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Uncertainty and Risk in Economics

Frank Knight, Risk, Uncertainty, and Profit, 1921

Frank Knight (1885 - 1972) is a Chicago economist, one of the
founders of the so--called ‘‘Chicago School’’

Knight is motivated by the question how profit can emerge
under conditions of competition

Without uncertainty, profits are zero when firms have
positively homogeneous technologies

in general, ‘‘in ideal exchange, the quantities exchanged are
equal in value terms , and there is no chance for anything like
‘‘profit’’ to arise’’ (p.86). Marginal utilities and profits are equal in equilibrium.

Knight claims that the same conclusion holds true under
‘‘risk’’, i.e. in an environment where the probabilities are
perfectly known to each competitor

Knight identifies ‘‘proper uncertainty’’ as a source of profit
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Uncertainty and Risk in Economics

Frank Knight, Chapter 7

the basic theory of utility and profit maximization applies in
small environments when everything is perfectly known

for sophisticated people, even situations of risk can be dealt
with: ‘‘the bursting of bottles does not introduce any
uncertainty or hazard into the business of producing
champagne. Each single bottle bursts at random. But by the
law of large numbers, the total number of burst bottles is
known and becomes a fixed and known cost for the firm.’’
(p.213)

markets can perfectly price such randomness (insurance)

‘‘The mathematical type of probability is practically never
met with in business.’’ (p.215)

In business, no law of large numbers that allows to estimate
the probability of success with accuracy.
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Uncertainty and Risk in Economics

Frank Knight, Chapter 8: Uncertainty explains excess
profit

Knight distinguishes risk (measurable uncertainty) from
uncertainty (unmeasurable uncertainty)

‘‘the income of an entrepreneur is larger ... as there is a
scarcity of self-confidence in society combined with the
power to make effective guarantees to employees.’’ (p.283)

excess profit is the result of confronting uninsurable
uncertainty
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Uncertainty and Risk in Economics

The Bayesian Paradigm

One can replace the ‘‘accurate estimate’’ by a
‘‘subjective belief’’, an idea that goes back to Irving
Fisher, The Nature of Capital and Income, p.266
this approach has become the standard approach in
economics (Savage, Anscombe-Aumann, ‘‘subjective
expected utility theory’’) as we discuss below
but was this way the right way to go, and if not, what
other options do we have?
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A Taxonomy of Uncertainty

1. Complete Certainty: past and future perfectly known like
in classical physics

2. Risk - objective probabilities - the realm of probability
theory

3. Fully Reducible Uncertainty: probabilities are not known,
but can be estimated with a high degree of accuracy, law
of large numbers, ergodicity, life insurance Statistics reduces
uncertainty to risk

4. Imprecise Probabilistic Information: irreducible uncertainty

Research of the last 20 years allows to deal with that -- Our lecture series
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Knightian Uncertainty as Imprecise Probabilistic
Information

1. stochastic or time-varying parameters that vary too
frequently to be estimated accurately;

2. nonlinearities too complex to be captured by existing
models, techniques, and datasets;

3. non- stationarities and non-ergodicities that render
useless the Law of Large Numbers, Central Limit Theorem,
and other methods of statistical inference and
approximation;

4. the dependence on relevant but unknown and unknowable
conditioning information.

5. see Lo, Mueller, Journal of Investment Management, 2010
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Knightian Uncertainty as a new paradigm

The last 20 years have seen a huge development in
economics, finance, and mathematics

Knightian uncertainty (microeconomics), model
uncertainty (finance), robustness (macroeconomics)
we next consider the basic paradigmatic decision
situations under Knightian uncertainty
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Decision Situations under Risk: Roulette

Roulette Bets: You win 1 Euro if
‘Rouge’
‘Manque’ (1-18)
‘Colonne 34’ (1, 4, 7, ... , 34)
’Plein’ (one particular number)

’Almost’ everyone agrees that

Rouge ∼ Manque � Colonne 34 � Plein

with ∼meaning ‘‘I am indifferent’’, �
meaning ‘‘I prefer’’
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Decision Situations under Uncertainty I: Ellsberg’s
Experiments

Ellsberg’s Thought Experiment 1

= 50; = 50
+

{ 100

Literature

Daniel Ellsberg, Risk, Ambiguity, and the Savage Axioms,
Quarterly Journal of Economics, 1961
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Decision Situations under Uncertainty I: Ellsberg’s
Experiments

Ellsberg Bets: You win 1
Euro if

red ball is drawn in Urn 1,
R1
black ball is drawn in
Urn 1, B1,
red ball is drawn in Urn 2,
R2,
black ball is drawn in
Urn 1, B2

Ellsberg’s Thought Ex-
periment 1

= 50; = 50
+

{ 100

Vote

R1 or B1 ?
R2 or B2 ?
R1 or R2 ?
B1 or B2 ?
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Ellsberg’s Thought Ex-
periment 1

