
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Optimisation from a quantum perspective
Variational Quantum Eigensolver

Quantum Approximate Optimisation Algorithm

Variational Quantum Eigensolver
Quantum Approximate Optimisation Algorithm

Antoine (Jack) Jacquier

(Imperial College London)

January 16, 2025

Antoine (Jack) Jacquier VQE - QAOA



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Optimisation from a quantum perspective
Variational Quantum Eigensolver

Quantum Approximate Optimisation Algorithm

Structure

1 Optimisation from a quantum perspective
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An (NP-hard) optimisation problem

Problem: Given f : {0, 1}n → R, min
z∈{0,1}n

f(z). (1)

• Hamiltonian formulation: HF :=
∑

z∈{0,1}n
f(z) |z⟩ ⟨z|.

• If (|zi⟩) are eigenvectors of HF, then

H|zi⟩ =

 ∑
z∈{0,1}n

f(z) |z⟩ ⟨z|

 |zi⟩

=

 ∑
z∈{0,1}n\{zi}

f(z) |z⟩ ⟨z|

 |zi⟩ +
(

f(zi) |zi⟩ ⟨zi|
)
|zi⟩

= 0 +f(zi) |zi⟩ ⟨zi|zi⟩
= f(zi) |zi⟩ ,

so that (f(zi)) are eigenvalues of HF.
• Solving (1) amounts to finding the smallest eigenvalues (minimum energy) of HF.
• Problem: it is often difficult to find them.

Antoine (Jack) Jacquier VQE - QAOA
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Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is a PQC-based algorithm that aims to
find the smallest eigenvalue (the lowest energy) of a problem Hamiltonian.

Objective functions of many NP-hard combinatorial optimisation problems can be
encoded in the Hamiltonians of the quantum systems – finding the ground state of the
Hamiltonian gives us the minimum of the objective function.

The variational part of the algorithm refers to the systematic search for the best
possible approximation of the ground state by trying various PQC ansatzes and
configurations of adjustable PQC parameters – the variational approach.
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How does the algorithm work?

The characteristic equation for the Hamiltonian H is

H|ψi⟩ = λi|ψi⟩,

where |ψi⟩ is an eigenstate associated with the eigenvalue λi.
The objective is to find the smallest eigenvalue λ0 (the lowest energy) of H
corresponding to the ground state (the lowest energy state) |ψ0⟩.
The eigenvalue (energy) of H is the expectation of H:

⟨ψi|H|ψi⟩ = ⟨ψi| · λi · |ψ⟩i = λi · ⟨ψi|ψi⟩ = λi.

This expectation can be calculated on a quantum computer.
Therefore, the task is to use the PQC to construct a quantum state that is as close as
possible to the ground state of the problem Hamiltonian.
We do it by trying many candidate states and choosing the one that minimises the
expectation value.
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Motivation
The variational approach is motivated by the Spectral theorem. Since a Hamiltonian
operator H is Hermitian, it can then be expressed as

H =
∑

i
λi |ψi⟩ ⟨ψi| =

∑
i
λiHi,

with Hi = |ψi⟩ ⟨ψi| the projection onto the eigenspace of H corresponding to λi (We
assume the eigenvalues to be ordered: 0 ≤ λ0 ≤ λ1 ≤ · · · ).
Born’s rule
When measuring an observable H in the system ψ, the probability of obtaining a given
eigenvalue λi in is equal to ⟨ψ|Hi|ψ⟩.

We can compute

⟨ψ|H|ψ⟩ = ⟨ψ|
(∑

i
λi|ψi⟩⟨ψi|

)
|ψ⟩ =

∑
i
λi ⟨ψ|ψi⟩⟨ψi |ψ⟩ =

∑
i
λi| ⟨ψ|ψi⟩|2.

But, with |ψ⟩ =
∑

i αi |ψi⟩, then ⟨ψ|ψi⟩ = α∗
i for all i, and hence

⟨ψ|H|ψ⟩ =
∑

i
λi| ⟨ψ|ψi⟩|2 =

∑
i
λi|αi|2 ≥ λ0

∑
i

|αi|2 = λ0.
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The hybrid quantum-classical protocol

The role of PQC is to produce the candidate states |ψ⟩.
The variational part of the algorithm consists of iterative improvements of the
candidate state (iterative updates of the adjustable parameters).
The quantum part of the algorithm consists of running the PQC and then measuring H
on the constructed quantum state to obtain the expectation of H.

