From Theoretical Results to Real-World Applications in Bonds, FX, Commodities and Cryptocurrencies: An Overview on Market Making Models

Pr. Olivier Guéant

22nd Winter School on Mathematical Finance - Jan. 2025

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へ⊙

4 □ ▶ 4 同 ▶ 4 Ξ ▶ 4 Ξ ▶

Market makers

 Activity: providing bid and ask/offer prices to other market participants.

4 □ ▶ 4 同 ▶ 4 Ξ ▶ 4 Ξ ▶

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.

4 □ ▶ 4 周 ▶ 4 Ξ ▶ 4 Ξ ▶

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.
- Risks:

・ロト ・ 一下・ ・ ヨト

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.
- Risks:
 - Holding inventory

< □ ト < 同 ト < 三 ト < 三 ト</p>

Market makers

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.
- Risks:
 - Holding inventory

 \rightarrow face the risk that prices move adversely without them being able to unwind their position.

< □ ト < 同 ト < 三 ト < 三 ト</p>

Market makers

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.
- Risks:
 - Holding inventory

 \rightarrow face the risk that prices move adversely without them being able to unwind their position.

Information asymmetry / adverse selection by informed traders

< □ ト < 同 ト < 三 ト < 三 ト</p>

Market makers

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.
- Risks:
 - Holding inventory

 \rightarrow face the risk that prices move adversely without them being able to unwind their position.

Information asymmetry / adverse selection by informed traders
 → face the risk of buying / selling when the price will go down / up.

Market makers

- Activity: providing bid and ask/offer prices to other market participants.
- The way they make money: capturing part of the bid-ask spreads.
- Risks:
 - Holding inventory

 \rightarrow face the risk that prices move adversely without them being able to unwind their position.

• Information asymmetry / adverse selection by informed traders \rightarrow face the risk of buying / selling when the price will go down / up.

Remark: I mainly focused on market making in OTC markets. Not market making in limit order books (no tick size, no queue, no priority).

▲□▶ 4 □▶ 4 □▶ 4 □▶ 4 □▶ 4 □▶ 4 □▶

Models regarding inventory cost / management

- Stoll (1978)
- Ho and Stoll (1981, 1983)

Amihud and Mendelson (1980)

< □ > < 同 > < 三 > < 三 >

• O'Hara and Oldfield (1986)

Models regarding inventory cost / management

- Stoll (1978)
- Ho and Stoll (1981, 1983)

- Amihud and Mendelson (1980)
- O'Hara and Oldfield (1986)

Models regarding adverse selection

- Copeland and Galai (1983)
- Easley and O'Hara (1987)

• Glosten and Milgrom (1985)

・ロト ・ 一下・ ・ ヨト

Models regarding inventory cost / management

- Stoll (1978)
- Ho and Stoll (1981, 1983)

- Amihud and Mendelson (1980)
- O'Hara and Oldfield (1986)

Models regarding adverse selection

- Copeland and Galai (1983)
- Easley and O'Hara (1987)

• Glosten and Milgrom (1985)

< □ ト < 同 ト < 三 ト < 三 ト</p>

Sac

An economic literature about the determinants of bid-ask spreads in the 1980s and 1990s: Hasbrouck, Huang and Stoll, MRR, etc.

From economists to mathematicians

The financial mathematics community only got interested in market making from 2008 following the paper by Avellaneda and Stoikov.

From economists to mathematicians

The financial mathematics community only got interested in market making from 2008 following the paper by Avellaneda and Stoikov.

High-frequency trading in a limit order book

MARCO AVELLANEDA and SASHA STOIKOV*

Mathematics, New York University, 251 Mercer Street, New York, NY 10012, USA

< □ ▶ < ⊡ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ < Ξ

The roots

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● <

The roots

 Post-PhD inspiration (2010): met C.-A. Lehalle (Crédit Agricole Cheuvreux) through J.-M. Lasry. Charles put in my hands Avellaneda-Stoikov's paper.

< □ <
 < □ <
 <

 <
 <

<

The roots

- Post-PhD inspiration (2010): met C.-A. Lehalle (Crédit Agricole Cheuvreux) through J.-M. Lasry. Charles put in my hands Avellaneda-Stoikov's paper.
 - ightarrow initially more of a theoretical / mathematical exercise.

The roots

- Post-PhD inspiration (2010): met C.-A. Lehalle (Crédit Agricole Cheuvreux) through J.-M. Lasry. Charles put in my hands Avellaneda-Stoikov's paper.
 - \rightarrow initially more of a theoretical / mathematical exercise.

Multiple interactions with the industry

▲□▶ ▲□▶ ▲□▶ ▲□▶

The roots

 Post-PhD inspiration (2010): met C.-A. Lehalle (Crédit Agricole Cheuvreux) through J.-M. Lasry. Charles put in my hands Avellaneda-Stoikov's paper.

 \rightarrow initially more of a theoretical / mathematical exercise.

Multiple interactions with the industry

 OTC trading (neglected area of academic research): Contacted by bond dealers and FX+commodity dealers in London and NYC, for adapting models to match real-world trading environments.

The roots

 Post-PhD inspiration (2010): met C.-A. Lehalle (Crédit Agricole Cheuvreux) through J.-M. Lasry. Charles put in my hands Avellaneda-Stoikov's paper.

 \rightarrow initially more of a theoretical / mathematical exercise.

Multiple interactions with the industry

- OTC trading (neglected area of academic research): Contacted by bond dealers and FX+commodity dealers in London and NYC, for adapting models to match real-world trading environments.
- DeFi: More recently contacted by decentralized finance players to build new Automated Market Makers.

Setup of the model (I)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

One asset: reference price process ("mid"-price) $(S_t)_t$

Brownian dynamics

 $dS_t = \sigma dW_t$.

 \rightarrow Can be the CBBT / CP+ for corporate bonds or a homemade reference price.

 \rightarrow Can be EBS / Refinitiv mid price or a homemade composite.

Setup of the model (II)

・ロト ・ 一 ト ・ ヨ ト ・ コ ト

Bid and ask prices proposed by the MM

$$S_t^b = S_t - \delta_t^b$$
 and $S_t^a = S_t + \delta_t^a$.

Setup of the model (II)

Bid and ask prices proposed by the MM

$$S_t^b = S_t - \delta_t^b$$
 and $S_t^a = S_t + \delta_t^a$.

Dynamics of the inventory $(q_t)_t$

$$dq_t = \Delta dN_t^b - \Delta dN_t^a,$$

for two point processes N^b and N^a .

Setup of the model (II)

Sac

Bid and ask prices proposed by the MM

$$S_t^b = S_t - \delta_t^b$$
 and $S_t^a = S_t + \delta_t^a$.

Dynamics of the inventory $(q_t)_t$

$$dq_t = \Delta dN_t^b - \Delta dN_t^a,$$

for two point processes N^b and N^a .

Competition and demand are modeled indirecty through the probability / intensity of jumps.

