

Faculty of Business Administration and Economics

Knightian Uncertainty in Economics and Finance

22nd Winter School on Mathematical Finance January 20-22, 2025 Soesterberg

Frank Riedel

Bielefeld University

Risk versus Uncertainty Sharing

Faculty of Business Administration and Economics

Knightian Uncertainty in Economics and Finance

22nd Winter School on Mathematical Finance January 20-22, 2025 Soesterberg

Frank Riedel

Bielefeld University

Risk versus Uncertainty Sharing

1. Risk Sharing

- 2. Intertemporal Risk Sharing
- 3. Uncertainty Sharing

 Risk sharing involves distributing the financial consequences of risks among various parties. This concept is fundamental in insurance, finance, and business.

The Risk Sharing Problem

- Risk sharing involves distributing the financial consequences of risks among various parties. This concept is fundamental in insurance, finance, and business.
- The process by which multiple parties agree to take on portions of risk to reduce the burden on any single entity.

The Risk Sharing Problem

- Risk sharing involves distributing the financial consequences of risks among various parties. This concept is fundamental in insurance, finance, and business.
- The process by which multiple parties agree to take on portions of risk to reduce the burden on any single entity.
- To mitigate the impact of adverse events by spreading potential losses across a wider base, making them more manageable.

 Insurance: Policyholders pay premiums to an insurer, which in return assumes the risk of specific events (e.g., accidents, natural disasters). When claims arise, the insurer covers the losses.

Mechanisms of Risk Sharing

- Insurance: Policyholders pay premiums to an insurer, which in return assumes the risk of specific events (e.g., accidents, natural disasters). When claims arise, the insurer covers the losses.
- Pooling Arrangements: Multiple individuals or organizations contribute to a common fund, which is used to cover losses incurred by any member of the pool. Example:

Mechanisms of Risk Sharing

- Insurance: Policyholders pay premiums to an insurer, which in return assumes the risk of specific events (e.g., accidents, natural disasters). When claims arise, the insurer covers the losses.
- Pooling Arrangements: Multiple individuals or organizations contribute to a common fund, which is used to cover losses incurred by any member of the pool. Example:
- Financial Instruments: Products like derivatives, options, and swaps can redistribute financial risk between parties.
 For example, a company might use a currency swap to hedge against exchange rate fluctuations.

• Reduced Individual Exposure: Each participant's potential loss is minimized, enhancing financial stability.

- Reduced Individual Exposure: Each participant's potential loss is minimized, enhancing financial stability.
- Increased Risk Capacity: Entities can undertake larger projects or investments since risks are distributed.

- Reduced Individual Exposure: Each participant's potential loss is minimized, enhancing financial stability.
- Increased Risk Capacity: Entities can undertake larger projects or investments since risks are distributed.
- Encouragement of Innovation: By mitigating potential losses, risk sharing encourages investment in new ventures and technologies.

Bob and Alice

Bob has the uncertain income X tomorrow

- Bob has the uncertain income X tomorrow
- Alice has the uncertain income Y

- Bob has the uncertain income X tomorrow
- Alice has the uncertain income Y
- aggregate income is Z = X + Y

- Bob has the uncertain income X tomorrow
- Alice has the uncertain income Y
- aggregate income is Z = X + Y
- both know the probability distribution P as in roulette

- Bob has the uncertain income X tomorrow
- Alice has the uncertain income Y
- aggregate income is Z = X + Y
- both know the probability distribution P as in roulette
- Alice and Bob have strictly concave (risk-averse) Bernoulli utility u_A and u_B

- Bob has the uncertain income X tomorrow
- Alice has the uncertain income Y
- aggregate income is Z = X + Y
- both know the probability distribution *P* as in roulette
- Alice and Bob have strictly concave (risk-averse) Bernoulli utility u_A and u_B
- find a risk sharing agreement $(\xi_A, Z \xi_A)$ that maximizes

$$E^P u_A(\xi_A) + E^P u_B(Z - \xi_A)$$

- X = 1 if "Red", otherwise X = 0
- Y = 1 if "Black", otherwise Y = 0

- X = 1 if "Red", otherwise X = 0
- Y = 1 if "Black", otherwise Y = 0
- here Z = 1 always

- X = 1 if "Red", otherwise X = 0
- Y = 1 if "Black", otherwise Y = 0
- here Z = 1 always
- shouldn't Alice and Bob remove all risk?