The variational approach allows us to solve hard optimisation problems encoded in the
Hamiltonian on the digital gate model quantum computer – an alternative to the
adiabatic quantum computing since not all optimisation problems can be efficiently
formulated in a QUBO format.
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Computing expectations on a quantum computer

Start with the simplest case of a one-qubit system. Since any 2 × 2 unitary and
Hermitian matrix can always be decomposed into a sum of the Pauli matrices X, Y, Z
and an identity matrix I, we can represent any 1-qubit Hamiltonian as

H = aX + bY + cZ + dI,

where a, b, c and d are some real coefficients. For a given |ψ⟩, the expectation value
of a Hamiltonian is given by the expression:

⟨H⟩ := ⟨ψ|H|ψ⟩ = a ⟨ψ| X |ψ⟩+ b ⟨ψ| Y |ψ⟩+ c ⟨ψ| Z |ψ⟩+ d ⟨ψ| I |ψ⟩ .

The expectation is computed by adding the expectation values of each term.
Thus we can compute the expectation values of the Pauli terms independently and
then sum them up to obtain ⟨H⟩. We can do it by first constructing state |ψ⟩ with the
help of a PQC and then performing measurement in the computational basis. The
process of constructing the state and performing measurement should be repeated
sufficiently many times to obtain accurate statistics.
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Expectation values of Pauli operators
Expectation value of I is 1:

⟨ψ| I |ψ⟩ = ⟨ψ |ψ⟩ = 1.

This term will contribute d to ⟨H⟩.

The next term is cZ. Recall that Z-gate is the PHASE gate (Z |1⟩ = − |1⟩, Z |0⟩ = |0⟩).
The measurement is performed in the z-basis, where |ψ⟩ can be represented as a
superposition of the basis states |0⟩ and |1⟩:

|ψ⟩ = αz |0⟩+ βz |1⟩ ,
for some coefficients αz and βz. The expectation ⟨ψ| Z |ψ⟩ is then calculated
as

⟨ψ| Z |ψ⟩ =
(
α∗

z ⟨0|+ β∗
z ⟨1|

)
Z
(
αz |0⟩+ βz |1⟩

)
= |αz|2 ⟨0| Z |0⟩+ α∗

z βz ⟨0| Z |1⟩+ αzβ∗
z ⟨1| Z |0⟩+ |βz|2 ⟨1| Z |1⟩

= |αz|2 ⟨0|0⟩ − α∗
z βz ⟨01⟩+ αzβ∗

z ⟨10⟩ − |βz|2 ⟨11⟩
= |αz|2 − |βz|2,

where |αz|2 and |βz|2 are the probabilities that after z-basis measurement the
quantum state |ψ⟩ will become |0⟩ or |1⟩ respectively.
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Expectation value of Z

If we run the quantum circuit (to construct state |ψ⟩) and perform measurement N
times, the probability of finding qubit in state |0⟩ can be estimated as n0

N , where n0 is
the number of state |0⟩ measurements.
Similarly, the probability of finding qubit in state |1⟩ can be estimated as n1

N , where n1
is the number of state |1⟩ measurements (n0 + n1 = N).
Therefore, the contribution of the Z-term to ⟨H⟩ is given by

c ⟨ψ| Z |ψ⟩ = c n0 − n1
N

.
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Expectation values of X and Y
First, note that states |0⟩ and |1⟩ are the eigenstates of operator Z with the
corresponding eigenvalues being +1 and −1:

Z |0⟩ = |0⟩ , Z |1⟩ = − |1⟩ .

The eigenstates of operator X are

|+⟩ =
|0⟩+ |1⟩

√
2

and |−⟩ =
|0⟩ − |1⟩

√
2

,

and the eigenstates of operator Y are

|R⟩ =
|0⟩+ i |1⟩

√
2

and |L⟩ = |0⟩ − i |1⟩
√

2
.

