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Risk -- The Model

a probability space (Ω,F ,P) describes the risk of the world

agents share the probabilistic description of the world
the commodity space is X = L2(Ω,F ,P)
agents buy and sell one physical good for contingent
consumption at time 1, no consumption at time 0
E denotes the expectation under P
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Risk -- Prices

a price is a continuous linear functional

Ψ : L2(Ω,F ,P)→ R

by the Riesz representation theorem, it can be written as

Ψ(c) = E[ψc]

for some state price ψ ∈ L2(Ω,F ,P)
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Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents
U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R
Properties of ui :

strictly increasing
strictly concave (risk aversion)
twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents

U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R
Properties of ui :

strictly increasing
strictly concave (risk aversion)
twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents
U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R

Properties of ui :

strictly increasing
strictly concave (risk aversion)
twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents
U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R
Properties of ui :

strictly increasing
strictly concave (risk aversion)
twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents
U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R
Properties of ui :

strictly increasing

strictly concave (risk aversion)
twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents
U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R
Properties of ui :

strictly increasing
strictly concave (risk aversion)

twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Expected Utility Agents

There are i = 1, 2, ... , I agents
U i(c) = Eui(c) for some Bernoulli utility function
ui : R+ → R
Properties of ui :

strictly increasing
strictly concave (risk aversion)
twice continuously differentiable with

lim
x↓0

(ui)′(x) =∞, lim
x→∞

(ui)′(x) = 0

6



Risk -- Agents

Endowments

endowments ei ∈ L2+(Ω,F ,P)
such that (ui)′(ei) ∈ L2(Ω,F ,P)
endowments are sufficiently far away from zero
can be slightly weakened, yet potential equilibrium
prices need to be in the dual space
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Arrow--Debreu Equilibrium

Definition

1. An allocation (c i) ∈ L2+(Ω,F ,P)I is feasible if∑
i(c i − ei) ≤ 0

2. An Arrow--Debreu equilibrium for the risk economy
consists of a state price ψ ∈ L2+(Ω,F ,P) and a feasible
allocation (c i) such that c i maximizes U i(c) = Eui(c)
subject to the budget constraint Eψ(c − ei) ≤ 0.

Remark
It is common to call finite-dimensional equilibria Walras
equilibria, and the corresponding equilibria in infinite--
dimensional spaces Arrow---Debreu equilibria.
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Efficient Allocations

Write—e =
∑I

i=1 ei for the aggregate endowment.

Definition

A feasible allocation (c i) ∈ L2+(Ω,F ,P)I is called (Pareto) effi-
cient if there is no other feasible allocation (d i) with U i(d i) >
U i(c i) for all agents i .

Lemma
An feasible allocation is efficient f and only if it maximizes the
weighted sum

I∑
i=1

αiU i(c i) (1)

over feasible allocations for some weights αi ≥ 0.
We call the (unique) solution cα = (c i

α) of (1) the α-efficient
allocation.
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Efficient Allocations are Comonotone

Theorem

Let weights αi ≥ 0, i = 1, ... , I be given. There exist monotone,
continuous functions f i

α : R+ → R+ with

I∑
i=1

f i
α(x) = x

such that
c i
α = f i

α(—e).

Remark
efficient allocations are comonotone
and independent of P
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First Welfare Theorem

Theorem

Let (ψ, (c i)) be an Arrow-Debreu equilibrium. Then (c i) is effi-
cient.
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Existence and Uniqueness

Theorem (Dana)

A Walras equilibrium exists. It is unique if all agents have rel-
ative risk aversion less or equal to 1.

Remark

Negishi fixed point proof
uniqueness does not hold in general
for uniqueness, one uses ‘‘gross substitutes property’’
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Case Study: No Aggregate Risk

Since Mirrless, 1975, the market with no aggregate risk has
become a benchmark model in economics

idea: individuals face risk, yet risk washes out in the
aggregate by the law of large numbers
the society should be able to remove all individual risk
can markets achieve this outcome?
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Case Study: No Aggregate Risk

in the following,—e =
∑I

i=1 ei = 1 P-a.s.

efficient allocations are functions of—e
hence, every efficient allocation is a full insurance
allocation in the sense that c i

α = const.P− a.s.

Theorem
In the economy without aggregate risk, a feasible allocation
is efficient if and only if it is a full insurance allocation.

Corollary

In the economy without aggregate risk, every equilibrium allo-
cation is a full insurance allocation.

Proof.
First Welfare Theorem.
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A Continuous-Time Model

Time interval [0,T ]

risk is described by a filtered probability space (Ω,F ,P, (Ft))
Consumption plans are nonnegative elements of
X = L2(Ω× [0,T ],O,P⊗ dt) for the optional σ-field O and the
product of P and Lebesgue measure on [0,T ] (or some other full
support measure)
a price (functional) is a continuous, linear mapping Ψ : X → R
Riesz representation:

Ψ(c) = E
∫ T

0
ψtctdt

for some adapted, square--integrable process ψ
utility is time--additive expected utility

U i(c) = E
∫ T

0
exp(−δi t)ui(ct)dt
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Trade in Debreu’s Sense

