Convergence of the Markovian iteration for coupled FBSDEs via a differentiation approach

Zhipeng Huang ¹ Cornelis W. Oosterlee ¹

¹Mathematical Institute, Utrecht University

Thanks Balint Negyesi for fruitful discussions.

The 22nd Winter school on Mathematical Finance, Soesterberg, The Netherlands.

Outline

- Background
- 2 The Markovian iteration for coupled FBSDEs
- lacksquare Generalize the Markovian iteration to FBSDEs with Y and Z coupling
- Mumerical Examples

Background

Motivations

- FBSDEs have various applications in finance
 - coupled FBSDE: stochastic control problem depends on the ways of coupling
 - decoupled FBSDE: option pricing, hedging, etc.
 - non-standard FBSDE: mean-field game/control, optimal stopping, etc.
- Difficult to find an analytical solution in general
 - numerical method is needed

Forward-backward stochastic differential equation

An "almost" fully coupled FBSDE is given by

$$\begin{cases} X_t = x_0 + \int_0^t b(s, X_s, Y_s, Z_s) ds + \int_0^t \sigma(s, X_s, Y_s) dW_s, \\ Y_t = g(X_T) + \int_t^T f(s, X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s, \end{cases}$$
(1)

where the solution is a triple of $(\mathbb{R}^d \times \mathbb{R}^q \times \mathbb{R}^{q \times m})$ valued, \mathcal{F}_t adapted stochastic processes $\{(X_t, Y_t, Z_t)\}_{0 \leq t \leq T}$ solve above almost surely and satisfy natural integrability conditions.

Other classes of FBSDEs:

- Decoupled FBSDE: $b \equiv b(t, X_t)$ and $\sigma \equiv \sigma(t, X_t)$
- Coupled FBSDE through $Y: b \equiv b(t, X_t, Y_t)$ and $\sigma \equiv \sigma(t, X_t, Y_t)$
- Fully coupled FBSDE: $b \equiv b(t, X_t, Y_t, Z_t)$ and $\sigma \equiv \sigma(t, X_t, Y_t, Z_t)$

Connection with PDEs: Feynman-Kac formula

The FBSDE (1) is associated with the following system of quasi-linear parabolic PDEs,

$$\begin{cases} \partial_t u^i + \frac{1}{2} \partial_{xx} u^i : \sigma \sigma^\top (t, x, u) + \partial_x u^i b(t, x, u, \partial_x u \sigma(t, x, u)) \\ + f^i (t, x, u, \partial_x u \sigma(t, x, u)) = 0, \quad \forall i = 1, \dots, q, \\ u(T, x) = g(x). \end{cases}$$

Under suitable regularity assumptions on b, σ , f and g, one can show that the solutions are connected by non-linear Feynman-Kac formula

$$Y_t = u(t, X_t), \quad Z_t = \partial_x u(t, X_t) \sigma(t, X_t, u(t, X_t)) := v(t, X_t)$$

 \Rightarrow The functions u and v are called decoupling fields in the context of FBSDE.

The Backward Euler Scheme for BSDE

Consider a decoupled FBSDE case, i.e. $b(t, X_t)$ and $\sigma(t, X_t)$.

The Backward Euler scheme is given by

- ▶ Step 1: Sampling X_i^{π} for all i in a forward fashion;
- ▶ Step 2: For i = N, set $(Y_N^{\pi}, Z_N^{\pi}) = (g(X_N^{\pi}), 0)$
- ▶ Step 3: For i = N 1, N 2, ..., 0, compute

$$\begin{cases} Z_{i}^{\pi} = E_{t_{i}} \left(h^{-1} Y_{i+1}^{\pi} \Delta W_{i} \right) \\ Y_{i}^{\pi} = E_{t_{i}} \left(Y_{i+1}^{\pi} + hf \left(X_{i}^{\pi}, Y_{i+1}^{\pi}, Z_{i}^{\pi} \right) \right) \end{cases}$$

• To compute the conditional expectations, use L^2 projections properties and set up optimization problems,

$$\begin{split} Z_i^{\pi} &= \arg\min_{z} E[(h^{-1}Y_{i+1}^{\pi}\Delta W_i - z)^2] \\ Y_i^{\pi} &= \arg\min_{y} E[(Y_{i+1}^{\pi} + hf(X_i^{\pi}, Y_{i+1}^{\pi}, Z_i^{\pi}) - y)^2] \end{split}$$

The Backward Euler Scheme

What if the forward SDE of X couples with Y and Z?