Their corresponding eigenvalues also are +1 and −1:

X|+⟩ = |+⟩, X|−⟩ = −|−⟩, Y|R⟩ = |R⟩, Y|L⟩ = −|L⟩.
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Expectation values of X and Y (continued)

Therefore, the quantum state |ψ⟩ can also be decomposed into the superposition of
the basis states {|R⟩, |L⟩} (y-basis) and {|+⟩, |−⟩} (x-basis):

|ψ⟩ = αx|+⟩+ βx|−⟩ = αy|R⟩+ βy|L⟩.

If we can perform measurement in x-basis and y-basis, the expectations ⟨ψ| X |ψ⟩ and
⟨ψ| Y |ψ⟩ can be calculated in exactly the same way as expectation ⟨ψ| Z |ψ⟩:

a ⟨ψ| X |ψ⟩ = a n+ − n−

N
, b ⟨ψ| Y |ψ⟩ = b nR − nL

N
.

Here, n+ and n− are numbers of measurements in the x-basis that correspond,
respectively, to the |+⟩ and |−⟩ outcomes. And nR and nL are numbers of
measurements in the y-basis that correspond, respectively, to |R⟩ and |L⟩
outcomes.
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Expectation values of X and Y (continued)
In the case when we can only perform measurement in the z-basis, we need to apply
some additional operators (gates) to state |ψ⟩ before the measurement, such that the
probability of measuring |0⟩ in z-basis is the same as the probability of measuring |+⟩
in x-basis if we are calculating ⟨ψ| X |ψ⟩, or the probability of measuring |0⟩ in z-basis
is the same as the probability of measuring |R⟩ in y-basis if we are calculating
⟨ψ| Y |ψ⟩:

H |ψ⟩ = H (αx|+⟩+ βx|−⟩) = αx |0⟩+ βx |1⟩ ,

with H|+⟩ = |0⟩ and H|−⟩ = |1⟩.

G |ψ⟩ = G (αy|R⟩+ βy|L⟩) = αy |0⟩+ βy |1⟩ ,

with G|R⟩ = |0⟩ and G|L⟩ = |1⟩.
The operators H and G are the following one-qubit rotations:

H =
1
√

2

[
1 1
1 −1

]
, G =

1
√

2

[
1 −i
1 i

]
.
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Constructing the PQC (continued)

|0⟩ Ry(θ1) Rz(θ2) |ψf⟩

PQC for a one-qubit system to calculate ⟨Z⟩.

|0⟩ Ry(θ1) Rz(θ2) H |ψf⟩

PQC with H gate to calculate ⟨X⟩.

|0⟩ Ry(θ1) Rz(θ2) G |ψf⟩

PQC with G gate to calculate ⟨Y⟩.
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Antoine (Jack) Jacquier VQE - QAOA



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Optimisation from a quantum perspective
Variational Quantum Eigensolver

Quantum Approximate Optimisation Algorithm

The time evolution
The dynamics of the quantum mechanical system is governed by the Schrödinger
equation:

iℏd|ψ(t)⟩
dt

= H|ψ(t)⟩,

where |ψ(t)⟩ is the quantum state at time t and H is the time-independent
Hamiltonian. The solution of Schrödinger equation is given by the following
expression:

|ψ(t)⟩ = U(0, t)|ψ(0)⟩,

where the operator U(t) is obtained from the Hamiltonian H via

U(0, t) = exp

(
−iHt
ℏ

)
.

In the following we will be working with the units where Planck’s constant ℏ is set
equal to 1 and the system dynamics is given by the expression

|ψ(t)⟩ = e−iHt|ψ(0)⟩.
Antoine (Jack) Jacquier VQE - QAOA
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Time-dependent Hamiltonian

If the initial state of the system, |ψ(0)⟩, is known then the state of the system at
time t is also known and is determined by the action of Hamiltonian H over period of
time t.
We would like to work with the time-dependent Hamiltonians of the form

H(t) =
(

1 −
t
T

)
H0 +

t
T
HF,

where H0 is the initial Hamiltonian and HF is the final or problem (i.e., encoding the
optimisation problem) Hamiltonian.
How do we reconcile the time-independent Hamiltonian of the Schrödinger equation
and the time-dependent Hamiltonian describing the evolution of our system?
We can approximate the time-dependent Hamiltonian H(t) that transforms the state
on interval [0,T] by a sequence of time-independent Hamiltonians, {H1,H2, . . . ,Hn},
transforming the state in corresponding shorter time intervals
{[t0 = 0, t1], [t1, t2], . . . , [tn−1, tn = T]}.
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Approximation
A good analogy can be an approximation of continuous function (e.g., sin(t)) by a
piecewise linear function. The more granular the time intervals [ti−1, ti], the better the
approximation.

