A Deep BSDE approach for the simultaneous pricing and delta-gamma hedging of large portfolios consisting of high-dimensional multi-asset Bermudan options

Balint Negyesi series of joint works with Kees Oosterlee

22nd Winter school on Mathematical Finance

January 20, 2025

Agenda

- Hedging portfolios
- 2 BSDEs and related options
- 3 One Step Malliavin (OSM) schemes and portfolio delta-gamma hedging
- Numerical results
- Summary

Contents

BSDEs and related options

3 One Step Malliavin (OSM) schemes and portfolio delta-gamma hedging

Numerical results

Problem

Possession of a portfolio of J options issued on a set of common risk factors (tradeable + non-tradeable) which form an $\mathbb{R}^{m+(d-m)}$ valued Itô process

$$X_t = x_0 + \int_0^t \mu(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s$$

Mixture of European/Bermudan(/American)contracts with $\mathcal{R}^j\subseteq [0,T]$ early exercise dates $j=1,\ldots,J$ Construct a (delta-)hedging portfolio

- 1 short position in the option: $-\sum_{j=1}^J v^j(t,X_t) \mathbb{1}_{\tau^j \geq t}$,
- olong position in the underlying assets: $+\sum_{i=1}^{m} \alpha_t^i X_t^i$,
- \odot risk-free bank account: $+B_t$,

Problem I

The value of the portfolio evolves according to

$$dP_t^{\Delta} = -\sum_{j=1}^{J} v^j(t, X_t) \mathbb{1}_{\tau^j \ge t} + \sum_{i=1}^{m} \alpha_t^i dX_t^i + dB_t, \quad P_0^{\Delta} = 0$$

Rebalancing at a discrete set of points in time $\{0 = t_0 < t_1 < \cdots < t_N = T\}$ according to the first-order constraint

$$\alpha_{t_n}^i = \sum_{j=1}^J \partial_i v^j(t_n, X_{t_n}) \mathbb{1}_{\tau^j \ge t_n}, \quad i = 1, \dots, m$$

and updating the position in the underlying by purchasing/selling $\alpha^i_{t_n} - \alpha^i_{t_{n-1}}$ of the i'th asset (borrow/deposit from/in bank account)

Risk

Since rebalancing only happens at discrete time intervals the corresponding strategy is not risk-free – only as $\sup_n |t_n-t_{n-1}|\to 0$

Quality assessed by the relative profit-and-loss (PnL)

$$\operatorname{PnL}_T^{\Delta} \coloneqq \frac{e^{-rT} P_T^{\Delta}}{\sum_{j=1}^J v^j(0, X_0)},$$

which is an \mathcal{F}_T -measurable random variable

Statistics on its distribution then assess the quality of the hedging strategy

- ullet $\mathbb{E}\left[\mathsf{PnL}_T^\Delta
 ight]$ mean
- ullet $\mathbb{V}ar\left[\mathsf{PnL}_T^\Delta
 ight]$ variance
- $\bullet \ \, \mathsf{VaR}_\alpha \coloneqq \inf \left\{ x \in \mathbb{R} : \mathbb{P} \left[\mathsf{PnL}_T^\Delta < x \right] \le \alpha \right\} \mathsf{Value-at-Risk}$
- $\bullet \ \ \mathsf{ES}_\alpha \coloneqq \mathbb{E}\left[\mathsf{PnL}^\Delta_T \middle| \mathsf{PnL}^\Delta_T \le \mathsf{VaR}_\alpha\right] \mathsf{expected} \ \mathsf{shortfall}$
- semi-variance...

Gamma hedging

Itô's lemma: perfect replication in the continuous, complete framework

Sadly: the world is not continuous (thanks Max Planck...)