Example

- X = 1 if "Red", otherwise X = 0
- Y = 1 if "Black", otherwise Y = 0
- here Z = 1 always
- shouldn't Alice and Bob remove all risk?

Example

- X = 1 if "Red", otherwise X = 0
- Y = 1 if "Black", otherwise Y = 0
- here Z = 1 always
- shouldn't Alice and Bob remove all risk?

Example

• X and Y i.i.d.

Example

- X = 1 if "Red", otherwise X = 0
- Y = 1 if "Black", otherwise Y = 0
- here Z = 1 always
- shouldn't Alice and Bob remove all risk?

- X and Y i.i.d.
- sharing risk should mean $\frac{1}{2}Z$ for both?

FOCs and Optimum

FOCs and Optimum

we can maximize pointwise under P

FOCs and Optimum

we can maximize pointwise under P

$$u'_A(\xi) = u'_B(Z(\omega) - \xi)$$

FOCs and Optimum

we can maximize pointwise under P

$$u'_A(\xi) = u'_B(Z(\omega) - \xi)$$

• if
$$Z(\omega) = const$$
 , ..

FOCs and Optimum

we can maximize pointwise under P

 $\max \mathbb{E}^{P}[u_{A}(\xi_{A})+u_{B}(Z-\xi_{A})] = \mathbb{E}^{P}[\max_{\xi \in \mathbb{R}_{+}} u_{1}(\xi)+u_{2}(Z(\omega)-\xi)]$

$$u'_A(\xi) = u'_B(Z(\omega) - \xi)$$

• if
$$Z(\omega) = const$$
 , ...

• if Alice and Bob share preferences, ...

FOCs and Optimum

we can maximize pointwise under P

$$u'_A(\xi) = u'_B(Z(\omega) - \xi)$$

• if
$$Z(\omega) = const$$
 , ...

- if Alice and Bob share preferences, ...
- Constant absolute risk aversion ...

FOCs and Optimum

we can maximize pointwise under P

$$u'_A(\xi) = u'_B(Z(\omega) - \xi)$$

- if $Z(\omega) = const$, ...
- if Alice and Bob share preferences, ...
- Constant absolute risk aversion ...
- the solution is comonotone, i.e. ξ_A and $Z \xi_A$ are both monotone functions of Z

A General Version of Risk Sharing

Risk sharing lead to efficient allocations in the sense of economics

- Risk sharing lead to efficient allocations in the sense of economics
- we present a general version based on *Dana*, Econometrica 1992

• Fix a probability space (Ω, \mathcal{F}, P)

- Fix a probability space (Ω, \mathcal{F}, P)
- Consider i = 1, ..., I agents with endowments $e_i \in L^p(\Omega, \mathcal{F}, P)_+$, $1 \le p \le \infty$

- Fix a probability space (Ω, \mathcal{F}, P)
- Consider i = 1, ..., I agents with endowments $e_i \in L^p(\Omega, \mathcal{F}, P)_+$, $1 \le p \le \infty$
- Write $e = \sum_{i} e_i$ for the aggregate endowment

- Fix a probability space (Ω, \mathcal{F}, P)
- Consider i = 1, ..., I agents with endowments $e_i \in L^p(\Omega, \mathcal{F}, P)_+$, $1 \le p \le \infty$
- Write $e = \sum_{i} e_{i}$ for the aggregate endowment
- Bernoulli utility $u_i : \mathbb{R}_+ \to \mathbb{R}$

- Fix a probability space (Ω, \mathcal{F}, P)
- Consider i = 1, ..., I agents with endowments $e_i \in L^p(\Omega, \mathcal{F}, P)_+$, $1 \le p \le \infty$
- Write $e = \sum_i e_i$ for the aggregate endowment
- Bernoulli utility $u_i : \mathbb{R}_+ \to \mathbb{R}$
 - strictly increasing and strictly concave,

- Fix a probability space (Ω, \mathcal{F}, P)
- Consider i = 1, ..., I agents with endowments $e_i \in L^p(\Omega, \mathcal{F}, P)_+$, $1 \le p \le \infty$
- Write $e = \sum_i e_i$ for the aggregate endowment
- Bernoulli utility $u_i : \mathbb{R}_+ \to \mathbb{R}$
 - strictly increasing and strictly concave,
 - twice continuously differentiable on (0, ∞),