0 2 4
−1

−0.5

0

0.5

1

n = 3

0 2 4
−1

−0.5

0

0.5

1

n = 6

0 2 4
−1

−0.5

0

0.5

1

n = 12

Piecewise linear approximation of sin(t).

Similarly, we can approximate operator U(0,T) as

U(0,T) = U(tn−1, tn = T)U(tn−2, tn−1) · · · U(t2, t1)U(t0 = 0, t1).

Larger n gives us better approximation.
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The Suzuki-Trotter expansion

A particularly useful approximation of U(0,T) can be obtained using the
Suzuki-Trotter expansion. If A1,A2, . . . ,Ap are operators that do not necessarily
commute with each other, then

eA1+A2+...+Ap = lim
m↑∞

(
e
A1
m e

A2
m · · · e

Ap
m

)m
.

Two operators A and B are said to commute with each other if

AB − BA = 0,

or equivalently AB |ψ⟩ = BA |ψ⟩ for any quantum state |ψ⟩.
In general, operators do not commute; for example, rotations around different axes do
not.
If they do, we can measure them in an arbitrary order and get the same answer. The
Suzuki-Trotter expansion, however, does not require operators to commute. This has
important implications for QAOA.
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QAOA Hamiltonian

If U(0,T) has the form eA+B, then the Suzuki-Trotter expansion yields

eA+B = lim
m↑∞

(
e
A
m e

B
m
)m

.

The time evolution of A+ B can be approximated by applying alternatively A and B
for time intervals T/m.
The Hamiltonian terms H0 and HF have the following general form:

H0 =
∑

i
σi

x and HF =
∑

i
aiσ

i
z +

∑
ij

bijσ
i
zσ

j
z,

where ai and bij are some coefficients.
The initial Hamiltonian H0 is the operator A (the mixing Hamiltonian) and the final
Hamiltonian HF is the operator B (the phase Hamiltonian).
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QAOA Hamiltonian (continued)

The initial state is selected to be the equal superposition state of all possible solutions,
and can easily be constructed with the help of Hadamard gates:

|ψ(0)⟩ = 1
√

2n

(
|0 . . . 00⟩+ |0 . . . 01⟩+ . . .+ |1 . . . 11⟩

)
= H⊗n |0⟩⊗n

= (H |0⟩)⊗ · · · (H |0⟩).
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Quantum Approximate Optimisation Algorithm

Algorithm 1: Quantum Approximate Optimisation Algorithm
Result: Optimal solution
• A parameterised quantum state, |ψ(β, γ)⟩, is created by alternately applying

operators A and B (mixing and phase Hamiltonians) for m rounds, where the
duration in round i, i = 1, . . . ,m, is specified by parameters βi and γi respectively:

|ψ(β, γ)⟩ = e−iβmAe−iγmB · · · e−iβ2Ae−iγ2Be−iβ1Ae−iγ1B.

• A computational basis (z-basis) measurement is performed on the obtained state,
which returns a candidate solution. Repeating the above state preparation and
measurement, the expected value of the cost function f over the returned solution
samples is given by

⟨f⟩ = ⟨ψ(β, γ)|B|ψ(β, γ)⟩,

which can be statistically estimated from the samples produced.
• The above steps may then be repeated with the updated sets of time parameters
β and γ – the variational part of the algorithm – within the classical optimisation
loop that aims to minimise the expectation of the cost function ⟨f⟩.

