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Problem I

Possession of a portfolio of J options issued on a set of common risk factors (tradeable +
non-tradeable) which form an Rm+(d−m) valued Itô process

Xt = x0 +
∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

Mixture of European/Bermudan(/American)contracts with Rj ⊆ [0, T ] early exercise dates j = 1, . . . , J
Construct a (delta-)hedging portfolio

1 short position in the option: −
∑J

j=1v
j(t,Xt)1τj≥t,

2 long position in the underlying assets: +
∑m

i=1α
i
tX

i
t ,

3 risk-free bank account: +Bt,
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Problem II

The value of the portfolio evolves according to

dP∆
t = −

J∑
j=1

vj(t,Xt)1τj≥t +
m∑

i=1
αi

tdXi
t + dBt, P∆

0 = 0

Rebalancing at a discrete set of points in time {0 = t0 < t1 < · · · < tN = T} according to the
first-order constraint

αi
tn

=
J∑

j=1
∂iv

j(tn, Xtn)1τj≥tn
, i = 1, . . . ,m

and updating the position in the underlying by purchasing/selling αi
tn

− αi
tn−1

of the i’th asset
(borrow/deposit from/in bank account)
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Risk

Since rebalancing only happens at discrete time intervals the corresponding strategy is not risk-free –
only as supn |tn − tn−1| → 0
Quality assessed by the relative profit-and-loss (PnL)

PnL∆
T := e−rTP∆

T∑J
j=1 v

j(0, X0)
,

which is an FT -measurable random variable
Statistics on its distribution then assess the quality of the hedging strategy

• E
[
PnL∆

T

]
– mean

• Var
[
PnL∆

T

]
– variance

• VaRα := inf
{
x ∈ R : P

[
PnL∆

T < x
]

≤ α
}

– Value-at-Risk

• ESα := E
[
PnL∆

T

∣∣∣PnL∆
T ≤ VaRα

]
– expected shortfall

• semi-variance...
Balint Negyesi (b.negyesi@uu.nl, UU) Portfolio ∆Γ hedging January 20, 2025 5 / 20



Gamma hedging

Itô’s lemma: perfect replication in the continuous, complete framework
Sadly: the world is not continuous (thanks Max Planck...)
Mitigate finite hedging errors −→ second-order hedging constraints (Gamma) Additional
Gamma-hedging instruments needed with non-vanishing Gammas

dPΓ
t = −

J∑
j=1

dvj(t,Xt) +
m∑

i=1
αi

tdXi
t +

K∑
k=1

βk
t u

k(t,Xt) + dBt, PΓ
0 = 0.

Rebalancing according to first- and second-order constraints

∂2
liP

Γ
tn

= 0 =⇒
K∑

k=1
βk

t ∂
2
liu

k(tn, Xtn) =
J∑

j=1
∂2

liv
j(tn, Xtn), 1 ≤ l, i ≤ d

∂iP
Γ
tn

= 0 =⇒ αi
tn

=
J∑

j=1
∂iv

j(tn, Xtn) −
K∑

k=1
βk

tn
∂iu

k(tn, Xtn), 1 ≤ i ≤ m

Pros: sharper PnLs with less frequent rebalancing
Cons: more exposed to model error need to approximate Hess vj
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Backward Stochastic Differential Equations

Xt = x0 +
∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs

Y j
t = gj(XT ) +

∫ T

t

f j(s,Xs, Y
j

s , Z
j
s)ds−

∫ T

t

Zj
sdWs.

Semi-linear PDEs with terminal boundaries
∂tv

j + 1/2 tr
(
σσT (t, x)∇2vj

)
+ µT (t, x)∇vj + f j(t, x, vj ,∇vjσ) = 0, (t, x) ∈ [0, T ] ×D,

vj(T, x) = gj(x), x ∈ D.

General Feynman–Kac relation
Under certain regularity conditions the solutions coincide P-a.s.