= 50; = 50
+

{ 100

Vote
R1 or B1 ?
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B1 or B2 ? 15



Decision Situations under Uncertainty I: Ellsberg’s
Experiments

Ellsberg’s Thought Experiment 2

= 30; +

{ 60

Vote

‘Red’ or ‘Black’ ?
‘Red or Yellow’ or ‘Black or Yellow’ ?
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Complex Decision Situations under Uncertainty: The
Real World

Will the next US president be a Democrat? (USD)
Probability estimate

Will Germany win the next World Cup in soccer? (GWC)
Will the interest rate on ten year Euro bonds be above 2 %
on January 31, 2025? (EUR)
How to price a bond of a ‘BB’-rated company? (BB)

Order the bets according to your beliefs! Do you know the
probabilities? Do you think it is possible to know the
probabilities or to obtain estimates?

17
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Analysis of Roulette

In Roulette, one can compare bets by counting the number
of favorable outcomes

‘Rouge’ and ‘Manque’ have 18 favorable outcomes,
’Colonne 34’ has 12, ‘Plein’ has one
every 37 outcomes have equal frequency
different runs are independent experiments
the laws of probability apply: Independent, identical experiments, law of large
numbers, central limit theorem

there is a reason why the odds are 1 : 1 for ‘Rouge’ and 1 : 2
for ‘Colonne 34’
if someone does not agree with the ordering

Rouge � Colonne 34

we can offer him bets and make money in the long run
(whiteboard)
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Consequences for Rational Choice

Probabilistic Model of Lotteries

Ω set of states of the world, (Ω = {0, 1, ... , 36})
F σ--field of possible events, (power set of Ω)
P commonly agreed upon probability on the measurable
space (Ω,F) (uniform probability )
Bets can be described by ‘acts’, measurable functions
from the state space to some set of prizes X , f : Ω→ X ,
(f (ω) = 1 if ω ≤ 18 for ‘manque’)
Only the distribution P f (x) = P({ω ∈ Ω : f (ω) = x}) of
bets matters
it is sufficient to know how to order probability
distributions on X ; we write ∆ = ∆X for the set of all
probability distributions on X
we call such acts with known probabilities lotteries
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von Neumann--Morgenstern Theory

Literature

John von Neumann, Oscar Morgenstern, Theory of
Games and Economic Behavior, 1944
John von Neumann, Zur Theorie der Gesellschaftsspiele,
Math. Annalen 1928

Basic Assumption

In the probabilistic world, a ‘rational’ man orders
lotteries P, Q ∈ ∆ over some set of outcomes X with the
help of a complete and transitive ordering �, a
preference relation
that satisfies the linear rules of mixing lotteries
(independence)
and that is continuous
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Zur Theorie der Gesellsehaftsspiele ). 
Von 

J. v. Neumann in Berlin. 

Ein!eitung. 
1. Die Frsge, deren Be~ntwortung die vorliegende Arbeit anstrebt, 

ist die folgende: 

n Spieler, S 1, S~ , . . . ,  S , ,  spielen ein gegebenes Gesellscha]ts~piel (~. 
Wie muff einer dieser Spieler, Sin, spielen, um dabei ein m6glichst gi~nstiges 
Besuttat zu erzielen ? 

Die Fragestellung ist allgemein bekannt, und es gibt wohl kaum eine 
Frage des t~glichen Lebens, in die dieses Problem nicht hineinspielte; 
trotzdem ist der Sinn dieser Frage kein eindeutig klarer. Denn sobsld 
n > 1 ist (d. h. ein eigentliches Spiel vorliegt), h~ing~ das Schicksal eines 
jeden Spielers aul~er von seinen eigenen Handlungen such noch von denen 
seiner Mi*spieler ab; und deren Benehmen ist von genau denselben 
egoistischen Motiven beherrscht, die wir beim ersten Spieler bestimmen 
m6chten. Man fiihlt, dab ein gewisser Zirkel im Wesen der Sache liegt. 

Wir miissen also versuehen, zu einer ldaren Fragestellung zu kommen. 
Was ist zun~ichst ein Gesellschaftsspiel? Es fallen unter diesen Begriff 
sehr viele, rech~ verschiedenartige Dinge: vonder  Roulette bis zalm Schach, 
yore Bakkarat bis zum Bridge liegen ganz verschiedene Varianten des Sam- 
melbegriffes ,Gesellschaftsspiel" vor. Und letzten Endes kann such irgend- 
eia Ereignis, mi* gegebenen ~uBeren Bedingungen und gegebenen Hande!nden 
(den absoht  freien Willen der letzteren vorausgesetzt), als Gesellschaftsspiel 
sngesehen werden, wenn man seine Riickwirkungen suf die in ihm 
handelnden Personen betrachtet~). Was ist nun das gemeinsame Merkmal 
al!er dieser Dinge~. 