• The algorithm returns the best found solution.
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Operators A and B do not commute

It is important to apply operators exp(−iβA) and exp(−iγB) alternately to ensure
that we are not trappped in a local minimum.
It is also important that operators A and B do not commute. This is because by
applying only operator exp(−iγB) (the phase Hamiltonian) we are running into a
danger of getting into a state which is the eigenstate of the phase
Hamiltonian.
If this happens we will be trapped in this state: any further application of a linear
operator to its eigenvector may change its length but not its direction.
The same consideration applies to alternating between two commuting operators: if A
and B commute, then we can come up with a set of basis states that are eigenstates
of both A and B, and once we get into one of these eigenstates we will be trapped in
it. However, since σx and σz do not commute:

σxσz − σzσx = −2iσy ̸= 0,

there is always a chance to escape from the local minimum.
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The Max-Cut problem
GOAL: divide the vertices of a graph in two groups such that either the maximum
possible number of edges going between the two groups are ”cut” (if all edges have
the same weight) or the total weight of these edges is maximised (if they have
different weights).
The cost function for the edge connecting vertices i and j:

cij =
1
2

wij(1 − sisj),

where si and sj are classical spin variables taking values {+1,−1} and wij is the weight
associated with the edge connecting vertices i and j. The two groups of vertices are
those where the spin variables take the same values (either +1 or −1).
The cost function for the whole graph:

L(s) =
∑

{ij}∈G

1
2

wij(1 − sisj),

where s = (s1, . . . , sN) is the set of decision variables associated with the N-node graph
G and the sum goes over all pairs of nodes connected by the graph edges.
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QAOA gates
The mixing Hamiltonian A and the phase Hamiltonian B that correspond to the
Max-Cut cost function are

A =
N∑

i=1
σi

x

and

B =
∑

{ij}∈G

1
2

wij
(

1 − σi
zσ

j
z
)
,

where the spin variables s are replaced by the corresponding Pauli operators σ.
Therefore, we need to find the quantum gate representation of the following
operators:

exp
(
−iβσi

x
)

and exp

(
−

1
2

iγσi
zσ

j
z

)
.
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QAOA gates (continued)

In order to find the quantum gate representation of the operators

exp
(
−iβσi

x
)

and exp

(
−

1
2

iγσi
zσ

j
z

)
,

we should use the following theorem:

The following equation holds for any unitary Hermitian operator H:

Rθ(H) := exp

(
−i θ

2
H
)

= cos

(
θ

2

)
I − i sin

(
θ

2

)
H,

where I is the identity operator.
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QAOA gates (continued)

exp
(
−iβσi

x
) qi Rx(2β)

Gate representation of operator exp
(
−iβσi

x
)
.

exp
(
−i γ2 σ

i
zσ

j
z
) qi Rz(γ)

qj Rz(−2γ)

•

Rz(γ)

Gate representation of operator exp
(
−i γ2 σ

i
x
)
.
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Sample Max-Cut problem
The Max-Cut graph consists of eight nodes (embedded in qubits 1, . . . , 8) and eight
edges with equal weights.
Can we find a partitioning of this graph that would cut the maximal number of
edges?

1

2

3

4

7

8

5

6

Embedding of Max-Cut optimisation problem on Rigetti’s Aspen system.
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QAOA circuit

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

H

H

H

H

H

H

H

H

Rz(−2γ)

Rz(−2γ)

Rz(−2γ)

Rz(−2γ)

Rz(γ)

Rz(γ)

Rz(γ)

Rz(γ)

Rz(γ)

Rz(γ)

Rz(γ)

Rz(γ)

Rz(−2γ)

Rz(γ)

Rz(γ)

Rz(−2γ)

Rz(γ)

Rz(γ)

Rz(−2γ)

Rz(γ)

Rz(γ)

Rz(−2γ) Rz(γ)

Rz(γ)

Rx(2β)

Rx(2β)

Rx(2β)

Rx(2β)

Rx(2β)

Rx(2β)

Rx(2β)

Rx(2β)

M

M

M

M

M

M

M

M

•

•

•

•

•

•

•

•

1 2 3 4

QAOA circuit for the Max-Cut problem.
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Max-Cut solution

The optimal solution reads as 10011001 and is represented by the dashed curve that
separates nodes into two equal subsets and cuts across all edges of the graph.

1

2

3

4

7

8

5

6

Visualisation of the Max-Cut problem solution.
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