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Noisy Q annealing

Q annealing, Hamiltonians and noise...
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Noisy Q annealing

Simulated annealing

SA: metaheuristic inspired by thermal annealing. Goal: minpcgn f(x).
® Start with an initial value x € D and compute f(x);
® Randomly choose a neighbour y of x and evaluate f(y);
o If fly) < f(x), then set x :=y,
O else, either keep x as is or set x :=y;
@ Repeat until an end criterion is attained.

Crucial step: Step 4, to avoid being stuck in a local minimum and favouring, at least
at the beginning of the algorithm, exploration rather than exploitation.

If y) > f(x), we switch y — x with the probability
P(switch) = exp { ﬂy) ) }

where 7 plays the role of the thermal annealing temperature: when the system is hot,
particles move (exploration), and cools down when refinement (exploitation) is
required.
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An optimisation problem

Problem: Given : {0,1}" — R, f2). (1)

min
z€{0,1}"

® Hamiltonian formulation: # := Z f(2) |2) (z].
z€{0,1}"

® If (|z;)) are eigenvectors of #, then

Hr|zi) Y. Dl | 1z)

z€{0,1}"
f2)12) (2l | 120 +(Rz)12) (@i ) |2)

z€{0,1}"\{z}
0 +f(z;) |z:) {zi|z;)
f(zi) |zi)

so that (f(z;)) are eigenvalues of H.

® Solving (1) amounts to finding the smallest eigenvalues (minimum energy) of H.

® Problem: it is often difficult to find them.
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Constant Hamiltonian simulation

Schrédinger equation (normalised with i = 1):
d (¢
ihw =H|Y(t)), telo,7] (Schrédinger equation).

is solved as )
[(t)) = e~ 13(0))
at time t > 0. If H |vo) = Ao |¢0), then

[b(t)) = e~ Mt [ypg) = e~ 1R0t [g)

i.e. no transition over time between different eigenstates!!
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Time-dependent Hamiltonian simulation ()

Schrédinger equation over [0, 7]; time change t(-) with t(0) = 1 and t(1) = 7:

O v, on 0,11 @)

Consider #H(s) = r(s)Ho + (1 — r(s))HF, for two Hamiltonians Ho and H g, where r(-)
is a continuous adiabatic evolution path decreasing from r(0) =1 to r(1) = 0.
Let |1(-)) be the solution to the Schrédinger equation, so that

[1(s)) = U(s) |¥(0)), for some unitary operator U.

Consider (2) with t(s) = s7, hence

i@ = TH(s) |%(s)), on [0,1].
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Q Adiabatic Theorem

Let |¢(s)) be the ground state of H(s) and the adiabatic schedule r(s) = 1—s:
H(s) = (1 — s)Ho + sHF.

Theorem. Assume that Hy and Hg do not commute and that there is no spectral
gap. If there exists § > 0 such that

2 _ _ 2
r>? {Co |HF72H0H LG ||HF7H0H }7

A N

with A = mingc(o,1] As, then, starting the system in the state [1(0)) = |#(0)), the
Schrédinger evolution yields at time 1 a state [¢)(1)) satisfying

(1)) — [N < 6.
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The 1-bit Disagree problem
The 1-bit Disagree problem reads

1, ifz=1,
f(z)'*{o if z=0.

w6 Y6 )= Yo

Hr|0) = 10) (0[|0) = [0) =110},
Hr|1) =10) (0]|1) =0=10-]1), (ground state).

so that
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The 1-bit Disagree problem
The 1-bit Disagree problem reads

1, ifz=1,
f(z)'*{o if z=0.

)

w6 Y6 )= Yo

so that
Hr|0) = 10) (0[|0) = [0) = 1-10),
Hr|1) =10) (0]|1) =0=10-]1), (ground state).
Define now
L 1—o0* _ 1 1 —1 _ 1 1) (1 1 1
mo=27 =2 (4 T =3(0+ma-me-oa).

One can check that

Hol+) =1+)=1-|+),
Hol-)=0=0-|-), (ground state).
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Interpolating Hamiltonian:

H(t) := (1 — t) Ho + tHF, t € [0,1].

Eigenvalues: A4 () = (1 +/1-2¢1— t)).

Eigenvalues when Ho =1(/ - 0¥)
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The Q adiabatic theorem applies!!