Debreu, Theory of Value, Chapter 7: Time and uncertainty
do not pose a problem

in a perfect world, markets are complete in the sense that
any contingent consumption plan c can be bought at a
price Ψ(c) at time 0
complete set of forward markets
we are back at (almost) the same structure as in the
(static) case
the previous results on existence, efficiency etc. apply
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Trade in Financial Markets

Debreu’s model is quite heroic

a more realistic model assumes that agents trade money
in financial markets and buy consumption goods on a spot
market when they need them
this leads to Radner’s concept of equilibrium in financial
markets
Radner, R. (1972) ‘Existence of Equilibrium of Plans, Prices
and Price Expectations in a Sequence of Markets’,
Econometrica
main insight: we obtain the same allocation as in an
Arrow--Debreu equilibrium if financial markets are
dynamically complete

18
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Exogenous versus Endogenous Asset Prices

Nominal versus real assets

the literature distinguishes nominal and real asset
markets
in nominal asset markets, the assets pay off in the
underlying unit of account and are exogenously given
in real asset markets, assets pay off in terms of
consumption goods and their prices are endogenous
consequence: if you want to understand the relation
between consumption prices and asset prices, you need
to study models with endogenous asset prices
(mathematically much more complex)

19
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Radner’s Dynamic Equilibrium with Nominal Assets

Let ψ = (ψt) ∈ L2+(Ω,O,P⊗ dt) be a spot consumption
price

A nominal asset market consists of a bond with price
S0

t = 1 (numéraire) and d risky assets with price processes
S j

t > 0, given by positive semimartingales,—St = (S0
t ,St)

A budget--feasible consumption--portfolio strategy (c,—θ)
for agent i consists of a predictable process—θt = (θ0t , θt)
with values in R1+d such that θ is S--integrable, and a
consumption plan c ∈ X+
the value is

V (c,—θ)
t =—θt ·—St

and satisfies the intertemporal budget constraint

dV (c,—θ)
t = θtdSt + ψt(ei − ct)dt

and V (c,—θ)
0 = 0

20
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Radner’s Dynamic Equilibrium with Nominal Assets

Definition
A Radner equilibrium consists of a spot consumption price
ψ and budget--feasible consumption--portfolio strategies
(c i ,—θi) such that

markets clear, i.e.∑
(c i

t − ei
t) = 0,

∑
θi = 0a.e.

and agents maximize utility subject to their budget
constraint: c i maximizes agent i ’s utility over all
budget--feasible consumption--portfolio strategies.
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Equivalence Theorem I: Nominal Assets

Let ((c i),ψ) be an Arrow--Debreu equilibrium.

Can we construct a financial market and a Radner
equilibrium with the same (efficient) allocation (c i)?
The basic idea is dynamic completeness and martingale
representation.
If one can find a set of d martingales such that every
(Ft)-martingale can be written as a stochastic integral
with respect to these martingales, then one can do the
construction.
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Equivalence Theorem I: Nominal Assets

Theorem (Duffie, Huang 1985)

Suppose that (Ft) is the completed Brownian filtration of a
d--dimensional Brownian motion W .
Suppose that ψ(ei − c i) are square--integrable.
Let S0

t = 1 (numéraire) and Sd = W d , d = 1, ... ,D (Bachelier
model of finance)).
Then there exist trading strategies —θi such that ((c i ,—θi),ψ)
form a Radner equilibrium.
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Duffie--Huang Theorem and Martingale
Representation

Theorem

Every square integrable random variable X ∈ L2(Ω,FT ,P) can
be written as a stochastic integral:

X = EX +
∫ T

0
θtdWt

for some square--integrable adapted process θ.
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Endogenous Asset Prices

Existence of Equilibria in Financial Models: Discrete Time

With (dynamically) complete markets, Arrow--Debreu
equilibria can be implemented as financial (Radner) equilibria

With nominal assets that span the market, existence of
(efficient) equilibria

With assets pay dividends in physical goods (real assets), the
spanning condition becomes endogenous

Magill--Shafer 1990: when asset markets are potentially
complete, one has generically existence of efficient equilibria

with incomplete real asset markets, inexistence is possible

generic existence proved by Duffie, Shafer, J. Math. Econ, 1985

existence of equilibria in continuous time with incomplete
real assets open question
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Existence of Financial Equilibria with Potentially
Complete Markets

based on Herzberg, Riedel, J. Math. Econ. 2013 and Anderson, Raimondo, Econometrica 2005, see also Hugonnier et

al., Econometrica 2012, Kramkov, Finance and Stochastics 2015

Analytic Markov Economy

Information generated by a diffusion (Xt)
All dividends, endowments are real analytic functions of
Xt

Bernoulli utilities are real analytic and ‘‘nice’’
Financial markets are potentially complete: as many
risky assets as dimension of underlying Brownian motion
Wt

Asset dividends are linearly independent at maturity T
main point: asset prices are analytic, and hence, the
linear independence carries over from terminal payoffs
to prices −→ dynamically complete market

26
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Method and Main Results

State variable general diffusion process Xt

Analytic Markov economy as in Anderson--Raimondo 2005

extend Dana 93 to prove existence of an analytic Arrow--Debreu
equilibrium

give sufficient conditions to show that security prices are
analytic functions of Xt

uses analyticity to show dynamic completeness

implement Arrow--Debreu as a Radner equilibrium

27
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Time and Information

the state variable is a diffusion Xt with values in RK driven by a
K --dimensional Brownian motion W :