Setup of the model (III)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Intensities $(\lambda_t^b)_t$ and $(\lambda_t^a)_t$ of N^b and N^a

 $\lambda_t^b = \Lambda^b(\delta_t^b) \mathbf{1}_{q_t - <Q} \text{ and } \lambda_t^a = \Lambda^a(\delta_t^a) \mathbf{1}_{q_t - >-Q}.$

They depend on the distance to the reference price: Λ^b , Λ^a decreasing (of course!)

Setup of the model (III)

▲□▶ ▲□▶ ▲ ■▶ ▲

Sac

Intensities $(\lambda_t^b)_t$ and $(\lambda_t^a)_t$ of N^b and N^a

$$\lambda^b_t = \Lambda^b(\delta^b_t) 1_{q_{t-} < Q} \text{ and } \lambda^a_t = \Lambda^a(\delta^a_t) 1_{q_{t-} > -Q}.$$

They depend on the distance to the reference price: Λ^{b} , Λ^{a} decreasing (of course!)

Cash process $(X_t)_t$

 $dX_t = \Delta S_t^a dN_t^a - \Delta S_t^b dN_t^b = -S_t dq_t + \delta_t^a \Delta dN_t^a + \delta_t^b \Delta dN_t^b.$

Setup of the model (III)

Intensities $(\lambda_t^b)_t$ and $(\lambda_t^a)_t$ of N^b and N^a

$$\lambda^b_t = \Lambda^b(\delta^b_t) 1_{q_{t-} < Q} \text{ and } \lambda^a_t = \Lambda^a(\delta^a_t) 1_{q_{t-} > -Q}.$$

They depend on the distance to the reference price: Λ^{b} , Λ^{a} decreasing (of course!)

Cash process $(X_t)_t$

$$dX_t = \Delta S_t^a dN_t^a - \Delta S_t^b dN_t^b = -S_t dq_t + \delta_t^a \Delta dN_t^a + \delta_t^b \Delta dN_t^b.$$

Three state variables: X (cash), q (inventory), and S (price).

PnL and objective function

▲□▶ ▲ □ ▶ ▲ □ ▶

PnL at time T of a market maker

$$PnL_{T} = X_{T} + q_{T}S_{T} = X_{0} + q_{0}S_{0}$$
$$+ \int_{0}^{T} \underbrace{\delta_{t}^{a}\Delta dN_{t}^{a} + \delta_{t}^{b}\Delta dN_{t}^{b}}_{\text{spread capture}} + \underbrace{\sigma q_{t}dW_{t}}_{\text{inventory+price risk}}$$

PnL and objective function

PnL at time T of a market maker

$$PnL_{T} = X_{T} + q_{T}S_{T} = X_{0} + q_{0}S_{0}$$
$$+ \int_{0}^{T} \underbrace{\delta_{t}^{a}\Delta dN_{t}^{a} + \delta_{t}^{b}\Delta dN_{t}^{b}}_{\text{spread capture}} + \underbrace{\sigma q_{t}dW_{t}}_{\text{inventory+price risk}}$$

The original Avellaneda-Stoikov's model considers a CARA utility (Model A):

CARA objective function

$$\sup_{\delta_t^a)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[-\exp\left(-\gamma (X_T + q_T S_T)\right)\right],$$

where γ is the absolute risk aversion parameter, and A the set of predictable processes bounded from below.

|□▶▲母▶▲≧▶▲≧▶ ≧ めへで

HJB equation

<u>▲□▶▲</u>@▶**▲**≣▶**4**≣▶ ≣ りゅつ

HJB equation

In what follows, u is a candidate for the value function.

Hamilton-Jacobi-Bellman

(HJB)
$$0 = \partial_t u(t, x, q, S) + \frac{1}{2} \sigma^2 \partial_{SS}^2 u(t, x, q, S)$$
$$+ \mathbf{1}_{q < Q} \sup_{\delta^b} \Lambda^b(\delta^b) \left[u(t, x - \Delta S + \Delta \delta^b, q + \Delta, S) - u(t, x, q, S) \right]$$
$$+ \mathbf{1}_{q > -Q} \sup_{\delta^a} \Lambda^a(\delta^a) \left[u(t, x + \Delta S + \Delta \delta^a, q - \Delta, S) - u(t, x, q, S) \right]$$

with final condition:

$$u(T, x, q, S) = -\exp\left(-\gamma(x+qS)\right)$$

Change of variables

▲□▶▲□▶▲壹▶▲壹▶ 壹 少९0

Change of variables

Ansatz

$$u(t, x, q, S) = -\exp(-\gamma(x + qS + \theta(t, q)))$$

Change of variables

Ansatz

$$u(t, x, q, S) = -\exp(-\gamma(x + qS + \theta(t, q)))$$

New equation

$$0=\partial_t heta(t,q)-rac{1}{2}\gamma\sigma^2q^2$$

$$+ \mathbf{1}_{q < Q} \sup_{\delta^{b}} \frac{\Lambda^{b}(\delta^{b})}{\gamma} \left(1 - \exp\left(-\gamma \left(\Delta \delta^{b} + \theta(t, q + \Delta) - \theta(t, q)\right)\right) \right)$$

$$+1_{q>-Q} \sup_{\delta^a} rac{ \Lambda^a(\delta^a)}{\gamma} \left(1- \exp\left(-\gamma \left(\Delta \delta^a + heta(t,q-\Delta) - heta(t,q)
ight)
ight)$$

with final condition $\theta(T, q) = 0$.

Equation for θ

▲□▶ ▲□▶ ▲ 三▶ ▲

A new transform

$$egin{aligned} & H^b_{\xi}(p) = \sup_{\delta} rac{\Lambda^b(\delta)}{\xi\Delta} \left(1 - \exp\left(-\xi\Delta\left(\delta - p
ight)
ight)
ight) \ & H^a_{\xi}(p) = \sup_{\delta} rac{\Lambda^a(\delta)}{\xi\Delta} \left(1 - \exp\left(-\xi\Delta\left(\delta - p
ight)
ight)
ight) \end{aligned}$$

Equation for θ

A new transform

$$egin{aligned} & H^b_{\xi}(p) = \sup_{\delta} rac{\Lambda^b(\delta)}{\xi\Delta} \left(1 - \exp\left(-\xi\Delta\left(\delta - p
ight)
ight)
ight) \ & H^a_{\xi}(p) = \sup_{\delta} rac{\Lambda^a(\delta)}{\xi\Delta} \left(1 - \exp\left(-\xi\Delta\left(\delta - p
ight)
ight)
ight) \end{aligned}$$

New equation

$$\begin{split} 0 &= \partial_t \theta(t,q) - \frac{1}{2} \gamma \sigma^2 q^2 + \mathbf{1}_{q < Q} \Delta \mathcal{H}^b_{\gamma} \left(\frac{\theta(t,q) - \theta(t,q+\Delta)}{\Delta} \right) \\ &+ \mathbf{1}_{q > -Q} \Delta \mathcal{H}^a_{\gamma} \left(\frac{\theta(t,q) - \theta(t,q-\Delta)}{\Delta} \right) \end{split}$$

with final condition $\theta(T, q) = 0$.