Y j
t = vj(t,Xt), Zj

t = (∇vjσ)(t,Xt).
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Reflected BSDEs

Associated reflected BSDE – the solution "cannot go" below a certain (Markovian) lower barrier
process Lj

t := lj(Xt)

Y j
t = gj(XT ) +

∫ T

t

f j(s,Xs, Y
j

s , Z
j
s)ds−

∫ T

t

Zj
sdWs +Kj

T −Kj
t ,

Y j
t ≥ lj(Xt), t ≤ T and

∫ T

0

[
Y j

t − lj(Xt)
]

dKj
t = 0.

Second-order semi-linear, free-boundary PDE

min[vj − lj , ∂tv
j + 1/2 tr

(
σσT (t, x)∇2vj

)
+ µT (t, x)∇vj + f(t, x, vj ,∇vjσ)

]
= 0, (t, x) ∈ [0, T ] ×D,

vj(T, x) = gj(x), x ∈ D.

discretely reflected BSDEs: reflections can only occur over a finite set of times
{0 := r0 < r1 < · · · < rR−1 < T =: rR}, R → ∞ −→ reflected BSDE
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Illustration

X continuation reflected
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Connections with Finance

The jth option with payoff gj , instantaneous payoff lj ≡ gj solves a BSDE

standard BSDE reflected discretely reflected
European American Bermudan

Simultaneous prices and Deltas

X Y j Zj Ỹ j

asset price option price delta continuation value

Take-away
BSDE/reflected BSDE/discretely reflected BSDE =⇒ delta hedging of
European/American/Bermudan options

(Deep) BSDEs in the context of single options
• (delta-)hedging: Becker, Cheridito, and Jentzen 2020; Chen and Wan 2021
• incomplete markets: Gnoatto, Lavagnini, and Picarelli 2022
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One Step Malliavin (OSM) schemes

Back to FBSDE systems

Xt = x0 +
∫ t

0
µ(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr,

Y j
t = gj(XT ) +

∫ T

t

f j(r,Xr, Y
j

r , Z
j
r )dr −

∫ T

t

Zj
r dWr.

Under suitable assumptions X ∈ D1,2(Rd), Y j ∈ D1,2(R), Zj ∈ D1,2(R1×d), for any s ≤ t

DsXt = σ(s,Xs) +
∫ t

s

∇xµ(r,Xr)DsXrdr +
∫ t

s

∇xσ(r,Xr)DsXrdWr,

DsY
j

t = ∇xg
j(XT )DsXT +

∫ T

t

[
∇xf

j(r,Xj
r)DsXr + ∇yf

j(r,Xj
r)DsY

j
r

+ ∇zf
j(r,Xj

r)DsZ
j
r

]
dr −

∫ T

t

DsZ
j
r dWr.

and DtY
j

t = Zj
t and DtZ

j
t ∼ Hessxv

j ∼ Γj
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One Step Malliavin (OSM) schemes

Simultaneous approximation of these pairs of FBSDEs → One-Step-Malliavin scheme (Malliavin
chain rule, Feynman-Kac)

Y j,π
N = gj(Xπ

N ), Zj,π
N = ∇xg

j(Xπ
N )σ(T,Xπ

n ),

Γj,π
n ∼ 1

∆tn
En

[
. . .

]
, Zj,π

n = En

[
. . .

]
, Y j,π

n = En

[
. . .

]
Provides second-order Γπ

n estimates. Sharper Monte Carlo Zj,π
n . High-dimensional.

Convergence results
1 Standard BSDEs (European): Negyesi, Andersson, and Cornelis W Oosterlee 2024, IMA Jour.

Num. Anal.
ass.: C2

b coefficients, analytical Mall. derivative error ≲ N−1/2

2 Extension to discretely reflected BSDEs (Bermudan): Negyesi and C. Oosterlee 2025.
add. ass.: risk neutral measure (no Z dependence in f) error ≲ R1/4N−1/2

3 Reflected BSDEs (American): limit case (only thing you can do in a computer)
error ≲ N−1/4
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Portfolio gamma hedging

Treat the portfolio problem as a collection of discretely reflected BSDEs

Xt = x0 +
∫ t

0
µ(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs,

Ỹt :=


Ỹ 1

t

...

