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The Risk Sharing Problem

Risk sharing involves distributing the financial
consequences of risks among various parties. This concept
is fundamental in insurance, finance, and business.

The process by which multiple parties agree to take on
portions of risk to reduce the burden on any single entity.
To mitigate the impact of adverse events by spreading
potential losses across a wider base, making them more
manageable.
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Mechanisms of Risk Sharing

Insurance: Policyholders pay premiums to an insurer, which
in return assumes the risk of specific events (e.g.,
accidents, natural disasters). When claims arise, the
insurer covers the losses.

Pooling Arrangements: Multiple individuals or
organizations contribute to a common fund, which is used
to cover losses incurred by any member of the pool.
Example: tontines

Financial Instruments: Products like derivatives, options,
and swaps can redistribute financial risk between parties.
For example, a company might use a currency swap to
hedge against exchange rate fluctuations.
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Benefits of Risk Sharing

Reduced Individual Exposure: Each participant’s potential
loss is minimized, enhancing financial stability.

Increased Risk Capacity: Entities can undertake larger
projects or investments since risks are distributed.
Encouragement of Innovation: By mitigating potential
losses, risk sharing encourages investment in new ventures
and technologies.
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Risk Sharing: A Model

Bob and Alice

Bob has the uncertain income X tomorrow
Alice has the uncertain income Y
aggregate income is Z = X + Y
both know the probability distribution P as in roulette
Alice and Bob have strictly concave (risk-averse)
Bernoulli utility uA and uB

find a risk sharing agreement (ξA, Z − ξA) that
maximizes

EPuA(ξA) + EPuB(Z − ξA)
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Risk Sharing: Simple Examples

Example

X = 1 if ‘‘Red’’, otherwise X = 0
Y = 1 if ‘‘Black’’, otherwise Y = 0
here Z = 1 always
shouldn’t Alice and Bob remove all risk?

Example

X and Y i.i.d.
sharing risk should mean 1

2Z for both?
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Risk Sharing: Solution

FOCs and Optimum

we can maximize pointwise under P

maxEP [uA(ξA)+uB(Z−ξA)] = EP [max
ξ∈R+

u1(ξ)+u2(Z (ω)−ξ)]

u′A(ξ) = u′B(Z (ω)− ξ)

if Z (ω) = const , ...
if Alice and Bob share preferences, ...
Constant absolute risk aversion ...
the solution is comonotone, i.e. ξA and Z − ξA are both
monotone functions of Z

9
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A General Version of Risk Sharing

Risk sharing lead to efficient allocations in the sense of
economics

we present a general version based on Dana, Econometrica
1992
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General Model

Fix a probability space (Ω,F , P)

Consider i = 1, ... , I agents with endowments
ei ∈ Lp (Ω,F , P)+ , 1 ≤ p ≤ ∞
Write e =

∑
i ei for the aggregate endowment

Bernoulli utility ui : R+ → R

strictly increasing and strictly concave,
twice continuously differentiable on (0,∞),
limc↓0 u′

i (c) =∞
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Pareto Optima

Definition
We call (Xi)i=1,...,I an allocation.

(Xi)i is feasible if
∑

Xi ≤ e,
(Xi)i is efficient if it is feasible and there is no feasible
allocation (Yi)i such that
Ui (Xi) = EPui(Xi) ≤ Ui (Yi) = EPui(Yi) for every i , with
at least one strict inequality.

Remark
Convex Analysis: optima can be found by maximizing a
weighted sum

U(e;λ) = max
(Xi )∈(Lp

+)I :
∑

Xi≤e

∑
i
λiEPui(Xi)

over efficient allocations

12
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Pareto Optima: Representative Agent

Consider the (ex-post) pointwise maximization problem

u(x ;λ) := max
(xi )∈RI

+:
∑

xi =x

∑
λiui(xi)

With our assumptions, the solution vector c = (ci) is unique and
determined by the system

λ1u′1(c1) = µ

... =
...