Antoine (Jack) Jacquier Quantum annealing and Quantum Monte Carlo



Noisy Q annealing
Monte Carlo
Going further and wrapping up

The commuting issue for the 1-bit Disagree problem

Consider instead 1 ; L
-0 0 0
Ho := TG (0 1) = [1)(1].
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The commuting issue for the 1-bit Disagree problem

Consider instead 1 ; L
-0 0 O
Ho := =—=5 (0 1) = [1)(1].

One can check that
Ho |0) = |1) (1]|0) = 0O, (ground state)
Ho 1) = [1) (1] |1) = [1).
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The commuting issue for the 1-bit Disagree problem

Consider instead 1 ; L
-0 0 O
Ho := =—=5 (0 1) = [1)(1].

One can check that
Ho [0) = |1) (1] |0) = O, (ground state)
Ho |1) = [1) (1][1) = [1).
Interpolating Hamiltonian:
H(t) = (1 — t)Ho + tHr = (5 . 0 t) . forte[0,1].
Eigenvalues: A\(t) € {t,1 — t}: H(t)|0) = t|0) and H(t)|1) = (1 — t) |1).

Eigenvalues when Ho =1(/ - 0%)
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Adding noise.....
Consider a noisy version of the interpolating Hamiltonian:

HE(t) == H(t) + ¢ (t(lo— ) t(l(; t)) = (6t(1t— ) Etgl_itt)) , for t € [0, 1].

The two eigenvalues (say for € = 0.2 behave as follows:

Eigenvalues when Hy = %(I —0?) and noise € = 0.2
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And the spectral gap is restored!
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The 2-bit Disagree problem

The 2-bit Disagree problem reads

f(X) o= { 07 if X1 # X2,

1, otherwise.

1 0 0 O
o o o of 1 1+ o0fo3
He = 0 0 0 O 7§{I®I+(Z®I)(I®Z)}7?7
0 0 0 1

with I the identity matrix in Mj(R), Z = ((1) _01) and ® the Kronecker product.

Eigenvalues:

F

F_ —
€ = 5 € =

= o~ o
o+ oo
|
coor
£
Il
—=ooo

with eigenvalues 0,0, 1,1, so that the ground states are {ef7 eg}.
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® |nitial Hamiltonian:

Ho:12(1—0,*):%{(1®I—X®I)+(I®I—I®x)}

2 -1 -1 0
-1 2 0 -1
-1 0 2 -1’
0 -1 -1 2

N | =

® Eigenvalues {0,1,1,2} and ground state € = (1,1,1,1)T = 2|++);
® Take H¢:= (1 — r(t))Ho + () HF;
® Apply the Q Adiabatic theorem;
Questions
® How to find Hg in general? Idea: PQC.
® Reality has noise: H; —> H$ for all t € (0,1) (or noise-induced algorithm);

® Question: understand H€ as € | 0.
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Monte Carlo simulations
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Classical Monte Carlo
X: random variable, with y := E[v(X)] and o2 := V[v(X)].
(v: given nice enough map, both p and o2 are finite).

-

2 \

® [aw of large numbers: [iy converges to p almost surely as N 1 oo;

® (Central Limit Theorem:

Ay — p C
lim = N(0,1) in distribution.
NTOO o/vVN 0.1)

This implies that

By —

cr/\ﬁV

5{’") <|N(0 1) < 5m> .

If we want P(|NV(0,1)| > z) =1 — 6, we require z= VN e N=0O (E%)

o

P(mNmss):P(

One may replace o2 by its unbiased estimator s> := N i ZI 1(Xi = /_LN) .
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Quantum Monte Carlo

Amplitude estimation
[Brassard, Hgyer, Mosca, Tapp, 2002] and [Montanaro, 2015]
® |nputs:
® a quantum state |¢)) and a projector P;
® Unitary U:=2¢) (¢p| — I and V:=1I — 2P;
®* NeN
® Output: Estimate & of u = (¢|P|¢) such that

_ o VH(A—p) | 7

— <
[ —pl < N 2

with probability at least 2, using U and V, N times each.

Note: the probability can be improved to 1 — § (for any § > 0) using the Powering
Lemma, at the cost of a O(Iog(l/é)) multiplicative factor.