~) Der Inhalt dieser Arbeit ist (mit einigen Kfirzungen) am 7. ~ .  1926 der 
G~ttinger Math. Gas. vorgetragen worden. 

~) F~ i~t das Hauptproblem der klassischen NationalSkonomie: was wird, unter 
gegebenen ~uBeren Umst~den, der absolut egoistische ,,homo ceconomicus" tun? 



Independence

Axiom (Independence Axiom)

The ordering � is linear, i.e. for all probability distributions
P, Q, R on X and for all α ∈ (0, 1) we have

P � Q ←→ αP + (1− α)R � αQ + (1− α)R

Exercise
Define the strict relations � and ≺ and the indifference rela-
tion∼. Show that� and∼ satisfy the independence axiom as
well.
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Continuity

Axiom (Archimedean Continuity Axiom)

The ordering � is continuous; for all probability distributions
P, Q, R on X we have the following. If P � Q � R , then there
exist α,β ∈ (0, 1) with

αP + (1− α)R � Q � βP + (1− β)R

Example

Continuity implies the following: if you prefer 100 Euro over
10 Euro over -10000 Euro, then you also prefer the lottery that
yields 100 Euro with, say, 99 %, and -10000 Euro with 1 % to 10
Euro for sure.
One could argue against continuity. ‘‘Lexicographic prefer-
ences’’ violate continuity.
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Graphical Representations

When there are only three possible outcomes, X = {x1, x2, x3},
one can represent lotteries p = (p1, p2, p3) as points in the
simplex ∆ = {(p1, p2, p3) ∈ R3

+ : p1 + p2 + p3 = 1}.
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Exercise

Exercise
The independence axiom implies that indifference curves over
the simplex are linear.
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von Neumann--Morgenstern Theory

Definition
Let ∆ be the set of all probability measures over X . We say that a
function U : ∆→ R is a utility function for � if we have

P � Q ←→ U(P) ≥ U(Q)

for all P, Q ∈ X .

Theorem (Expected Utility Theorem, von Neumann-
Morgenstern)

A preference relation over ∆ that satisfies the independence and
continuity axiom admits a utility function U of the form

U(P) =
∑
x∈X

u(x)P(x)

for some Bernoulli utility function u : X → R.
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Proof of the vNM-Theorem by Experiment

Experiment 1

We assume that there are three outcomes x1 = 100,
x2 = 50, x3 = 0.
Clearly, (1, 0, 0) � (0, 1, 0) � (0, 0, 1)
Make a list of lotteries
(0.9, 0, 0.1), (0.8, 0, 0.2), ... , (0.1, 0.0.9) and compare them
to (0, 1, 0)!

Sketch of Proof for the EU Theorem
The utility assigns values 1 and 0 to the best resp. worst
outcome. The utility u(x) is an indifference probability.
u(x)(1, 0, ... , 0) + (1− u(x))(0, 0, ... , 1) ∼ x for sure
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Finding your Utility Function by Experiment

Experiment 2

EXCEL-File Erwartungsnutzenbestimmen.xls
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Uniqueness of Bernoulli Utility and Cardinality

Theorem
Suppose that the preference relation � admits an expected utility
function of the form

U(P) =
∑
x∈X

u(x)P(x)

for some Bernoulli utility function u : X → R. Suppose that

V (P) =
∑
x∈X

v(x)P(x)

is another expected utility function for �. Then there is a number
λ > 0 and a number m ∈ R such that for all x ∈ X we have

v(x) = λu(x) + m.

Bernoulli utility functions are unique up to affine transformations.

29



Uniqueness of Bernoulli Utility and Cardinality

Remark
Expected utility theory is cardinal - the Bernoulli utilities have
a ‘‘measurable’’ meaning.
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Generalization: Mixture Space Theorem

A mixture space is a set with an operation that allows you to take
convex combinations.

Definition
Let Z be a nonempty set and let ⊕ be an operation that maps α ∈
[0, 1] and y , z ∈ Z to an element in Z such that for all α,β ∈ [0, 1]
and y , z ∈ Z

1 · y ⊕ 0 · z = y (sure mix)
αy ⊕ (1− α)z = (1− α)z ⊕ αy (commutativity)

α (βy + (1− β)z)⊕ (1− α)z = αβy ⊕ (...)z (distributivity)

Example

The set of all lotteries ∆ is a mixture space

Convex subsets of vector spaces are mixture spaces

non-convex mixture spaces (Mongin, Dec. Econ. Fin. 2000)
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Mixture Space Axioms

Axiom (Mixture Space Continuity Axiom)

For all a, b, c ∈ Z, the sets {µ ∈ [0, 1] : µ · a ⊕ (1− µ) · b � c}
and {µ ∈ [0, 1] : c � µ · a ⊕ (1− µ) · b} are closed.

