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Q mechanics or Q computing?

Q mechanics is a framework for the development of Physics theories, as originally
proposed mid-1920s by N. Bohrℵ, L. de Broglieℵ, M. Bornℵ, W. Heisenbergℵ, W.
Pauliℵ, E. Schrödingerℵ, P. Diracℵ.
The mathematics of Q mechanics allow for more general computation:
• more general definition of the memory state compared to classical computing;
• wider range of transformations / evolution of memory states.

Why haven’t we used this computation framework until now?
To perform Q computation efficiently we need actual Q mechanical systems, only
proposed in the 1980s by P. Benioff, R. Feynmanℵ, Y. Manin.
Q algorithms can be run on classical computers, but require enormous amount of
memory, so that exponential gains in computing power are offset by exponential
memory requirements.
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Postulate 1 – Statics
Postulate 2 – Dynamics
Postulate 3 – Measurement
Postulate 4 – Composite systems

Postulate 1 – Statics

Associated to any physical system is a complex inner product space (Hilbert space)
known as the state space of the system. The system is completely described at any
given point in time by its state vector, which is a unit vector in its state space.
State space: complex Hilbert space H = CN.
For u, v ∈ H, (∗: complex conjugacy), with Dirac’s notations

(ket) |u⟩ :=

 u0
...

uN−1

 ∈ H,

(bra) ⟨u| :=
(
u∗

0 , . . . , u∗
N−1

)
∈ H∗,

(braket) ⟨u|v⟩ :=
N−1∑
i=0

u∗
i vi ∈ C.
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Postulate 1 – Statics
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Inner product

Standard computational basis vectors in CN:

|0⟩ =


1
0
...
0

 , |1⟩ =


0
1
...
0

 , . . . |N − 1⟩ =


0
0
...
1

 .

For two quantum states

|u⟩ =
N−1∑
i=0

ui |i⟩ and |v⟩ =
N−1∑
i=0

vi |i⟩ ,

the inner product is

⟨u|v⟩ =
∑

i
u∗

i vi. (1)
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Postulate 1 – Statics
Postulate 2 – Dynamics
Postulate 3 – Measurement
Postulate 4 – Composite systems

Quantum binary digit – Qubit

The Q-mechanics version of a bit, a qubit, is a Q mechanical two-state system. Its
state can be represented mathematically by a unit vector in C2 and can thus in a
superposition of basis states.
Any vector |v⟩ ∈ C2 can be represented as a linear combination

|v⟩ =
(
α
β

)
= α

(
1
0

)
+ β

(
0
1

)
= α |0⟩+ β |1⟩ .

Since the state vector is a unit vector, the coefficients (probability amplitudes)
α, β ∈ C must satisfy

|α|2 + |β|2 = α∗α+ β∗β = 1.
A qubit can exist in a superposition of basis states but, once measured, its state
collapses to |0⟩ or |1⟩, with respective probability |α|2 and |β|2.
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Quantum logic gates

A quantum logic gate allows to transform a qubit, i.e. to rotate it on the unit sphere.
It generalises classical operations. It can be represented as a unitary matrix in C2

(G†G = GG† = I).
Example: There is no Boolean function φ such that applied twice to a classical bit
would result in a NOT gate: φ(φ(0)) = 1 and φ(φ(1)) = 0. In Q computing, let

G :=
1
2

(
1 + i 1 − i
1 − i 1 + i

)
,

Then
G2 =

1
4

(
(1 + i)2 + (1 − i)2 2(1 + i)(1 − i)

2(1 + i)(1 − i) (1 + i)2 + (1 − i)2

)
=

(
0 1
1 0

)
,

so that

G2 |0⟩ = G2
(

1
0

)
=

(
0
1

)
= |1⟩ and G2 |1⟩ = G2

(
0
1

)
=

(
1
0

)
= |0⟩ .
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Postulate 2 – Dynamics

The evolution of the closed Q system is described by the Schrödinger equation

iℏ∂t |ψ(t)⟩ = H|ψ(t)⟩ ,

where ℏ is Planck’s constant and H is a time-independent Hermitian operator
(Hamiltonian of the system).
Note that, for any 0 ≤ t1 ≤ t2, Schrödinger’s equation gives us

|ψ(t2)⟩ = U(t1, t2) |ψ(t1)⟩ , U(t1, t2) = exp

{
−iH(t2 − t1)

ℏ

}
.