Fix e >0 and let N : Then (for |u| < 1)

f
|E— u\<u\/1*u€+78 < e,
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Quantum Monte Carlo

Powering Lemma

[Jerrum, Valiant, Vazirani, 1986]

Let A be a (quantum or classical) algorithm estimating p and whose output
satisfies
| —pl<e,

except with probability less than %

Then, for any § > 0, it suffices to repeat A log(1/0) times and take the median to
obtain & with
‘//'Z - u" <g,

with probability at least 1 — §.
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Quantum Monte Carlo

Quantum Monte Carlo [Montanaro, 2015]
Algorithm

® |nputs:
® Algorithm A with random output v(A) € [0,1]; N € N; 6 > 0; n qubits;

® k < n qubits are measured. The outcome of the measurement of x € {0, l}k is mapped
into v(x) € [0, 1];

* WX, [0) = 0, (VI= (9 [0) + VEG9 1))
® Steps:
® Apply N iterations of Amplitude Estimation with
[9) =T @WABTD)[0)®"Y  and  P:=T®1)(1]. 3)
® Repeat (3) O(log(1/4)) times and output the median.
Theorem (let p := E[v(A)])
The algorithm outputs z such that, with probability at least 1 — 4,

Vi 1),

h—pl<C(¥E 4=
| —pl < (N 2

To get |z — p| < €, one then needs N = O(1/¢)
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Quantum Monte Carlo

Cost of the QMC algorithm

® The circuit U is used O(Nlog(1/5)) times:
® N times for Quantum Amplitude Estimation;

® log(1/5) times for the Powering Lemma;
Refinements:

® output bounded in P [Montanaro, 2015];

® output with bounded variance;
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Quantum Monte Carlo

Proof of the theorem
We have

A|O Zaxwx ik XDk
Therefore

) = EOUAG D0 10) = (19¥) 3 axl)p—i ¥ [0
= 2 a4 by 0
= 2 axlbdn sl (VI=v10) + Vo 11))
= 2l s W V=00 [0) + 3 b VIR D).

|V Bad) IV Good)

Clearly (Wgaq|Wcood) = 0. Now, project |¢) onto the Good subspace, i.e. using the
projective measurement P := I®" ® [1) (1], so that

(WIP1]Y) = (Wl + (Wa|)P1 ([Ve) + [VE))
= (Vg|P1|We) + (Wg[P1|Ve) + (Wa|P1|We) + (Wp[P1|VE) .
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Quantum Monte Carlo

+
(WglP1|Wg) = <Zax|¢x n—k X VvV 1) P (Zax|¢x>nk|X)\/V(X)1>>

< V) (1] (wxlnk> 197 1) (1 <Z ax [1hx) ni 1) V() |1>>

- (Z V) (1l (A <wx|n_k> > b)) VIG 1)
= la? Ve[ = = 2 losf? 0] = E(A)

Since (Wg|P1|Wg) = (Wp|P1|Wg) = (Wp|P1|WE) =0, then

(Y[P1|eh) = ZIaXIQV(X) E[v(A)]-

We then apply Amplitude Estimation and the Powering Lemma.
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Quantum Monte Carlo

Application to option pricing

Goal: N := E[v(Wf7)], for some Brownian motion W.
® Discretise (quantisation) the support R — [w, W] with 2" points, and assume that
201

. P(w;)
A wi = =
5= 2 VR, it =

and we identify w; with |j).

® In particular, take v(w) = (So exp {ow— ‘7277—} — K)+

B: [j)[0) — ) 7)), j : binary approximation of v(w;).

Wi 12— 1) 17) (VT =5;10) + /F;|1)) (as in QMC)
® Inverting B yields |j) [0)®" (/T — ;(0) + 1/ [1)).

® Ignoring |0)®", we can now use QMC to obtain an estimate of E[v(W7)].

Antoine (Jack) Jacquier Quantum annealing and Quantum Monte Carlo



Monte Carlo . 5
Quantum simulation

Quantum simulation (different...)
Schrédinger: the evolution of a quantum system satisfies (ignoring Planck):
0c|(1)) =H[Y(t),  [$(0) € ...

with solution |¢(t)) = e~ "t |2)(0)). The Hamiltonian # is usually large and e =17t is
hard to compute. First-order approximation e =17t & 1 — i#{t unsatisfactory.

Assumptions

* H= Z;‘Zl H,, where each H, acts on a ‘small’ subsystem (such that e~ 17/t is
easy to compute); note that H; and H, do not commute, but e 1Mt can be
approximated with the Suzuki-Lie-Trotter formula.

