Principles of Quantum Mechanics and Quantum Computing

Antoine (Jack) Jacquier

(Imperial College London)

January 16, 2025

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

イロン イロン イヨン イヨン ヨー シスの

Overview

(ロ) (同) (三) (三) (三) (○) (○)

1 Principles of Quantum Mechanics

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

2 Quantum Computing

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

Q mechanics or Q computing?

Q mechanics is a *framework* for the development of Physics theories, as originally proposed mid-1920s by N. Bohr[®], L. de Broglie[®], M. Born[®], W. Heisenberg[®], W. Pauli[®], E. Schrödinger[®], P. Dirac[®].

The mathematics of Q mechanics allow for more general *computation*:

- more general definition of the *memory state* compared to classical computing;
- wider range of *transformations / evolution* of memory states.

イロン 不可 アイモン イモン ヨー シックト

Q mechanics or Q computing?

Q mechanics is a *framework* for the development of Physics theories, as originally proposed mid-1920s by N. Bohr[®], L. de Broglie[®], M. Born[®], W. Heisenberg[®], W. Pauli[®], E. Schrödinger[®], P. Dirac[®].

The mathematics of Q mechanics allow for more general *computation*:

- more general definition of the *memory state* compared to classical computing;
- wider range of *transformations / evolution* of memory states.

Why haven't we used this computation framework until now?

To perform Q computation efficiently we need actual Q mechanical systems, only proposed in the 1980s by P. Benioff, R. Feynman^{\aleph}, Y. Manin.

 ${\tt Q}$ algorithms can be run on classical computers, but require enormous amount of memory, so that exponential gains in computing power are offset by exponential memory requirements.

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

Principles of Quantum Mechanics

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

マロト (周) (ヨ) (ヨ) (ヨ) (の)

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

Postulate 1 – Statics

Associated to any physical system is a complex inner product space (Hilbert space) known as the state space of the system. The system is completely described at any given point in time by its state vector, which is a unit vector in its state space. State space: complex Hilbert space $\mathfrak{H} = \mathbb{C}^N$. For u, v $\in \mathfrak{H}$, (*: complex conjugacy), with Dirac's notations

$$(\mathsf{ket}) \quad |\mathrm{u}
angle := egin{pmatrix} u_0\dots\ u_{N-1}\ dots\ u_{N-1}\end{pmatrix}\in\mathfrak{H},$$

$$(\mathsf{bra}) \quad \langle \mathrm{u} | := \left(u_0^*, \dots, u_{N-1}^* \right) \in \mathfrak{H}^*,$$

$$(\mathsf{braket}) \quad \langle \mathbf{u} | \mathbf{v} \rangle := \sum_{i=0}^{N-1} u_i^* \, v_i \in \mathbb{C}.$$

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

Inner product

Standard computational basis vectors in \mathbb{C}^{N} :

$$|0\rangle = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \quad |1\rangle = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \quad \dots \quad |N-1\rangle = \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix}$$

For two quantum states

$$|\mathbf{u}\rangle = \sum_{i=0}^{N-1} u_i |i\rangle$$
 and $|\mathbf{v}\rangle = \sum_{i=0}^{N-1} v_i |i\rangle$,

the inner product is

$$\langle \mathbf{u} | \mathbf{v} \rangle = \sum_{i} u_{i}^{*} v_{i}. \tag{1}$$

Principles of Quantum Mechanics and Quantum Computing

イロン 不得 とくき とくき とうき

Antoine (Jack) Jacquier

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

Quantum binary digit – Qubit

The Q-mechanics version of a bit, a *qubit*, is a Q mechanical two-state system. Its state can be represented mathematically by a unit vector in \mathbb{C}^2 and can thus in a superposition of basis states.