Mitigate finite hedging errors — second-order hedging constraints (Gamma) Additional Gamma-hedging instruments needed with non-vanishing Gammas

$$dP_t^{\Gamma} = -\sum_{j=1}^J dv^j(t, X_t) + \sum_{i=1}^m \alpha_t^i dX_t^i + \sum_{k=1}^K \beta_t^k u^k(t, X_t) + dB_t, \quad P_0^{\Gamma} = 0.$$

Rebalancing according to first- and second-order constraints

$$\partial_{li}^2 P_{t_n}^{\Gamma} = 0 \implies \sum_{k=1}^K \beta_t^k \frac{\partial_{li}^2 u^k(t_n, X_{t_n})}{\partial_{li}^2 v^j(t_n, X_{t_n})} = \sum_{j=1}^J \partial_{li}^2 v^j(t_n, X_{t_n}), \qquad 1 \le l, i \le d$$

$$\partial_i P_{t_n}^{\Gamma} = 0 \implies \alpha_{t_n}^i = \sum_{j=1}^J \partial_i v^j(t_n, X_{t_n}) - \sum_{k=1}^K \beta_{t_n}^k \partial_i u^k(t_n, X_{t_n}), \qquad 1 \le i \le m$$

√Pros: sharper PnLs with less frequent rebalancing

XCons: more exposed to model error need to approximate $\operatorname{Hess} v^j$

Contents

2 BSDEs and related options

One Step Malliavin (OSM) schemes and portfolio delta-gamma hedging

4 Numerical results

Backward Stochastic Differential Equations

$$X_t = x_0 + \int_0^t \mu(s, X_s) ds + \int_0^t \sigma(s, X_s) dW_s$$

$$Y_t^j = g^j(X_T) + \int_t^T f^j(s, X_s, Y_s^j, Z_s^j) ds - \int_t^T Z_s^j dW_s.$$

Semi-linear PDEs with terminal boundaries

$$\partial_t v^j + 1/2 \operatorname{tr} \left(\sigma \sigma^T(t, x) \nabla^2 v^j \right)$$

$$+ \mu^T(t, x) \nabla v^j + f^j(t, x, v^j, \nabla v^j \sigma) = 0, \qquad (t, x) \in [0, T] \times D,$$

$$v^j(T, x) = g^j(x), \qquad x \in D.$$

General Feynman–Kac relation

Under certain regularity conditions the solutions coincide \mathbb{P} -a.s.

$$Y_t^j = v^j(t, X_t), \quad Z_t^j = (\nabla v^j \sigma)(t, X_t).$$

Reflected BSDEs

Associated reflected BSDE – the solution "cannot go" below a certain (Markovian) lower barrier process $L_t^j \coloneqq l^j(X_t)$

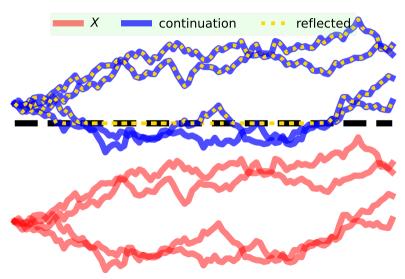
$$\begin{split} Y_t^j &= g^j(X_T) + \int_t^T f^j(s, X_s, Y_s^j, Z_s^j) \mathrm{d}s - \int_t^T Z_s^j \mathrm{d}W_s + K_T^j - K_t^j, \\ Y_t^j &\geq l^j(X_t), \quad t \leq T \qquad \text{and} \qquad \int_0^T \left[Y_t^j - l^j(X_t) \right] \mathrm{d}K_t^j = 0. \end{split}$$

Second-order semi-linear, free-boundary PDE

$$\min[\mathbf{v}^{j} - \mathbf{l}^{j}, \partial_{t}v^{j} + 1/2\operatorname{tr}\left(\sigma\sigma^{T}(t, x)\nabla^{2}v^{j}\right) + \mu^{T}(t, x)\nabla v^{j} + f(t, x, v^{j}, \nabla v^{j}\sigma)\right] = 0, \qquad (t, x) \in [0, T] \times D,$$
$$v^{j}(T, x) = g^{j}(x), \qquad x \in D.$$

discretely reflected BSDEs: reflections can only occur over a finite set of times $\{0 := r_0 < r_1 < \dots < r_{R-1} < T =: r_R\}, R \to \infty \longrightarrow \text{reflected BSDE}$

Illustration



Connections with Finance

The jth option with payoff g^j , instantaneous payoff $l^j \equiv g^j$ solves a BSDE

standard BSDE	reflected	discretely reflected
European	American	Bermudan

Simultaneous prices and Deltas

Take-away

BSDE/reflected BSDE/discretely reflected BSDE \implies delta hedging of European/American/Bermudan options