® T = md (m represents the number of time steps in the Suzuki-Lie-Trotter
discretisation);

® Measurement operator M and p := E[M] = Tr(Mp), with p = [¢) (¢|;
*pi= % Z}Ll X
Theorem [Wang, 2011] There exist C;, C; > 0 such that, for all n, m,

E[(ﬁ—u)z] S%-‘r%-

Antoine (Jack) Jacquier Quantum annealing and Quantum Monte Carlo



Noisy Q annealin
Monte Carlo

Going further and wrapping up Application to PDES

Option Pricing in the Black-Scholes model

® Black-Scholes SDE:

ds
?* =rdt+odW;,  for t>0.
t

® European Call option with payoff V(T, St) = max(St — K, 0)

® Feynman-Kac:
a2
8t+T855+r585—r V(t,s) =0, fors>0, te [0, T),
with terminal condition V(T,s). This is equivalent to the heat equation
1
Oru(T,x) = §8xxu(7—, x),
where the boundary condition is now at time zero (7 = o?(T — t)).
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From Black-Scholes to Schrodinger

® The Wick rotation § = —i7 turns the heat PDE into —i0; u(§, x) = %(590 or
—i0¢ [¢) = H |) (Schrédinger equation),
where 1)) plays the role of the u(-, ), and H = %8)“.
® Explicit solution:
() = exp {ile } 11(0)) ,

where exp {1ﬁ§} is the time evolution operator and |1(0)) a normalised initial

state with (1(0)|4(0)) = 1.
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Application to PDEs

A hybrid quantum algorithm

® Problem: normalised imaginary time evolution
(7)) = () e 7 [9(0)) -
® Approximate |¢(7)) by a Q circuit composed of parameterised gates such that

[4(7)) = |#(8+)), for some time-dependent parameters 8, = (6L,--- ,6N) € RV,

® Assuming an initial state |¢), so that the ansatz is [¢(7)) = ®(0+) |¢o) at
time 7, where ®(0,) is sequence of unitary gates
D(0-) =S (Un(OY),..., Uk(6%), ..., Ur(6L)).

07 :=argmin ||3(7)) — ®(67) [o)]l -
OcRN
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Application to PDEs

At time 7

The optimisation problem reduces to the system of ODEs
A(7)8r = C(7),

for all 7, where 97- = 0:0,, and

o= (x2S - (2 Ri))

In this setting, both A and C can be measured efficiently using a quantum computer.
In order to build the hybrid classical-quantum scheme, we assume:

® Every unitary gate in the algorithm depends on a single parameter.

° 7 = ZfL Xihi, for X € RN and tensor products h; of Pauli matrices.
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Simulation from 7 to A,

® Once A(7) and C(7) are obtained, the time evolution can be computed
numerically using a classical computer.

® Euler scheme:

Orin, =6, + 0.0, =0, + A A(T)"1C(7),
for some small time step A.

® .. and so on until time 7 = T.
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European Call option
Model: Black-Scholes dS; = 0Sid W, with 0 = 20%, S = K=100, T = 1.

Goal: Compute E[max(St — K, 0)].

Discretise the state space on logarithmic scale on an equidistant grid
[Smin, Smax] = [50, 150].

With four qubits, the discretisation represents |t)) using 24 = 16 points, where
|1)p) = |0000) and |¢pp) = |1111) represent the solution at Spin and Smax.

The Hamiltonian H = % .« is discretised by second-order finite differences

—2bA2 0 0 0O --- 0 O 0
1 -2 1 0 --- 0 O 0
1 0 i -2 1 --- 0 0 0
N
0 0 0 0 --- 1 =2 1
0 0 0 0 --- 0 0 —2bA2

X

where A is the discretisation step in space.
We split [0, T] into nt steps.
We compute A and C as above.

The evolution of 0 is obt%ace)d from the Euler scheme.
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Quantum Monte Carlo
Quantum simulation

Application to PDEs

O Classical O Classical
X Quantum X Quantum
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Top: European prices (left) and errors (right) ||[¢(7)) — |¢(0+))||. Bottom: Comparison with
closed-form formula at maturity (left) and at inception (right).
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Wrapping up...
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Applications of QC

® Optimisation
® Simulation

® Machine Learning

Antoine (Jack) Jacquier Quantum annealing and Quantum Monte Carlo



Noisy Q annealing
Monte Carlo
Going further and wrapping up

Future of QC (for Finance)

Clear realisation from the (Finance) industry that ‘it may work’...
Parallel development of hardware and software.
Problem-specific algorithms.

Hybrid Quantum-Classical algorithms.
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