Any vector $|v\rangle\in\mathbb{C}^2$ can be represented as a linear combination

$$\left|\mathbf{v}\right\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} \mathbf{1} \\ \mathbf{0} \end{pmatrix} + \beta \begin{pmatrix} \mathbf{0} \\ \mathbf{1} \end{pmatrix} = \alpha \left|\mathbf{0}\right\rangle + \beta \left|\mathbf{1}\right\rangle.$$

Since the state vector is a unit vector, the coefficients (*probability amplitudes*) $\alpha, \beta \in \mathbb{C}$ must satisfy

$$|\alpha|^2 + |\beta|^2 = \alpha^* \alpha + \beta^* \beta = 1.$$

A qubit can exist in a superposition of basis states but, once *measured*, its state *collapses* to $|0\rangle$ or $|1\rangle$, with respective probability $|\alpha|^2$ and $|\beta|^2$.

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

Quantum logic gates

A quantum logic gate allows to transform a qubit, i.e. to rotate it on the unit sphere. It generalises classical operations. It can be represented as a unitary matrix in \mathbb{C}^2 ($G^{\dagger}G = GG^{\dagger} = I$).

Example: There is no Boolean function φ such that applied twice to a classical bit would result in a NOT gate: $\varphi(\varphi(0)) = 1$ and $\varphi(\varphi(1)) = 0$. In Q computing, let

$$\mathtt{G} := \frac{1}{2} \begin{pmatrix} \mathtt{1} + \mathrm{i} & \mathtt{1} - \mathrm{i} \\ \mathtt{1} - \mathrm{i} & \mathtt{1} + \mathrm{i} \end{pmatrix},$$

Then

$$G^{2} = \frac{1}{4} \begin{pmatrix} (1+i)^{2} + (1-i)^{2} & 2(1+i)(1-i) \\ 2(1+i)(1-i) & (1+i)^{2} + (1-i)^{2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

so that

$$\mathsf{G}^2 \left| 0 \right\rangle = \mathsf{G}^2 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \left| 1 \right\rangle \quad \text{and} \quad \mathsf{G}^2 \left| 1 \right\rangle = \mathsf{G}^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \left| 0 \right\rangle.$$

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

Postulate 1 – Statics **Postulate 2 – Dynamics** Postulate 3 – Measurement Postulate 4 – Composite systems

Postulate 2 – Dynamics

The evolution of the closed Q system is described by the Schrödinger equation

 $\mathrm{i}\hbar\partial_t |\psi(t)\rangle = \mathcal{H} |\psi(t)\rangle,$

where \hbar is Planck's constant and H is a time-independent Hermitian operator (Hamiltonian of the system).

Note that, for any $0 \le t_1 \le t_2$, Schrödinger's equation gives us

$$\ket{\psi(t_2)} = \mathcal{U}(t_1,t_2) \ket{\psi(t_1)}, \quad \mathcal{U}(t_1,t_2) = \exp\left\{rac{-\mathrm{i}\mathcal{H}(t_2-t_1)}{\hbar}
ight\}.$$

Lemma: if \mathcal{H} is Hermitian $(\mathcal{H}^{\dagger} := (\mathcal{H}^{*})^{\top} = \mathcal{H})$ and $\alpha \in \mathbb{R}$, then $\exp\{i\alpha\mathcal{H}\}$ is unitary.

イロシ イヨシ イヨシ イヨシ ヨー つくや

Postulate 1 – Statics **Postulate 2 – Dynamics** Postulate 3 – Measurement Postulate 4 – Composite systems

Unitary operators – Q logic gates

Unitary operators preserve the inner product and hence norms: given $|u\rangle$ and $|v\rangle$, and a unitary operator ${\cal U},$ then

$$\left\langle \mathcal{U} u \right| \cdot \left| \mathcal{U} v \right\rangle = \left(\left| \mathcal{U} u \right\rangle \right)^{\dagger} \cdot \left| \mathcal{U} v \right\rangle = \left\langle u \mathcal{U}^{\dagger} \right| \cdot \left| \mathcal{U} v \right\rangle = \left\langle u \right| \mathcal{U}^{\dagger} \mathcal{U} \left| v \right\rangle = \left\langle u \right| v \right\rangle.$$

In Q mechanics, all physical transformations (rotations, translations, time evolution) correspond to (unitary) maps from Q states to Q states.

Unitary operators can then be viewed as *Q logic gates* implementing *Q* computations.