The Markovian iteration for coupled FBSDEs

Markovian iteration for FBSDEs with Y coupling

Let m be the number of iterations. Set $u_i^{\pi,0}(\cdot)=0$, $v_i^{\pi,0}(\cdot)=0$, and $X_0^{\pi,m}\triangleq x_0$ for all m. Bender et al. 2008 Introduced the following scheme,

$$\begin{cases}
X_{i+1}^{\pi,m} = X_{i}^{\pi,m} + b(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))h \\
+ \sigma(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))\Delta W_{i}, \\
Y_{N}^{\pi,m} = g(X_{N}^{\pi,m}), \\
Z_{i}^{\pi,m} = h^{-1}E_{t_{i}}(Y_{i+1}^{\pi,m}\Delta W_{i}), \quad v_{i}^{\pi,m}(X_{i}^{\pi,m}) = Z_{i}^{\pi,m} \\
Y_{i}^{\pi,m} = E_{t_{i}}(Y_{i+1}^{\pi,m} + f(t_{i}, X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}, Z_{i}^{\pi,m})h), \quad u_{i}^{\pi,m}(X_{i}^{\pi,m}) = Y_{i}^{\pi,m}
\end{cases} \tag{2}$$

Markovian iteration for FBSDEs with Y coupling

Let m be the number of iterations. Set $u_i^{\pi,0}(\cdot) = 0$, $v_i^{\pi,0}(\cdot) = 0$, and $X_0^{\pi,m} \triangleq x_0$ for all m. Bender et al. 2008 Introduced the following scheme,

$$\begin{cases} X_{i+1}^{\pi,m} = X_{i}^{\pi,m} + b(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))h \\ + \sigma(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))\Delta W_{i}, \end{cases} \\ Y_{N}^{\pi,m} = g(X_{N}^{\pi,m}), \\ Z_{i}^{\pi,m} = h^{-1}E_{t_{i}}(Y_{i+1}^{\pi,m}\Delta W_{i}), \quad v_{i}^{\pi,m}(X_{i}^{\pi,m}) = Z_{i}^{\pi,m} \\ Y_{i}^{\pi,m} = E_{t_{i}}(Y_{i+1}^{\pi,m} + f(t_{i}, X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}, Z_{i}^{\pi,m})h), \quad u_{i}^{\pi,m}(X_{i}^{\pi,m}) = Y_{i}^{\pi,m} \end{cases}$$

• We have the dependency:

$$Z_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}), \quad Y_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}, Z_{i}^{\pi,m}) \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m})$$

and due to the coupling in the SDE of X,

$$Y_i^{\pi,m} \Rightarrow (X_i^{\pi,m}, Y_{i+1}^{\pi,m}) \Rightarrow (X_{i-1}^{\pi,m}, Y_{i-1}^{\pi,m-1}, Y_{i+1}^{\pi,m})$$

Markovian iteration for FBSDEs with Y coupling

Let m be the number of iterations. Set $u_i^{\pi,0}(\cdot) = 0$, $v_i^{\pi,0}(\cdot) = 0$, and $X_0^{\pi,m} \triangleq x_0$ for all m. Bender et al. 2008 Introduced the following scheme,

$$\begin{cases} X_{i+1}^{\pi,m} = X_{i}^{\pi,m} + b(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))h \\ + \sigma(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))\Delta W_{i}, \end{cases} \\ Y_{N}^{\pi,m} = g(X_{N}^{\pi,m}), \\ Z_{i}^{\pi,m} = h^{-1}E_{t_{i}}(Y_{i+1}^{\pi,m}\Delta W_{i}), \quad v_{i}^{\pi,m}(X_{i}^{\pi,m}) = Z_{i}^{\pi,m} \\ Y_{i}^{\pi,m} = E_{t_{i}}(Y_{i+1}^{\pi,m} + f(t_{i}, X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}, Z_{i}^{\pi,m})h), \quad u_{i}^{\pi,m}(X_{i}^{\pi,m}) = Y_{i}^{\pi,m} \end{cases}$$