X0 = x , dXt = b(Xt)dt + σ(Xt)dWt ,

for Lipschitz continuous functions

b : RK → RK

and
σ : RK → RK×K

that are called the drift and dispersion function, resp. We let

a(x) := σ(x)σ(x)T

be the diffusion matrix.
The diffusion matrix satisfies the uniform ellipticity condition

‖x · a(x)x‖ ≥ ε ‖x‖2

for some ε > 0. b and σ are analytic functions. b and σ as well as
all derivatives up to second order are bounded.
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Agents and Commodities

one physical commodity (no problem to generalize to
D > 1)

I agents consuming a flow (ct) on [0,T ) and a terminal
consumption cT ; write ν = dt ⊗ δT

consumption space X = Lp (Ω× [0,T ],O,P ⊗ ν), O
optional σ--field, p ≥ 1
price space (Arrow--Debreu)
Ψ = X ∗ = Lq (Ω× [0,T ],O,P ⊗ ν)
U i(c) = E

∫ T
0 ui (t, ct) ν(dt)

The period utility functions ui are nice and analytic on
(0,T )× R++.
agents’ endowment ei

t = ei (t,Xt) is an analytic function of
time and state; Aggregate endowment e =

∑
i ei is

bounded and bounded away from zero.
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Nice Bernoulli Utilities

The period utility functions ui are continuous on [0,T ]× R++
and analytic on (0,T )× R++. They are differentiably strictly
increasing and differentiably strictly concave in consumption
on [0,T ]× R++, i.e.

∂ui

∂c (t, c) > 0, ∂
2ui

∂c2 (t, c) < 0 .

They satisfy the Inada conditions

lim
c↓0

∂ui

∂c (t, c) =∞

and

lim
c→∞

∂ui

∂c (t, c) = 0

uniformly in t ∈ [0,T ].
30



Financial Market

There are K + 1 financial assets (Potentially Complete
Markets)

real assets
dividends

Ak
t = gk (t,Xt) , t ∈ [0,T ]

dividends belong to the consumption set, Ak ∈ X+.
gk analytic on (0,T )× RK .

Asset 0 is a real zero--coupon bond with maturity T ,
AT = 1,
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Financial Market: Independence Assumption at
Maturity

On a nonempty open set V ⊂ RK , the dividend of the zero--th
asset is strictly positive at maturity,

g0(T , x) > 0, (x ∈ V ) .

The functions hk : x 7→ gk(T ,x)
g0(T ,x) are continuously differentiable

on V for k = 1, ... ,K and the Jacobian matrix

Dh(x) =


∂h1(T ,x)
∂x1 ... ∂h1(T ,x)

∂xK
... . . . ...

∂hK (T ,x)
∂x1 ... ∂hK (T ,x)

∂xK


has full rank on V .
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Financial Market, ctd.

Agent i owns initially ni
k ≥ 0 shares of asset k

A consumption spot price is a positive Itô process ψ.
A (cum--dividend) security price for asset k is a
nonnegative Itô process Sk =

(
Sk

t
)
0≤t≤T . We interpret Sk

as the nominal price of the asset k .
We denote by

Gk
t = Sk

t +
∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k .
A portfolio process is a predictable process θ with values in
RK+1 that is G--integrable
A portfolio is admissible for agent i if its present value plus
the present value of the agent’s endowment is
nonnegative, or

Vt + EP
[∫ T

t+
ei

sψsν(ds)
∣∣∣∣Ft

]
≥ 0 .

33



Financial Market, ctd.

Agent i owns initially ni
k ≥ 0 shares of asset k

A consumption spot price is a positive Itô process ψ.

A (cum--dividend) security price for asset k is a
nonnegative Itô process Sk =

(
Sk

t
)
0≤t≤T . We interpret Sk

as the nominal price of the asset k .
We denote by

Gk
t = Sk

t +
∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k .
A portfolio process is a predictable process θ with values in
RK+1 that is G--integrable
A portfolio is admissible for agent i if its present value plus
the present value of the agent’s endowment is
nonnegative, or

Vt + EP
[∫ T

t+
ei

sψsν(ds)
∣∣∣∣Ft

]
≥ 0 .

33



Financial Market, ctd.

Agent i owns initially ni
k ≥ 0 shares of asset k

A consumption spot price is a positive Itô process ψ.
A (cum--dividend) security price for asset k is a
nonnegative Itô process Sk =

(
Sk

t
)
0≤t≤T . We interpret Sk

as the nominal price of the asset k .

We denote by

Gk
t = Sk

t +
∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k .
A portfolio process is a predictable process θ with values in
RK+1 that is G--integrable
A portfolio is admissible for agent i if its present value plus
the present value of the agent’s endowment is
nonnegative, or

Vt + EP
[∫ T

t+
ei

sψsν(ds)
∣∣∣∣Ft

]
≥ 0 .

33



Financial Market, ctd.

Agent i owns initially ni
k ≥ 0 shares of asset k

A consumption spot price is a positive Itô process ψ.
A (cum--dividend) security price for asset k is a
nonnegative Itô process Sk =

(
Sk

t
)
0≤t≤T . We interpret Sk

as the nominal price of the asset k .
We denote by

Gk
t = Sk

t +
∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k .