Remark

Mixture Space Continuity implies Archimedean
Continuity.
The Archimedean continuity axiom and the
independence axiom over lotteries of finite prizes imply
the mixture space continuity axiom.
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Mixture Space Axioms

Axiom (Mixture Space Independence Axiom)

For all a, b, c ∈ Z and all µ ∈ (0, 1) we have

a � b ←→ µ · a ⊕ (1− µ) · c � µ · b ⊕ (1− µ) · c.
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Mixture Space Theorem

Theorem (Herstein, Milnor 1953)

A preference relation� on a mixture spaceZ satisfies the mix-
ture space continuity and the mixture space independence ax-
iom if and only if it admits a linear utility function U .

Exercise
Derive the von Neumann--Morgenstern theorem from the mix-
ture space theorem.
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Mixture Space Theorem: Proof Idea

The proof uses the same idea that we encountered in our small
experiment.

Fix two elements a, b ∈ Z with a � b.

For any c with a � c � b, there is a unique (!) number
λ ∈ [0, 1] with λ · a ⊕ (1− λ) · b ∼ c .
For existence, we need the continuity axiom.
For uniqueness, the independence axiom.
We define U(c) = λ. λ is called indifference probability.
We then extend linearly to the whole set Z.
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Mixture Space Theorem: Proof

In the following, fix a, b ∈ Z with a � b.

Lemma
For each c ∈ Z with a � c � b, there is a unique number
λ ∈ [0, 1] with λ · a ⊕ (1− λ) · b ∼ c .

Proof.
We first show existence: Let T = {λ ∈ [0, 1] : λ ·a⊕(1−λ) ·b �
c} and W = {λ ∈ [0, 1] : λ · a ⊕ (1− λ) · b � c}.
As � is complete, we have T ∪ W = [0, 1]. By the mixture
continuity axiom, T and W are closed. T and W are nonempty
because 1 ∈ T and 0 ∈ W . As [0, 1] is connected, it cannot
be decomposed into two nonempty, disjoint closed sets. So
W ∩ T 6= ∅. For λ ∈ T ∩W , we have λ · a⊕ (1− λ) · b ∼ c .
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Mixture Space Theorem: Proof

For uniqueness, we need to work a little bit more. We first show
that the independence axiom implies a certain monotonicity of
preferences: higher probabilities on good outcomes are
preferred.

Lemma
We have 1 ≥ λ > µ ≥ 0 if and only if λ · a ⊕ (1 − λ) · b �
µ · a ⊕ (1− µ) · b.

This lemma yields uniqueness (why?)
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Mixture Space Theorem: Proof of Monotonicity Lemma

We start with 1 ≥ λ > µ ≥ 0. In this case, the independence
axiom yields

c := λ · a ⊕ (1− λ) · b � λ · b ⊕ (1− λ) · b = b.

Now let γ = µ/λ ∈ [0, 1). We apply the independence axiom
again and use the mixture space rules:

c � γ · c ⊕ (1− γ) · b = µ · a ⊕ (1− µ) · b.
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Mixture Space Theorem: Proof of Monotonicity Lemma

Now we do the reverse direction. Suppose that
λ · a ⊕ (1− λ) · b � µ · a ⊕ (1− µ) · b. We need to show that
λ > µ. Suppose that λ < µ. Then we could apply the first part
of the proof to conclude λ · a ⊕ (1− λ) · b ≺ µ · a ⊕ (1− µ) · b, a
contradiction. On the other hand, λ = µ is also impossible
because then λ · a ⊕ (1− λ) · b ∼ µ · a ⊕ (1− µ) · b.
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Mixture Space Theorem: Definition of Utility

1. If a � c � b, we set U(c) = λ with λ ∈ [0, 1] satisfying

λ · a ⊕ (1− λ) · b ∼ c.

2. If c � a, there exists γ ∈ [0, 1] with

γ · c ⊕ (1− λ) · b ∼ a.

(Exchange the roles of c and a.) We set U(c) = 1/γ.
3. For b � c , there exists γ ∈ [0, 1] with

γ · a ⊕ (1− λ) · c ∼ b.

Set U(c) = −γ/(1 + γ).

Exercise: check that U is linear!
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Mixture Space Theorem: End of Proof

It remains to be shown that U is indeed a linear utility function
for �. We do this for the case in which a is maximal and b is is
minimal in Z, i.e.

Z = {c ∈ Z : a � c � b}.