• We have the dependency:

$$Z_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m},Y_{i+1}^{\pi,m}), \quad Y_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m},Y_{i+1}^{\pi,m},Z_{i}^{\pi,m}) \Rightarrow (X_{i}^{\pi,m},Y_{i+1}^{\pi,m})$$

and due to the Y coupling in the SDE of X,

$$Y_i^{\pi,m} \Rightarrow (X_i^{\pi,m}, Y_{i+1}^{\pi,m}) \Rightarrow (X_{i-1}^{\pi,m}, Y_{i-1}^{\pi,m-1}, Y_{i+1}^{\pi,m})$$

• **Good:** $Y^{\pi,m} \Rightarrow Y^{\pi,m-1} \Rightarrow \ldots \Rightarrow Y^{\pi,0}$. Need to control the Lipschitz constant of $u_i^{\pi,m}$ over time steps i and iteration steps m

Existing convergence results

With the Lipschitz and Holder continuity assumptions, weak and monotonicity conditions, Bender et al. 2008 show that, for sufficiently small h

Theorem (Bender et al. 2008, Thm 5.1 and Thm 6.3)

There is an unique solution u^{π} to the discretized scheme (2) and there are constants C>0 and 0< c<1 such that

$$\max_{0 \le i \le N} |u_i^{\pi,m}(x) - u_i^{\pi}(x)|^2 \le C (|x|^2 + m) c^m$$

and, the associated PDE admits a viscosity solution u(t,x) and we have the estimate

$$\max_{0 \le i \le N} |u_i^{\pi}(x) - u(t_i, x)|^2 \le C (1 + |x|^2) h$$

Existing convergence results

Consequently, an error estimate can be derived,

Theorem (Bender et al. 2008, Thm 6.5)

The continuous FBSDE with Y coupling has a unique solution (X, Y, Z) and there are constants C > 0 and 0 < c < 1 such that, for sufficiently small h,

$$\sup_{1 \le i \le N} E \left\{ \sup_{t \in [t_{i-1}, t_i]} (|X_t - X_{i-1}^{\pi, m}|^2 + |Y_t - Y_{i-1}^{\pi, m}|^2) \right\} + \sum_{i=1}^{N} E \left\{ \int_{t_{i-1}}^{t_i} |Z_t - Z_{i-1}^{\pi, m}|^2 dt \right\}$$

$$\leq C(1+|x_0|^2)(mc^m+h)$$

Existing convergence results

Consequently, an error estimate can be derived,

Theorem (Bender et al. 2008, Thm 6.5)

The continuous FBSDE with Y coupling has a unique solution (X, Y, Z) and there are constants C > 0 and 0 < c < 1 such that, for sufficiently small h,

$$\sup_{1 \leq i \leq N} E \left\{ \sup_{t \in [t_{i-1}, t_i]} (|X_t - X_{i-1}^{\pi, m}|^2 + |Y_t - Y_{i-1}^{\pi, m}|^2) \right\} + \sum_{i=1}^{N} E \left\{ \int_{t_{i-1}}^{t_i} |Z_t - Z_{i-1}^{\pi, m}|^2 dt \right\}$$

$$\leq C(1+|x_0|^2)(mc^m+h)$$

What if the forward SDE also couples with Z?

A similar analysis for Z which is parallel with the Y coupled case?

Challenge: Intertwining of Y and Z

If in addition X also couples with Z,

$$\begin{cases} X_{i+1}^{\pi,m} = X_{i}^{\pi,m} + b(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}), v_{i}^{\pi,m-1}(X_{i}^{\pi,m}))h \\ + \sigma(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))\Delta W_{i}, \end{cases} \\ Y_{N}^{\pi,m} = g(X_{N}^{\pi,m}), \\ Z_{i}^{\pi,m} = h^{-1}E_{t_{i}}(Y_{i+1}^{\pi,m}\Delta W_{i}), \quad v_{i}^{\pi,m}(X_{i}^{\pi,m}) = Z_{i}^{\pi,m} \\ Y_{i}^{\pi,m} = E_{t_{i}}(Y_{i+1}^{\pi,m} + f(t_{i}, X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}, Z_{i}^{\pi,m})h), \quad u_{i}^{\pi,m}(X_{i}^{\pi,m}) = Y_{i}^{\pi,m} \end{cases}$$