- Fix a probability space (Ω, \mathcal{F}, P)
- Consider i = 1, ..., I agents with endowments $e_i \in L^p(\Omega, \mathcal{F}, P)_+$, $1 \le p \le \infty$
- Write $e = \sum_i e_i$ for the aggregate endowment
- Bernoulli utility $u_i : \mathbb{R}_+ \to \mathbb{R}$
 - strictly increasing and strictly concave,
 - twice continuously differentiable on $(0,\infty)$,
 - $\lim_{c\downarrow 0} u'_i(c) = \infty$

Definition

We call $(X_i)_{i=1,...,l}$ an allocation.

Definition

We call $(X_i)_{i=1,...,l}$ an allocation.

•
$$(X_i)_i$$
 is feasible if $\sum X_i \leq e$,

Definition

We call $(X_i)_{i=1,...,l}$ an allocation.

• $(X_i)_i$ is feasible if $\sum X_i \leq e$,

• $(X_i)_i$ is efficient if it is feasible and there is no feasible allocation $(Y_i)_i$ such that $U_i(X_i) = E^P u_i(X_i) \le U_i(Y_i) = E^P u_i(Y_i)$ for every *i*, with at least one strict inequality.

Definition

We call $(X_i)_{i=1,...,l}$ an allocation.

- $(X_i)_i$ is feasible if $\sum X_i \leq e$,
- $(X_i)_i$ is efficient if it is feasible and there is no feasible allocation $(Y_i)_i$ such that $U_i(X_i) = E^P u_i(X_i) \le U_i(Y_i) = E^P u_i(Y_i)$ for every *i*, with at least one strict inequality.

Remark

Convex Analysis: optima can be found by maximizing a weighted sum

$$U(e;\lambda) = \max_{(X_i) \in (L^P_+)^I : \sum X_i \le e} \sum_i \lambda_i E^P u_i(X_i)$$

icient allocations

Pareto Optima: Representative Agent

Consider the (ex-post) pointwise maximization problem

$$u(x; \lambda) := \max_{(x_i) \in \mathbb{R}^l_+ : \sum x_i = x} \sum \lambda_i u_i(x_i)$$

With our assumptions, the solution vector $c = (c_i)$ is unique and determined by the system

$$\lambda_1 u'_1(c_1) = \mu$$
$$\vdots = \vdots$$
$$\lambda_I u'_I(c_I) = \mu$$
$$\sum_{i=1}^{n} c_i = x$$

for some Lagrange multiplier μ .

Pareto Optima: Representative Agent

Theorem

The solutions $c_i = c_i(x; \lambda)$ are continuously differentiable on $(0, \infty)$. The function u is continuously differentiable on $(0, \infty)$ and satisfies

$$u'(x;\lambda) = \lambda_i u'_i(c_i(x;\lambda))$$

The optimal risk sharing plans $c_i = c_i(x; \lambda)$ are continuous, monotone functions of aggregate endowment.

Pareto Optima: Representative Agent

Theorem

The solutions $c_i = c_i(x; \lambda)$ are continuously differentiable on $(0, \infty)$. The function u is continuously differentiable on $(0, \infty)$ and satisfies

$$u'(x;\lambda) = \lambda_i u'_i (c_i(x;\lambda))$$

The optimal risk sharing plans $c_i = c_i(x; \lambda)$ are continuous, monotone functions of aggregate endowment.

Remark

Optimal risk sharing: everybody gets a continuous, monotone increasing share of the total income. If there is no aggregate risk, everybody is fully insured.

Theorem

The representative agent is of expected utility type and has Bernoulli utility function $u(\cdot; \lambda)$, i.e.

$$U(e;\lambda) = E^P u(e;\lambda).$$

Suppose that Bob and Alice agree that the probability measure ${\cal P}$ is correct, i.e.

$$U_A(Z) = E^P u(Z), U_B(Z) = E^P v(Z)$$

Theorem

An allocation (Z, 1-Z) is optimal if and only if Z is constant.

Second Proof: If Z is not constant, replace Z by $z = E^P Z$. By no aggregate uncertainty, (z, 1 - z) is a feasible. By (strict) concavity, (z, 1 - z) is better.