Since unitary operators are *invertible* $(\mathcal{U}^{-1} = \mathcal{U}^{\dagger})$, Q computing is *reversible*.

Principles of Quantum Mechanics Quantum Computing Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 1 – Cranegating anthropological

Postulate 3 – Measurement

Quantum measurements are operators $\{\mathcal{M}_m\}$ acting on \mathcal{H} , where m refers to the possible measurement outcomes and such that $\sum_m \mathcal{M}_m^{\dagger} \mathcal{M}_m = \mathcal{I}$. If the state of the system is $|\psi\rangle$ before measurement then the probability that result m occurs is $\mathbb{P}_m = \langle \psi | \mathcal{M}_m^{\dagger} \mathcal{M}_m | \psi \rangle$. After measurement, the system collapses to

$$\frac{\mathcal{M}_{m}\left|\psi\right\rangle}{\sqrt{\left\langle\psi\right|\mathcal{M}_{m}^{\dagger}\mathcal{M}_{m}\left|\psi\right\rangle}}$$

 $\begin{array}{l} \mbox{Example: } \mathcal{M}_0 = |0\rangle \left\langle 0 \right| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mbox{ and } \mathcal{M}_1 = |1\rangle \left\langle 1 \right| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mbox{, so that } \\ \mathcal{M}_0^2 = \mathcal{M}_0 = \mathcal{M}_0^{\dagger}, \ \mathcal{M}_1^2 = \mathcal{M}_1 = \mathcal{M}_1^{\dagger} \mbox{ and } \mathcal{M}_0^{\dagger} \mathcal{M}_0 + \mathcal{M}_1^{\dagger} \mathcal{M}_1 = \mathcal{I}. \\ \mbox{With } \psi = \alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle, \mbox{ then } \end{array}$

$$\begin{split} \mathbb{P}_{0} &= \langle \psi | \mathcal{M}_{0}^{\dagger} \mathcal{M}_{0} | \psi \rangle = \left(\alpha^{*} \langle 0 | + \beta^{*} \langle 1 | \right) | 0 \rangle \langle 0 | \left(\alpha | 0 \rangle + \beta | 1 \rangle \right) = |\alpha|^{2} \\ \mathbb{P}_{1} &= \langle \psi | \mathcal{M}_{1}^{\dagger} \mathcal{M}_{1} | \psi \rangle = \left(\alpha^{*} \langle 0 | + \beta^{*} \langle 1 | \right) | 0 \rangle \langle 0 | \left(\alpha | 0 \rangle + \beta | 1 \rangle \right) = |\beta|^{2}. \end{split}$$

We need to perform measurement on the same Q state many times to generate good enough statistics (akin to Monte Carlo).

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

Principles of Quantum Mechanics Quantum Computing Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Consorting automatics

Spectral Theorem and Projective measurements

Spectral Theorem: If A is Hermitian ($A = A^{\dagger}$), there exists an orthonormal basis consisting of eigenvectors of A. Each eigenvalue is real.

Projective measurement: A Hermitian operator \mathcal{M} admits the spectral decomposition $\mathcal{M} = \sum m \mathcal{P}_m$, where \mathcal{P}_m is the projection onto the eigenspace of \mathcal{M} with eigenvalue m.

In this setup, we can compute (\mathbb{P}_m is the probability of observing m)

$$\mathbb{E}[\mathcal{M}] = \sum_{m} m \mathbb{P}_{m} = \sum_{m} m \langle \psi | \mathcal{P}_{m}^{\dagger} \mathcal{P}_{m} | \psi \rangle$$
$$= \sum_{m} m \langle \psi | \mathcal{P}_{m} | \psi \rangle$$
$$= \langle \psi | \sum_{m} m \mathcal{P}_{m} | | \psi \rangle$$
$$= \langle \psi | \mathcal{M} | \psi \rangle.$$

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

Postulate 4 – Composite Systems

The state space of a composite physical system is the tensor product of the state spaces of the individual component physical systems.