▲□▶▲□▶▲壹▶▲壹▶ 壹 りへで

Another objective function

Variant (Cartea, Jaimungal et al.) with a running penalty:

Risk-neutral with running penalty (Model B)

$$\sup_{(\delta_t^s)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[X_T + q_T S_T - \frac{\gamma}{2}\sigma^2 \int_0^T q_t^2 dt\right]$$

i.e.

$$\sup_{(\delta_t^a)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[\int_0^T \left(\Delta \delta_t^a \Lambda^a(\delta_t^a) \mathbf{1}_{q_t - \ge -Q} + \Delta \delta_t^b \Lambda^b(\delta_t^b) \mathbf{1}_{q_t - < Q} - \frac{\gamma}{2} \sigma^2 q_t^2\right) dt\right]$$

where γ is a kind of absolute risk aversion parameter.

Another objective function

Variant (Cartea, Jaimungal *et al.*) with a running penalty:

Risk-neutral with running penalty (Model B)

$$\sup_{(\delta_t^s)_t, (\delta_t^b)_t \in \mathcal{A}} \mathbb{E}\left[X_T + q_T S_T - \frac{\gamma}{2} \sigma^2 \int_0^T q_t^2 dt\right]$$

i.e.

$$\sup_{\substack{(\delta^a_t)_t,(\delta^b_t)_t\in\mathcal{A}}} \mathbb{E}\left[\int_0^T \left(\Delta\delta^a_t \Lambda^a(\delta^a_t) \mathbb{1}_{q_t->-Q} + \Delta\delta^b_t \Lambda^b(\delta^b_t) \mathbb{1}_{q_t-$$

where γ is a kind of absolute risk aversion parameter.

 \rightarrow Optimal control on a very simple finite graph (truncated $\Delta \mathbb{Z}$)

Value function θ (Model B)

▲□▶
 ▲三▶
 ▲三▶
 ▲三▶
 ▲三▶
 ▲三▶
 ▲三▶
 ▲三▶
 ▲三▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶</li

Value function θ (Model B)

↓ □ ▶ < </p>
 ↓ < </p>
 ↓ < </p>
 ↓ < </p>

Hamilton-Jacobi equation (Model B)

$$\begin{split} 0 &= \partial_t \theta(t,q) - \frac{1}{2} \gamma \sigma^2 q^2 + \mathbf{1}_{q < Q} \Delta H_0^b \left(\frac{\theta(t,q) - \theta(t,q+\Delta)}{\Delta} \right) \\ &+ \mathbf{1}_{q > -Q} \Delta H_0^a \left(\frac{\theta(t,q) - \theta(t,q-\Delta)}{\Delta} \right) \end{split}$$

with final condition $\theta(T, q) = 0$.

Value function θ (Model B)

Hamilton-Jacobi equation (Model B)

$$egin{aligned} 0 &= \partial_t heta(t,q) - rac{1}{2} \gamma \sigma^2 q^2 + \mathbbm{1}_{q < Q} \Delta H_0^b \left(rac{ heta(t,q) - heta(t,q+\Delta)}{\Delta}
ight) \ &+ \mathbbm{1}_{q > -Q} \Delta H_0^s \left(rac{ heta(t,q) - heta(t,q-\Delta)}{\Delta}
ight) \end{aligned}$$

with final condition $\theta(T,q) = 0$.

Same kind of transform

$$H_0^b(p) = \sup_{\delta} \Lambda^b(\delta)(\delta - p)$$
$$H_0^a(p) = \sup_{\delta} \Lambda^a(\delta)(\delta - p)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ○ ○ ○ ○

↓□▶ < ⊡▶ < 三▶ < 三▶ < 三▶ < ⊡▶ < □▶

• Both equations look like a classical Hamilton-Jacobi PDE of order 1.

- Both equations look like a classical Hamilton-Jacobi PDE of order 1.
- A system of $2Q/\Delta + 1$ non-linear ODEs.

- Both equations look like a classical Hamilton-Jacobi PDE of order 1.
- A system of $2Q/\Delta + 1$ non-linear ODEs.

Light assumptions of the intensity functions

- 1 $\Lambda^{b/a}$ is C^2 .
- **2** $\Lambda^{b/a'} < 0.$
- 3 $\lim_{\delta \to +\infty} \Lambda^{b/a}(\delta) = 0.$
- **4** The intensity functions $\Lambda^{b/a}$ satisfy:

$$\sup_{\delta} \frac{\Lambda^{b/a}(\delta)\Lambda^{b/a''}(\delta)}{\left(\Lambda^{b/a'}(\delta)\right)^2} < 2.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

The functions H^b_{ξ} and H^a_{ξ}

▲□▶▲□▶▲≡▶▲≡
 ●<

The functions H^b_{ξ} and H^a_{ξ}

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

Proposition

- $\forall \xi \ge 0$, $H_{\xi}^{b/a}$ is a decreasing function of class C^2 .
- In the definition of $H_{\xi}^{b/a}(p)$, the supremum is attained at a unique $\tilde{\delta}_{\xi}^{b/a*}(p)$ characterized by

$$ilde{\delta}^{b/a*}_{\xi}(p) = {\Lambda^{b/a}}^{-1} \left(\xi \Delta H^{b/a}_{\xi}(p) - H^{b/a'}_{\xi}(p)
ight).$$

• The function $p \mapsto \tilde{\delta}_{\xi}^{b/a*}(p)$ is increasing.

Existence and uniqueness

▲□▶ ▲圖▶ ▲ 三▶ ▲ 三 り Q C

Existence and uniqueness

Results for θ

There exists a unique C^1 (in time) solution $t \mapsto (\theta(t,q))_{|q| \leq Q}$ to

$$egin{aligned} 0 &= \partial_t heta(t,q) - rac{1}{2} \gamma \sigma^2 q^2 + \mathbbm{1}_{q < Q} \Delta \mathcal{H}^b_{\xi} \left(rac{ heta(t,q) - heta(t,q+\Delta)}{\Delta}
ight) \ &+ \mathbbm{1}_{q > -Q} \Delta \mathcal{H}^a_{\xi} \left(rac{ heta(t,q) - heta(t,q-\Delta)}{\Delta}
ight) \end{aligned}$$

with final condition $\theta(T,q) = 0$.

Solution of the initial problem (verification argument)

▲□▶▲□▶▲三▶▲三▶ ▲□▶

Solution of the initial problem (verification argument)

By using a verification argument, the function u is the value function associated with the problem.

