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What is market making?

Market makers

• Activity: providing bid and ask/offer prices to other market
participants.

• The way they make money: capturing part of the bid-ask spreads.

• Risks:
• Holding inventory
→ face the risk that prices move adversely without them being able
to unwind their position.

• Information asymmetry / adverse selection by informed traders
→ face the risk of buying / selling when the price will go down / up.

Remark: I mainly focused on market making in OTC markets. Not
market making in limit order books (no tick size, no queue, no priority).
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The early literature

Models regarding inventory cost / management

• Stoll (1978)

• Ho and Stoll (1981, 1983)

• Amihud and Mendelson (1980)

• O’Hara and Oldfield (1986)

Models regarding adverse selection

• Copeland and Galai (1983)

• Easley and O’Hara (1987)
• Glosten and Milgrom (1985)

An economic literature about the determinants of bid-ask spreads in the
1980s and 1990s: Hasbrouck, Huang and Stoll, MRR, etc.
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From economists to mathematicians

The financial mathematics community only got interested in
market making from 2008 following the paper by Avellaneda and

Stoikov.
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Overview of my journey

The roots

• Post-PhD inspiration (2010): met C.-A. Lehalle (Crédit Agricole
Cheuvreux) through J.-M. Lasry. Charles put in my hands
Avellaneda-Stoikov’s paper.
→ initially more of a theoretical / mathematical exercise.

Multiple interactions with the industry

• OTC trading (neglected area of academic research): Contacted by
bond dealers and FX+commodity dealers in London and NYC, for
adapting models to match real-world trading environments.

• DeFi: More recently contacted by decentralized finance players to
build new Automated Market Makers.
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Setup of the model (I)

One asset: reference price process (“mid”-price) (St)t

Brownian dynamics

dSt = σdWt .

→ Can be the CBBT / CP+ for corporate bonds or a homemade
reference price.
→ Can be EBS / Refinitiv mid price or a homemade composite.



Setup of the model (II)

Bid and ask prices proposed by the MM

Sb
t = St − δbt and Sa

t = St + δat .

Dynamics of the inventory (qt)t

dqt = ∆dNb
t −∆dNa

t ,

for two point processes Nb and Na.

Competition and demand are modeled indirecty through the probability /
intensity of jumps.
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Setup of the model (III)

Intensities (λb
t )t and (λa

t )t of Nb and Na

λbt = Λb(δbt )1qt−<Q and λat = Λa(δat )1qt−>−Q .

They depend on the distance to the reference price: Λb, Λa decreasing (of
course!)

Cash process (Xt)t

dXt = ∆Sa
t dN

a
t −∆Sb

t dN
b
t = −Stdqt + δat ∆dNa

t + δbt ∆dNb
t .

Three state variables: X (cash), q (inventory), and S (price).
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PnL and objective function

PnL at time T of a market maker

PnLT = XT + qTST = X0 + q0S0

+

∫ T

0

δat ∆dNa
t + δbt ∆dNb

t︸ ︷︷ ︸
spread capture

+ σqtdWt︸ ︷︷ ︸
inventory+price risk

The original Avellaneda-Stoikov’s model considers a CARA utility (Model
A):

CARA objective function

sup
(δat )t ,(δbt )t∈A

E [− exp (−γ(XT + qTST ))] ,

where γ is the absolute risk aversion parameter, and A the set of
predictable processes bounded from below.



PnL and objective function

PnL at time T of a market maker

PnLT = XT + qTST = X0 + q0S0

+

∫ T

0

δat ∆dNa
t + δbt ∆dNb

t︸ ︷︷ ︸
spread capture

+ σqtdWt︸ ︷︷ ︸
inventory+price risk

The original Avellaneda-Stoikov’s model considers a CARA utility (Model
A):

CARA objective function

sup
(δat )t ,(δbt )t∈A

E [− exp (−γ(XT + qTST ))] ,

where γ is the absolute risk aversion parameter, and A the set of
predictable processes bounded from below.



HJB equation

In what follows, u is a candidate for the value function.