If one component physical system is in state $|\psi_1\rangle$ and a second component physical system is in state $|\psi_2\rangle$, then the state of the combined system is

 $|\psi_1\rangle\otimes|\psi_2\rangle$.

Not all combined systems can be split into a tensor product of states of individual components. When this is not the case, the components are called *entangled*.

More formally, a two-qubit state $|\psi\rangle$ is called entangled if it cannot be written as the tensor product $|\psi_1\rangle \otimes |\psi_2\rangle$ for some $|\psi_1\rangle, |\psi_2\rangle$.

Postulate 1 – Statics Postulate 2 – Dynamics Postulate 3 – Measurement Postulate 4 – Composite systems

The power of entanglement

Consider an *n*-qubit system, where (recall) an individual qubit can be found, after measurement, in $|0\rangle$ or $|1\rangle$, i.e. we need to specify 2 probability amplitudes to describe the state of the qubit.

If all the qubits are independent, the quantum state can be represented as

 $|\Psi\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \otimes \ldots \otimes |\psi_n\rangle,$

and we need to specify 2n probability amplitudes.

If all individual qubits are entangled (hence, there is no tensor product representation), we need to specify 2^n probability amplitudes.

Quantum Computing

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

メロシメ母シメミンメミン ミークタで

A note on computational basis

The standard orthonormal basis $(|0\rangle, |1\rangle)$

$$\ket{0} = egin{pmatrix} 1 \ 0 \end{pmatrix}, \quad \ket{1} = egin{pmatrix} 0 \ 1 \end{pmatrix}.$$

is called the *computational basis*, but any pair of *linearly independent* vectors $|u\rangle$ and $|v\rangle$ from \mathbb{C}^2 can serve as a basis:

$$\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle = \alpha' \left| \mathbf{u} \right\rangle + \beta' \left| \mathbf{v} \right\rangle,$$

for example, the Hadamard basis, ($\left|+\right\rangle,\left|-\right\rangle$), with

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix} \text{ and } |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} |0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}.$$
 (2)

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

イロン イボン イヨン イヨン 三日

From 1-qubit to 2-qubit system

A 2-qubit system can be represented by a unit vector in \mathbb{C}^{2^2} , with orthonormal basis ($\left|00\right\rangle,\left|01\right\rangle,\left|10\right\rangle,\left|11\right\rangle$), given by the *tensor/Kronecker products*

$$|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \cdot \begin{pmatrix} 1 \\ 0 \\ \\ 0 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad |01\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix} 1 \cdot \begin{pmatrix} 0 \\ 1 \\ \\ 0 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix},$$

$$|10\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad |11\rangle = |1\rangle \otimes |1\rangle = \begin{pmatrix} 0 \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Any 2-qubit quantum state can then be described by four probability amplitudes:

$$ert \psi
angle = lpha ert 00
angle + eta ert 01
angle + \gamma ert 10
angle + \delta ert 11
angle,$$

th $ert lpha ert^2 + ert eta ert^2 + ert \delta ert^2 = 1.$

wi

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

n-qubit system

イロン (行) イヨン イヨン ヨー ののの

More generally,

$$|0\rangle^{\otimes n} = \underbrace{|0\rangle \otimes \cdots \otimes |0\rangle}_{n \text{ times}}$$

An *n*-qubit system can exist in any superposition of the 2^n basis states and requires 2^n probability amplitudes to be fully specified.

Example 7 The Bloch sphere **Bloch**^{\aleph} sphere: every quantum state is uniquely (up to global phase) specified by $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi)$, so that, with $\alpha = \cos\left(\frac{\theta}{2}\right)$, $\beta = e^{i\varphi} \sin\left(\frac{\theta}{2}\right)$,

Canonical representation
$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)|1\rangle = \begin{pmatrix}\cos\left(\frac{\theta}{2}\right)\\e^{i\varphi}\sin\left(\frac{\theta}{2}\right)\end{pmatrix}.$$

A unitary matrix can then be seen as a rotation operator, and the gate parameters are called *rotation angles*.