Optimal quotes

The optimal quotes in models A ($\xi = \gamma$) and B ($\xi = 0$) are:

$$egin{aligned} \delta^{b*}_t &= ilde{\delta}^{b*}_{\xi} \left(rac{ heta(t,q_{t-}) - heta(t,q_{t-} + \Delta)}{\Delta}
ight) \ \delta^{a*}_t &= ilde{\delta}^{a*}_{\xi} \left(rac{ heta(t,q_{t-}) - heta(t,q_{t-} - \Delta)}{\Delta}
ight) \end{aligned}$$

where

$$ilde{\delta}^{b/a*}_{\xi}(p) = {\Lambda^{b/a}}^{-1}\left(\xi\Delta H^{b/a}_{\xi}(p) - H^{b/a'}_{\xi}(p)
ight).$$

< □ ▶ < @ ▶ < 들 ▶ < 들 ▶ . 글 . ∽ < @ •

The case
$$\Lambda^b(\delta) = \Lambda^a(\delta) = Ae^{-k\delta}$$
 (I)

The functions $H^{b/a}_{\xi}$ and $\tilde{\delta}^{b/a*}_{\xi}$

If $\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$, then $H_{\xi}^{b/a}(p) = \frac{A}{k}C_{\xi}\exp(-kp)$, with

$$\mathcal{C}_{\xi} = egin{cases} \left(1+rac{\xi\Delta}{k}
ight)^{-rac{k}{\xi\Delta}-1} & ext{if } \xi > 0 \ e^{-1} & ext{if } \xi = 0 \end{cases}$$

and

$$ilde{\delta}^{b/a*}_{\xi}(p) = egin{cases} p+rac{1}{\xi\Delta}\log\left(1+rac{\xi\Delta}{k}
ight) & ext{if } \xi>0 \ p+rac{1}{k} & ext{if } \xi=0, \end{cases}$$

The case
$$\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$$
 (II)

The system of ODEs

$$egin{aligned} 0 &= \partial_t heta(t,q) - rac{1}{2} \gamma \sigma^2 q^2 + \ &+ rac{A\Delta}{k} C_\xi \left(1_{q < Q} e^{k rac{ heta(t,q+\Delta) - heta(t,q)}{\Delta}} + 1_{q > -Q} e^{k rac{ heta(t,q-\Delta) - heta(t,q)}{\Delta}}
ight), \end{aligned}$$

<ロト < 四ト < 三ト < 三ト</p>

with final condition $\theta(T, q) = 0$.

The case
$$\Lambda^b(\delta) = \Lambda^a(\delta) = Ae^{-k\delta}$$
 (II)

The system of ODEs

$$\begin{split} 0 &= \partial_t \theta(t,q) - \frac{1}{2} \gamma \sigma^2 q^2 + \\ &+ \frac{A\Delta}{k} C_{\xi} \left(\mathbf{1}_{q < Q} e^{k \frac{\theta(t,q+\Delta) - \theta(t,q)}{\Delta}} + \mathbf{1}_{q > -Q} e^{k \frac{\theta(t,q-\Delta) - \theta(t,q)}{\Delta}} \right), \end{split}$$

with final condition $\theta(T, q) = 0$.

Change of variables:
$$v_q(t) = \exp\left(rac{k heta(t,q)}{\Delta}
ight)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (III)

A linear system of ODEs

$$\mathbf{v}_{q}'(t) = lpha q^{2} \mathbf{v}_{q}(t) - \eta_{\xi} \left(\mathbf{1}_{q < Q} \mathbf{v}_{q+\Delta}(t) + \mathbf{1}_{q > -Q} \mathbf{v}_{q-\Delta}(t)
ight),$$

with

$$\alpha = \frac{k}{2\Delta} \gamma \sigma^2, \qquad \eta_{\xi} = AC_{\xi}$$

< □ ▶

þ

and the terminal condition v(T, q) = 1.

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (III)

A linear system of ODEs

$$v_q'(t) = \alpha q^2 v_q(t) - \eta_{\xi} \left(\mathbf{1}_{q < Q} v_{q+\Delta}(t) + \mathbf{1}_{q > -Q} v_{q-\Delta}(t) \right),$$

with

$$\alpha = \frac{k}{2\Delta}\gamma\sigma^2, \qquad \eta_{\xi} = AC_{\xi}$$

and the terminal condition v(T,q) = 1.

This simplifies a lot the equations of Avellaneda and Stoikov. See the paper Guéant-Lehalle-Fernandez-Tapia (2013) (when $\Delta = 1$ and $\xi = \gamma$).

500

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (IV)

Optimal quotes

The optimal quotes in models A ($\xi = \gamma$) and B ($\xi = 0$) are:

$$egin{aligned} \delta^{b*}_t &= \delta^{b*}(t,q_{t-}) \coloneqq D_{\xi} + rac{1}{k} \ln\left(rac{v_{q_{t-}}(t)}{v_{q_{t-}+\Delta}(t)}
ight) \ \delta^{a*}_t &= \delta^{a*}(t,q_{t-}) \coloneqq D_{\xi} + rac{1}{k} \ln\left(rac{v_{q_{t-}}(t)}{v_{q_{t-}-\Delta}(t)}
ight) \ D_{\xi} &= egin{cases} rac{1}{\xi\Delta} \log\left(1 + rac{\xi\Delta}{k}
ight) & ext{if } \xi > 0 \ rac{1}{\xi} & ext{if } \xi = 0, \end{aligned}$$

< □ ▶

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (IV)

Optimal quotes

The optimal quotes in models A ($\xi = \gamma$) and B ($\xi = 0$) are:

$$egin{aligned} \delta^{b*}_t &= \delta^{b*}(t,q_{t-}) \coloneqq D_{\xi} + rac{1}{k} \ln\left(rac{v_{q_{t-}}(t)}{v_{q_{t-}+\Delta}(t)}
ight) \ \delta^{a*}_t &= \delta^{a*}(t,q_{t-}) \coloneqq D_{\xi} + rac{1}{k} \ln\left(rac{v_{q_{t-}}(t)}{v_{q_{t-}-\Delta}(t)}
ight) \ D_{\xi} &= egin{cases} rac{1}{\xi\Delta} \log\left(1 + rac{\xi\Delta}{k}
ight) & ext{if } \xi > 0 \ rac{1}{\xi} & ext{if } \xi = 0, \end{aligned}$$

The optimal quotes are made of two components:

• D_{ξ} corresponds to the static trade-off.

•
$$\frac{1}{k} \ln \left(\frac{v_q(t)}{v_{q+\Delta}(t)} \right)$$
 or $\frac{1}{k} \ln \left(\frac{v_q(t)}{v_{q-\Delta}(t)} \right)$: dynamic aspects.

