this presentation we focus on: Clean Values V, Initial Margins, IMTC and IM¥®, and
Margin Valuation Adjustment, MVA.

14 /20



@ Model the underlying processes with a 7-dimensional Geometric Brownian Motion,
@ A portfolio of P = 33 European basket options,
@ In total, 93 dimensional problem,

0.2 1.0 09 02 05 01 01 02
0.25 09 10 04 03 02 03 02
0.25 02 04 10 02 075 0.15 0.25
c=1025{|, p=105 03 02 10 035 0.05 0.15
0.3 0.1 02 075 035 1.0 0.15 0.05
0.2 0.1 03 015 0.05 015 1.0 0.25
0.3 02 02 025 0.15 0.05 025 1.0

TP ={1,1,1,0.8,0.8,0.6,0.6,0.4,0.4,0.2,0.2,1,1,1,0.7,0.7,0.5,0.5,0.3,0.3,0.1,0.1, 1,

0.7,0.7,0.5,0.5,0.3,1,0.8,0.8,0.6, 0.6},

KP = {1.05,1.1,1.05,1.05,0.7,0.7,0.75,0.75,1,0.9,0.8,0.9, 1.1,1.05, 0.85, 0.9,
0.9,1.05,1,1,0.9,0.95,1.05,0.7,0.7,0.75,0.75,1,0.9,0.8,0.9, 1.1,1.05}, and

I={T1,Ts,...,I33}
={[1,2,3,4,5], [2,3,4,5], [1,3,4,5], [1,2,4,5], [1,2,3,5],
[1,2,3,4], [1,2,3], [1,2,4], [1,2,5], [1,3,4],
[1,3,5], [2,3,4], [2,3,5], [3,4,5], [1,2],
(2,3], [1,3], [1], [2], (3], [4], [5].
[1,2], [2,3], [1,3], [1], [1,2,3,4,5], [1,2,3,4,5],
[1,2,3,4,5], [2,3,4,5], [1,2,3], [1,2], [2,3]}.
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Numerical example

Clean values

—— Vsamples (ref.)

~—- Vsamples (approx.)

6 61
4 41
24 27
—— Vstatistics (ref.)
04 === Vstatistics (approx.)
oA
0.0 0.2 0.4 0.6 038 10 0.0 02 0.4 06 0.8 10
Time Time

Figure: Approximate portfolio values compared with their analytical counterparts. Left: Three
representative samples. Right: Empirical mean, 99th and 1st percentiles.
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Initial Margin

— IME (ref)

-—- IM™ (approx.)
—— IMTC (ref.)

IM™C (approx.)
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Figure: Three representative samples of approximate IM compared with reference solutions
obtained by nested Monte—Carlo sampling.

17 /20



Numerical example

Margin Valuation Adjustment - the control process

The control process with and without applying the measure change technique.
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Figure: Left: When default probability is moderate/low. Right: When default probability is
unrealisticly high.
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Margin Valuation Adjustment
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Figure: Dynamic MVA for a rare event of early default with the measure change technique
applied.
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Numerical example

Email address: kristofferherbert.andersson@univr.it
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