Ỹ J
t

Yt :=


reflection(t,Xt, Ỹ

1
t )

...
reflection(t,Xt, Ỹ

J
t )

This results in a (huge) system of vector-valued, discretely reflected BSDEs where

Ỹ , Y ∈ RJ , Z ∈ RJ×d, Γ ∼ DZ ∈ RJ×d×d
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Deep BSDE – neural network Monte Carlo

Deep BSDE: neural network regression Monte Carlo – similar to Huré, Pham, and Warin 2020;
Negyesi, Andersson, and Cornelis W Oosterlee 2024.

1 (Y , Z,Γ) are parametrized by (separate) DNNs at each time instance
2 A merged L2(Ω,P;RJ×d) loss function is defined according to the martingale representation

theorem

Lz,γ
n (θz, θγ) := E

[∣∣∣Sz
tn,tn+1

(X) + . . .− ψ(Xπ
n |θz)

+ (χ(Xπ
n |θγ)σ(. . . ))T ∆Wn

∣∣∣2]
−→ θ̂z

n, θ̂
γ
n,

Ly
n(θy) := E

[∣∣∣Sy
tn,tn+1

(X) + · · · − φ(Xπ
n |θy) + ψ(Xπ

n |θ̂z
n)∆Wn

∣∣∣2]
−→ θ̂y

n

3 Stochastic Gradient Descent (SGD) steps on finite Monte Carlo samples to approximate

(θz,∗
n , θγ,∗

n ) ∈ arg inf
θz,θγ

Lz,γ
n (θz, θγ) θy,∗

n ∈ arg inf
θ

Ly
n(θy)

4 solution into first- and second-order conditions to get αi
tn
, βk

tn
,
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Single Bermudan(/American) option

J = 1,m = d – European exchange options as Γ instruments (Margrabe)
Single, Black-Scholes (physical measure), Bermudan call (r = 0, q > 0) – Chen and Wan 2021

Figure: d = 1, VaR∆
99 = 27.1% vs VaRΓ

99 = 3.3%
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Single Bermudan(/American) option

J = 1,m = d – European exchange options as Γ instruments (Margrabe)
Single, Black-Scholes (physical measure), Bermudan call (r = 0, q > 0) – Chen and Wan 2021

Figure: d = 50, VaR∆
99 = 27.6% vs VaRΓ

99 = 5.0%
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Single Bermudan(/American) option

J = 1,m = d – European exchange options as Γ instruments (Margrabe)
Single, Black-Scholes (physical measure), Bermudan call (r = 0, q > 0) – Chen and Wan 2021
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Portfolio

J = 25,m = d = 20
Black-Scholes, physical measure, T = 1 year, rebalance monthly, nonuniform pairwise correlation.
Different drift and diffusion coefficient for each asset.

Ỹ , Y Z ∼ ∆ DZ ∼ Γ
dimensionality 25 = J 500 = J × d 104 = J × d× d

European exchange options as Γ instruments (Margrabe)
Mixture of European, Bermudan, American options including

underlyings position early exercise dates
geometric put all assets ATM monthly
maximum call half of the assets ITM quarterly

cash or nothing all assets OTM semi-anually
several vanilla calls single assets ATM/OTM/ITM {none, any time}

...
...

...
...
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Portfolio PnL
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PnL statistics
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PnL statistics

∆ hedging Γ hedging
variance 2.2 × 10−2 3.7 × 10−3

VaR95 −2.3 × 10−1 −3.8 × 10−2

VaR99 −4.0 × 10−1 −7.2 × 10−2

ES95 −3.4 × 10−1 −6.3 × 10−2

ES99 −5.3 × 10−1 −8.4 × 10−2

semivariance 1.5 × 10−2 1.9 × 10−3
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Summary

• Gamma hedging improves over standard delta hedging in exchange for additional model error

• BSDEs provide an elegant compact formulation to the simultaneous option pricing and
delta-hedging problem of European/American/Bermudan options

• OSM schemes include second-order sensitivities, Γs and thus addresses the additional model error
of Γ hedging

• A neural network regression approach yields robust estimates of high-accuracy in all Greeks up to
Γs even in high-dimensional portfolios
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