then through $X_i^{\pi,m}$ we have

$$Y_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}) \Rightarrow (X_{i-1}^{\pi,m}, Y_{i-1}^{\pi,m-1}, Z_{i-1}^{\pi,m-1}, Y_{i+1}^{\pi,m},)$$
$$Z_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}) \Rightarrow (X_{i-1}^{\pi,m}, Y_{i-1}^{\pi,m-1}, Z_{i-1}^{\pi,m-1}, Y_{i+1}^{\pi,m})$$

- $Y_i^{\pi,m}$ and $Z_i^{\pi,m}$ are intertwined over m and i;
- Not easy to separate them such that $Y_i^{\pi,m}$ only depends on previous Y and $Z_i^{\pi,m}$ only depends on previous Z.

Challenge: Intertwining of Y and Z

If in addition X also couples with Z,

$$\begin{cases} X_{i+1}^{\pi,m} = X_{i}^{\pi,m} + b(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}), v_{i}^{\pi,m-1}(X_{i}^{\pi,m}))h \\ + \sigma(t_{i}, X_{i}^{\pi,m}, u_{i}^{\pi,m-1}(X_{i}^{\pi,m}))\Delta W_{i}, \end{cases} \\ Y_{N}^{\pi,m} = g(X_{N}^{\pi,m}), \\ Z_{i}^{\pi,m} = h^{-1}E_{t_{i}}(Y_{i+1}^{\pi,m}\Delta W_{i}), \quad v_{i}^{\pi,m}(X_{i}^{\pi,m}) = Z_{i}^{\pi,m} \\ Y_{i}^{\pi,m} = E_{t_{i}}(Y_{i+1}^{\pi,m} + f(t_{i}, X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}, Z_{i}^{\pi,m})h), \quad u_{i}^{\pi,m}(X_{i}^{\pi,m}) = Y_{i}^{\pi,m} \end{cases}$$

then through $X_i^{\pi,m}$ we have

$$Y_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}) \Rightarrow (X_{i-1}^{\pi,m}, Y_{i-1}^{\pi,m-1}, Z_{i-1}^{\pi,m-1}, Y_{i+1}^{\pi,m},)$$
$$Z_{i}^{\pi,m} \Rightarrow (X_{i}^{\pi,m}, Y_{i+1}^{\pi,m}) \Rightarrow (X_{i-1}^{\pi,m}, Y_{i-1}^{\pi,m-1}, Z_{i-1}^{\pi,m-1}, Y_{i+1}^{\pi,m})$$

- $Y_i^{\pi,m}$ and $Z_i^{\pi,m}$ are intertwined over m and i;
- Not easy to separate them such that $Y_i^{\pi,m}$ only depends on previous Y and $Z_i^{\pi,m}$ only depends on previous Z.

Why not combine them?

Generalize the Markovian iteration to FBSDEs with $\it Y$ and $\it Z$ coupling

Combining Y and Z: a differentiation approach

Construct $u_i^{\pi,m}$ as in Bender et al. 2008 and denote $L(u_i^{\pi,m})$ the Lipchitz constant.

Inspired by the Feynman-Kac formulas, we simply construct $v_i^{\pi,m}$ by

$$v_i^{\pi,m}(x) = \partial_x u_i^{\pi,m}(x) \sigma(t,x,u_i^{\pi,m}(x))$$

With this setting, we can show that, for some C > 0

$$|v_i^{\pi,m}(x_1) - v_i^{\pi,m}(x_2)|^2 \le CL(u_i^{\pi,m})|x_1 - x_2|^2$$

- Obtain $v_i^{\pi,m}$ by direct computation;
- Controlling two "independent" and intertwined Lipschitz constants reduces to controlling one object.
- Convergence of $u_i^{\pi,m}$ leads to convergence of $v_i^{\pi,m}$

Convergence result: FBSDEs with Y and Z coupling

Let $b := b(t, X_t, Y_t, Z_t)$ and $\sigma := \sigma(t, X_t, Y_t)$, we can show that