Hamilton-Jacobi-Bellman

(HJB) 0 = ∂tu(t, x , q,S) +
1

2
σ2∂2

SSu(t, x , q,S)

+1q<Q sup
δb

Λb(δb)
[
u(t, x −∆S + ∆δb, q + ∆,S)− u(t, x , q,S)

]
+1q>−Q sup

δa
Λa(δa) [u(t, x + ∆S + ∆δa, q −∆,S)− u(t, x , q,S)]

with final condition:

u(T , x , q,S) = − exp (−γ(x + qS))
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Change of variables

Ansatz

u(t, x , q,S) = − exp(−γ(x + qS + θ(t, q)))

New equation

0 = ∂tθ(t, q)− 1

2
γσ2q2

+1q<Q sup
δb

Λb(δb)

γ

(
1− exp

(
−γ
(
∆δb + θ(t, q + ∆)− θ(t, q)

)))
+1q>−Q sup

δa

Λa(δa)

γ
(1− exp (−γ (∆δa + θ(t, q −∆)− θ(t, q))))

with final condition θ(T , q) = 0.
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Equation for θ

A new transform

Hb
ξ (p) = sup

δ

Λb(δ)

ξ∆
(1− exp (−ξ∆ (δ − p)))

Ha
ξ (p) = sup

δ

Λa(δ)

ξ∆
(1− exp (−ξ∆ (δ − p)))

New equation

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<Q∆Hb

γ

(
θ(t, q)− θ(t, q + ∆)

∆

)
+1q>−Q∆Ha

γ

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.
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Another objective function

Variant (Cartea, Jaimungal et al.) with a running penalty:

Risk-neutral with running penalty (Model B)

sup
(δat )t ,(δbt )t∈A

E

[
XT + qTST −

γ

2
σ2

∫ T

0

q2
t dt

]
i.e.

sup
(δat )t ,(δ

b
t )t∈A

E
[∫ T

0

(
∆δat Λa(δat )1qt−>−Q + ∆δbt Λb(δbt )1qt−<Q −

γ

2
σ2q2

t

)
dt

]
where γ is a kind of absolute risk aversion parameter.

→ Optimal control on a very simple finite graph (truncated ∆Z)
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Value function θ (Model B)

Hamilton-Jacobi equation (Model B)

0 = ∂tθ(t, q)− 1
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)
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0

(
θ(t, q)− θ(t, q −∆)
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)
with final condition θ(T , q) = 0.

Same kind of transform

Hb
0 (p) = sup

δ
Λb(δ)(δ − p)

Ha
0 (p) = sup

δ
Λa(δ)(δ − p)



Value function θ (Model B)

Hamilton-Jacobi equation (Model B)

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<Q∆Hb

0

(
θ(t, q)− θ(t, q + ∆)

∆

)
+1q>−Q∆Ha

0

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.

Same kind of transform

Hb
0 (p) = sup

δ
Λb(δ)(δ − p)

Ha
0 (p) = sup

δ
Λa(δ)(δ − p)



Value function θ (Model B)

Hamilton-Jacobi equation (Model B)

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<Q∆Hb

0

(
θ(t, q)− θ(t, q + ∆)

∆

)
+1q>−Q∆Ha

0

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.

Same kind of transform

Hb
0 (p) = sup

δ
Λb(δ)(δ − p)

Ha
0 (p) = sup

δ
Λa(δ)(δ − p)



Analysis

• Both equations look like a classical Hamilton-Jacobi PDE of order 1.

• A system of 2Q/∆ + 1 non-linear ODEs.

Light assumptions of the intensity functions

1 Λb/a is C 2.

2 Λb/a′ < 0.

3 limδ→+∞ Λb/a(δ) = 0.

4 The intensity functions Λb/a satisfy:

sup
δ

Λb/a(δ)Λb/a′′(δ)(
Λb/a′(δ)

)2 < 2.
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The functions Hb
ξ and Ha

ξ

Proposition

• ∀ξ ≥ 0, H
b/a
ξ is a decreasing function of class C 2.

• In the definition of H
b/a
ξ (p), the supremum is attained at a unique

δ̃
b/a∗
ξ (p) characterized by

δ̃
b/a∗
ξ (p) = Λb/a−1

(
ξ∆H

b/a
ξ (p)− H

b/a
ξ

′
(p)
)
.

• The function p 7→ δ̃
b/a∗
ξ (p) is increasing.



The functions Hb
ξ and Ha

ξ

Proposition

• ∀ξ ≥ 0, H
b/a
ξ is a decreasing function of class C 2.

