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The Farmer

grist.org: “With climate change, it’s hard to put your finger on single
events,” says Ben Whalen, ... at Bumbleroot Organic Farm near
Portland, Maine. “But we’re accepting the reality that the weather is
just going to get more extreme and unpredictable. That’s the
mindset that we’re adopting as we start planning for the future of
the farm.”
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The Farmer

The young farmer makes plans for his orchards over a
20-30 year horizon

The decision depends on the climate forecast for the
planning horizon, in particular the annual distribution of
variables like rainfall, temperature, sunshine.
climate change is Knightian uncertainty
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A Virus
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A Virus

epidemiological models give probability forecast
contingent on assumptions on rate of reproduction, mode
of transmission, infectious period
etc. initially unknown
can be identified ex post
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Volatility Uncertainty

volatility is the crucial parameter in classic
Black-Scholes-Samuelson style finance,

Volatility uncertainty is persistent in financial markets
a large literature on stochastic volatility has been
developed, starting with the famous Heston model
volatility uncertainty can be seen as model uncertainty
Shige Peng develops a stochastic calculus for Brownian
motion Wwith unknown quadratic variation process
(〈W 〉t)
Beissner, R., Finance Stoch. 2018 show fundamental
incompleteness of the market
the model is identifiable because the quadratic variation
of a Brownian motion is observable
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Model Uncertainty

We consider identifiable model uncertainty.

a theory is represented by a probabilistic forecast P ∈ P
corresponding to a physical model
each model is based on certain parameter values being
true along with some particular causal mechanisms being
the relevant ones for the decision at hand
the parameters can be identified (ex post) by events in Ω.
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Identifiability

Denti, Pomatto, Econometrica 2022 axiomatize the
smooth model of decisions under uncertainty from a
statistical point of view

(Ω,F) measurable space, states of the world
P set of probability measures on (Ω,F), models
P is identifiable, i.e. there exists a measurable mapping
k : Ω→ P with

k = P P − a.s.

for all P ∈ P
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Examples

Ellsberg’s Thought Experiment 1

= 50; = 50
+

{ 100

Ellsberg Urn

An urn contains 100 blue and red balls in unknown
proportions, verifiable ex post
ω = (c(olor), n(umberofredballs))
Pn: the urn contains n red balls
k(ω) = Pn
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Examples

I.I.D. Experiments

Sequence of independent and identical experiments
with outcome (Xn)
EPmXn = m, mean m unknown
Let

m̃ = lim
n→∞

1
n

n∑
i=1

Xi .

Then k = Pm̃ identifies the unknown law
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Examples

Volatility Uncertainty

(Ω,F) Wiener space
Family of probability measures Pσ where σ is an
adapted process taking values in some convex, compact
subset of Rd , unknown
Construction: P0 Wiener measure on the canonical
Wiener space with Brownian motion W

Pσ = law
(∫ ·

0
σudWu

)
the model is identifiable because

k(ω) = (〈W 〉t)t =
∫ t

0
σ2s ds Pσ − a.s.
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Preferences: The Smooth Model

How shall an agent evaluate uncertain consumption plans
under uncertainty?

Subjective Expected Utility: choose a belief Q ∈ P and take

U(X ) = EQ u(X )

for some Bernoulli utility function u that captures risk
aversion

Pessimistic (maxmin) approach:

U(X ) = inf
P∈P

EP u(X )

The smooth (second-order Bayesian approach): take a
prior µ over P , an ambiguity index φ and set

U(X ) =
∫
P
φ
(
EP u(X )

)
µ(dP).
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The Smooth Model

The smooth (second-order Bayesian) approach: take a
prior µ over P , an ambiguity index φ and set

U(X ) =
∫
P
φ
(
EP u(X )

)
µ(dP).