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

1-qubit logic gates

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

The X gate flips the bit (NOT gate); the Z gate flips the phase (PHASE gate):

$$\begin{array}{rcl} X \left| 0 \right\rangle &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} &= \begin{pmatrix} 0 \\ 1 \end{pmatrix}, & X \left| 1 \right\rangle &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\ Z \left| 0 \right\rangle &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix}, & Z \left| 1 \right\rangle &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} &= -\begin{pmatrix} 0 \\ 1 \end{pmatrix}. \\ \left| 0 \right\rangle & \hline \\ \left| 1 \right\rangle & \hline \\ X & \left| 0 \right\rangle & \left| 1 \right\rangle & \left| 0 \right\rangle & \hline \\ \left| 1 \right\rangle & \hline \\ Z & - \left| 1 \right\rangle \\ \end{array}$$

Graphical representation of X and Z gates.

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

(ロ) (同) (三) (三) (三) (○) (○)

Q operations

メロシ メポシ メヨシ メヨシ ニヨー やくや

- Q Gate: reversible quantum circuit (unitary matrix: $UU^* = U^*U = I$).
- Standard gates:

$$\mathbf{X} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} 0 & -\mathbf{i}\\ \mathbf{i} & 0 \end{bmatrix}, \quad \mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}, \quad \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right)\\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{bmatrix}$$

Q operations

- Q Gate: reversible quantum circuit (unitary matrix: $UU^* = U^*U = I$).
- Standard gates:

$$\mathbf{X} = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} 0 & -\mathbf{i}\\ \mathbf{i} & 0 \end{bmatrix}, \quad \mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}, \quad \mathbf{R}_{\mathbf{y}}(\theta) = \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right)\\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{bmatrix}$$

• Examples:

Example of a Q circuit

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

マロン 不得 とくき とくき とうき

Superposition with Hadamard gate

The Hadamard gate II creates an equal superposition of $|0\rangle$ and $|1\rangle$ when applied to either state $|0\rangle$ or state $|1\rangle$:

$$\begin{split} \mathsf{H} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}, \\ \mathsf{H} &|0\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0 \end{pmatrix} + \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \\ \mathsf{H} &|1\rangle &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 0 \end{pmatrix} - \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ 1 \end{pmatrix} &= \frac{|0\rangle - |1\rangle}{\sqrt{2}}. \\ \\ &|0\rangle & \underbrace{\mathsf{H}} & \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle & |1\rangle & \underbrace{\mathsf{H}} & \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \end{split}$$

Circuit representation of the H gate.

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

イロン イボン イヨン イヨン 三日

Hadamard and phase shift gates

An immediate computation shows that $\mathbf{H}^{-1} = \mathbf{H}$, so that

H gate applied twice.

イロン イボン イヨン イヨン 二日

Exciting example: Generating a uniform distribution

• 1 qubit, i.e. 2 values (discrete distribution over 2 points):

$$\left| {
m H} \left| 0
ight
angle = rac{\left| 0
ight
angle + \left| 1
ight
angle }{\sqrt{2}}$$

(ロ) (同) (三) (三) (三) (○) (○)

Exciting example: Generating a uniform distribution

• 1 qubit, i.e. 2 values (discrete distribution over 2 points):

$$\left| {
m H} \left| 0
ight
angle = rac{\left| 0
ight
angle + \left| 1
ight
angle }{\sqrt{2}}$$

• *n* qubits, i.e. 2^{*n*} values (discrete distribution over 2^{*n*} points):