A portfolio process is a predictable process θ with values in
RK+1 that is G--integrable
A portfolio is admissible for agent i if its present value plus
the present value of the agent’s endowment is
nonnegative, or

Vt + EP
[∫ T

t+
ei

sψsν(ds)
∣∣∣∣Ft

]
≥ 0 .

33



Financial Market, ctd.

Agent i owns initially ni
k ≥ 0 shares of asset k

A consumption spot price is a positive Itô process ψ.
A (cum--dividend) security price for asset k is a
nonnegative Itô process Sk =

(
Sk

t
)
0≤t≤T . We interpret Sk

as the nominal price of the asset k .
We denote by

Gk
t = Sk

t +
∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k .
A portfolio process is a predictable process θ with values in
RK+1 that is G--integrable

A portfolio is admissible for agent i if its present value plus
the present value of the agent’s endowment is
nonnegative, or

Vt + EP
[∫ T

t+
ei

sψsν(ds)
∣∣∣∣Ft

]
≥ 0 .

33



Financial Market, ctd.

Agent i owns initially ni
k ≥ 0 shares of asset k

A consumption spot price is a positive Itô process ψ.
A (cum--dividend) security price for asset k is a
nonnegative Itô process Sk =

(
Sk

t
)
0≤t≤T . We interpret Sk

as the nominal price of the asset k .
We denote by

Gk
t = Sk

t +
∫
[0,t)

Ak
sψsν(ds), (0 ≤ t ≤ T )

the (nominal) gain process for asset k .
A portfolio process is a predictable process θ with values in
RK+1 that is G--integrable
A portfolio is admissible for agent i if its present value plus
the present value of the agent’s endowment is
nonnegative, or

Vt + EP
[∫ T

t+
ei

sψsν(ds)
∣∣∣∣Ft

]
≥ 0 .

33



Radner Equilibrium

A portfolio θ finances a consumption plan c ∈ X+ for
agent i if θ is admissible for agent i and the intertemporal
budget constraint is satisfied for the associated value
process V :

Vt = ni · S0 +
∫ t

0
θudGu +

∫ t

0

(
ei

u − cu
)
ψuν(du) .

A Radner equilibrium consists of asset prices S, a
consumption price ψ, portfolios θi and consumption plans
c i ∈ X+ for each agent i such that θi is admissible for
agent i and finances c i , c i maximizes agent i ’s utility over
all such i--feasible portfolio/consumption pairs, and
markets clear, i.e.

∑I
i=1 c i = e and

∑I
i=1 θ

i = N.

34



Radner Equilibrium

A portfolio θ finances a consumption plan c ∈ X+ for
agent i if θ is admissible for agent i and the intertemporal
budget constraint is satisfied for the associated value
process V :

Vt = ni · S0 +
∫ t

0
θudGu +

∫ t

0

(
ei

u − cu
)
ψuν(du) .

A Radner equilibrium consists of asset prices S, a
consumption price ψ, portfolios θi and consumption plans
c i ∈ X+ for each agent i such that θi is admissible for
agent i and finances c i , c i maximizes agent i ’s utility over
all such i--feasible portfolio/consumption pairs, and
markets clear, i.e.

∑I
i=1 c i = e and

∑I
i=1 θ

i = N.

34



Main Theorem

Theorem

There exists a Radner equilibrium
(

S,ψ,
(
θi , c i)

i=1,...,I

)
with a

dynamically complete market (S,A,ψ); the prices and divi-
dends are linked by the present value relation

Sk
t = EP

[∫ T

t
Ak

sψs ν(ds)
∣∣∣∣Ft

]
. (2)
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Step 1: Arrow--Debreu Equilibrium

Assumption

For each agent, the marginal utility of his endowment belongs
to the price space Ψ:

∂

∂c ui(t, εi
t) ∈ Ψ .

Theorem

There exists an Arrow--Debreu equilibrium
(
ψ,
(
c i)

i=1,...,I

)
such that

ψt = ψ(t,Xt), c i
t = c i(t,Xt)

for continuous functions ψ, c i that are analytic on (0,T )×RK .
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Step 2: Analytic Prices and Completeness

Lemma
The Markov process X has a transition density P[Xs+t ∈
dy |Xs = x ] = p (t, x , y) dy for a continuous function

p : (0,T ]× RK × RK → R+

that is analytic on (0,T )×RK ×RK . Moreover, the transition
density p is bounded on (η,T ]× RK × RK for all η > 0.
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Step 2: Analytic Prices and Completeness

Theorem

Define Sk
t = EP

[∫ T
t Ak

sψs ν(ds)
∣∣∣Ft

]
. There exist continuous

functions s : [0,T ]×RK → R+ that are analytic on (0,T )×RK

and
St = s(t,Xt) .

