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Classical Neural Networks
First logical neuron (perceptron) was developed by McCulloch (neuroscientist)
and Pitts (logician) in 1943.

Concept of a NN/machine learning appears to have first been proposed by Turing
(Intelligent Machinery, 1948).

1958: Rosenblatt implemented the perceptron (with 3 layers).

Ivakhnenko and Lapa suggested the first deep learning algorithm (with arbitrarily
many layers) arose in 1965.

1982: Hopfield networks.
1980s-1990s: Hinton with backpropagation, deep learning
2014: Generative Adversarial Networks
Since 2017: Large Language models
They are now ubiquitous, in particular for:
® Function approximation / time series prediction;
® Classification problems (pattern recognition, decision making);

® Data processing (filtering).
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Classical Neural Network

Input Hidden Hidden Output
layer layer 1 layer 2 layer
X0 h(ll)
2
i)
X1 KV n
2
h$?)
X2 AV V2
2
(i)
X3 AV

ANN with one input layer, 2 hidden layers and one output layer.

® y=1Il3z000Lyo00L;(x), where each linear function Ly is of the form
Ly(z) = Ayz + by, for matrices A, and vectors b, with appropriate dimensions,
and o is a (non-linear) activation function (example o(x) = max(0, x) for ReLU).

® Universal approximation theorem.

® Generalisations (Recurrent NN, Convolutional NN, LSTM, ....)
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Quantum Neural Network

1 R, (61) A Re(6/2)
y\V1 U x\Y1
2 o Rx(erfz)
[ 7]
2 S—ved
7 Ra(62_ )
2
n—m+ll N P )
NP N NP
nl e D R(0,"%) —EP
i N [ 2] yan N RN |
Re(6}) Ro(62) D~ A

Diagramme of a quantum neural network — parameterised quantum circuit.
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QNN output

Since measurement only produces a single sample, the quantum circuit needs to be
run many times to obtain good enough statistics.

Example: with 2 qubits, a QNN-classifier predicts one of the four possible class labels
("0”, "1", "2" and "3"). After 1,000 runs, we observe the following:

Measured bitstring  Class label ~ Number of observations

00 0 100
01 1 550
10 2 200
11 3 150

The most likely class label is class "1"” (with probability 55%). The other probabilities,
for the other possible class values, may be useful for other purposes.
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QNN input
The input (sample from the training dataset or a new unseen sample) must be
encoded in the initial quantum state.
Feature encoding:
® Initialise a qubit state as |0)

® Apply an adjustable gate (rotation) with an adjustable parameter (rotation angle)
supporting one-to-one mapping of the feature value.

0) ——m 00 f—x000)]
0) ——r 0 w0}
0) ——m 0 f—xton)}
0) ——rC0—re0]

4-qubit quantum circuit for 8-feature sample encoding.
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Superdense feature encoding

Most of the information in large quantum systems can be stored in correlations. In our
setup above, we can reduce the number of necessary qubits to just 3 if we use
entanglement:

‘O> Ry(el) Rz(04)
[ | (=000 |
|0) {y(62) F——]r.(65) | {r.(07) ]
|0) Ry(03) R.(05) [r.(05) |

3-qubit quantum circuit for 8-feature sample encoding.
In principle, since the n-qubit state can be uniquely described by specifying 2"

probability amplitudes, we only need n qubits to encode 2" features.

However, this superdense encoding is not always practical nor desirable.
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Binary inputs into basis states
Consider a real number x € R approximated with the binary representation

i1 0
Xz/)z:(xizxifh"' 7X*a) = (71)Xi ZXJQJ“FZX*jQ_J = |XiXifl"'X70> = |X>7
=0 =t
for i,0 € N.
Consider now x = (x,...,x¥) € R, and concatenate all the binary approximations
= ..., XN into
(g, gl o) € {0, T},

to obtain a quantum state representation with (1 + i+ 9)N qubits of the form

1 N N N
Ity -y o od X))

The encoding circuit simply only requires the X gate as

N i
|0>®(1+1+D)N ® ® X)Jk |0>®(1+1+D)N
I=1 k=—2
It however requires a large number of qubits and is in general not efficient. Indeed, for a given
dimension N, there are 2" possible basis states. If a dataset contains only M points with M much
smaller than N, the quantum representation will therefore be sparse.
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Superposition encoding
Consider again (x!,...,xM), with xk = (xk, ..., xk) € {0,1}". We use a quantum
system of the form
[0) := 10)®"100) [0)®" .

The encoding works recursively. Note that again
(®Lx7) 10087 = |xd - xb) = Ix).

9% [00)[0)®"  [0)®7jo1) [x1)  [0)2" [00) [x1) . [0)®" [o1) [0)©"
Y S Y Y, S Y, S

After m steps, we arrive at

— 1 - ®n k M—m ®n ®n
[%m) -—W;N) 100} |25 -+ 4/ —7— 10371017 [0)==.