1. Risk Sharing

2. Intertemporal Risk Sharing

3. Uncertainty Sharing

$$U_1(c) = \int_0^\infty \exp(-\rho_i s) u_i(c_i(s)) ds$$

Now let us consider two agents with intertemporal utility

$$U_1(c) = \int_0^\infty \exp(-\rho_i s) u_i(c_i(s)) ds$$

and aggregate income z(t) = exp(gt) for some growth rate g

$$U_1(c) = \int_0^\infty \exp(-\rho_i s) u_i(c_i(s)) ds$$

- and aggregate income z(t) = exp(gt) for some growth rate
- Wait a second! There is no risk!

$$U_1(c) = \int_0^\infty \exp(-\rho_i s) u_i(c_i(s)) ds$$

- and aggregate income z(t) = exp(gt) for some growth rate
- Wait a second! There is no risk!
- Yes, but there is an analogy: the agents share time instead of states of the world

$$U_1(c) = \int_0^\infty \exp(-\rho_i s) u_i(c_i(s)) ds$$

- and aggregate income z(t) = exp(gt) for some growth rate
- Wait a second! There is no risk!
- Yes, but there is an analogy: the agents share time instead of states of the world
- they have an analogous interest in smoothing consumption plans over time as they have in smoothing consumption plans over states of the world under risk

First-Order Condition

the marginal utility at time t is

$$\nabla U_i(c_i)_t = \exp(-\rho_i t) u'_i(c_i(t)),$$

so efficient allocations (c_1, c_2) are characterized by

First-Order Condition

• the marginal utility at time t is

$$\nabla U_i(c_i)_t = \exp(-\rho_i t) u'_i(c_i(t)),$$

so efficient allocations (c_1, c_2) are characterized by

$$\exp(-\rho_1 t)u_1'(c_1(t)) = \exp(-\rho_2 t)u_2'(c_2(t))$$

First-Order Condition

the marginal utility at time t is

$$\nabla U_i(c_i)_t = \exp(-\rho_i t) u'_i(c_i(t)),$$

so efficient allocations (c_1, c_2) are characterized by

$$\exp(-\rho_1 t)u_1'(c_1(t)) = \exp(-\rho_2 t)u_2'(c_2(t))$$

$$c_1(t)+c_2(t)=z(t)$$

You would think that introducing risk would matter

- You would think that introducing risk would matter
- Yet, with the double independence axiom (for time and states), it does not

- You would think that introducing risk would matter
- Yet, with the double independence axiom (for time and states), it does not
- maximize under the expectation, so efficient allocations independent of P

- You would think that introducing risk would matter
- Yet, with the double independence axiom (for time and states), it does not
- maximize under the expectation, so efficient allocations independent of P
- FOC:

$$\exp(-\rho_1 t)u_1'(c_1(t)) = \exp(-\rho_2 t)u_2'(c_2(t))$$

- You would think that introducing risk would matter
- Yet, with the double independence axiom (for time and states), it does not
- maximize under the expectation, so efficient allocations independent of P
- FOC:

$$\exp(-\rho_1 t)u'_1(c_1(t)) = \exp(-\rho_2 t)u'_2(c_2(t))$$

same allocation rule, only aggregate endowment is random

Now let us consider two agents with intertemporal utility

$$-dV_t^i = g^i(c_t^i, V_t^i)dt - Z_t^i dW_t, V_T = 0$$

Now let us consider two agents with intertemporal utility

$$-dV_t^i = g^i(c_t^i, V_t^i)dt - Z_t^i dW_t, V_T = 0$$

the utility gradient is

$$\nabla V_t^i = \exp\left(\int_0^t g_V^i(c_s^i, V_s^i)ds\right)g_c^i(c_t^i, V_t^i)$$

Duffie, Geoffard, Skiadas, Journal of Mathematical Economics, 1994

Now let us consider two agents with intertemporal utility

$$-dV_t^i = g^i(c_t^i, V_t^i)dt - Z_t^i dW_t, V_T = 0$$

the utility gradient is

$$\nabla V_t^i = \exp\left(\int_0^t g_V^i(c_s^i, V_s^i) ds\right) g_c^i(c_t^i, V_t^i)$$