The first derivatives with respect to x , ∂s
∂xl

are continuous on
[0,T ]× RK and we have

lim
t↑T

∂s
∂xl

(t, x) = ∂s
∂xl

(T , x) = ∂g
∂xl

(T , x)
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Proof

From the assumptions and the previous result, Akψ is an
analytic function of Xt

From the Markov property, Sk
t is a function of time t and

Xt , i.e. Sk
t = s(t,Xt) for some function s

it solves a Cauchy problem for some elliptic operator
Show that this operator is sectorial and use the theory of
partial differential equations to conclude that s is analytic
our paper led to a subsequent analysis of this problem in
Kramkov, Finance and Stochastics 2015
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Step 2: Completeness

Theorem
The market (S,A,ψ) is dynamically complete.

the market is dynamically complete if the volatility matrix
is invertible
By Itô’s lemma, the volatility matrix is related to the
derivatives of the analytic functions s
by continuity, they converge to the linearly independent
dividends at maturity
by analyticity, the volatility matrix cannot vanish
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Outline

1. General Equilibrium under Risk

2. Dynamic Equilibrium in Financial Markets

3. Impossibility of Implementation under Knightian
Uncertainty

4. Knightian Uncertainty in Prices
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Uncertain Volatility

based on Beissner, Riedel, Finance and Stochastics 2018
W is a G--Brownian motion (Peng)

Family of probability measures Pσ where σ is an adapted
process taking values in some convex, compact subset
C ⊂ Rd

Construction: P0 Wiener measure on the canonical space
with Brownian motion W

Pσ = law
(∫ ·

0
σudWu

)
Important: the measures are not dominated by one
common measure
There is no uncertainty about the mean of W
Quasi--sure Analysis necessary: An event is negligible for agents if it is null simultaneously under all Pσ
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The Economy

I agents with endowment ei bounded

Aggregate endowment e =
∑

ei is ambiguity--free:
for all P,Q ∈ P we have P[e ∈ ·] = Q[e ∈ ·]
Utility functions of the Gilboa--Schmeidler expected utility
form

U i(c) = Eui(c) = inf
P∈P

EPui(c)

for smooth, strictly increasing, strictly concave Bernoulli
utility functions ui that satisfy an Inada condition
Ambiguity washes out in the aggregate - possibility for
insurance
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Static Equilibrium Notion

Arrow--Debreu Model

An allocation (c i) is

feasible if we have
∑

i c i = e quasi--surely
efficient if there is no other feasible allocation (d i) with
U i(d i) > U i(c i) for all agents i

A price is a positive linear functional Ψ : X → R
An equilibrium consists of an allocation (c i) and a price
Ψ such that

1.
∑

c i =
∑

e i

2. c i maximizes U i subject to the budget constraint
Ψ(c) ≤ Ψ(e i)
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Dynamic (Radner) Equilibrium

Agents trade dynamically in a financial market with asset
prices S =

(
Sd

t
)
, , d = 0, ... ,D, t ≥ 0; the spot price of

consumption at time T is ψ.
1. agents finance net demand c i − ei , i.e. there are

S-integrable portfolio processes θi such that

ψ(c i − ei) =
∫ T

0
θidSd

2. asset markets clear :
∑I

i=1 θ
i = 0

3. c i maximizes utility U i over all c that can be financed with
trading dynamically S
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Duffie--Huang Theorem (Repetition)

Let ((c i),Ψ) be an Arrow--Debreu equilibrium.
Ψ can be identified with a positive, suitably bounded random variableψ

Can we find a Radner equilibrium with the same (efficient)
allocation?
Under risk, in diffusion settings, the answer is yes!

If the filtration has a martingale generator Md , d = 1, ... ,D,
then we can set S0

t = 1 (numéraire) and Sd = Md , d = 1, ... ,D

In Brownian settings, one can thus take the Brownian motion
itself
Bachelier model of finance

Our claim: ‘‘usually’’ this result breaks down under Knightian
(volatility) uncertainty.
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Analysis of the Market: Efficient Allocations

Theorem

Every efficient allocation (c i) is ambiguity--free.

It satisfies the probability--free characterization of identi-
cal marginal rates of substitution among agents: for some
weights αi > 0 we have

αiui ′(c i) = αjuj ′(c j)

As a consequence, c i = f i(e) for some monotone, continuous
function f i .
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Static Equilibrium

We denote EP the expected utility economy with homogenous
priors P.

Theorem

Let (c i),ψ) be an AD equilibrium in the expected utility econ-
omy EP . Then ((c i),Ψ) with

Ψ(X ) = EP(Xψ)

is an AD equilibrium in the economy E .

Remark
The market chooses P and state-price ψ.
Ψ is not unique in general.
Indeterminacy
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Implementation under no Aggregate Uncertainty

e = 1, no aggregate uncertainty
We use two financial assets, a riskless one with price 1, and the
G--Brownian motion W as the ‘‘uncertain’’ asset
Under risk, these assets suffice to span a complete market

Theorem

Implementation of an Arrow--Debreu equilibrium ((c i),Ψ) is
possible if and only if the net trade values (c i−ei)ψ are mean-
-ambiguity--free.
In particular, if some individuals face proper Knightian uncer-
tainty in the mean, implementation will not be possible.