Theorem 1 (Convergence for FBSDEs coupled with Y and Z)

In addition to the assumptions in Bender et al. 2008, if $u \in C_b^2$ and σ is bounded, with our differentiation setting there exist constants C>0 and 0< c<1 such that for sufficiently small h

$$\sup_{1 \le i \le N} E \left\{ \sup_{t \in [t_{i-1}, t_i]} (|X_t - X_{i-1}^{\pi, m}|^2 + |Y_t - Y_{i-1}^{\pi, m}|^2) \right\} + \sum_{i=1}^{N} E \left\{ \int_{t_{i-1}}^{t_i} |Z_t - Z_{i-1}^{\pi, m}|^2 dt \right\}$$

$$\leq C(1+|x_0|^2)(mc^m+h)$$

- Proofs are based on a fixed-point argument, which naturally gives algorithm and the well-posedness of the discretized FBSDE
- Z-coupling \Rightarrow can treat FBSDEs formulated via dynamic programming

Combining Y and Z: a differentiation approach

Finally, recall that we still want to have the relations

$$\begin{cases} Z_{i}^{\pi} = E_{t_{i}} \left(h^{-1} Y_{i+1}^{\pi} \Delta W_{i} \right) \\ Y_{i}^{\pi} = E_{t_{i}} \left(Y_{i+1}^{\pi} + hf \left(X_{i}^{\pi}, Y_{i+1}^{\pi}, Z_{i}^{\pi} \right) \right) \end{cases}$$

⇒ Reformulating the two regression problems into one, i.e. we solve

$$(Y_i^{\pi,m}, Z_i^{\pi,m}) = \arg\min_{y,z} E\left(\left|Y_{i+1}^{\pi,m} - (y - hf(X_i^{\pi,m}, Y_{i+1}^{\pi,m}, z) + z\Delta W_i)\right|^2\right)$$

- Price to pay: a more complicated optimization problem
- Similar to the one used in Huré et al. 2020 for decoupled case, but we consider coupled FBSDEs and set *f* explicit in *Y*.

Numerical Examples

Implementation setting

• We approximate $u_i^{\pi,m}$ by basis functions and obtain $v_i^{\pi,m}$ by direct computation, i.e.

$$u_i^{\pi,m}(x) = \sum_k w_k \beta_k(x), \quad v_i^{\pi,m}(x) = \sum_k w_k \partial_x \beta_k(x) \sigma(t_i, x, u_i^{\pi,m}(x))$$

- ⇒ Could also use other function approximators, e.g. neural networks.
- Hyper-parameters: Basis functions, batch size, optimizer.
- The errors corresponding to the discretized equation are defined as:

$$\begin{split} \operatorname{error}(X) &:= \max_{0 \leq n \leq N} E\left[\left\| X_{t_n}^{\pi} - X_{t_n} \right\|^2 \right], \quad \operatorname{error}(Y) := \max_{0 \leq n \leq N} E\left[\left\| Y_{t_n}^{\pi} - Y_{t_n} \right\|^2 \right], \\ \operatorname{error}(Z) &:= T/N \sum_{n=0}^{N-1} E\left[\left\| Z_{t_n}^{\pi} - Z_{t_n} \right\|^2 \right], \quad \operatorname{total} = \operatorname{error}(X) + \operatorname{error}(Y) + \operatorname{error}(Z). \end{split}$$

Example 1: FBSDEs with Z coupling only

We adopt and modify a one-dimensional FBSDE example with a time-dependent solution from Ruijter et al. 2015,

$$b(t, x, y, z) = \kappa_z z + \kappa_b,$$

 $\sigma(t, x, y) = 1,$
 $f(t, x, y, z) = yz - z + 2.5y - \sin(x + t)\cos(x + t) - 2\sin(x + t)$
 $-\cos(x + t)\kappa_z z - \cos(x + t)\kappa_b,$
 $g(x) = \sin(x + T),$

and the solution is given by

$$Y_t = \sin(X_t + t), \quad Z_t = \cos(X_t + t)$$

- ▶ FBSDE with Z coupling but no Y coupling in the forward SDE, which doesn't fall in the framework of Bender et al. 2008;
- But it falls in our analysis framework;

Example 1: FBSDEs with Z coupling only

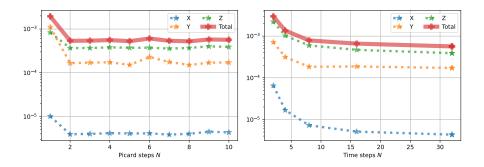


Figure: Example 1. Left: Errors versus Iteration steps. Right: Errors versus time steps. $T = 0.25, X_0 = 1$.