λIu′I(cI) = µ∑
ci = x

for some Lagrange multiplier µ.
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Pareto Optima: Representative Agent

Theorem
The solutions ci = ci(x ;λ) are continuously differentiable on
(0,∞). The function u is continuously differentiable on (0,∞)
and satisfies

u′(x ;λ) = λiu′i (ci(x ;λ))

The optimal risk sharing plans ci = ci(x ;λ) are continuous,
monotone functions of aggregate endowment.

Remark
Optimal risk sharing: everybody gets a continuous, monotone
increasing share of the total income. If there is no aggregate
risk, everybody is fully insured.
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Pareto Optima: Representative Agent

Theorem
The representative agent is of expected utility type and has
Bernoulli utility function u(·;λ), i.e.

U(e;λ) = EPu(e;λ).

15



Full Insurance is Optimal under Risk - Second Proof

Suppose that Bob and Alice agree that the probability measure
P is correct, i.e.

UA(Z ) = EPu(Z ), UB(Z ) = EPv(Z )

Theorem
An allocation (Z , 1− Z ) is optimal if and only if Z is constant.

Second Proof: If Z is not constant, replace Z by z = EPZ . By no
aggregate uncertainty, (z , 1− z) is a feasible. By (strict)
concavity, (z , 1− z) is better.

16



Outline

1. Risk Sharing

2. Intertemporal Risk Sharing

3. Uncertainty Sharing
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Deterministic Time--Additive Model

Now let us consider two agents with intertemporal utility

U1(c) =
∫ ∞

0
exp(−ρis)ui(ci(s))ds

and aggregate income z(t) = exp(gt) for some growth rate
g
Wait a second! There is no risk!
Yes, but there is an analogy: the agents share time instead
of states of the world
they have an analogous interest in smoothing
consumption plans over time as they have in smoothing
consumption plans over states of the world under risk

18
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First-Order Condition

the marginal utility at time t is

∇Ui(ci)t = exp(−ρi t)u′i(ci(t)),

so efficient allocations (c1, c2) are characterized by

exp(−ρ1t)u′1(c1(t)) = exp(−ρ2t)u′2(c2(t))

c1(t) + c2(t) = z(t)

19
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Expected Utility Time--Additive Model

You would think that introducing risk would matter

Yet, with the double independence axiom (for time and
states), it does not
maximize under the expectation, so efficient allocations
independent of P
FOC:

exp(−ρ1t)u′1(c1(t)) = exp(−ρ2t)u′2(c2(t))

same allocation rule, only aggregate endowment is
random

20
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Stochastic Differential Utility

Now let us consider two agents with intertemporal utility

−dV i
t = g i(c i

t , V i
t )dt − Z i

t dWt , VT = 0
the utility gradient is

∇V i
t = exp

(∫ t

0
g i

V (c i
s , V i

s )ds
)

g i
c(c i

t , V i
t )

Duffie, Geoffard, Skiadas, Journal of Mathematical
Economics, 1994
marginal utility of consumption at t depends on future
expected utility V i

t
discount rate g i

V (c i
s , V i

s ) is endogenous
see also Dumas, Uppal, Wang, Journal of Economic Theory,
2000
efficient allocations solve a system of differential
equations that can be solved numerically
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Outline

1. Risk Sharing

2. Intertemporal Risk Sharing

3. Uncertainty Sharing

22



Uncertainty Sharing

Ambiguity

Now let us consider the case of ambiguity
described by a set of probability measures P on (Ω,F)
do the main results carry over?
representative agent
measurability (optimal allocations are functions of Z
alone)
comonotonicity (optimal allocations are monotone
functions of Z )
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Uncertainty Sharing: Literature

Literature

Châteauneuf, Dana, Tallon , Optimal risk-sharing rules and
equilibria with Choquet-expected-utility. Journal of
Mathematical Economics, 34(2), 2000

Billot, Châteauneuf, Gilboa, Tallon, Sharing Beliefs: Between
Agreeing and Disagreeing, Econometrica, 2000

Rigotti, Shannon, Strzalecki, Subjective beliefs and ex ante
trade, Econometrica 2008

Strzalecki, Werner, Efficient allocations under ambiguity.
Journal of Economic Theory, 2011

for identifiable models, recently full solution, Hara, Mukerji,
Riedel, Tallon , Efficient allocations under ambiguous model
uncertainty. Available at SSRN 4272548.
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Full Insurance under Knightian Uncertainty

Literature
The benchmark case of no aggregate uncertainty is
archetypical to discuss economic institutions (Mirrlees,
1971)
Main result: Efficient allocations are full insurance
allocations if agents ‘‘do not fully disagree on possible
models’’
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Full Insurance under Knightian Uncertainty

Billot, Châteauneuf, Gilboa, Tallon, Sharing Beliefs: Between
Agreeing and Disagreeing, Econometrica, 2000

Suppose that Knightian uncertainty is described by a set
of priors P .