Intuition: It is possible to hedge perfectly under each Pσ, but
impossible to do so under all Pσ simultaneously
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Proof

If implementation is possible, we can write

(c i − ei)ψ =
∫
θidW

Stochastic integrals are symmetric martingales
mean--ambiguity--free
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Proof, Relation to Martingale Representation

Martingale Representation Theorem of Soner, Touzi, Zhang,
2011, see also Mu, Ji, Peng, Song 2014
One can decompose the net consumption vale as follows:

(c i − ei)ψ =
∫
θidW − K i

for some increasing martingale K i

Consequence: market clearing implies that all K i = 0
quasi--surely
K i = 0 is equivalent to no ambiguity in the mean
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‘‘Usually’’ Impementation Fails

Prevalence (Hunt, Sauer, Yorke, Anderson, Zame): a
measure--theoretic notion of ‘‘large sets’’ for
infinite--dimensional spaces
A ⊂ X is (finitely) prevalent if there is a finite--dimensional subspace V of X such that for all x ∈ X the

complement of A has Lebesgue measure zero in x + V .

Theorem
The set of economies for which no Arrow--Debreu equilibrium
can be implemented is (finitely) prevalent.
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The Message

Financial Markets can efficiently deal with risk, not with
uncertainty

Asset markets work well when we are faced with risk and
diffusions
risk = well--defined probabilities
diffusion = no jumps, trembling paths
asset markets are inefficient when there are jumps
(known)
new: when there is Knightian uncertainty about
volatility, even the ‘‘nice’’ asset markets can be
inefficient
open question: how do inefficient market equilibria look
like?
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Outline

1. General Equilibrium under Risk

2. Dynamic Equilibrium in Financial Markets

3. Impossibility of Implementation under Knightian
Uncertainty

4. Knightian Uncertainty in Prices
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Overview

Beissner, Riedel, Equilibria under Knightian price uncertainty,
Econometrica 2019

We consider markets

with Knightian uncertainty about state prices
New equilibrium concept (Knight--Walras equilibrium)
Existence of Equilibrium: Walrasian and Knightian
auctioneer
(Non-)Equivalence to Arrow--Debreu equilibrium
Inefficiency and Uncertainty--Neutral Efficiency
Discontinuity of Equilibrium Correspondence
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Imprecise Probabilistic Information

Ellsberg (1961) experiments: agents
choose between a risky urn and an
uncertain urn

risky urn: the composition is exactly
known, e.g. 50 red, 50 black balls

uncertain urn: the composition is
known only up to some bounds, e.g.
100 balls, at least 30, at most 80 red,
rest black

probability for drawing a red ball
from risky urn is 0.5

probability for drawing a red ball
from uncertain urn is in the intervall
[0.3, 0.8]

= 50; = 50
+

{ 100

Knightian uncertainty
modeled by a set of
probabilities P
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Expectations and Forward Prices

Ω is a finite set of states of nature, X = RΩ commodity space
of contingent plans

Definition
We call E : X→ R a (Knightian) expectation if it satisfies the
following properties:

1. E preserves constants: Ec = c for all c ∈ R,
2. E is monotone: EX ≤ EY for all X ,Y ∈ X with X ≤ Y ,
3. E is sub-additive: E[X + Y ] ≤ EX + EY for all X ,Y ∈ X,
4. E is homogeneous: E[λX ] = λEX for λ > 0 and X ∈ X,
5. E is relevant: E[−X ] < 0 for all X ∈ X+ \ {0}.
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Expectations and Forward Prices

Lemma

We have EX = maxP∈P EPX for a convex and compact set P
of probability measures on Ω with P ⊂ int∆.

The set P captures the imprecision of the available information
about the model.
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The Economy with Sublinear Forward Price

Definition

An Knightian economy (on Ω) is a triple E =
(

I,
(
ei ,U i)

i∈I ,E
)

where
I ≥ 1 denotes the number of agents,
ei ∈ X+ is the endowment of agent i ,
U i : X+ → R agent i ’s utility function,
and E is a Knightian expectation.

For a state price ψ, we call Ψ(X ) = E(ψX ) the forward price of
a plan X ∈ X
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Interpretation of the Model

agents trade contingent plans on a forward market at
time 0 as in Debreu’s original model of trade under
uncertainty

complete market
P is objective, yet imprecise probabilistic information
Knightian uncertainty induces an imperfection in the price
formation of the market, resulting in sublinear prices.

The invisible hand of the market uses the maximal expected
value over a set of models to price contingent claims.
cautious market maker who has imprecise probabilistic
information about the states of the world, described by P.
The market maker then computes the maximal expected
present value over this set of models to stay on the safe
side. (‘‘stress testing’’)
agents in the Knightian economy EP consider only robustly
affordable plans
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Sublinear Prices in Related Economies

incomplete financial markets (‘‘superhedging’’)
(Araujo, Châteauneuf, Faro, Econ.Theory, 2012)
in insurance markets (‘‘model risk’’)
(Castagnoli, Maccheroni, Marinacci, Ins.Math.Econ., 2002)
in markets with transaction costs
(Jouini, Kallal, J. Math. Econ., 1995)

The papers cited above discuss properties related to sublinear
functionals, but do not study equilibrium. Our paper completes
this gap in the literature.
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Assumptions on Preferences I

Assumption

Each agent’s endowment ei is strictly positive. Each utility
function Ui : X+ → R is

continuous,
monotone, i.e. if x ≥ y then Ui(x) ≥ Ui(y),
semi--strictly quasi--concave, i.e. for all x , y ∈ X+ with
U(x) > U(y) we have for all λ ∈ (0, 1)