(Deep) BSDEs in the context of single options

- (delta-)hedging: Becker, Cheridito, and Jentzen 2020; Chen and Wan 2021
- incomplete markets: Gnoatto, Lavagnini, and Picarelli 2022

Contents

BSDEs and related options

3 One Step Malliavin (OSM) schemes and portfolio delta-gamma hedging

4 Numerical results

One Step Malliavin (OSM) schemes

Back to FBSDE systems

$$X_{t} = x_{0} + \int_{0}^{t} \mu(r, X_{r}) dr + \int_{0}^{t} \sigma(r, X_{r}) dW_{r},$$

$$Y_{t}^{j} = g^{j}(X_{T}) + \int_{t}^{T} f^{j}(r, X_{r}, Y_{r}^{j}, Z_{r}^{j}) dr - \int_{t}^{T} Z_{r}^{j} dW_{r}.$$

Under suitable assumptions $X\in\mathbb{D}^{1,2}(\mathbb{R}^d)$, $Y^j\in\mathbb{D}^{1,2}(\mathbb{R})$, $Z^j\in\mathbb{D}^{1,2}(\mathbb{R}^{1 imes d})$, for any $s\leq t$

$$\begin{split} D_s X_t &= \sigma(s, X_s) + \int_s^t \nabla_x \mu(r, X_r) D_s X_r \mathrm{d}r + \int_s^t \nabla_x \sigma(r, X_r) D_s X_r \mathrm{d}W_r, \\ D_s Y_t^j &= \nabla_x g^j(X_T) D_s X_T + \int_t^T \left[\nabla_x f^j(r, \mathbf{X}_r^j) D_s X_r + \nabla_y f^j(r, \mathbf{X}_r^j) D_s Y_r^j \right. \\ &+ \left. \nabla_z f^j(r, \mathbf{X}_r^j) D_s Z_r^j \right] \mathrm{d}r - \int_t^T D_s Z_r^j \mathrm{d}W_r. \end{split}$$

and $D_t Y_t^j = Z_t^j$ and $D_t Z_t^j \sim \mathsf{Hess}_x v^j \sim \Gamma^j$

One Step Malliavin (OSM) schemes

Simultaneous approximation of these pairs of FBSDEs \rightarrow One-Step-Malliavin scheme (Malliavin chain rule, Feynman-Kac)

$$\begin{split} Y_N^{j,\pi} &= g^j(X_N^\pi), \quad Z_N^{j,\pi} &= \nabla_x g^j(X_N^\pi) \sigma(T, X_n^\pi), \\ \Gamma_n^{j,\pi} &\sim \frac{1}{\Delta t_n} \mathbb{E}_n \Big[\dots \Big], \quad Z_n^{j,\pi} &= \mathbb{E}_n \Big[\dots \Big], \qquad Y_n^{j,\pi} &= \mathbb{E}_n \Big[\dots \Big] \end{split}$$

Provides second-order Γ_n^{π} estimates. Sharper Monte Carlo $Z_n^{j,\pi}$. High-dimensional.

Convergence results

- Standard BSDEs (European): Negyesi, Andersson, and Cornelis W Oosterlee 2024, IMA Jour. Num. Anal.
 - ass.: C_b^2 coefficients, analytical Mall. derivative

 $\mathrm{error} \lesssim N^{-1/2}$

- Extension to discretely reflected BSDEs (Bermudan): Negyesi and C. Oosterlee 2025. add. ass.: risk neutral measure (no Z dependence in f)
 - $\mathrm{error} \lesssim R^{1/4} N^{-1/2}$
- 3 Reflected BSDEs (American): limit case (only thing you can do in a computer)

 $\mathrm{error} \lesssim N^{-1/4}$

Portfolio gamma hedging

Treat the portfolio problem as a collection of discretely reflected BSDEs

$$\begin{split} X_t &= x_0 + \int_0^t \mu(s, X_s) \mathrm{d}s + \int_0^t \sigma(s, X_s) \mathrm{d}W_s, \\ \widetilde{Y}_t &\coloneqq \begin{cases} \widetilde{Y}_t^1 \\ \vdots \\ \widetilde{Y}_t^J \end{cases} \\ Y_t &\coloneqq \begin{cases} \text{reflection}(t, X_t, \widetilde{Y}_t^1) \\ \vdots \\ \text{reflection}(t, X_t, \widetilde{Y}_t^J) \end{cases} \end{split}$$

This results in a (huge) system of vector-valued, discretely reflected BSDEs where

$$\widetilde{Y}, Y \in \mathbb{R}^J$$
, $Z \in \mathbb{R}^{J \times d}$, $\Gamma \sim DZ \in \mathbb{R}^{J \times d \times d}$

Deep BSDE – neural network Monte Carlo

Deep BSDE: neural network regression Monte Carlo – similar to Huré, Pham, and Warin 2020; Negyesi, Andersson, and Cornelis W Oosterlee 2024.