Whiteboard.
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Infinite Outcome Sets

In applications the set X is usually not finite. For example, we
could have X = R. In this case, Z = ∆X consists of all (Borel)
probability measures on the real line. In this case, we have to
strengthen the topological requirements to obtain a similar
theorem.
For details, see Föllmer, Schied, Stochastic Finance, Chapter
2.2.
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Outline
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Motivation

We now understand the structure of linear preferences. Our
next aim is to try to understand if we can deal with the Ellsberg
experiments.
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Ellsberg Experiment 1

Ellsberg Bets: You win 1
Euro if

red ball is drawn in Urn 1,
R1
black ball is drawn in
Urn 1, B1,
red ball is drawn in Urn 2,
R2,
black ball is drawn in
Urn 1, B2

Ellsberg’s Thought Ex-
periment 1

= 50; = 50
+

{ 100

Vote
R1 or B1 ?
R2 or B2 ?
R1 or R2 ?
B1 or B2 ?
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Analysis of Ellsberg’s Experiments

It is not irrational to order bets as follows in Experiment 1:

R1 ∼ B1, R2 ∼ B2, R1 � R2, B1 � B2
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Analysis of Ellsberg’s Experiments

Bayesian Subjective EU Approach

A ‘rational’ man’s betting should reflect his beliefs for
‘red’ or ‘black’
Urn 1: clearly 50 % (objective probability, not a belief)
Urn 2: beliefs for red, black, yellow
for example, by Laplace’s principle of insufficient reason,
pR = .5 in first experiment. In this case, we would have
R1 ∼ B1 ∼ R2 ∼ B2
if p < .5, then we would have R1 � R2, B1 ≺ B2.
the Bayesian approach would yield opposite orderings as
those that we considered to be rational. It does not
capture the aversion of not knowing the probabilities
(because it simply assumes that you have a subjective
probability for the second urn).
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Ambiguity--Averse Approach

Sophisticated Maxmin Approach

Given objective probabilistic information P , the agent
chooses a set φ(P) ⊂ P of subjective priors
Utility is evaluated as ‘worst case expected utility’

U(f ,P) = inf
P∈φ(P)

EPu(f )

Ellsberg choices are rational within this model (board!)

Literature

Gilboa, Schmeidler, Maxmin Expected Utility with Non-Unique
Prior, Journal of Mathematical Economics, 1989

Gajdos, Hayashi, Tallon, Vergnaud, Attitude toward Imprecise
Information, Journal of Economic Theory, 2008
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Ambiguity-Averse Bayesian Approach: Smooth Model

Second-order Bayesian plus ambiguity aversion

Given imprecise probabilistic information P , the agent forms
a second order prior µ

Ambiguity aversion is modeled by a concave function ψ

U(f ) =
∫
P
ψ
(
EPu(f )

)
µ(dP)

the function ψ measures ambiguity aversion (in the same way
as u measures risk aversion)

if ψ(x) = x , we are back to subjective expected utility

if ambiguity aversion −ψ
′′(x)
ψ′(x) →∞, the smooth model

converges to the maxmin model Exercise!!

Klibanoff, Marinacci, Mukerji, A Smooth Model of Decision
Making under Ambiguity, Econometrica 2005
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Variational Model

Penalization Approach to Model Plausibility

Given an objective probabilistic information P ⊂ ∆X
and a convex penalty function α(P) ∈ [0,∞], utility is
given by

U(f ,P) = inf
P∈P

EPu(f ) + α(P)

generalizes maxmin and many other models

Literature

Maccheroni, Marinacci, Rustichini, Ambiguity Aversion,
Robustness, and the Robust Representation of
Preferences, Econometrica 2006
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Incomplete Expected Utility

Incompleteness and Inertia

Given an objective probabilistic information P , the
agent refrains from ordering all acts
incomplete partial ordering
plus inertia
the agent moves away from status quo only if he is sure
to be better off under all models
only partially consistent with Ellsberg choices

Literature

Bewley, Knightian Decision Theory, Decisions in
Economics and Finance, 2002
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Subjective Expected Utility

We now consider a situation of (Knightian) uncertainty in which
no probabilities are given. Preferences are defined over acts:
horse races with lottery payoffs.

set of outcomes (or prizes)
X = {x1, ... , xm}
set of lotteries over prizes
∆

set of states
Ω = {ω1, ... ,ωn}
An (Anscombe--Aumann)
act is a mapping f : Ω→ ∆

we write Z for the set of all
acts, Z0 for all
non-randomized acts, i.e.
mappings f : Ω→ X .
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Intuitive Background

we now add an additional layer to the analysis (recall our
taxonomy!)

world 1: the deterministic prizes X
world 2: objective lotteries on X where probabilities are
known and the laws of probability apply, ∆X = ∆ roulette

world 4: uncertainty about the world is modeled by Ω
where no probabilities are given ex ante horse race

(we jump the world 3 of statistics)
we allow that horse races pay off in terms of lottery tickets
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Ellsberg Experiment 1 in the Anscombe-Aumann
Framework

state of the worlds = number of red balls in urn 2
Ω = {0, 1, 2, ... , 100}

prizes = monetary gains, X = {0, 1}, i.e ∆ = [0, 1],
probability of winning 1 Euro
the different bets translate to the following acts

R1 : the probability of winning does not depend on the
number of red balls in urn 2, so r1(ω) = 1/2 for all ω
B1: b1(ω) = 1/2 for all ω
R2: r2(ω) = ω/100
B2: b2(ω) = 1− ω/100
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Another Modeling of the Ellsberg Experiment

We work with a product space Ω = Ω1 × Ω2. Let
Ωi = {red , black}.