Lemma: if H is Hermitian (H† := (H∗)⊤ = H) and α ∈ R, then exp{iαH} is unitary.
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Unitary operators – Q logic gates

Unitary operators preserve the inner product and hence norms: given |u⟩ and |v⟩, and
a unitary operator U , then

⟨Uu| · |Uv⟩ = (|Uu⟩)† · |Uv⟩ = ⟨uU†| · |Uv⟩ = ⟨u| U†U |v⟩ = ⟨u|v⟩ .

In Q mechanics, all physical transformations (rotations, translations, time evolution)
correspond to (unitary) maps from Q states to Q states.

Unitary operators can then be viewed as Q logic gates implementing Q computations.

Since unitary operators are invertible (U−1 = U†), Q computing is reversible.
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Postulate 3 – Measurement
Quantum measurements are operators {Mm} acting on H, where m refers to the
possible measurement outcomes and such that

∑
m M†

mMm = I. If the state of the
system is |ψ⟩ before measurement then the probability that result m occurs is
Pm = ⟨ψ|M†

mMm|ψ⟩. After measurement, the system collapses to

Mm |ψ⟩√
⟨ψ|M†

mMm|ψ⟩
.

Example: M0 = |0⟩ ⟨0| =
(

1 0
0 0

)
and M1 = |1⟩ ⟨1| =

(
0 0
0 1

)
, so that

M2
0 = M0 = M†

0 , M2
1 = M1 = M†

1 and M†
0M0 +M†

1M1 = I.
With ψ = α |0⟩+ β |1⟩, then

P0 = ⟨ψ|M†
0M0|ψ⟩ =

(
α∗ ⟨0|+ β∗ ⟨1|

)
|0⟩ ⟨0|

(
α |0⟩+ β |1⟩

)
= |α|2

P1 = ⟨ψ|M†
1M1|ψ⟩ =

(
α∗ ⟨0|+ β∗ ⟨1|

)
|0⟩ ⟨0|

(
α |0⟩+ β |1⟩

)
= |β|2.

We need to perform measurement on the same Q state many times to generate good
enough statistics (akin to Monte Carlo).
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Spectral Theorem and Projective measurements

Spectral Theorem: If A is Hermitian (A = A†), there exists an orthonormal basis
consisting of eigenvectors of A. Each eigenvalue is real.

Projective measurement: A Hermitian operator M admits the spectral decomposition
M =

∑
mPm, where Pm is the projection onto the eigenspace of M with

eigenvalue m.

In this setup, we can compute (Pm is the probability of observing m)

E[M] =
∑

m
mPm =

∑
m

m ⟨ψ|P†
mPm|ψ⟩

=
∑

m
m ⟨ψ|Pm|ψ⟩

= ⟨ψ|
∑

m
mPm| |ψ⟩

= ⟨ψ|M|ψ⟩ .
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Postulate 4 – Composite Systems

The state space of a composite physical system is the tensor product of the state
spaces of the individual component physical systems.
If one component physical system is in state |ψ1⟩ and a second component physical
system is in state |ψ2⟩, then the state of the combined system is

|ψ1⟩ ⊗ |ψ2⟩ .

Not all combined systems can be split into a tensor product of states of individual
components. When this is not the case, the components are called entangled.

More formally, a two-qubit state |ψ⟩ is called entangled if it cannot be written as the
tensor product |ψ1⟩ ⊗ |ψ2⟩ for some |ψ1⟩ , |ψ2⟩.
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The power of entanglement

Consider an n-qubit system, where (recall) an individual qubit can be found, after
measurement, in |0⟩ or |1⟩, i.e. we need to specify 2 probability amplitudes to describe
the state of the qubit.

If all the qubits are independent, the quantum state can be represented as

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ . . .⊗ |ψn⟩ ,

and we need to specify 2n probability amplitudes.

If all individual qubits are entangled (hence, there is no tensor product representation),
we need to specify 2n probability amplitudes.
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A note on computational basis

The standard orthonormal basis (|0⟩ , |1⟩)

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
.

is called the computational basis, but any pair of linearly independent vectors |u⟩ and
|v⟩ from C2 can serve as a basis:

α |0⟩+ β |1⟩ = α′ |u⟩+ β′ |v⟩ ,

for example, the Hadamard basis, (|+⟩ , |−⟩), with

|+⟩ =
|0⟩+ |1⟩

√
2

=
1
√

2

(
1
1

)
and |−⟩ =

|0⟩ − |1⟩
√

2
|0⟩ = 1

√
2

(
1
−1

)
. (2)
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From 1-qubit to 2-qubit system