- (Y, Z, Γ) are parametrized by (separate) DNNs at each time instance
- ② A merged $L^2(\Omega, \mathbb{P}; \mathbb{R}^{J \times d})$ loss function is defined according to the martingale representation theorem

$$\mathcal{L}_{n}^{z,\gamma}(\theta^{z},\theta^{\gamma}) \coloneqq \mathbb{E}\left[\left|S_{t_{n},t_{n+1}}^{z}(X) + \dots - \psi(X_{n}^{\pi}|\theta^{z}) + (\chi(X_{n}^{\pi}|\theta^{\gamma})\sigma(\dots))^{T}\Delta W_{n}\right|^{2}\right] \longrightarrow \widehat{\theta}_{n}^{z}, \widehat{\theta}_{n}^{\gamma},$$

$$\mathcal{L}_{n}^{y}(\theta^{y}) \coloneqq \mathbb{E}\left[\left|S_{t_{n},t_{n+1}}^{y}(X) + \dots - \varphi(X_{n}^{\pi}|\theta^{y}) + \psi(X_{n}^{\pi}|\widehat{\theta}_{n}^{z})\Delta W_{n}\right|^{2}\right] \longrightarrow \widehat{\theta}_{n}^{y}$$

3 Stochastic Gradient Descent (SGD) steps on finite Monte Carlo samples to approximate

$$(\theta_n^{z,*},\theta_n^{\gamma,*}) \in \arg\inf_{\theta^z,\theta^\gamma} \mathcal{L}_n^{z,\gamma}(\theta^z,\theta^\gamma) \quad \theta_n^{y,*} \in \arg\inf_{\theta} \mathcal{L}_n^y(\theta^y)$$

 $_{0}$ solution into first- and second-order conditions to get $lpha_{t_{n}}^{i},eta_{t_{n}}^{k},$

Contents

BSDEs and related options

One Step Malliavin (OSM) schemes and portfolio delta-gamma hedging

4 Numerical results

Single Bermudan(/American) option

J=1, m=d – European exchange options as Γ instruments (Margrabe) Single, Black-Scholes (physical measure), Bermudan call (r=0,q>0) – Chen and Wan 2021

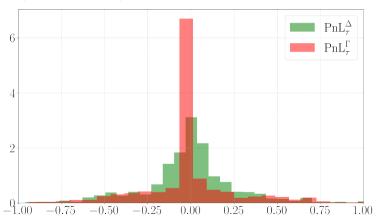


Figure: d = 1, $VaR_{99}^{\Delta} = 27.1\%$ vs $VaR_{99}^{\Gamma} = 3.3\%$

$\mathsf{Single}\ \mathsf{Bermudan}(/\mathsf{American})\ \mathsf{option}$

J=1, m=d – European exchange options as Γ instruments (Margrabe) Single, Black-Scholes (physical measure), Bermudan call (r=0,q>0) – Chen and Wan 2021

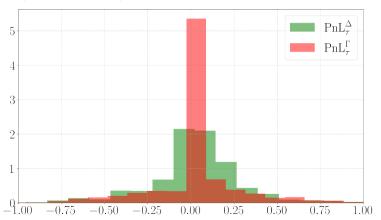
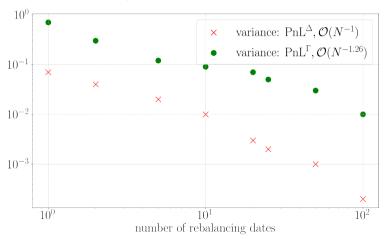


Figure: d = 50, $VaR_{99}^{\Delta} = 27.6\%$ vs $VaR_{99}^{\Gamma} = 5.0\%$

Single Bermudan(/American) option

J=1, m=d – European exchange options as Γ instruments (Margrabe) Single, Black-Scholes (physical measure), Bermudan call (r=0,q>0) – Chen and Wan 2021