$$\begin{split} \mathbf{H}^{\otimes n} \left| \mathbf{0} \right\rangle^{\otimes n} &= \left(\mathbf{H} \left| \mathbf{0} \right\rangle \right) \otimes \cdots \otimes \left(\mathbf{H} \left| \mathbf{0} \right\rangle \right) \\ &= \left(\frac{\left| \mathbf{0} \right\rangle + \left| \mathbf{1} \right\rangle}{\sqrt{2}} \right) \otimes \cdots \otimes \left(\frac{\left| \mathbf{0} \right\rangle + \left| \mathbf{1} \right\rangle}{\sqrt{2}} \right) \\ &= \frac{1}{2^{n/2}} \left(\left| \mathbf{0} \right\rangle + \left| \mathbf{1} \right\rangle \right) \otimes \cdots \otimes \left(\left| \mathbf{0} \right\rangle + \left| \mathbf{1} \right\rangle \right) \\ &= \frac{1}{2^{n/2}} \left(\left| \mathbf{0} \cdots \mathbf{0} \right\rangle + \left| \mathbf{0} \cdots \mathbf{0} \mathbf{1} \right\rangle + \dots + \left| \mathbf{1} \cdots \mathbf{1} \mathbf{0} \right\rangle + \left| \mathbf{1} \cdots \mathbf{1} \right\rangle \right) \\ &= \frac{1}{2^{n/2}} \sum_{i=0}^{2^n - 1} \left| i \right\rangle. \end{split}$$

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

Possible to code things up:

- Simulated quantum computer
- Actual (small-size) quantum computer

from qiskit import QuantumCircuit, Aer, execute from qiskit.visualization import plot_histogram

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

6 qubits

イロン 不得 とくき とくき とうき

quier Principles of Quantum Mechanics and Quantum Computing

Antoine (Jack) Jacquier

Adjustable 1-qubit gates

Adjustable 1-qubit gates perform rotation of the qubit state around specific axis by an arbitrary angle θ and an arbitrary unitary gate U

$$\mathtt{R}_{\mathtt{U}}(heta) := \exp\left\{-rac{\mathrm{i} heta}{2}\mathtt{U}
ight\}.$$

In particular,

$$\begin{split} \mathtt{R}_\mathtt{X}(\theta) &= \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -\mathrm{i}\sin\left(\frac{\theta}{2}\right) \\ -\mathrm{i}\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}, \qquad \mathtt{R}_\mathtt{Y}(\theta) &= \begin{pmatrix} \cos\left(\frac{\theta}{2}\right) & -\sin\left(\frac{\theta}{2}\right) \\ \sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) \end{pmatrix}, \\ \mathtt{R}_\mathtt{Z}(\theta) &= \begin{pmatrix} \exp\left(-\frac{\mathrm{i}\theta}{2}\right) & \mathbf{0} \\ \mathbf{0} & \exp\left(\frac{\mathrm{i}\theta}{2}\right) \end{pmatrix}. \end{split}$$

so that

$$\begin{split} & R_{X}(\theta) \left| 0 \right\rangle &= \cos \left(\frac{\theta}{2} \right) \left| 0 \right\rangle - \mathrm{i} \sin \left(\frac{\theta}{2} \right) \left| 1 \right\rangle , \\ & R_{X}(\theta) \left| 1 \right\rangle &= -\mathrm{i} \sin \left(\frac{\theta}{2} \right) \left| 0 \right\rangle + \cos \left(\frac{\theta}{2} \right) \left| 1 \right\rangle , \\ & R_{Z}(\theta) \left| 0 \right\rangle &= \exp \left(- \frac{\mathrm{i} \theta}{2} \right) \left| 0 \right\rangle , \end{split}$$

$$\begin{split} & \mathsf{R}_{\mathrm{Y}}(\theta) \left| 0 \right\rangle &= \cos \left(\frac{\theta}{2} \right) \left| 0 \right\rangle + \sin \left(\frac{\theta}{2} \right) \left| 1 \right\rangle, \\ & \mathsf{R}_{\mathrm{Y}}(\theta) \left| 1 \right\rangle &= -\sin \left(\frac{\theta}{2} \right) \left| 0 \right\rangle + \cos \left(\frac{\theta}{2} \right) \left| 1 \right\rangle, \\ & \mathsf{R}_{\mathrm{Z}}(\theta) \left| 1 \right\rangle &= \exp \left(\frac{\mathrm{i} \theta}{2} \right) \left| 1 \right\rangle. \end{split}$$

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

n-qubit gates

An *n*-qubit gate can be represented by $2^n \times 2^n$ unitary matrices. By acting on several qubits at the same time, it can be used to *entangle* them.

This is in particular the case with conditional operators, or *controlled* gates: the gate is applied to the *target qubit* only if the *control qubit* is in state $|1\rangle$.