A 2-qubit system can be represented by a unit vector in C22 , with orthonormal basis
(|00⟩ , |01⟩ , |10⟩ , |11⟩), given by the tensor/Kronecker products

|00⟩ = |0⟩ ⊗ |0⟩ =

1 ·
(

1
0

)
0 ·
(

1
0

)
 =


1
0
0
0

 , |01⟩ = |0⟩ ⊗ |1⟩ =

1 ·
(

0
1

)
0 ·
(

0
1

)
 =


0
1
0
0

 ,

|10⟩ = |1⟩ ⊗ |0⟩ =

0 ·
(

1
0

)
1 ·
(

1
0

)
 =


0
0
1
0

 , |11⟩ = |1⟩ ⊗ |1⟩ =

0 ·
(

0
1

)
1 ·
(

0
1

)
 =


0
0
0
1

 .

Any 2-qubit quantum state can then be described by four probability amplitudes:

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩ ,
with |α|2 + |β|2 + |γ|2 + |δ|2 = 1.
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n-qubit system

More generally,
|0⟩⊗n = |0⟩ ⊗ · · · ⊗ |0⟩︸ ︷︷ ︸

n times

An n-qubit system can exist in any superposition of the 2n basis states and requires 2n

probability amplitudes to be fully specified.
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The Bloch sphere
Blochℵ sphere: every quantum state is uniquely (up to global phase) specified by
θ ∈ [0, π] and φ ∈ [0, 2π), so that, with α = cos

(
θ
2

)
, β = eiφ sin

(
θ
2

)
,

Canonical representation |ψ⟩ = cos

(
θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩ =

 cos
(

θ
2

)
eiφ sin

(
θ
2

) .

x

y

z
|0⟩

|1⟩

θ

φ

A unitary matrix can then be seen as a rotation operator, and the gate parameters are
called rotation angles.
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1-qubit logic gates

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The X gate flips the bit (NOT gate); the Z gate flips the phase (PHASE gate):

X |0⟩ =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
, X |1⟩ =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
,

Z |0⟩ =

(
1 0
0 −1

)(
1
0

)
=

(
1
0

)
, Z |1⟩ =

(
1 0
0 −1

)(
0
1

)
= −

(
0
1

)
.

|0⟩

|1⟩ X

X |1⟩

|0⟩

|0⟩

|1⟩ Z

Z |0⟩

− |1⟩

Graphical representation of X and Z gates.
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Q operations
• Q Gate: reversible quantum circuit (unitary matrix: UU∗ = U∗U = I).
• Standard gates:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, H =

1
√

2

[
1 1
1 −1

]
, Ry(θ) =

cos( θ
2

)
− sin

(
θ
2

)
sin
(

θ
2

)
cos
(

θ
2

) 

• Examples:

X |0⟩ =
[

0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩ . |0⟩ X

H |0⟩ = |0⟩+|1⟩√
2 = |+⟩ and H |1⟩ = |0⟩−|1⟩√

2 = |−⟩ |0⟩ H

H⊗2 |00⟩ = (H |0⟩)⊗ (H |0⟩) = |00⟩+ |01⟩+ |10⟩+ |11⟩
2

|0⟩

|0⟩

H

H

cX
(
(H ⊗ I) |00⟩

)
= cX

(
|0⟩+ |1⟩

√
2

⊗ |0⟩
)

=
|0⟩ |0⟩+ |1⟩ X |0⟩

√
2

=
|00⟩+ |11⟩

√
2

(EPR)

|0⟩

|0⟩

H
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Q operations
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• Standard gates:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, H =

1
√
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2

)
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θ
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θ
2
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(

θ
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1
0

]
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0
1

]
= |1⟩ . |0⟩ X

H |0⟩ = |0⟩+|1⟩√
2 = |+⟩ and H |1⟩ = |0⟩−|1⟩√

2 = |−⟩ |0⟩ H

H⊗2 |00⟩ = (H |0⟩)⊗ (H |0⟩) = |00⟩+ |01⟩+ |10⟩+ |11⟩
2

|0⟩

|0⟩

H

H

cX
(
(H ⊗ I) |00⟩

)
= cX

(
|0⟩+ |1⟩

√
2

⊗ |0⟩
)

=
|0⟩ |0⟩+ |1⟩ X |0⟩

√
2

=
|00⟩+ |11⟩

√
2

(EPR)

|0⟩

|0⟩

H
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Example of a Q circuit
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Superposition with Hadamard gate