Portfolic

J = 25, m = d = 20

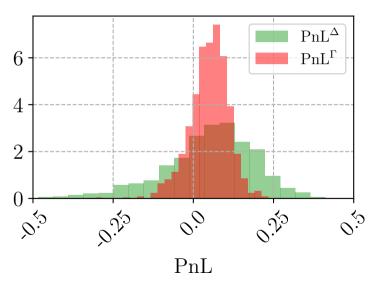
Black-Scholes, physical measure, T=1 year, rebalance monthly, nonuniform pairwise correlation. Different drift and diffusion coefficient for each asset.

European exchange options as Γ instruments (Margrabe)

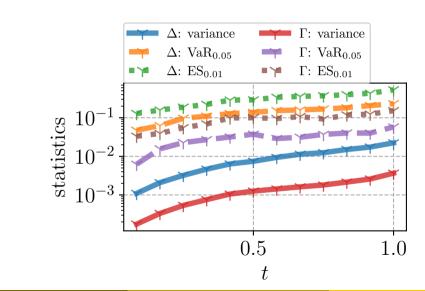
Mixture of European, Bermudan, American options including

	underlyings	position	early exercise dates
geometric put	all assets	ATM	monthly
maximum call	half of the assets	ITM	quarterly
cash or nothing	all assets	OTM	semi-anually
several vanilla calls	single assets	ATM/OTM/ITM	{none, any time}
:	:	:	:

Portfolio PnL



PnL statistics



PnL statistics

	Δ hedging	Γ hedging
variance	2.2×10^{-2}	3.7×10^{-3}
VaR95	-2.3×10^{-1}	-3.8×10^{-2}
VaR99	-4.0×10^{-1}	-7.2×10^{-2}
ES95	-3.4×10^{-1}	-6.3×10^{-2}
ES99	-5.3×10^{-1}	-8.4×10^{-2}
semivariance	1.5×10^{-2}	1.9×10^{-3}

Contents

BSDEs and related options

One Step Malliavin (OSM) schemes and portfolio delta-gamma hedging

4 Numerical results

- Gamma hedging improves over standard delta hedging in exchange for additional model error
- BSDEs provide an elegant compact formulation to the simultaneous option pricing and delta-hedging problem of European/American/Bermudan options
- OSM schemes include second-order sensitivities, Γ s and thus addresses the additional model error of Γ hedging
- A neural network regression approach yields robust estimates of high-accuracy in all Greeks up to Γ s even in high-dimensional portfolios

- Becker, Sebastian, Patrick Cheridito, and Arnulf Jentzen (2020). "Pricing and Hedging American-Style Options with Deep Learning". In: Journal of Risk and Financial Management. DOI: 10.3390/jrfm13070158.
- Chen, Yangang and Justin W. L. Wan (Jan. 2021). "Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions". In: Quantitative Finance 21.1, pp. 45–67. DOI: 10.1080/14697688.2020.1788219.
- Gnoatto, Alessandro, Silvia Lavagnini, and Athena Picarelli (Dec. 2022). Deep Quadratic Hedging. arXiv:2212.12725 [cs, math, q-fin].
 - Huré, Côme, Huyên Pham, and Xavier Warin (July 2020). "Deep backward schemes for high-dimensional nonlinear PDEs". en. In: Mathematics of Computation 89.324, pp. 1547–1579. DOI: 10.1090/mcom/3514.
- BSDEs implemented with deep learning regressions". In: IMA Journal of Numerical Analysis, drad092. DOI: 10.1093/imanum/drad092

 Negyesi, Balint and Cornelis Oosterlee (May 2025). "A reflected extension to the One Step Malliavin scheme: a new discretization of discretely reflected BSDEs implemented with neural network regressions (working paper)". In.

Negyesi, Balint, Kristoffer Andersson, and Cornelis W Oosterlee (Feb. 2024). "The One Step Malliavin scheme: new discretization of

Negyesi, Balint and Cornelis W. Oosterlee (May 2024). "A Deep BSDE approach for the simultaneous pricing and delta-gamma hedging of large portfolios consisting of high-dimensional multi-asset Bermudan options (working paper)". In.