Let P1 be the uniform probability on Ω1. Imprecise
probabilistic information is modeled via

P = P1 ⊗∆Ω2.

We know the probabilities for urn 1, we do not know them
for urn 2.
The bets are defined as follows:

r1(ω) = 1 if ω1 = red
b1(ω) = 1 if ω1 = black
r2(ω) = 1 if ω2 = red
b2(ω) = 1 if ω2 = black
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Acts form a mixture space

We define the operation ⊕ pointwise for acts.

(αf ⊕ (1− α)g)(ω) = αf (ω) + (1− α)g(ω)

Lemma
The set of acts Z with the operation ⊕ is a mixture space.
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Independence and Continuity for Acts

The preference ordering � is defined over acts in Z

Axiom (Independence Axiom)

The ordering� is linear, i.e. for all acts f , g , h ∈ Z we have for
all α ∈ (0, 1)

f � g ←→ αf ⊕ (1− α)h � αg ⊕ (1− α)h

Axiom (Mixture Space Continuity Axiom)

For all a, b, c ∈ Z, the sets {µ ∈ [0, 1] : µ · a ⊕ (1− µ) · b � c}
and {µ ∈ [0, 1] : c � µ · a ⊕ (1− µ) · b} are closed.
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State--Dependent Expected Utility

Theorem
If � satisfies the Independence and (Mixture Space) Continu-
ity Axiom, then for every state ω ∈ Ω there exist a Bernoulli
utility function uω : X → R such that

U(f ) =
∑
ω∈Ω

∑
x∈X

uω(x)f (ω)(x)

is a utility function for �.

Proof. Mixture Theorem. Linear functions look like that!
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State--Independent Tastes

Definition
Let P ∈ ∆ be given. For an act f : Ω → ∆, and state ωk ∈ Ω,
we define f P

k (ωk) = P and f P
k (ωl) = f (ωl) for l 6= k .

Axiom
For all P, Q ∈ ∆, all acts f , and all states ωk ,ωl we have

f P
k � f Q

k iff f P
l � f Q

l .
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State--Independent Tastes

If we are willing to assume state--independent tastes, we get
more:
Theorem
If� satisfies the Independence and Continuity Axiom, and if�
has state--independent tastes, then there exists a probability
measure µ over Ω and a Bernoulli utility function u : X → R
such that

U(f ) =
∑
ω∈Ω

(∑
x∈X

u(x)h(ω)(x)
)
µ(ω)

is a utility function for �.
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Discussion

Probabilities are now part of the preferences, µ is the
subjective belief of the agent

they are endogenous, derived objects, not given
the theorem is the master piece of decision theory
yet, it imposes a lot of assumptions on the ‘‘rational man’’
even from a rational point of view, the Ellsberg
experiments suggest that rational decisions need not be
based on subjective beliefs
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What is wrong with the Independence Axiom in
Ellsberg’s Experiments?

We agreed that it can be rational to have the following
(Ellsberg) preferences: r1 � r2 and b1 � b2.

The meaning of mixing is different when you have acts as
when you mix lotteries compared to when you mix acts

for lotteries p and q, the mixed lottery 1/2 · p ⊕ 1/2 · q can
be interpreted as a compound lottery where first, you
throw a fair coin and then, you perform either lottery p or q
for acts, mixing is more like splitting your money on two
different tickets
for example (1/2 · r2 ⊕ 1/2 · b2)(ω) = 1/2 = r1; putting half
of your money on betting red and putting the other half on
betting black hedges the uncertainty of urn 2 --- the
Knightian uncertainty is gone
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What is wrong with the Independence Axiom in
Ellsberg’s Experiments?

If you have r1 � r2, then the independence axiom implies

(1/2 · r1 ⊕ 1/2b2) � (1/2 · r2 ⊕ 1/2b2) = r1

So
(1/2 · r1 ⊕ 1/2b2) � (1/2 · r1 ⊕ 1/2r1)

We apply the independence axiom again and get

b2 � r1 ∼ b1

in contradiction to the Ellsberg ordering.
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Anscombe--Aumann’s Crucial Axioms

How to get the other utility representations? We need to relax
one of the crucial axioms in Ancombe--Aumann.