The Hadamard gate H creates an equal superposition of |0⟩ and |1⟩ when applied to
either state |0⟩ or state |1⟩:

H =
1
√

2

(
1 1
1 −1

)
,

H |0⟩ =
1
√

2

(
1 1
1 −1

)(
1
0

)
=

1
√

2

(
1
0

)
+

1
√

2

(
0
1

)
=

|0⟩+ |1⟩
√

2
,

H |1⟩ =
1
√

2

(
1 1
1 −1

)(
0
1

)
=

1
√

2

(
1
0

)
−

1
√

2

(
0
1

)
=

|0⟩ − |1⟩
√

2
.

|0⟩ H 1√
2 |0⟩+ 1√

2 |1⟩ |1⟩ H 1√
2 |0⟩ − 1√

2 |1⟩

Circuit representation of the H gate.
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Hadamard and phase shift gates

An immediate computation shows that H−1 = H, so that

|0⟩ H H |0⟩ |1⟩ H H |1⟩

H gate applied twice.
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Exciting example: Generating a uniform distribution
• 1 qubit, i.e. 2 values (discrete distribution over 2 points):

H |0⟩ = |0⟩+ |1⟩
√

2

• n qubits, i.e. 2n values (discrete distribution over 2n points):

H⊗n |0⟩⊗n =
(

H |0⟩
)
⊗ · · · ⊗

(
H |0⟩

)
=

(
|0⟩+ |1⟩

√
2

)
⊗ · · · ⊗

(
|0⟩+ |1⟩

√
2

)
=

1
2n/2

(
|0⟩+ |1⟩

)
⊗ · · · ⊗

(
|0⟩+ |1⟩

)
=

1
2n/2

(
|0 · · · 0⟩+ |0 · · · 01⟩+ · · ·+ |1 · · · 10⟩+ |1 · · · 1⟩

)
=

1
2n/2

2n−1∑
i=0

|i⟩ .
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Exciting example: Generating a uniform distribution
• 1 qubit, i.e. 2 values (discrete distribution over 2 points):

H |0⟩ = |0⟩+ |1⟩
√

2

• n qubits, i.e. 2n values (discrete distribution over 2n points):

H⊗n |0⟩⊗n =
(

H |0⟩
)
⊗ · · · ⊗

(
H |0⟩

)
=

(
|0⟩+ |1⟩

√
2

)
⊗ · · · ⊗

(
|0⟩+ |1⟩

√
2

)
=

1
2n/2

(
|0⟩+ |1⟩

)
⊗ · · · ⊗

(
|0⟩+ |1⟩

)
=

1
2n/2

(
|0 · · · 0⟩+ |0 · · · 01⟩+ · · ·+ |1 · · · 10⟩+ |1 · · · 1⟩

)
=

1
2n/2

2n−1∑
i=0

|i⟩ .
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Possible to code things up:
• Simulated quantum computer
• Actual (small-size) quantum computer

from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_histogram
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6 qubits
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Adjustable 1-qubit gates
Adjustable 1-qubit gates perform rotation of the qubit state around specific axis by an
arbitrary angle θ and an arbitrary unitary gate U

RU(θ) := exp

{
−

iθ
2

U
}
.

In particular,

RX(θ) =

 cos
(

θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(

θ
2

)  , RY(θ) =

cos
(

θ
2

)
− sin

(
θ
2

)
sin
(

θ
2

)
cos
(

θ
2

)  ,

RZ(θ) =

exp
(
− iθ

2

)
0

0 exp
(

iθ
2

) .

so that

RX(θ) |0⟩ = cos
(

θ
2

)
|0⟩ − i sin

(
θ
2

)
|1⟩ , RY(θ) |0⟩ = cos

(
θ
2

)
|0⟩+ sin

(
θ
2

)
|1⟩ ,

RX(θ) |1⟩ = −i sin
(

θ
2

)
|0⟩+ cos

(
θ
2

)
|1⟩ , RY(θ) |1⟩ = − sin

(
θ
2

)
|0⟩+ cos

(
θ
2

)
|1⟩ ,

RZ(θ) |0⟩ = exp
(
− iθ

2

)
|0⟩ , RZ(θ) |1⟩ = exp

(
iθ
2

)
|1⟩ .
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n-qubit gates

An n-qubit gate can be represented by 2n × 2n unitary matrices. By acting on several
qubits at the same time, it can be used to entangle them.
This is in particular the case with conditional operators, or controlled gates: the gate
is applied to the target qubit only if the control qubit is in state |1⟩.
For example, Controlled Y (CY) gate:

q1

q2

•

Y

M

M

CY gate.
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Controlled NOT (CNOT) gate