Duffie, Geoffard, Skiadas, Journal of Mathematical Economics, 1994

- marginal utility of consumption at t depends on future expected utility V^i_t

Now let us consider two agents with intertemporal utility

$$-dV_t^i = g^i(c_t^i, V_t^i)dt - Z_t^i dW_t, V_T = 0$$

the utility gradient is

$$\nabla V_t^i = \exp\left(\int_0^t g_V^i(c_s^i, V_s^i) ds\right) g_c^i(c_t^i, V_t^i)$$

Duffie, Geoffard, Skiadas, Journal of Mathematical Economics, 1994

- marginal utility of consumption at t depends on future expected utility Vⁱ_t
- discount rate $g_V^i(c_s^i, V_s^i)$ is endogenous

Now let us consider two agents with intertemporal utility

$$-dV_t^i = g^i(c_t^i, V_t^i)dt - Z_t^i dW_t, V_T = 0$$

the utility gradient is

$$\nabla V_t^i = \exp\left(\int_0^t g_V^i(c_s^i, V_s^i) ds\right) g_c^i(c_t^i, V_t^i)$$

Duffie, Geoffard, Skiadas, Journal of Mathematical Economics, 1994

- marginal utility of consumption at t depends on future expected utility Vⁱ_t
- discount rate $g_V^i(c_s^i, V_s^i)$ is endogenous
- see also *Dumas, Uppal, Wang*, Journal of Economic Theory, 2000

Stochastic Differential Utility

Now let us consider two agents with intertemporal utility

$$-dV_t^i = g^i(c_t^i, V_t^i)dt - Z_t^i dW_t, V_T = 0$$

the utility gradient is

$$\nabla V_t^i = \exp\left(\int_0^t g_V^i(c_s^i, V_s^i) ds\right) g_c^i(c_t^i, V_t^i)$$

Duffie, Geoffard, Skiadas, Journal of Mathematical Economics, 1994

- marginal utility of consumption at t depends on future expected utility Vⁱ_t
- discount rate $g_V^i(c_s^i, V_s^i)$ is endogenous
- see also *Dumas, Uppal, Wang*, Journal of Economic Theory, 2000
- efficient allocations solve a system of differential equations that can be solved numerically

1. Risk Sharing

- 2. Intertemporal Risk Sharing
- 3. Uncertainty Sharing

Ambiguity

Now let us consider the case of ambiguity

- Now let us consider the case of ambiguity
- described by a set of probability measures \mathcal{P} on (Ω, \mathcal{F})

- Now let us consider the case of ambiguity
- described by a set of probability measures \mathcal{P} on (Ω, \mathcal{F})
- do the main results carry over?

- Now let us consider the case of ambiguity
- described by a set of probability measures \mathcal{P} on (Ω, \mathcal{F})
- do the main results carry over?
- representative agent

- Now let us consider the case of ambiguity
- described by a set of probability measures \mathcal{P} on (Ω, \mathcal{F})
- do the main results carry over?
- representative agent
- measurability (optimal allocations are functions of Z alone)

- Now let us consider the case of ambiguity
- described by a set of probability measures \mathcal{P} on (Ω, \mathcal{F})
- do the main results carry over?
- representative agent
- measurability (optimal allocations are functions of Z alone)
- comonotonicity (optimal allocations are monotone functions of Z)

Uncertainty Sharing: Literature

Literature

- Châteauneuf, Dana, Tallon, Optimal risk-sharing rules and equilibria with Choquet-expected-utility. Journal of Mathematical Economics, 34(2), 2000
- Billot, Châteauneuf, Gilboa, Tallon, Sharing Beliefs: Between Agreeing and Disagreeing, Econometrica, 2000
- Rigotti, Shannon, Strzalecki, Subjective beliefs and ex ante trade, Econometrica 2008
- Strzalecki, Werner, Efficient allocations under ambiguity. Journal of Economic Theory, 2011
- for identifiable models, recently full solution, *Hara, Mukerji, Riedel, Tallon*, Efficient allocations under ambiguous model uncertainty. Available at SSRN 4272548.

Full Insurance under Knightian Uncertainty

Literature

- The benchmark case of no aggregate uncertainty is archetypical to discuss economic institutions (*Mirrlees*, 1971)
- Main result: Efficient allocations are full insurance allocations if agents "do not fully disagree on possible models"

 Suppose that Knightian uncertainty is described by a set of priors *P*.