Lemma There exists a unitary operator U such that

m+1 —
Ul = = 3°10127100) 15+ y/ LD 10)57101) 02" = i)

k=1

[th1) :
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Angle encoding

With x = (xq, ..., xy) € CN normalised so that x; € [-m, ) for each i=1,..., N,
angle encoding works by constructing the map

x— X (cos(x,-) |0) + sin(x;) |1) )
i=1

It only requires one rotation gate for each qubit, hence encodes as many features as
the number of qubits.

The small variant

X —> ® (COS(X2,',]_) |0> a4 e Sin(X2,',1) |1> )7

i=1

requiring one extra phase gate, allows to encode 2n features with the same number n
of qubits.
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Encoding a probability distribution

GOAL: Given a probability distribution (po, ..., pan—1) over 2" points, such that
€ (0,1) for each j € {0,...,2" — 1} and 212:”071 pi = 1, we would like to construct a
quantum circuit, represented by a unitary gate U, such that

2"—1

0" = Vhili)-

i=0

U
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n =1 qubit
Consider a probability distribution over two points, with associated probability masses
Po, P1 € (0,1) such that py + p1 = 1. Define 6y := 2acos(y/po). The circuit

0) Ry(0)

generates the state ¥ = /pg |0) + /1 — po |1), as desired.

Indeed, with Y = (O -
i 0

w0 =) =cos () 1 -1n (2) .
so that Y|0) =i|1) and
Ry(6p) |0) = {cos (%) I—isin (92—0) Y} |0)
s (%) 45 ()10

= VR l0) + VI pol1).

), then Y2 = I and, for 6 € R,
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n = 2 qubits and probabilities pgg, po1, P10, P11
|0) Ry(0o) X 1 X ]

10) [ Re(61) | [ Be(62)

and we let 01 := 2acos(,/q1) and 6, := 2 acos(,/q2), for some g1, g2 € (0,1).
U |00) = cRy(62)(X ® I)cRy(61)(X ® I)(Ry(0o) ® I) [00)

= cRy(02)(X & D)eRr(62)(x @ 1) (VA0 [0) + VI = po 1)) [0)

= cRy(62)(X ® T)chy(61) (VAo 1) + VI = p0 [0)) [0)

= R(62)(x & 1) (VP |1) Ry(61) [0) + v/I— po [0) [0))

= ()@@ 1) (VAo 1) [var 1) + VI—ar|1)] + vVI=po [0) [0))

— e(@2)x @ 1) (VAT 110) + /(1 = a0)12) + VI = 7y [00))

= me(62) (VAo 100) + /(1 — ) [01) + /T = 3o 110))

= \/Paz [00) + \/po(1 — a1) [01) + /T — g [1) Re(62) 0)

= V/Boa [00) + y/po(1 — a1) 101) + v/T = po |1) [V [0) + ﬂm}

= VP07t 100) + o/ el o8 L9+ v/ (PR A0) L — Po)(1 — 2) [11) -
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U[00) = /Poqr [00) + v/Po(1 — 1) [01) + /(1 = Po)g2 [10) + /(1 — po)(1 — g2) [11).

Identifying this output with the desired distribution

v/Poo [00) + /po1 |01) + /P10 |10) + /P11 |11), we deduce

Poo = Podi,

po1 = po(l — q1),

pio = (11— po)ge,

pir = (1—po)(l—q2)

Note further that py = poo + po1 and p1 = pio + p11 by the total law of probability,
and pp + p1 = 1 =, so that

. Poo
Poo + Po1
and therefore the rotation angles read

61 = 2acos (&) and 6, = 2acos (&) .
Poo + Po1 P10 + P11

P10

and gp=———.
P10 + P11

This methodology can be generalised to n qubits iteratively.
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Training QNN

Training QNN consists of specifying and executing a procedure to determine an optimal
configuration of the adjustable parameters 6.

Assume a QNN with n quantum registers with [ layers of adjustable quantum gates

where each adjustable gate is controlled by a single parameter 0{ ie{l,...,n},
Jje{1,..., 1}

In this case @ € M, is an n X | matrix of adjustable network parameters:
1 /
B oo @
0=|: . .
ot ... 4
Goal: Find an optimal @ that minimises a given cost function.

This can be done in many different ways that broadly falls into two category:
differentiable and non-differentiable learning.

Antoine (Jack) Jacquier Quantum Neural Networks
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The differentiable learning of QNN

Step 1: Choosing the cost function.

Let y = (y1,-..,Yk) be a vector of binary labels and let f = (1(0), ..., fx(0)) a vector
of binary classifier predictions for the training dataset consisting of K samples.