For φ(x) = x , we get subjective expected utility with
Q =

∫
P µ(dP)

for ambiguity aversion −φ′′(x)
φ′(x) →∞, we get the maxmin

model
Denti,Pomatto, ECMA 21 show that in identifiable models,
the preference parameters can be uniquely identified from
observed choices
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The Smooth Model

Alternative representation

Let
cP(X ) = u−1

(
EPu(X )

)
be the certainty equivalent of X under model P
Then

U(X ) =
∫
P

v
(

cP(X )
)
µ(dP)

for φ = v ◦ u−1

Expected utility over certainty equivalents
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Main Question Analyzed Today

Efficient Sharing of Risk and Uncertainty

Example 0: You win if and only if I lose
Example 1: health insurance
Example 2: production under climate change
we analyze how optimal allocations look like
we do not ask if markets can achieve these allocations
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Risk Sharing: Review

Suppose Adam and Eve have a common prior P

Bernoulli utility functions ui : R+ → R
individual risks Xi , aggregate risk X = X1 + X2

maximize EP [u1(Y1) + u2(Y2)] subject to Y1 + Y2 = X1 + X2
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Risk Sharing: Review

FOCs and Optimum

we can maximize pointwise under P

maxEP [u1(Y1)+u2(X −Y1)] = EP [max
y∈R+

u1(y)+u2(X −y)]

u′1(y1) = u′2(X − y1)

if X = const (examples 0 and 1), ...
if Adam and Eve share preferences, ...
Constant absolute risk aversion ...
the solution is comonotone, i.e. Y1 and Y2 are both
monotone functions of X
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Linear Risk Sharing

Wilson, 1968 characterizes the class of preferences that
lead to linear risk sharing

risk tolerance, the inverse of risk aversion, is linear and the
parameter b is common:

− u′i (ξ)
u′′i (ξ)

= ai + bξ, i = 1, ..., I

utilities are given by:

ui (ξ) =


(ai+bξ)1−1/b

1/b(1−1/b) if b 6= 0, b 6= 1
−aie−ξ/ai if b = 0
log (ai + ξ) if b = 1

(1)
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Model

a pure exchange economy with uncertainty.

finitely many agents i = 1, ... , I with smooth ambiguity
preferences
ui : R+ → R is the Bernoulli utility function, assumed
continuously differentiable with limx→0 u′(x) =∞, strictly
increasing and strictly concave for all i .
φi : R→ R is assumed continuously differentiable, strictly
increasing and concave for all i .
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Model--Contingent Consumption Plans

In identifiable models, agents can write contracts on
models:

You get 10 Euro if the number of black balls in the uncertain
urn is 10
You get 1 Mio Euro if temperature has risen by 2 degrees in
2050,
Options on volatility, VIX, VSTOXX

a consumption plan (or contingent payoff) is a mapping

X : Ω→ R

due to identifiability, for P 6= Q, {k = P} and {k = Q}
disjoint
we write XP for X on the support of P
in other words: we can make consumption
model-contingent

23
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Efficiency

Definition
Let (Xi)i be a feasible allocation. (Xi)i is

efficient if there is no feasible allocation (Yi)i such that
Ui (Xi) ≤ Ui (Yi) for every i , with at least one strict
inequality.
P-conditionally efficient if for P ∈ P , the allocation(
XP

i
)

i is Pareto efficient under model P, that is, there is
no feasible allocation

(
Y P

i
)

i such that

EP
(

ui
(

XP
i

))
≤ EP

(
ui
(

Y P
i

))
for every i , with at least one strict inequality.(
XP

i
)
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The Optimization Problem

The following utilitarian welfare maximization problem
characterizes efficient allocations for suitable individual
weights λi ≥ 0.