1. Completeness: either f � g or f ≺ g or f ∼ g

2. if we give up completeness, we get Bewley’s incomplete EU
theory

3. Independence Axiom
4. if we weaken the independence axiom, we get the maxmin

or smooth or variational model, depending on how we
replace it

One of the axioms needs to be relaxed if we want to allow
Ellsberg choices
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Gilboa--Schmeidler Axioms

Replace the independence axiom by the following two axioms.

Axiom (Uncertainty aversion, Preference for Hedging)

f ∼ g implies for all α ∈ (0, 1)

αf ⊕ (1− α)g � g .

Axiom (Certainty Independence)

Let P ∈ ∆ be a lottery and f , g be acts. f � g implies for all
α ∈ (0, 1)

αf ⊕ (1− α)P � αg ⊕ (1− α)P

and vice versa.
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Gilboa--Schmeidler Axioms

In the following, we assume that prizes are monetary, i.e.
X ⊂ R.
Axiom (Monotonicity)

If we have f (ω) � g(ω) for all ω ∈ Ω, then also f � g .
For x , y ∈ X with x > y , we have δx � δy .
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Gilboa--Schmeidler Theorem

Theorem
Let � be a preference relation over acts that is (mixture)--
continuous and satisfies the axioms of monotonicity, uncer-
tainty aversion, and certainty independence. Then there ex-
ists a Bernoulli utility function u : X → R and a set of prob-
ability measures M on Ω such that � is represented by the
utility function

U(f ) = min
µ∈M

Eµu(f )

with

u(f (ω)) =
m∑

k=1
u(xk)fk(ω).
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Gilboa--Schmeidler Theorem: Proof

the preference relation � induces a preference relation �0
over lotteries; for a lottery P ∈ ∆, let idP denote the
constant act idP(ω) = P. Set

P �0 Q iff idP � idQ.

the certainty independence axiom says that �0 satisfies
the independence axiom over lotteries. The von
Neumann-Morgenstern theorem thus gives us a Bernoulli
utility function u.
Due to the monotonicity axiom, u is strictly increasing.
We can thus define the certainty equivalent of a lottery
P ∈ ∆:

c(P) = u−1

(∑
x

u(x)P(x)
)

.

We have P ∼ δc(P).
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Gilboa--Schmeidler Theorem: Proof

Now let f be an act, i.e. f : Ω→ ∆. We construct a
non-randomized act g : Ω→ X with f ∼ g . Let
g(ω) = c(f (ω)). By the monotonicity axiom, g ∼ f .
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Gilboa--Schmeidler Theorem: Proof

Lemma
There exists a utility function of the form

U(f ) = J
(∑

x
u(x)f (ω)(x)

)

for some function J : Z0 → R.
J is a superlinear expectation, i.e. it is

monotone
concave
positively homogenous
cash invariant.

The representation theorem for nonlinear expectations then
finishes the proof.
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Proof of the Lemma

wlog 0 ∈ X and u(0) = 0. Let g ∈ Z0 and λ ∈ (0, 1). We
want to show J(λg) = λJ(g). Choose g0 ∈ Z with
u(g0) = g .

Let

h(ω) = u−1(λg(ω))
= u−1(λu(g0(ω))) = u−1(λu(g0(ω)) + (1− λ)u(0))
= c(λδg0(ω) + (1− λ)δ0).

By monotonicity axiom, h ∼ f with

f (ω) = λδg0(ω) + (1− λ)δ0.

Hence, U(h) = U(f ), or J(u(h)) = J(u(f )), or
J(λg) = J(u(f )).
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Proof of the Lemma

Continuity and Monotonicity allow to find a lottery P ∈ ∆
with P ∼ δg0

By certainty independence,

f ∼ λP + (1− λ)δ0

Hence,

J(u(f )) = U(f ) = U(λP + (1− λ)δ0) = λu(P) = λJ(g)

73



Proof of the Lemma

Continuity and Monotonicity allow to find a lottery P ∈ ∆
with P ∼ δg0

By certainty independence,

f ∼ λP + (1− λ)δ0

Hence,

J(u(f )) = U(f ) = U(λP + (1− λ)δ0) = λu(P) = λJ(g)

73



Proof of the Lemma

Continuity and Monotonicity allow to find a lottery P ∈ ∆
with P ∼ δg0

By certainty independence,

f ∼ λP + (1− λ)δ0

Hence,

J(u(f )) = U(f ) = U(λP + (1− λ)δ0) = λu(P) = λJ(g)

73



Foundations for the Smooth Model

U(f ) =
∫
P
ψ
(

EPu(f )
)
µ(dP)

The smooth model corresponds to a double Bayesian
approach with an uncertainty-averse twist

We have expected utility over lotteries; this yields the
Bernoulli utility u
we have subjective expected utility over ‘‘second-order
acts’’ (bets on models); this yields the second-order
Bernoulli utility function φ
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Intertemporal Choice and BSDEs

Many economic decisions involve time

time can be modeled in discrete steps, t = 0, 1, 2, ..., or as
continuous time, t ∈ [0, T ] for a fixed horizon T , or
t ∈ [0,∞[, infinite horizon
if there is uncertainty given by a measurable space (Ω,F),
the evolution of information about the state of the world
is typically modeled by a filtration (Ft)
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Consumption Plans

World 1: a consumption plan is a sequence c = (ct)t=0,1,2,...
of nonnegative numbers, or a mapping c : [0, T ]→ R+

world 2-4: an adapted sequence or stochastic process
c = (ct)
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Additively Separable Expected Utility

Samuelson, 1937, A Note on the Measurement of Utility,
Review of Economic Studies

For the first time, the additively separable model
appears, i.e.