For example, Controlled Y (CY) gate:

CY gate.

Controlled NOT (CNOT) gate

The CX gate is the controlled Pauli X (bit flip) gate, represented by

$$\mathtt{CNOT} \equiv \mathtt{CX} = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{pmatrix},$$

and has the circuit representation

イロン イボン イヨン イヨン 三日

Controlled Z (CZ or CPHASE) gate

The CZ gate is the controlled Pauli Z (phase flip) gate, represented by

$$CPHASE \equiv CZ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (3)

In this particular case, the target and control qubits are interchangeable i.e.

Adjustable 2-qubit gates

An example of adjustable two-qubit gate is the XY gate, which is a rotation by some angle θ between the $|01\rangle$ and $|10\rangle$ states:

$$XY(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\left(\frac{\theta}{2}\right) & i\sin\left(\frac{\theta}{2}\right) & 0 \\ 0 & i\sin\left(\frac{\theta}{2}\right) & \cos\left(\frac{\theta}{2}\right) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
 (4)

Lemma: For any unitary U, there exist $\alpha \in \mathbb{R}$ and $\theta_1, \theta_2, \theta_3 \in [0, \pi]$ such that $U = e^{i\alpha} R_Z(\theta_1) R_Y(\theta_2) R_Z(\theta_3).$

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

Entanglement

イロン イロン イヨン イヨン ヨー シスの

An *n*-qubit system can exist in any superposition of the 2^n basis states:

$$|c_0|00\ldots 00
angle + c_1|00\ldots 01
angle + \ldots + c_{2^n-1}|11\ldots 11
angle, \ \sum_{i=0}^{2^n-1}|c_i|^2 = 1.$$

If such a state can be represented as a tensor product of individual qubit states then the qubit states are *not entangled*. For example:

$$\begin{aligned} \frac{1}{4\sqrt{2}} \left(\sqrt{3} \left| 000 \right\rangle + \left| 001 \right\rangle + 3 \left| 010 \right\rangle + \sqrt{3} \left| 011 \right\rangle + \sqrt{3} \left| 100 \right\rangle + \left| 101 \right\rangle + 3 \left| 110 \right\rangle + \sqrt{3} \left| 111 \right\rangle \right) \\ &= \left(\frac{1}{\sqrt{2}} \left| 0 \right\rangle + \frac{1}{\sqrt{2}} \left| 1 \right\rangle \right) \otimes \left(\frac{1}{2} \left| 0 \right\rangle + \frac{\sqrt{3}}{2} \left| 1 \right\rangle \right) \otimes \left(\frac{\sqrt{3}}{2} \left| 0 \right\rangle + \frac{1}{2} \left| 1 \right\rangle \right). \end{aligned}$$

$$(5)$$

An *entangled* state cannot be represented as a tensor product of individual qubit states.

Antoine (Jack) Jacquier Principles of Quantum Mechanics and Quantum Computing

Entanglement (continued)

For example, one cannot find $\alpha,\beta,\gamma,\delta\in\mathbb{C}$ such that

$$rac{1}{\sqrt{2}} \Big(\ket{00} + \ket{11} \Big) = (lpha \ket{0} + eta \ket{1}) \otimes (\gamma \ket{0} + \delta \ket{1}).$$

Entanglement allows us to encode much more information than with individual independent qubits. Most of the information in the state of a Q state is stored *non-locally* in the *correlations* between the qubit states.

This is one of the major features of Q computing vs classical computing.

Construction of entangled states

Qubit states can be entangled with the help of two-qubit gates.

The entangled 2-qubit state above is one of the four maximally entangled *Bell* states, and can be constructed as

Bell circuit.

Parameterised Quantum Circuit

Schematic representation of the Parameterised Quantum Circuit.

A Q circuit consisting of a mix of fixed and adjustable gates transforms initial Q state, $|\psi\rangle$ into final Q state $|\psi'\rangle$ by applying a sequence of unitary operators:

$$|\psi'\rangle = U_m(\theta_m) \dots U_2(\theta_2) U_1(\theta_1) |\psi\rangle.$$
 (6)

Here, U_i and θ_i denote, respectively, the individual gate *i*, i = 1, ..., m, and associated vector of gate parameters.