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (V)

The optimal quote functions far from T only depend on q:

Asymptotics

$$egin{aligned} &\delta^{b*}_\infty(q) = \lim_{T o\infty} \delta^{b*}(0,q) = D_\xi + rac{1}{k} \ln\left(rac{f_q^0}{f_{q+\Delta}^0}
ight) \ &\delta^{a*}_\infty(q) = \lim_{T o\infty} \delta^{a*}(0,q) = D_\xi + rac{1}{k} \ln\left(rac{f_q^0}{f_{q-\Delta}^0}
ight) \end{aligned}$$

▲□▶ ▲□

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (V)

The optimal quote functions far from T only depend on q:

Asymptotics

$$egin{aligned} &\delta^{b*}_\infty(q) = \lim_{T o\infty} \delta^{b*}(0,q) = D_\xi + rac{1}{k} \ln\left(rac{f_q^0}{f_{q+\Delta}^0}
ight) \ &\delta^{a*}_\infty(q) = \lim_{T o\infty} \delta^{a*}(0,q) = D_\xi + rac{1}{k} \ln\left(rac{f_q^0}{f_{q-\Delta}^0}
ight) \end{aligned}$$

 $f^0 \in \mathbb{R}^{2Q+1}$ is characterized by:

$$\operatorname*{argmin}_{\|f\|_{2}=1} \sum_{|q| \leq Q} \alpha q^{2} f_{q}^{2} + \eta_{\xi} \left(\sum_{q=-Q}^{Q-\Delta} (f_{q+\Delta} - f_{q})^{2} + (f_{Q})^{2} + (f_{-Q})^{2} \right)$$

▲□▶▲□▶▲壹▶▲壹▶ 壹 ∽��?

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (VI)

Continuous counterpart

 $ilde{f}^0\in L^2(\mathbb{R})$ characterized by:

$$\operatorname*{argmin}_{\|\tilde{f}\|_{L^2(\mathbb{R})}=1}\int_{-\infty}^{\infty}\left(\alpha x^2\tilde{f}(x)^2+\eta_{\xi}\Delta^2\tilde{f}'(x)^2\right)dx.$$

▲□▶ ▲□

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (VI)

Continuous counterpart

 $ilde{f}^0 \in L^2(\mathbb{R})$ characterized by:

$$\operatorname*{argmin}_{\|\tilde{f}\|_{L^2(\mathbb{R})}=1}\int_{-\infty}^{\infty}\left(\alpha x^2\tilde{f}(x)^2+\eta_{\xi}\Delta^2\tilde{f}'(x)^2\right)dx.$$

$$ilde{f}^0(x) \propto \exp\left(-rac{1}{2\Delta}\sqrt{rac{lpha}{\eta_{\xi}}}x^2
ight)$$

▲□▶▲□▶▲壹▶▲壹▶ 壹 釣९0

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (VI)

Continuous counterpart

 $\tilde{f}^0 \in L^2(\mathbb{R})$ characterized by:

$$\operatorname*{argmin}_{\|\tilde{f}\|_{L^2(\mathbb{R})}=1}\int_{-\infty}^{\infty}\left(\alpha x^2\tilde{f}(x)^2+\eta_{\xi}\Delta^2\tilde{f}'(x)^2\right)dx.$$

$$ilde{f}^0(x) \propto \exp\left(-rac{1}{2\Delta}\sqrt{rac{lpha}{\eta_\xi}}x^2
ight)$$

Hence, we get an approximation of the form:

$$f_q^0 \propto \exp\left(-rac{1}{2\Delta}\sqrt{rac{lpha}{\eta_{arepsilon}}}q^2
ight)$$

500

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (VII)

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model A: $\xi = \gamma$)

$$\begin{split} \delta^{b*}_{\infty}(q) &\simeq \quad \frac{1}{\Delta\xi} \ln\left(1 + \frac{\Delta\xi}{k}\right) + \frac{2q + \Delta}{2} \sqrt{\frac{\gamma\sigma^2}{2kA\Delta} \left(1 + \frac{\Delta\xi}{k}\right)^{1 + \frac{k}{\Delta\xi}}} \\ \delta^{a*}_{\infty}(q) &\simeq \quad \frac{1}{\Delta\xi} \ln\left(1 + \frac{\Delta\xi}{k}\right) - \frac{2q - \Delta}{2} \sqrt{\frac{\gamma\sigma^2}{2kA\Delta} \left(1 + \frac{\Delta\xi}{k}\right)^{1 + \frac{k}{\Delta\xi}}} \end{split}$$

Remark: these formulas are used by many practitioners in Europe and Asia on quote-driven markets.

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (VIII)

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model B: $\xi = 0$)

$$egin{array}{rcl} \delta^{b*}_{\infty}(q) &\simeq & rac{1}{k}+rac{2q+\Delta}{2}\sqrt{rac{\gamma\sigma^2 e}{2kA\Delta}} \ \delta^{a*}_{\infty}(q) &\simeq & rac{1}{k}-rac{2q-\Delta}{2}\sqrt{rac{\gamma\sigma^2 e}{2kA\Delta}} \end{array}$$

< □ ▶

The case
$$\Lambda^b(\delta)=\Lambda^a(\delta)=Ae^{-k\delta}$$
 (IX)

A good way to analyze the result is to consider the spread $\psi = \delta^b + \delta^a$ and the skew $\zeta = \delta^b - \delta^a$.

Closed-form approx.: spread and skew (Model A, $\xi = \gamma$)

$$\begin{split} \psi_{\infty}^{*}(q) &\simeq \frac{2}{\Delta\xi} \ln\left(1 + \frac{\Delta\xi}{k}\right) + \Delta\sqrt{\frac{\gamma\sigma^{2}}{2kA\Delta}} \left(1 + \frac{\Delta\xi}{k}\right)^{1 + \frac{k}{\Delta\xi}} \\ \zeta_{\infty}^{*}(q) &\simeq 2q\sqrt{\frac{\gamma\sigma^{2}}{2kA\Delta}} \left(1 + \frac{\Delta\xi}{k}\right)^{1 + \frac{k}{\Delta\xi}} \end{split}$$

< □

The case $\Lambda^{b}(\delta) = \Lambda^{a}(\delta) = Ae^{-k\delta}$ (X)

Closed form approx.: spread and skew (Model B, $\xi = 0$)

$$egin{array}{rcl} \psi^*_\infty(q) &\simeq& rac{2}{k} + \Delta \sqrt{rac{\gamma \sigma^2 e}{2kA\Delta}} \ \zeta^*_\infty(q) &\simeq& 2q \sqrt{rac{\gamma \sigma^2 e}{2kA\Delta}} \end{array}$$

< □ ト < □ ト < 三 ト < 三 ト</p>

Extensions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → ♀ ()

◆□▶ ▲□▶ ▲ = ▶ ▲ = ▶ ● ●

Basic ideas

• Other objective functions.

••••••••••••••••••••••••••••••••

Basic ideas

- Other objective functions.
- Including a drift and / or price jumps (easy).

Basic ideas

- Other objective functions.
- Including a drift and / or price jumps (easy).
- Including stoch. vol. models (easy but lead to a system of parabolic PDEs in dimension depending of the number of factors).

▲□▶ ▲□▶ ▲□▶ ▲□▶

Basic ideas

- Other objective functions.
- Including a drift and / or price jumps (easy).
- Including stoch. vol. models (easy but lead to a system of parabolic PDEs in dimension depending of the number of factors).
- Modeling price by microstructural models / point processes: \rightarrow lead to a system of PDEs with nonlocal terms.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → ♀ ()

Important practical considerations

• Multiple sizes of transactions (one quote per size): does not change the class of equations.