Example 2: An "almost" fully coupled FBSDE

We modify a coupled FBSDE originating from Bender et al. 2008, and obtain an "almost" fully coupled FBSDE:

$$b(t, x, y, z) = \kappa_y \bar{\sigma} y \mathbf{1}_d + \kappa_z z^{\top}, \quad \sigma(t, x, y) = \bar{\sigma} y I_d, \quad g(x) = \sum_{i=1}^d \sin(x_i),$$

$$f(t, x, y, z) = -ry + 1/2e^{-3r(T-t)}\bar{\sigma}^2 (\sum_{i=1}^d \sin(x_i))^3$$

$$-\kappa_y \sum_{i=1}^d z_i - \kappa_z \bar{\sigma} e^{-3r(T-t)} \sum_{i=1}^d \sin(x_i) \sum_{i=1}^d \cos^2(x_i),$$

with dimensions q = 1, d = m = 4. The solution to the BSDE is given by

$$y(t,x) = e^{-r(T-t)} \sum_{i=1}^{d} \sin(x_i), \quad z_i(t,x) = e^{-2r(T-t)} \bar{\sigma}(\sum_{j=1}^{d} \sin(x_j)) \cos(x_i).$$

- ▶ FBSDE with fully coupled drift and partial coupled diffusion;
- it satisfies the assumptions we need;

Example 2: An "almost" fully coupled FBSDE

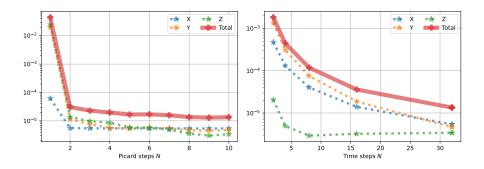


Figure: Example 2. **Left**: Errors versus Iteration steps. **Right**: Errors versus time steps. $T = 0.25, X_0 = (\pi/4, \dots, \pi/4)$.

Summary and conclusion

- We generalize the Markovian iteration by Bender et al. 2008 to FBSDEs with both Y and Z coupling via a differentiation setting.
- Convergence results are based on a fixed-point argument for the discretized scheme, which naturally gives the well-posedness and an algorithm.
- Enable the treatment of FBSDEs formulated via the dynamic programming.
- The numerical results have verified our theoretical findings.

End

Thanks for your attention!

This talk is based on a working paper (coming soon!):

Zhipeng Huang, and Cornelis W. Oosterlee (2024). Convergence of the Markovian iteration for coupled FBSDEs via a differentiation approach.

References

Bender, Christian and Jianfeng Zhang (Feb. 2008). "Time discretization and Markovian iteration for coupled FBSDEs". In: *The Annals of Applied Probability* 18.1, pp. 143–177.

Huré, Côme, Huyên Pham, and Xavier Warin (2020). "Deep backward schemes for high-dimensional nonlinear PDEs". In: *Mathematics of Computation* 89.324, pp. 1547–1579.

Ruijter, Marjon J and Cornelis W Oosterlee (2015). "A Fourier cosine method for an efficient computation of solutions to BSDEs". In: *SIAM Journal on Scientific Computing* 37.2. A859–A889.

Negyesi, Balint, Zhipeng Huang, and Cornelis W. Oosterlee (2024). Generalized convergence of the deep BSDE method: a step towards fully-coupled FBSDEs and applications in stochastic control. arXiv: 2403.18552.

Reisinger, Christoph, Wolfgang Stockinger, and Yufei Zhang (Sept. 2023). "A posteriori error estimates for fully coupled McKean–Vlasov forward-backward SDEs". In: *IMA Journal of Numerical Analysis*, drad060.