Example of cost function:

K
1
L@) =5 > (v — fil(©))?.
k=1
Step 2: lterative update of the adjustable parameters by gradient descent:
0 0 —n

, foreach i=1,...,n, j=1,...,I

with 7 being a given learning rate.

Antoine (Jack) Jacquier Quantum Neural Networks
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The finite difference scheme for gradient calculation

The gradient can be calculated numerically by finite difference:

oL6) _ L(6L,....00 +10,...,00) — L(6L,...,6) — A, ...,600)

i

ae{ 2A0 ’

with error O((A6)?).

® Physical characteristics of NISQ devices put restrictions on the size of the
increment (A6 > 0.1 radians).

® The rest of the training routine follows standard classical algorithm of training NN
through backpropagation.

Antoine (Jack) Jacquier Quantum Neural Networks
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Parameter shift rule
The cost function gradient with respect to the parameter 9{ reads
oL(0)

_ ¥ 01(6)
876‘{.' = —kg;()/k — (6)) o061

)

so that calculating it reduces to calculating 0,;fk(0). Let [¢/k) be the quantum state

that encodes the k-th sample from the training dataset and U(@) the unitary operator
that represents the sequence of QNN gates transforming the initial state |1x). Then
the expected value of the measurement operator M is given by

fi(8) = (¥l UT(8) M U(B) [y -
If 6‘{ only affects a single gate G(G{) then U(0) = VG(Q{)W, where W and V are gate

sequences preceding and following G(Gf) Absorb V into the Hermitian observable
Q = VMV and write |¢x) = W|1)x), so that

fi(6) = (¢l G (9)AG(0)) |4 -
Then (writing 8[’ = 0,))

3l£00) = 8] (¢ 6T (0)ac(8) | 6) = (el (910(8)) " 6(8)) I64) + (e 6T (0 ((8)) [
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95(6)

Write B := G(9{) and C:= .
o0

and notice that

(o] c'aB |¢x) + (¢x| BTAC o)
=5 (@ B +0)'a® +¢) o) — (@il (B~ )'a(® —€) 1)) -

Therefore, if we can find the way to implement the operator B & C as part of an overall
unitary evolution then we can evaluate the gradient directly.
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The parameter-shift rule [Schuld, 2018]
Since G(#) is unitary, then G(¢/) = exp (—iejfr) for some Hermitian I, hence
dla(0)) = —ir exp (—i6I) = ~ire(6)).
Substituting into above yields

3lfi(8) = (il iFQ k) + (il Qi) |0k,

where |py) = G(G{) |¢k). If T has just two distinct eigenvalues we can shift the
eigenvalues to +£r, since the global phase is unobservable:

; ir ir
ol6) = r (toul Tt lon) = orl 10" 1))

[0 (=10) o (= 1) b=t (e 2 0 (2 )]

where B:=1 and C := —irr,
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Noting that

(5= (1)

the ‘parameter shift rule’, with the shift s = 7 /(4r), then reads

3lt0) = r (el 6t (01+ 2-) 060 + 9) ) — (ol 6t (8] — ) 66 = 5) |
Example: If I € {X,Y,Z}, then r=1/2, s==/2, and

3 1 P P
9l(8) = 5 [(aul ¢ (61 + T ) ac (61+ 7) o) — (onlet (6] T ) ae (6] 7) I#w] -

Not necessarily faster than FD, but may produce a more accurate estimate of the cost
function gradient, because of current NISQ hardware limited precision.
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Non-differentiable learning of QNN

Differentiable learning, although quite powerful in many cases, may not work for
non-convex cost function with many local minima separated by tall barriers.

Non-differentiable learning: Particle Swarm Optimisation (PSO) algorithm.

PSO belongs to a wide class of evolutionary search heuristics where at each iteration
(generation) the population of solutions (chromosomes) is evaluated in terms of their
fitness with respect to the environment.

Antoine (Jack) Jacquier Quantum Neural Networks
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Quantum Circuit Born Machine

The Quantum Circuit Born Machine (QCBM) is a parameterised quantum circuit
where a layer of adjustable one-qubit gates is followed by a layer of fixed
two-qubit gates, a pattern that can be repeated any number of times building a
progressively deeper circuit.

Input: a quantum state [0)®".

Final layer: measurement operators producing a bitstring sample from the learned
distribution.