< □ > < 同 >

- Multiple sizes of transactions (one quote per size): does not change the class of equations.
- Multiple tiers of clients (quotes per tier): does not change the class of equations
 - \rightarrow can also be useful to get signal/drift.

< □ > < 同 > < 三 > < 三 >

Sac

- Multiple sizes of transactions (one quote per size): does not change the class of equations.
- Multiple tiers of clients (quotes per tier): does not change the class of equations
 - \rightarrow can also be useful to get signal/drift.
- Asymmetric long/short penalties (important for bonds).

- Multiple sizes of transactions (one quote per size): does not change the class of equations.
- Multiple tiers of clients (quotes per tier): does not change the class of equations
 - \rightarrow can also be useful to get signal/drift.
- Asymmetric long/short penalties (important for bonds).
- Better modelling of adverse selection → trades convey information depending on id and price (a fair deal with a standard client may be better than a seemingly good deal with an informed client).

▲□▶ ▲□▶ ▲□▶ ▲□▶

Sac

- Multiple sizes of transactions (one quote per size): does not change the class of equations.
- Multiple tiers of clients (quotes per tier): does not change the class of equations
 - \rightarrow can also be useful to get signal/drift.
- Asymmetric long/short penalties (important for bonds).
- Better modelling of adverse selection → trades convey information depending on id and price (a fair deal with a standard client may be better than a seemingly good deal with an informed client).
- Price signalling: need to model the impact of streamed prices.

- Multiple sizes of transactions (one quote per size): does not change the class of equations.
- Multiple tiers of clients (quotes per tier): does not change the class of equations
 - \rightarrow can also be useful to get signal/drift.
- Asymmetric long/short penalties (important for bonds).
- Better modelling of adverse selection → trades convey information depending on id and price (a fair deal with a standard client may be better than a seemingly good deal with an informed client).
- Price signalling: need to model the impact of streamed prices.
- D2C vs. D2D (internalization vs. externalization) + market impact on the D2D segment.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Many effects can be taken into account in the one-asset case

Many effects can be taken into account in the one-asset case

Important in itself.

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 り () ()

Many effects can be taken into account in the one-asset case

- Important in itself.
- Important for decentralized finance

 \rightarrow In 2021, 3 days before Christmas, I received an email from David Bouba who co-founded an AMM (Swaap): a whitepaper, interesting remarks, and an invitation to discuss with him.

▲□▶▲□▶▲≡▶ ▲≡▶ ≡ ∽)へ(~

Many effects can be taken into account in the one-asset case

- Important in itself.
- Important for decentralized finance

 \rightarrow In 2021, 3 days before Christmas, I received an email from David Bouba who co-founded an AMM (Swaap): a whitepaper, interesting remarks, and an invitation to discuss with him.

 \rightarrow Less than a year later, we released a paper to build AMM based on price oracles or offchain reference prices (Bergault, Bertucci, Bouba, Guéant).

Many effects can be taken into account in the one-asset case

- Important in itself.
- Important for decentralized finance

 \rightarrow In 2021, 3 days before Christmas, I received an email from David Bouba who co-founded an AMM (Swaap): a whitepaper, interesting remarks, and an invitation to discuss with him.

 \rightarrow Less than a year later, we released a paper to build AMM based on price oracles or offchain reference prices (Bergault, Bertucci, Bouba, Guéant).

Not really satisfying for FX (correlations + triplets) or corporate bonds (many securities for one issuer).
 → diversification and liquidity differences must be taken into account.

Organization of the FX market (Schrimpf-Sushko)

ED = electronic broker; LA = liquidity aggregator; MBP = multi-bank platform; PD = prime broker; PTF = principal trading firm; KA = reta aggregator; SBP = single-bank platform; VB = voice broker. Dashed lines indicate voice execution; solid lines indicate electronic execution.

Organization of the FX market (Schrimpf-Sushko)

RFSs and RFQs (D2C) and access to multiple platforms (D2D and all-to-all)

Sac

Organization of the FX market (Schrimpf-Sushko)

RFSs and RFQs (D2C) and access to multiple platforms (D2D and all-to-all) \rightarrow dealers can internalize or externalize the flow, is is a same set of the start of

▲□▶ 4□▶ 4 三▶ 4 三▶ 4 □

• Equations are there but no grid in high dimension

┥□▶ ┥@▶ ┥┋▶ ┥┋▶

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors

4 日 > 4 同 > 4 三 > 4 三 > 三

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:

4 日 > 4 同 > 4 三 > 4 三 > 三

500

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:
 - HJB equations associated with continuous state space optimal control problems boil down to Riccati equations when Hamiltonians are quadratic.

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:
 - HJB equations associated with continuous state space optimal control problems boil down to Riccati equations when Hamiltonians are quadratic.
 - For HJ equations on graphs, the easy case is that of exponential Hamiltonians (hence the special case of exponential intensities).

4 □ ▶ 4 @ ▶ 4 E ▶ 4 E ▶ E

500

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:
 - HJB equations associated with continuous state space optimal control problems boil down to Riccati equations when Hamiltonians are quadratic.
 - For HJ equations on graphs, the easy case is that of exponential Hamiltonians (hence the special case of exponential intensities).
 - But...

4 日 > 4 同 > 4 三 > 4 三 > 三

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:
 - HJB equations associated with continuous state space optimal control problems boil down to Riccati equations when Hamiltonians are quadratic.
 - For HJ equations on graphs, the easy case is that of exponential Hamiltonians (hence the special case of exponential intensities).
 - But...
 - Quadratic approximations of the *H* functions (makes sense for not too asymmetric flows)...

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:
 - HJB equations associated with continuous state space optimal control problems boil down to Riccati equations when Hamiltonians are quadratic.
 - For HJ equations on graphs, the easy case is that of exponential Hamiltonians (hence the special case of exponential intensities).
 - But...
 - Quadratic approximations of the *H* functions (makes sense for not too asymmetric flows)...
 - Gives an approximate value function θ
 Polynomial of degree 2 in y with coefficients solving a Riccati-like equation (no curse of dimensionality).

- Equations are there but no grid in high dimension
- Simple structure for the risk with a few risk factors
- (Deep) Reinforcement Learning (slow and the danger of NN).
- Trick in Bergault, Evangelista, Guéant, Vieira:
 - HJB equations associated with continuous state space optimal control problems boil down to Riccati equations when Hamiltonians are quadratic.
 - For HJ equations on graphs, the easy case is that of exponential Hamiltonians (hence the special case of exponential intensities).
 - But...
 - Quadratic approximations of the *H* functions (makes sense for not too asymmetric flows)...
 - Gives an approximate value function θ
 Polynomial of degree 2 in y with coefficients solving a Riccati-like equation (no curse of dimensionality).
 - $\tilde{\theta}$ is plugged in the above equations to get great pricing and hedging strategies.