U(λx + (1− λ)y) > U(y) .

and non--satiated, i.e. for y ∈ X+ there exists x ∈ X+
with Ui(x) > Ui(y).
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Examples

Multiple--prior expected utilities

‘‘Rational expectations for pessimistic agents’’
P common knowledge and (Gilboa--Schmeidler)-agents

U i(c) = min
P∈P

EPui(c)

for ui : R+ → R continuous, strictly increasing, strictly
concave
subjective reactions to imprecise probabilistic
information (Gajdos, Hayashi, Tallon, Vergnaud): for
φi(P) ⊂ P

U i(c) = min
P∈φi (P)

EPui(c)
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Examples

Smooth Ambiguity model

(Klibanoff, Marinacci, Mukerji, ECMA 2005)
second--order prior µi over P
continuous, monotone, strictly concave ambiguity index
φi : R→ R

U i(c) =
∫
P
φi
(

EPui(c)
)
µi(dP)
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Examples

Anchored Preferences, Variational Preferences

Dana, Riedel, JET 2013 study preferences anchored at
endowments:

U i(c) = min
P∈P

EP [ui(c)− u(ei)]

special case of variational preferences (Maccheroni,
Marinacci, Rustichini, ECMA, 2006) of the form

Ui(c) = inf
Q∈P

EQui(c) + α(Q)

for a suitable penalty function α : ∆→ R+ ∪ {∞}.
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Common Features of Examples

Rigotti, Shannon, Strzalecki, ECMA 2008 introduce subjective
beliefs

πi(c) =
{

Q ∈ ∆ : EQ[y ] ≥ EQ[c] for all y with Ui(y) ≥ Ui(c)
}
.

Each Ui is translation invariant at certainty: For all h ∈ X
and all constant bundles c, c ′ > 0, if Ui(c + λh) ≥ Ui(c) for
some λ > 0, then there exists λ′ > 0 such that
Ui(c ′ + λ′h) ≥ Ui(c ′).
Consequence: beliefs at certainty independent of level c ;
we denote the subjective beliefs of agent i at any constant
bundle c > 0 by πi .
Preferences are consistent with the set of priors P
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Assumptions on Preferences II

Assumption

The utility functions Ui are concave and strictly
monotone.
Each Ui is translation invariant at certainty: For all
h ∈ X and all constant bundles c, c ′ > 0, if
Ui(c + λh) ≥ Ui(c) for some λ > 0, then there exists
λ′ > 0 such that Ui(c ′ + λ′h) ≥ Ui(c ′). We denote the
subjective belief of agent i at any constant bundle c > 0
by πi .
Preferences are consistent with the set of priors P, i.e.
we have πi ⊂ P, and agents share some common
subjective belief at certainty:

⋂I
i=1 πi 6= ∅.
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Equilibrium

Definition
We call a pair (ψ, c) of a state--price ψ : Ω → R+ and an
allocation c = (c i)i=1,...,I ∈ XI

+ a Knight--Walras equilibrium if

1. the allocation c is feasible, i.e.
∑I

i=1(c i − ei) ≤ 0.
2. for each agent i , c i is optimal in the Knight-Walras

budget set

B(ψ, ei) =
{

c ∈ X+ : Eψ(c − ei) ≤ 0
}
,

i.e. if U i(d) > U i(c i) then d /∈ B(ψ, ei).
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Remarks

1. For P = {P0}, back to Arrow--Debreu equilibrium;
equilibrium allocations are efficient.

2. For P = ∆ and ψ strictly positive, the budget sets consist
of all plans c with c ≤ ei in all states.

There is no trade in equilibrium.
Equilibrium allocations are inefficient, in general, and
equilibrium prices are indeterminate.
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Existence

Theorem
Knight--Walras Equilibria exist under our first Assumption.

Game--theoretic proof with a ‘‘Walrasian’’ and a ‘‘Knightian
auctioneer’’
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Proof

The social game

agents maximize utility subject to their sublinear budget
constraint

Walrasian Auctioneer maximizes value of excess demand over
state prices ψ: argmaxψ∈∆ EP

[
ψ
∑

i∈I

(
xi − ei

)]
Knightian Auctioneer maximizes value of excess demand over
priors P ∈ P: argmaxP∈P EP

[
ψ
∑

i∈I

(
xi − ei

)]
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Arbitrage

Do Sublinear prices induce arbitrage opportunities?

Aliprantis, Florenzano, Tourky, 2005: an arbitrage is a
consumption plan c ∈ X+ \ {0} with Ψ(c) = 0.
splitting a bundle x into two bundles y and z and selling
or buying them separately
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No Arbitrage in Equilibrium

Theorem
Let (ψ, (ĉi)i∈I) be a Knight--Walras equilibrium. The following
absence of arbitrage conditions hold true.

1. We have Ψ(c) > 0 for all c ∈ X+ \ {0}.
2. Let x = y + z for x , y , z ∈ X. Buying (selling) x and selling

(buying) y and z separately yields no profits. We have

Ψ(x) ≥ −
(
Ψ(−y)+Ψ(−z)

)
and Ψ(y)+Ψ(z) ≥ −Ψ(−x).
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(Non--) Equivalence to Arrow--Debreu Equilibrium

Under what conditions are Knight--Walras equilibria the same
as Arrow--Debreu equilibria for some fixed P?