Suppose that Bob and Alice have subjective priors
PA,PB ⊆ P and their preferences are of maxmin-type
Suppose that Bob and Alice share some possible priors,
PA ∩ PB 6= ∅.

Theorem
An allocation (Z , 1− Z ) is optimal if and only if Z is constant.
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General Ambiguity-Averse Preferences and Full
Insurance

Rigotti, Shannon, Strzalecki, Subjective beliefs and ex ante
trade, Econometrica 2008
Let P be the set of priors describing uncertainty. and denote by
Ui(c) the utility of agent i for consumption plan c .

Definition
We call Q ∈ ∆ a (supporting) subjective belief at consumption
plan c if

EQ[y ] ≥ EQ[c]

for all consumption plans y with Ui(y) ≥ Ui(c).

Remark
The supporting subjective belief is a subgradient of Ui at c ,
normalized to be a probability.
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Assumptions on Preferences

Assumption

The utility functions Ui are concave and strictly
monotone.
Each Ui is translation invariant at certainty: For all
h ∈ X and all constant bundles c, c ′ > 0, if
Ui(c + λh) ≥ Ui(c) for some λ > 0, then there exists
λ′ > 0 such that Ui(c ′ + λ′h) ≥ Ui(c ′). We denote the
subjective belief of agent i at any constant bundle c > 0
by πi .
Preferences are consistent with the set of priors P, i.e.
we have πi ⊂ P, and agents share some common
subjective belief at certainty:

⋂I
i=1 πi 6= ∅.
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Full Insurance under Ambiguity

Theorem
If utility functions satisfy the above assumptions, the follow-
ing are equivalent:

1. There exists an interior full insurance allocations;
2. Every efficient allocation is a full insurance allocation;
3. Every full insurance allocation is efficient;
4. agents share some common subjective belief at

certainty:
⋂I

i=1 πi 6= ∅.

29



Full Insurance under Ambiguity

Theorem
If utility functions satisfy the above assumptions, the follow-
ing are equivalent:

1. There exists an interior full insurance allocations;

2. Every efficient allocation is a full insurance allocation;
3. Every full insurance allocation is efficient;
4. agents share some common subjective belief at

certainty:
⋂I

i=1 πi 6= ∅.

29



Full Insurance under Ambiguity

Theorem
If utility functions satisfy the above assumptions, the follow-
ing are equivalent:

1. There exists an interior full insurance allocations;
2. Every efficient allocation is a full insurance allocation;

3. Every full insurance allocation is efficient;
4. agents share some common subjective belief at

certainty:
⋂I

i=1 πi 6= ∅.

29



Full Insurance under Ambiguity

Theorem
If utility functions satisfy the above assumptions, the follow-
ing are equivalent:

1. There exists an interior full insurance allocations;
2. Every efficient allocation is a full insurance allocation;
3. Every full insurance allocation is efficient;

4. agents share some common subjective belief at
certainty:

⋂I
i=1 πi 6= ∅.

29



Full Insurance under Ambiguity

Theorem
If utility functions satisfy the above assumptions, the follow-
ing are equivalent:

1. There exists an interior full insurance allocations;
2. Every efficient allocation is a full insurance allocation;
3. Every full insurance allocation is efficient;
4. agents share some common subjective belief at

certainty:
⋂I

i=1 πi 6= ∅.

29



Uncertain Aggregate Endowment

difficult so far, some results in Strzalecki, Werner, Efficient
allocations under ambiguity. Journal of Economic Theory,
2011

Hara, Mukerji, R., Tallon provide complete solution for the
smooth model, Lecture 4 in identified models
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