V (—X ) = max
(Xi )i

∑
i
λiUi (Xi) (2)

subject to
∑

i
Xi ≤—X (3)

We call V the utility of the representative agent.
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Conditionally Efficient Allocations

Recall the following results for expected utility economies
The set of P-conditionally efficient allocations is
independent of P ∈ P (having full support), we denote it
by PO(—X )

characterized by equality of marginal rates of substitution

λiu′i(Xi) = λju′j(Xj)

the allocation is comonotone
if aggregate endowment is constant, efficient allocations
are constant (full insurance)
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Efficient Allocations

As we allow model-contingent consumption, the problem
separates across P

max
(XP

i )P,i

∑
i
λiUi((XP

i )P)) =
∫
P

max
(XP

i )P,i

∑
i
λiφi

(
EPui

(
XP

i

))
µ(dP)

monotone transformation of welfare functional
efficient allocations are conditionally efficient allocations!
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Efficient Allocations

Three immediate consequences are that
Efficient uncertainty sharing is efficient risk sharing model
by model

if the aggregate endowment—X is unambiguous, then
efficient allocations are also unambiguous.
with no aggregate uncertainty, efficient allocations are
full insurance allocations
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First-Order Conditions

Let P0 be a dominating probability measure for the family P .

ψ(P,ω) = λiφ
′
i

(
EPui

(
XP

i

))
u′i
(

XP
i (ω)

) dP
dP0

(ω) (4)

The first-order necessary and sufficient condition for a
feasible allocation

(
XP

i
)

P,i to be conditionally efficient

ψP(ω) = ηP
i u′i

(
XP

i (ω)
)

(5)
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Representative Agent

Theorem
Define the utility possibility set

U(P,—X ) := {v ∈ RI : there exists a feasible allocation (Xi)
such that vi ≤ EP(ui(Xi))}.

For weights λi > 0, define the function

Φ(P,—X ) := max
(vi )∈U(P,—X)

∑
i
λiφi(vi).

The representative agent’s utility function has the form

V (—X ) =
∫
P
Φ(P,—X )µ(dP) .
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Outline

1. Model Uncertainty:
Real World, Decision Models, Identifiability

2. Insuring Model Uncertainty - Efficient Uncertainty Sharing

3. Linear Risk Tolerance Economies

4. Asset Pricing Implications: The Pricing Kernel Puzzle
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Linear Risk Tolerance Economies

For expected utility, Wilson, 1968 characterizes the class of
utility functions that lead to linear risk sharing of the form
Xi = θi—X + τi

risk tolerance, the inverse of risk aversion, is linear and the
parameter b is common,

− u′i (ξ)
u′′i (ξ)

= ai + bξ, i = 1, ..., I

ui (ξ) =


(ai+bξ)1−1/b

1/b(1−1/b) if b 6= 0, b 6= 1
−aie−ξ/ai if b = 0
log (ai + ξ) if b = 1

(6)
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Constant Risk Tolerance

let us start with b = 0, i.e. exponential utility

ui exhibits constant absolute risk aversion with index αi for
every i and write α ≡

(∑
i α
−1
i
)−1, the harmonic mean of

the individual indices. Let u be a CARA function with index
α.
We also assume that vi exhibits constant absolute risk
aversion with index γi ≥ αi for every i and write
γ =

(∑
i γ
−1
i
)−1.

so φi(t) = −(−t)γi/αi .
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Constant Risk Tolerance

Theorem
Efficient allocations are of the following form.

1. For each P, there is a (τP
i )i such that

∑
i τ

P
i = 0 and

XP
i = (α/αi)—X + τP

i

2. there is (κi)i such that
∑

i κi = 0 and

τP
i =

(
γ

γi
− α

αi

)
u−1

(
EPu(—X )

)
+ κi . (7)

3. The representative consumer’s utility

V (—X ) =
∫
P
φ(EPu(—X ))µ(dP)

where φ, and v are CARA.
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Model Insurance Payments in the CARA Case

τ

τi

τj

0Rep. consumer

zP=u-1 (EP(u(X̅))

i has a larger coefficient of amb. aversion than the rep. consumer. Receives a higher transfer in less optimistic models
j has a smaller coefficient of amb. aversion than the rep. consumer. Receives a higher transfer in more optimistic models