To specify the QCBM architecture: number of layers, type of adjustable gates,
type of fixed gates for each layer.
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QCBM architecture

R.(65) [ Rx(6])
R,(65) [ Rx(6])
R.(65) [ Rx(6])
R2(65) [ R«(6])

R(69)

o

X

R(69)

Rx(6F

R2(62)

Rl

7
97

R(69)

Ry

)
o~

Rx(0}) H{ ®-(62) v ®.(63) [ Re(6%) [H R2(63)
:|v R.(63) H Ra(09) [ r:(63)

v Re(03) [ Rx(03) [—{ R2(63)

R(63) [V R2(03) [ Rx(65) [ R2(63)

R(61) [ ro(62) jD|—|Ji] R-(62) M Rx(02) | R2(62)
R(63) H R2(62) Hv Ro(03) H R(08) (H 7o(62)
Rx(0) [ R2(63) E&} R2(63) 1 Rx(67) [ R2(63)
R(03) (H 2:(03) H v Re(63) [ Rx(03) [ R2(63)
Rx(03) [ R:(6) E&} ro(03) [H re(08) H ro(03)
Re(010) H R(0%,) H V|1 Rz<0%0)-|ax(ei’o>|—az(oi’o)
Re(61;) H R(63;) — R-(63;) [ Rx(61;) [H R2(63;)
r(0h) HRo(03,) HY R(0%) H r(6d) H ra(65,)
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QCBM(12, 7): 12 quantum registers, 7 layers of adjustable gates.

R.(0§) [H »(0])
R2(6%5) H Rx(61o)
R2(69) H R<(6];)
R(6%,) H ~(6])
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QPU embedding

The 12 x 7 QCBM architecture is compatible with the limited connectivity observed in
the current generation of quantum processors.

This architecture can be supported by, e.g., IBM’s Melbourne system.

12 shaded qubits correspond to 12 quantum registers. The thick lines represent
connections used in QCBM ansatz; the thin lines represent all other available qubit
connections.

IBM’s Melbourne system
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Training QCBM

Training of QCBM follows the same principles as that of QNN: minimisation of a cost
function. The main difference is the form of the cost function:

® QNN-based classifier: the cost function represents the classification error

® QCBM: the cost function represents the distance between two probability
distributions (distribution of training samples and distribution of generated
samples).

Let @ denote the set of adjustable QCBM parameters, pg(-) the QCBM distribution
and (-) the data distribution. Then we can define the maximum mean discrepancy
cost function L(0) as

Le):=_E [Kxyl-2 E [Kxyl+ E [Kxy)]

X~pg,¥Y~Po X~pg .,y XYy~ T

where K(:,) is a kernel function — a measure of similarity between points in the
sample space.
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Classical and quantum kernels
Popular choice of kernel function is the Gaussian mixture:

K(x,y) = Ze ( ||X¥”2>7

20

for some ¢ € N and where o, i=1,...,c, are the bandwidth parameters of each
Gaussian kernel.

We can also explore the possibility of using quantum kernels. Quantum kernels can
provide an advantage over classical methods for kernels that are difficult to compute
on a classical device.

For example, we can consider a quantum kernel method, which uses a quantum
circuit U(x) to map real data into a quantum state |¢) via a feature map

¢ x = [p(x)):

|9(x)) = U(x) [0)®"

The kernel function is then defined as the squared inner product

K(x,y) = | (#(x)|(y)) I*-

Antoine (Jack) Jacquier Quantum Neural Networks
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Calculation of quantum kernel on a quantum computer

The quantum kernel takes the form (with |0) = |0)®"):

K(x,y) = (0| (x)u(y) 0} ,

and is the probability of measuring the all-zero outcome.

Schematic quantum kernel circuit. Note that R,(0)" = R,(—6) and .2f =, z.
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Classical counterpart — Restricted Boltzmann Machine
QCBM performance can be compared to that of RBM. Both operate on the binary
representation of the dataset, with similar number of adjustable parameters.

b1 by bs by bs be by

R PU2R X 1,
ESCEARRRX
wi1 /.- -\ W12,7
vi V2 v3 1Z) Vs 3 vr V8 V9 V1o Vi1 vi2
ai as as as as a6 ar ag ag aio an a2
RBM(12, 7)

Antoine (Jack) Jacquier Quantum Neural Networks



Quantum Neural Networks
Quantum Circuit Born Machine QCBM vs RCBM

Expressive power???

® For deep neural networks, the power of a model can be quantified by the
Vapnik-Chervonenkis dimension.

® Another popular approach: Fisher information.

® Entanglement entropy of a bipartite system papg is defined as

S(pa) = —Tr(palog(pa)) = —Tr(pglog(ps)) = S(ps),

where pa = Trg(pag) is the reduced density matrix of system A and
pB = Tra(pag) is the reduced density matrix of system B.

Antoine (Jack) Jacquier Quantum Neural Networks
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Quantum Universal Approximation (joint with L. Gonon)
For n € N and 6 € R3", define

Cn(0) :=U(0,x)V acting on n = [log,(4n)] qubits:

Theorem For any R> 0, f€ Fr=--- and n € N, there exists 0 such that

([ 12 oo s ™ < <o,

where the function fR  is constructed via Cn(6).

Example: Given a (measurement) operator M, the expectation of M is given by

(| M) So one can define X 5(x) := (1(8,x)|M|1(8,x)).

Note: Similar result with reservoir quantum neural networks.
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