- Suppose that Knightian uncertainty is described by a set of priors *P*.
- Suppose that Bob and Alice have subjective priors $\mathcal{P}_A, \mathcal{P}_B \subseteq \mathcal{P}$ and their preferences are of maxmin-type

- Suppose that Knightian uncertainty is described by a set of priors *P*.
- Suppose that Bob and Alice have subjective priors $\mathcal{P}_A, \mathcal{P}_B \subseteq \mathcal{P}$ and their preferences are of maxmin-type
- Suppose that Bob and Alice share some possible priors, $\mathcal{P}_A \cap \mathcal{P}_B \neq \emptyset$.

- Suppose that Knightian uncertainty is described by a set of priors *P*.
- Suppose that Bob and Alice have subjective priors $\mathcal{P}_A, \mathcal{P}_B \subseteq \mathcal{P}$ and their preferences are of maxmin-type
- Suppose that Bob and Alice share some possible priors, $\mathcal{P}_A \cap \mathcal{P}_B \neq \emptyset$.

Theorem

An allocation (Z, 1 - Z) is optimal if and only if Z is constant.

General Ambiguity-Averse Preferences and Full Insurance

Rigotti, Shannon, Strzalecki, Subjective beliefs and ex ante trade, Econometrica 2008 Let \mathcal{P} be the set of priors describing uncertainty. and denote by $U_i(c)$ the utility of agent *i* for consumption plan *c*.

Definition

We call $Q \in \Delta$ a (supporting) subjective belief at consumption plan c if

$$E^Q[y] \ge E^Q[c]$$

for all consumption plans y with $U_i(y) \ge U_i(c)$.

General Ambiguity-Averse Preferences and Full Insurance

Rigotti, Shannon, Strzalecki, Subjective beliefs and ex ante trade, Econometrica 2008 Let \mathcal{P} be the set of priors describing uncertainty. and denote by $U_i(c)$ the utility of agent *i* for consumption plan *c*.

Definition

We call $Q \in \Delta$ a (supporting) subjective belief at consumption plan c if

$$E^Q[y] \ge E^Q[c]$$

for all consumption plans y with $U_i(y) \ge U_i(c)$.

Remark

The supporting subjective belief is a subgradient of U_i at c, normalized to be a probability.

Assumption

 The utility functions U_i are concave and strictly monotone.

Assumption

- The utility functions U_i are concave and strictly monotone.
- Each U_i is translation invariant at certainty: For all $h \in \mathbb{X}$ and all constant bundles c, c' > 0, if $U_i(c + \lambda h) \ge U_i(c)$ for some $\lambda > 0$, then there exists $\lambda' > 0$ such that $U_i(c' + \lambda' h) \ge U_i(c')$. We denote the subjective belief of agent *i* at any constant bundle c > 0 by π_i .

Assumption

- The utility functions U_i are concave and strictly monotone.
- Each U_i is translation invariant at certainty: For all $h \in \mathbb{X}$ and all constant bundles c, c' > 0, if $U_i(c + \lambda h) \ge U_i(c)$ for some $\lambda > 0$, then there exists $\lambda' > 0$ such that $U_i(c' + \lambda' h) \ge U_i(c')$. We denote the subjective belief of agent *i* at any constant bundle c > 0 by π_i .
- Preferences are consistent with the set of priors ℙ, i.e. we have π_i ⊂ ℙ, and agents share some common subjective belief at certainty: ∩^l_{i=1} π_i ≠ Ø.

If utility functions satisfy the above assumptions, the following are equivalent:

1. There exists an interior full insurance allocations;

- 1. There exists an interior full insurance allocations;
- 2. Every efficient allocation is a full insurance allocation;

- 1. There exists an interior full insurance allocations;
- 2. Every efficient allocation is a full insurance allocation;
- 3. Every full insurance allocation is efficient;

- 1. There exists an interior full insurance allocations;
- 2. Every efficient allocation is a full insurance allocation;
- 3. Every full insurance allocation is efficient;
- 4. agents share some common subjective belief at certainty: $\bigcap_{i=1}^{l} \pi_i \neq \emptyset$.

 difficult so far, some results in *Strzalecki, Werner*, Efficient allocations under ambiguity. Journal of Economic Theory, 2011

- difficult so far, some results in *Strzalecki, Werner*, Efficient allocations under ambiguity. Journal of Economic Theory, 2011
- Hara, Mukerji, R., Tallon provide complete solution for the smooth model, Lecture 4 in identified models