Less ambiguity-averse consumers should be protected from the model uncertainty (the variability of the certainty 
equivalents of the aggregate consumption) by making their model-contingent constant term τi

P move 
in opposite directions to the certainty equivalents
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General CRRA-like Case

Theorem
Let ((Xi))i be an efficient allocation. Let ζ =

∑
i ζi . Then

XP
i = θP

i (—X − ζ) + ζi .
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A Nested Negishi--Approach For LRT Economies

Recall that

Ui (Xi) =
∫
P
φi
(

EPui(XP
i )
)
µ(dP).

Define vi = φi ◦ ui , then

Ui(Xi) =
∫
P

vi

(
u−1i (EPui(XP

i ))
)
µ(dP)

For linear risk tolerance, at the second-order level, one has
to solve model by model

Φ(P,—X ) := max
(vi ):

∑
c i=c

∑
i
λivi(ci) (8)

where c is the certainty equivalent of aggregate
endowment under model P
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Shares of Aggregate in the Heterogeneous CRRA-Case
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Shares θP
i in the Heterogeneous LRT case

Figure 1: Four consumer economy with heterogeneous ambiguity
aversion and common relative risk aversion 2
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Pricing Kernel Puzzle

in (too?) simple macroeconomic finance ...

the pricing kernel (the state price density) ψ is
proportional to the marginal utility of the representative
agent
with expected utility, thus ψ = u′(—X )
thus, a decreasing function of—X
in Samuelson model, ψt = exp

(
−θWt − θ2

2 t
)
, decreasing

function of Wt (and of asset price St)
empirical studies (Jackwerth (2000), Ait-Sahalia and Lo
(2000)) suggest that this monotone relation does not hold
true
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Pricing Kernel Puzzle

Figure 2: Rosenberg, J. and Engle, R. (2002), Empirical pricing kernels,
Journal of Financial Economics

See also Figlewski, Risk-Neutral Densities, Annual Review of
Financial Economics, 2018
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Pricing Kernel Puzzle

representative agent with smooth utility
class P dominated by a measure P0

state price

ψ(s) =
∫
P
φ′
(

EPu (—X )
)

u′(—X (s)) dP
dP0

(s)µ(dP)

43



A Regime-Switching Model

Let us assume that we have two regimes. A good regime in
which the mean is high and the volatility is low, and a bad
regime in which the mean is low and the volatility is high.

Aggregate endowment is lognormal. We consider a two
person economy in which one agent is ambiguity neutral
and the other one is very ambiguity averse.
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Graph of the pricing kernel, two regimes

Figure 3: Pricing kernel in three economies: ambiguity-neutral, single
agent ambiguity-averse (6 and 12), and mixed. Regime 1: mean 15 %,
volatility 1 %, Regime 2: mean -0.15 %, volatility 11 %.
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Pricing kernel, uncertain variance

aggregate endowment is lognormal

and the variance parameter is uncertain
In Bayesian Statistics, it is common to work with the
precision, the inverse of the variance. For the precision,
one commonly assumes a Gamma-distribution because
the normal and the Gamma distributions form ‘‘conjugate
priors’’; the posterior of the precision is then also
Gamma-distributed.
in ongoing work with Marco Spengemann, we study
mean-variance mixture models (Barndorf--Nielsen) closer
calibration to observed kernels, extension to dynamic
models
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U--Shaped Pricing Kernels

Sichert, T., The Pricing Kernel is often U--shaped, 2023
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Figure 4: A U--Shaped Pricing kernel in the
Mean-Variance-Normal-Mixture Model.

47



Conclusion

We discuss efficient risk and uncertainty sharing under
identifiable Knightian Uncertainty
model-contingent trade is allowed
efficient allocations are conditionally efficient, thus
comonotone
discussion of sharing rules under linear risk and ambiguity
tolerance
asset pricing implications
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