Approximation of the Hamiltonians

$$H^{b}\left(\frac{\theta(t,q)-\theta(t,q+\Delta)}{\Delta}\right) + H^{a}\left(\frac{\theta(t,q)-\theta(t,q-\Delta)}{\Delta}\right)$$
$$\rightsquigarrow \quad H^{b}(p) + H^{a}(-p)$$

▲□▶ ▲□▶ ▲ 壹▶ ▲ 壹▶ = りへで

Time for a short animation

The problem with precious metals

▲□▶▲□▶▲三▶▲三▶ ● ○ ○ ○

The problem with precious metals

- In many cases, market making on the spot market and hedging on both the (illiquid) spot market and the (liquid) futures market.
- Futures hedging is imperfect \rightarrow the remaining (basis) risk cannot be modelled with a Brownian motion: it is stationary.
The problem with precious metals

< □ ト < 同 ト < 三 ト < 三 ト</p>

Sac

- In many cases, market making on the spot market and hedging on both the (illiquid) spot market and the (liquid) futures market.
- Futures hedging is imperfect \rightarrow the remaining (basis) risk cannot be modelled with a Brownian motion: it is stationary.

The dynamics of prices (Nested OU)

• Spot: $dS_t = \sigma_S dW_t^S$, $\sigma_S > 0$.

The problem with precious metals

▲□▶ ▲□▶ ▲□▶ ▲□▶

500

- In many cases, market making on the spot market and hedging on both the (illiquid) spot market and the (liquid) futures market.
- Futures hedging is imperfect \rightarrow the remaining (basis) risk cannot be modelled with a Brownian motion: it is stationary.

The dynamics of prices (Nested OU)

- Spot: $dS_t = \sigma_S dW_t^S$, $\sigma_S > 0$.
- Futures: $F_t = S_t + E_t$.

The problem with precious metals

- In many cases, market making on the spot market and hedging on both the (illiquid) spot market and the (liquid) futures market.
- Futures hedging is imperfect \rightarrow the remaining (basis) risk cannot be modelled with a Brownian motion: it is stationary.

The dynamics of prices (Nested OU)

• Spot:
$$dS_t = \sigma_S dW_t^S$$
, $\sigma_S > 0$.

• Futures:
$$F_t = S_t + E_t$$
.
We want prices with linear dynamics to stay in the quadratic value case:

$$\begin{aligned} dE_t &= -k_E \left(E_t - D_t \right) dt + \sigma_E dW_t^E, \qquad k_E, \sigma_E > 0, \\ dD_t &= -k_D \left(D_t - \bar{D} \right) dt + \sigma_D dW_t^D, \qquad k_D, \sigma_D \ge 0, \quad \bar{D} \in \mathbb{R}, \end{aligned}$$

where $(W_t^S, W_t^E, W_t^D)_t$ is a three-dimensional Brownian motion with correlation matrix R (covariance matrix: Σ).

Other state variables

< □ ▶

Ì

Inventories

Spot – jumps (trade with clients) and execution:

$$dq_t^S = \int\limits_{z=0}^\infty z J^b(dt, dz) - \int\limits_{z=0}^\infty z J^a(dt, dz) + v_t^S dt.$$

• Futures – execution: $dq_t^F = v_t^F dt$.

Other state variables

< □ ▶

Inventories

Spot – jumps (trade with clients) and execution:

$$dq_t^S = \int_{z=0}^{\infty} z J^b(dt, dz) - \int_{z=0}^{\infty} z J^a(dt, dz) + v_t^S dt.$$

• Futures – execution: $dq_t^F = v_t^F dt$.

where the intensities are

$$\Lambda^b(z,\delta)=\Lambda^a(z,\delta)=\Lambda(z,\delta)=\lambda(z)f(\delta) \quad ext{with} \quad f(\delta)=rac{1}{1+e^{lpha+eta\delta}}.$$

Other state variables

4 □ ▶ 4 同 ▶ 4 Ξ ▶ 4 Ξ ▶

Cash

The resulting cash process $(X_t)_t$ follows:

$$dX_t = \int_{z=0}^{\infty} S^a(t,z) z J^a(dt,dz) - \int_{z=0}^{\infty} S^b(t,z) z J^b(dt,dz) -v_t^S S_t dt - L^S(v_t^S) dt - v_t^F F_t dt - L^F(v_t^F) dt$$

where $L^{S}(v_{t}^{S})$ and $L^{F}(v_{t}^{F})$ account for execution costs upon externalizing.

Stochastic optimal control

Image: Image

 $\exists \rightarrow 4$

Objective function

The goal is now to maximize

$$\mathbb{E}\left[-\exp\left(-\gamma\left(X_{T}+q_{T}^{S}S_{T}+q_{T}^{F}F_{T}-K\left((q_{T}^{S})^{2}+(q_{T}^{F})^{2}\right)\right)\right)\right]$$

by selecting δ^{b} , δ^{a} , v^{S} and v^{F} optimally.

Hamilton-Jacobi-Bellman equation

$$0 = \partial_t u - k_E (E - D) \partial_E u - k_D (D - \overline{D}) \partial_D u + \frac{1}{2} \operatorname{Tr} (\Sigma \nabla_{SED}^2 u) + \mathcal{L}^b u + \mathcal{L}^a u + \sup_{v^S} (v^S \partial_{q^S} u - (\mathcal{L}^S (v^S) + v^S S) \partial_x u) + \sup_{v^F} (v^F \partial_{q^F} u - (\mathcal{L}^F (v^F) + v^F (S + E)) \partial_x u)$$

with terminal condition

$$u(T, x, q^{S}, q^{F}, S, E, D) = -\exp(-\gamma \left(x + q^{S}S + q^{F}(S + E) - K\left((q^{S})^{2} + (q^{F})^{2}\right)\right)\right)$$

4 □ ▶

▲ 『 ▶ ▲ ■ ▶ ▲

Hamilton-Jacobi-Bellman equation

▲□▶ ▲ 『

Nonlocal jump operators:

$$\mathcal{L}^{b}u(t,x,q^{S},q^{F},S,E,D)$$

$$= \int_{0}^{\infty} \sup_{\delta^{b}} f(\delta^{b}) \left(u(t,x-z(S-\delta^{b}),q^{S}+z,q^{F},S,E,D) - u(t,x,q^{S},q^{F},S,E,D) \right) \lambda(z) dz$$

Hamilton-Jacobi-Bellman equation

Nonlocal jump operators:

$$\mathcal{L}^{b}u(t,x,q^{S},q^{F},S,E,D)$$

$$= \int_{0}^{\infty} \sup_{\delta^{b}} f(\delta^{b}) \left(u(t,x-z(S-\delta^{b}),q^{S}+z,q^{F},S,E,D) - u(t,x,q^{S},q^{F},S,E,D) \right) \lambda(z) dz$$

$$\mathcal{L}^{a}u(t,x,q^{S},q^{F},S,E,D)$$

$$= \int_{0}^{\infty} \sup_{\delta^{a}} f(\delta^{a}) \left(u(t,x+z(S+\delta^{a}),q^{S}-z,q^{F},S,E,D) - u(t,x,q^{S},q^{F},S,E,D) \right) \lambda(z) dz$$

◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ▶ → □ ● ● ○ ○ ○ ○

Change of variables

<□▶ <⊡▶ < ⊒▶

◄

Ansatz

$$u(t, x, q^{S}, q^{F}, S, E, D) = -\exp\left(-\gamma\left(x + q^{S}S + q^{F}(S + E) + \theta(t, q^{S}, q^{F}, E, D)\right)\right)$$

Change of variables

Ansatz

$$u(t, x, q^{S}, q^{F}, S, E, D) = -\exp\left(-\gamma\left(x + q^{S}S + q^{F}(S + E) + \theta(t, q^{S}, q^{F}, E, D)\right)\right)$$

New equation for θ

The equation for θ becomes:

$$0 = \partial_{t}\theta - k_{E}(E-D)(q^{F}+\partial_{E}\theta) - k_{D}(D-\bar{D})\partial_{D}\theta + \frac{1}{2}\operatorname{Tr}(\widetilde{\Sigma}\nabla_{ED}^{2}\theta) \\ -\frac{\gamma}{2}\begin{pmatrix}q^{S}+q^{F}\\q^{F}+\partial_{E}\theta\\\partial_{D}\theta\end{pmatrix}^{\mathsf{T}}\Sigma\begin{pmatrix}q^{S}+q^{F}\\q^{F}+\partial_{E}\theta\\\partial_{D}\theta\end{pmatrix} + \mathcal{J}_{H}\theta + \mathcal{H}^{S}(\partial_{q^{S}}\theta) + \mathcal{H}^{F}(\partial_{q^{F}}\theta)$$

▲□▶▲□▶▲壹▶▲壹▶ 壹 りへの

Notations

- $\widetilde{\Sigma}$ is the submatrix of Σ obtained by removing the first row and the first column
- \mathcal{H}^{S} and \mathcal{H}^{F} are the Hamiltonian functions defined by

$$\mathcal{H}^{S}: p \in \mathbb{R} \mapsto \sup_{v^{S}} \left(v^{S} p - L^{S}(v^{S}) \right)$$
$$\mathcal{H}^{F}: p \in \mathbb{R} \mapsto \sup_{v^{F}} \left(v^{F} p - L^{F}(v^{F}) \right)$$

Nonlocal jump operators:

$$\mathcal{J}_{H}\theta(t,q^{S},q^{F},E,D) = \int_{0}^{\infty} zH\left(z,\frac{\theta(t,q^{S},q^{F},E,D)-\theta(t,q^{S}+z,q^{F},E,D)}{z}\right)\lambda(z)dz + \int_{0}^{\infty} zH\left(z,\frac{\theta(t,q^{S},q^{F},E,D)-\theta(t,q^{S}-z,q^{F},E,D)}{z}\right)\lambda(z)dz$$

with $H: (z,p) \in (0,+\infty) \times \mathbb{R} \mapsto \sup_{\delta} \frac{f(\delta)}{\gamma z} (1 - e^{-\gamma z(\delta - p)}).$

Solution

If we approximate the Hamiltonian terms by polynomials of degree 2, the resulting approximation of θ will be a polynomial of degree 2, with coefficients solving simple ODEs (Riccati and linear).

Solution

If we approximate the Hamiltonian terms by polynomials of degree 2, the resulting approximation of θ will be a polynomial of degree 2, with coefficients solving simple ODEs (Riccati and linear).

Optimal strategy

$$\begin{cases} \delta^{b*}(t,z) = \overline{\delta} \left(z, \frac{\theta(t,q_{t-}^S,q_t^F, E_t, D_t) - \theta(t,q_{t-}^S + z,q_t^F, E_t, D_t)}{z} \right) \\ \delta^{a*}(t,z) = \overline{\delta} \left(z, \frac{\theta(t,q_{t-}^S,q_t^F, E_t, D_t) - \theta(t,q_{t-}^S - z,q_t^F, E_t, D_t)}{z} \right) \\ v_t^{S*} = \mathcal{H}^{S'} \left(\partial_{q^S} \theta(t,q_{t-}^S,q_t^F, E_t, D_t) \right) \\ v_t^{F*} = \mathcal{H}^{F'} \left(\partial_{q^F} \theta(t,q_{t-}^S,q_t^F, E_t, D_t) \right) \end{cases}$$

where $\overline{\delta}(z,p) = f^{-1}(\gamma z H(z,p) - \partial_p H(z,p)).$

• The spot and futures prices are observable, so is the basis $(E_t)_t$.

- The spot and futures prices are observable, so is the basis $(E_t)_t$.
- $(D_t)_t$ is not observable. It has to be filtered.

▲□▶ ▲□▶ ▲□▶ ▲□▶

500

• The spot and futures prices are observable, so is the basis $(E_t)_t$.

• $(D_t)_t$ is not observable. It has to be filtered.

The dynamics after filtering – Same Nested OU structure

Assuming $d\langle W^S, W^E \rangle = \rho dt$ and $\langle W^S, W^D \rangle = \langle W^E, W^D \rangle = 0$, we get:

• The spot and futures prices are observable, so is the basis $(E_t)_t$.

• $(D_t)_t$ is not observable. It has to be filtered.

The dynamics after filtering – Same Nested OU structure

Assuming $d\langle W^S, W^E \rangle = \rho dt$ and $\langle W^S, W^D \rangle = \langle W^E, W^D \rangle = 0$, we get:

$$dE_t = -k_E \left(E_t - \widehat{D}_t \right) dt + \sigma_E d\widehat{W}_t^E$$

$$d\widehat{D}_t = -k_D \left(\widehat{D}_t - \overline{D} \right) dt + \frac{1}{\sqrt{1 - \rho^2}} \frac{k_E}{\sigma_E} \nu_t^2 d\widehat{W}_t^D$$

where

$$\widehat{D}_t = \mathbb{E}\left[D_t|(S_s)_{s\leq t}, (E_s)_{s\leq t}\right], \quad \nu_t^2 = \mathbb{V}\left(D_t|(S_s)_{s\leq t}, (E_s)_{s\leq t}\right),$$

and

$$\widehat{W}_{t}^{E} = W_{t}^{E} + \frac{k_{E}}{\sigma_{E}} \int_{0}^{t} (D_{s} - \widehat{D}_{s}) ds \text{ and } \widehat{W}_{t}^{D} = \frac{\widehat{W}_{t}^{E} - \rho W_{t}^{S}}{\sqrt{1 - \rho^{2}}}$$

Optimal strategies

Optimal strategy

< □ ▶

Inventory probability distribution

Volume shares

Performance

Questions

Thanks for your attention. Questions?

< □ ▶ < 凸