Is there any sense of reality here?

Two competing technologies:

- Superconducting qubits: each qubit can interact with its nearest neighbour, limited decoherence time, needs super-cooling; IBM, Google, AWS, Alibaba, Rigetti, Intel, D-Wave.
- Ion trapped: ions trapped in electric fields, that can be *perturbed* by laser beams. Quantinuum, IonQ , Quantum Factory , Alpine Quantum Technologies, eleQtron, Oxford Ionics.

		Leading technologi	es in NISQ era¹	Candidate technologies beyond NISQ				
	Qubit type or technology		Trapped ion	Photonic	Silicon-based ³ 1	opological [®]		
	Description of qubit encoding			Occupation of a waveguide pair of single photons	Nuclear or electron spin or charge of doped P atoms in Si	Majorana particles in a nanowire		
*	Physical qubits ^{4,5}			6×3°				
Ö	Qubit lifetime	~50–100 μs		~150 µs	~1–10 s			
Ð	Gate fidelity ⁷	~99.4%	~99.9%	~98%	~90%			
(Gate operation time	~10–50 ns	~3-50 μs	~1 ns	~1–10 ns			
*	Connectivity							
≫	Scalability	No major road- blocks near-term	Scaling beyond one trap (>50 qb)	Single photon sources and detection	Novel technology potentially high scalability	?		
0	Maturity or technology readiness level	TRL ¹⁰ 5	TRL 4	TRL 3	TRL 3	TRL 1		
		Antoine (Jack)	Jacquier with Princ	iples of Quantum N	lecharticsogendicQuant	um Computing		

200

Q Tech: interesting graph theoretic problems

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing

イロン 不得 とくき とくき とうき

Quantum timeline

Development Roadmap 18M Quantum											
	2016-2019 💿	2020 • 2021 •	2022 👁	2023 🛛	2024	2025	2026	2027	2028	2029	2033+
	Run quantum discuits on the SBM Quantum Platform	Rolesse multi- dimensional readrap publicly with initial aim focused on scaling	an Bing dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5a with quantum serveriess and Execution modes	Improving quartum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quartum circuit quality to abov 7.5K gates	Improving quantum circuit quality to allow 304 gates	Improving quantum distuit quality to allow 15K gates	Improving quantum discuit quality to allow 100H gates.	Beyond 2033, quantum- centric supercomputers will include 1000% of logical qubits unlocking the full power of quantum computing
Data Scientist					Rations						
					Code assistant 🛛 🕉	Parctions	PappingCollection	Specific Libraries			Ceneral purpose QC libraries
Researchers				Hiddleware							
				Quantum	Transplacteria 🏷	Protein Hongoroni	Croud Golding + P	Schligert Crubesbutien			Circuit Brazies
Quantum		Qubit Bustiers									
	TBM Quantum Experience	o orana	O Dynamiccittude O	Execution Modes 🛛 🥥	Heron (5K) 🛛 🕲	Flamingo (SK)	Flamingo (7.5K)	Flamingo (10K)	Flamingo (15K)	Starling (10090	Blue Jay (18)
	Ezrly O Carver, Alludross Penguin Philotope Sigulatis Exception 20-publics 53-publis	Folcon Bendratahing 27 qualita	 Eagle Benchmarking 227 qubits 	ê	Så gelen 133 politis Classical institut 133x3 = 399 politis	Sk prim 150-public Quantum modular 150-r7 - 2012 public	7.5k gates 150 g.dets Quantum modular 150x7 = 2092 gabits	206 galers 356 galers Quantum modular 156x7 = 30%2 gubits	15k peter 154 qubits Quantum modular 15647 = 1892 qubits	200H peters 200 cabits Error convected wookulants	18 prim 2000 publis Enror convicted modularity

Innovation Roadmap

Antoine (Jack) Jacquier

Principles of Quantum Mechanics and Quantum Computing