The CX gate is the controlled Pauli X (bit flip) gate, represented by

CNOT ≡ CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

and has the circuit representation

q1

q2

• M

M

CX (CNOT) gate.
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Controlled Z (CZ or CPHASE) gate

The CZ gate is the controlled Pauli Z (phase flip) gate, represented by

CPHASE ≡ CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (3)

In this particular case, the target and control qubits are interchangeable i.e.

q1

q2

•

Z

M

M

=
q1

q2 •

Z M

M

CZ (CPHASE) gates.
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Adjustable 2-qubit gates

An example of adjustable two-qubit gate is the XY gate, which is a rotation by some
angle θ between the |01⟩ and |10⟩ states:

XY(θ) =


1 0 0 0
0 cos

(
θ
2

)
i sin

(
θ
2

)
0

0 i sin
(

θ
2

)
cos
(

θ
2

)
0

0 0 0 1

 . (4)

Lemma: For any unitary U, there exist α ∈ R and θ1, θ2, θ3 ∈ [0, π] such that

U = eiαRZ(θ1)RY(θ2)RZ(θ3).
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Entanglement

An n-qubit system can exist in any superposition of the 2n basis states:

c0 |00 . . . 00⟩+ c1 |00 . . . 01⟩+ . . .+ c2n−1 |11 . . . 11⟩ ,
2n−1∑
i=0

|ci|2 = 1.

If such a state can be represented as a tensor product of individual qubit states then
the qubit states are not entangled.
For example:

1
4
√

2

(√
3 |000⟩+ |001⟩+ 3 |010⟩+

√
3 |011⟩+

√
3 |100⟩+ |101⟩+ 3 |110⟩+

√
3 |111⟩

)
=

( 1
√

2
|0⟩+ 1

√
2
|1⟩
)

⊗
(

1
2
|0⟩+

√
3

2
|1⟩
)

⊗
(√

3
2

|0⟩+ 1
2
|1⟩
)
.

(5)

An entangled state cannot be represented as a tensor product of individual qubit
states.
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Entanglement (continued)

For example, one cannot find α, β, γ, δ ∈ C such that

1
√

2

(
|00⟩+ |11⟩

)
= (α |0⟩+ β |1⟩)⊗ (γ |0⟩+ δ |1⟩).

Entanglement allows us to encode much more information than with individual
independent qubits. Most of the information in the state of a Q state is stored
non-locally in the correlations between the qubit states.
This is one of the major features of Q computing vs classical computing.
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Construction of entangled states

Qubit states can be entangled with the help of two-qubit gates.

The entangled 2-qubit state above is one of the four maximally entangled Bell states,
and can be constructed as

|0⟩

|0⟩

H • M

M

1√
2 |00⟩+ 1√

2 |11⟩

Bell circuit.
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Parameterised Quantum Circuit
1

2

3
...

n − 1

n

. . .

. . .

. . .

. . .

. . .

M

M

M

M

M

M

...
|ψ⟩

U1(θ1)

Um(θm)

Schematic representation of the Parameterised Quantum Circuit.

A Q circuit consisting of a mix of fixed and adjustable gates transforms initial Q state,
|ψ⟩ into final Q state |ψ′⟩ by applying a sequence of unitary operators:

|ψ′⟩ = Um(θm) . . . U2(θ2)U1(θ1) |ψ⟩ . (6)
Here, Ui and θi denote, respectively, the individual gate i, i = 1, . . . ,m, and associated
vector of gate parameters.
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Is there any sense of reality here?

Two competing technologies:
• Superconducting qubits: each qubit can interact with its nearest neighbour,

limited decoherence time, needs super-cooling; IBM, Google, AWS, Alibaba,
Rigetti, Intel, D-Wave.

• Ion trapped: ions trapped in electric fields, that can be perturbed by laser beams.
Quantinuum, IonQ , Quantum Factory , Alpine Quantum Technologies,
eleQtron, Oxford Ionics.
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Q Tech: interesting graph theoretic problems
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Quantum timeline
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https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility

	Principles of Quantum Mechanics
	Postulate 1 – Statics
	Postulate 2 – Dynamics
	Postulate 3 – Measurement
	Postulate 4 – Composite systems

	Quantum Computing