U(c) =
T∑

t=0
δtu(ct)

or

U(c) =
∫ T

0
e−ρtu(ct)dt

δ ∈ (0, 1) is the subjective discount factor, ρ the
subjective discount rate
u : R+ → R the period utility function
analogy to expected utility: independence and
stationarity (Koopmans 1960, Stationary Ordinal Utility
and Impatience, Econometrica)
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A B(S)DE for Additively Separable Expected Utility

Let us denote by

Vt = Vt(c) =
∫ T

t
exp(−ρ(s − t))u(cs)ds

the continuation utility at time t.

Then we have

−V ′t = u(ct)− ρVt , VT = 0
This is a description of utility in the form of a backward
differential equation
Under risk, (conditional) expected continuation utility
takes the form

Vt = EP
[∫ T

t
exp(−ρ(s − t))u(cs)ds

∣∣∣∣Ft

]
that solves the BSDE
−dVt = (u(ct)− ρVt) dt − dMt , VT = 0 for some
martingale M
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Recursive Utility

Epstein, Zin, Econometrica 1989 generalize to recursive
utility of the form

−V ′t = g(ct , Vt), VT = 0

for an aggregator g

much wider flexibility, allows to model various
intertemporal aspects of behavior

additively separable case: g(c, v) = u(c)− ρv
Kreps-Porteus choice: g(c, v) = β(cρ−vρ)

ρyρ−1

Kreps, Porteus, Econometrica 1978, Temporal Resolution of
Uncertainty and Dynamic Choice Theory
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Stochastic Differential Utility

Duffie, Epstein, Econometrica 1992 generalize to
stochastic differential utility of the form

−dVt = g(ct , Vt)dt − ZtdWt , VT = 0

for an aggregator g , a Brownian motion W

utility is the solution of a backward stochastic differential
equation
See El Karoui, Peng, Quenez, Backward Stochastic
Differential Equations in Finance, Mathematical Finance
1997
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Intertemporal Utility under Knightian Uncertainty

In the light of Gilboa-Schmeidler utility and the usual
additively separable intertemporal utility, it is natural to
write down the following version of utility under Knightian
uncertainty

Vt = inf
P∈P

EP
[∫ T

t
exp(−ρ(s − t))u(cs)ds

∣∣∣∣Ft

]
for a class of probability measures P

This approach works well if the class of probability
measures is rectangular or stable under pasting
Epstein, Schneider, Journal of Economic Theory 2003,
Riedel, Stochastic Processes and Their Applications, 2004
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Intertemporal Utility under Drift Uncertainty

Chen, Epstein, Econometrica 2002

Let W be a d-dimensional Brownian motion on the
standard filtered probability space (Ω,F ,P, (Ft))
Let K ⊂ Rd be compact and convex, 0 ∈ Θ

Let Θ be the set of adapted stochastic processes with
values in K
For a process θ ∈ Θ, let Pθ be the probability measure
generated by the Girsanov density

zθt = exp
(
−
∫ t

0
θsdWs −

1
2 ‖θs‖2 ds

)
Let P be the set of probability measures generated in
this way
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Intertemporal Utility under Drift Uncertainty

Chen, Epstein, Econometrica 2002

The Chen-Epstein model describes Knightian uncertainty
about the drift of the Brownian motion by Girsanov’s
theorem

Vt = inf
P∈P

EP
[∫ T

t
exp(−ρ(s − t))u(cs)ds

∣∣∣∣Ft

]
solves the BSDE

−dVt =
(

u(ct)− ρVt −max
θ∈K

θ · Zt

)
dt − ZtdWt

for some (endogenous) volatility process Z
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Intertemporal Utility under Drift Uncertainty
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Intertemporal Utility under Volatility Uncertainty

Epstein, Ji, Review of Financial Studies 2013

uses Shige Peng’s theory of G--Brownian motion to
model recursive utility when volatility is unknown

Vt = inf
P∈P

EP
[∫ T

t
exp(−ρ(s − t))u(cs)ds

∣∣∣∣Ft

]
but now the set if priors contains mutually singular
probability measures, so we need quasi--sure analysis,
see Denis, Hu, Peng, Potential Analysis 2011
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