Definition
Fix a convex, compact, nonempty set of priorsP. We call a plan
ξ ∈ X (P)--ambiguity free in mean if ξ has the same expecta-
tion for all Q ∈ P, i.e. there is a constant k ∈ R with EQξ = k
for all Q ∈ P.
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(Non--) Equivalence to Arrow--Debreu Equilibrium

Theorem

Fix a prior P ∈ P. Let (ψ,
(
c i))be an Arrow--Debreu equilibrium

for the (linear) economy E{P}.
Then (ψ,

(
c i)) is a Knight--Walras equilibrium for EP if and only

if the value of net demands ξi = ψ(c i − ei) are P--ambiguity
free in the mean for all agents i .
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Generic Non--Equivalence with No Aggregate
Uncertainty

The benchmark case of no aggregate uncertainty is
archetypical to discuss economic institutions (Mirrlees, RES
1971)

Billot, Chateauneuf, Gilboa, Tallon, ECMA 2000 and
Chateauneuf, Dana, Tallon, JME 2000 discuss efficiency
and insurance under multiple prior utilities;
Rigotti, Shannon, Strzalecki, ECMA 2008 generalize to
translation-invariance at certainty
Efficient allocations are full insurance allocations.
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Generic Non--Equivalence with No Aggregate
Uncertainty

Theorem

Assume that E is not linear. Generically in endowments,
Arrow--Debreu equilibria of E{P} for some P ∈ P are not
Knight--Walras equilibria of EP.
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Generic Non--Equivalence with No Aggregate
Uncertainty

More precisely: let M =
{
(ei)i=1,...,I ∈ XI

++ :
∑

ei = 1
}

be the
set of economies without aggregate uncertainty normalized to
1. Let N be the subset of elements (ei) of M for which there
exists P ∈ P and an Arrow--Debreu equilibrium (ψ, (ci)) of the
economy E{P} which is also a Knight--Walras equilibrium of the
economy EP. N is a Lebesgue null subset of the
(I − 1) ·#Ω--dimensional manifold M.
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Generic Non--Equivalence with No Aggregate
Uncertainty

Crucial step in the proof

Lemma
The set of plans ξ ∈ X which are P--ambiguity--free in mean
forms a subspace of X. We denote this subspace by L or LP. If
#P > 1, L has a strictly smaller dimension than X and satis-
fies 1Ω ∈ L.
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Generic Inefficiency

Theorem
Next to our Assumptions, assume that the utility functions
Ui are differentiable at certainty. Under no aggregate uncer-
tainty, generically in endowments, Knight--Walras equilibrium
allocations of EP are inefficient.
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Uncertainty--Neutral Efficiency

Definition

Let E =
(

I,
(
ei ,U i)

i∈I ,E
)

be a Knightian economy. Let c =(
c i)

i∈I be a feasible allocation. Letψ be a state--price density.
We call the allocation c uncertainty neutral efficient (given ψ
and E) if there is no other feasible allocation d =

(
d i)

i=1,...,I
with

ηi = ψ
(
d i − ei) ∈ L

and U i(d i) > U i(c i) for all i ∈ I.
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Uncertainty--Neutral Efficiency

Theorem

Let (ψ, c) be a Knight--Walras equilibrium of the Knightian
economy E =

(
I,
(
ei ,U i)

i∈I ,E
)

. Then c is uncertainty neutral
efficient (given ψ and E).
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Sensitivity of Arrow--Debreu Equilibria with respect to
Knightian Price Uncertainty

Example

Ω = {1, 2}. Pε = {p ∈
∆ : p1 ∈ [12 − ε,

1
2 + ε]}

no aggregate ambigu-
ity
two agents I = 2 with
multiple--prior utilities
and uncertain endow-
ments e1 = (1/3, 2/3)
and e2 = (2/3, 1/3).
There is no trade in
Knight--Walras equilib-
rium for every ε > 0.
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Sensitivity of Arrow--Debreu Equilibria with respect to
Knightian Price Uncertainty

Equilibrium correspondence

KW(P) =
{
(ψ, c) ∈ XI+1

+ : (ψ, c) is a KW--equilibrium in EP
}
.

Theorem
Let P : [0, 1) →→ ∆ be a continuous correspondence with
P(0) = {P0} for some P0 ∈ int(∆). For 0 < ε < 1, assume
P0 ∈ intP(ε) and (ei) not P(ε)--ambiguity--free.
The Knight--Walras equilibrium correspondence

ε 7→ KW(P(ε), e)

is discontinuous in zero.
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No Trade with Sufficiently Large Ambiguity

Theorem
If ambiguity is sufficiently large, every Knight--Walras--
equilibrium is a no--trade equilibrium: There is a P′ ∈ K(∆)
such that for every P′′ ∈ K(∆) with P′′ ⊃ P′, initial endow-
ment is the unique equilibrium allocation,
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Conclusion

Equilibrium model for Knightian uncertainty about state
prices
Under no aggregate uncertainty, generic inefficiencies
a small amount of Knightian uncertainty can lead to no
trade
no trade also under ‘‘large’’ uncertainty
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