• In the definition of H
b/a
ξ (p), the supremum is attained at a unique

δ̃
b/a∗
ξ (p) characterized by

δ̃
b/a∗
ξ (p) = Λb/a−1

(
ξ∆H

b/a
ξ (p)− H

b/a
ξ

′
(p)
)
.

• The function p 7→ δ̃
b/a∗
ξ (p) is increasing.



Existence and uniqueness

Results for θ

There exists a unique C 1 (in time) solution t 7→ (θ(t, q))|q|≤Q to

0 = ∂tθ(t, q)− 1

2
γσ2q2 + 1q<Q∆Hb

ξ

(
θ(t, q)− θ(t, q + ∆)

∆

)

+1q>−Q∆Ha
ξ

(
θ(t, q)− θ(t, q −∆)

∆

)
with final condition θ(T , q) = 0.
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Solution of the initial problem (verification
argument)

By using a verification argument, the function u is the value function
associated with the problem.

Optimal quotes

The optimal quotes in models A (ξ = γ) and B (ξ = 0) are:

δb∗t = δ̃b∗ξ

(
θ(t, qt−)− θ(t, qt− + ∆)

∆

)

δa∗t = δ̃a∗ξ

(
θ(t, qt−)− θ(t, qt− −∆)

∆

)
where

δ̃
b/a∗
ξ (p) = Λb/a−1

(
ξ∆H

b/a
ξ (p)− H

b/a
ξ

′
(p)
)
.
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The case Λb(δ) = Λa(δ) = Ae−kδ (I)

The functions H
b/a
ξ and δ̃

b/a∗
ξ

If Λb(δ) = Λa(δ) = Ae−kδ, then H
b/a
ξ (p) = A

k Cξ exp(−kp), with

Cξ =


(

1 + ξ∆
k

)− k
ξ∆−1

if ξ > 0

e−1 if ξ = 0.

and

δ̃
b/a∗
ξ (p) =

{
p + 1

ξ∆ log
(

1 + ξ∆
k

)
if ξ > 0

p + 1
k if ξ = 0,



The case Λb(δ) = Λa(δ) = Ae−kδ (II)

The system of ODEs

0 = ∂tθ(t, q)− 1

2
γσ2q2+

+
A∆

k
Cξ
(

1q<Qe
k θ(t,q+∆)−θ(t,q)

∆ + 1q>−Qe
k θ(t,q−∆)−θ(t,q)

∆

)
,

with final condition θ(T , q) = 0.

Change of variables: vq(t) = exp
(

kθ(t,q)
∆

)
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The case Λb(δ) = Λa(δ) = Ae−kδ (III)

A linear system of ODEs

v ′q(t) = αq2vq(t)− ηξ (1q<Qvq+∆(t) + 1q>−Qvq−∆(t)) ,

with

α =
k

2∆
γσ2, ηξ = ACξ

and the terminal condition v(T , q) = 1.

This simplifies a lot the equations of Avellaneda and Stoikov. See the
paper Guéant-Lehalle-Fernandez-Tapia (2013) (when ∆ = 1 and ξ = γ).
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This simplifies a lot the equations of Avellaneda and Stoikov. See the
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The case Λb(δ) = Λa(δ) = Ae−kδ (IV)

Optimal quotes

The optimal quotes in models A (ξ = γ) and B (ξ = 0) are:

δb∗t = δb∗(t, qt−) := Dξ +
1

k
ln

(
vqt−(t)

vqt−+∆(t)

)
δa∗t = δa∗(t, qt−) := Dξ +

1

k
ln

(
vqt−(t)

vqt−−∆(t)

)

Dξ =

{
1
ξ∆ log

(
1 + ξ∆

k

)
if ξ > 0

1
k if ξ = 0,

The optimal quotes are made of two components:

• Dξ corresponds to the static trade-off.

• 1
k ln

(
vq(t)

vq+∆(t)

)
or 1

k ln
(

vq(t)
vq−∆(t)

)
: dynamic aspects.
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The case Λb(δ) = Λa(δ) = Ae−kδ (V)

The optimal quote functions far from T only depend on q:

Asymptotics

δb∗∞(q) = lim
T→∞

δb∗(0, q) = Dξ +
1

k
ln

(
f 0
q

f 0
q+∆

)

δa∗∞(q) = lim
T→∞

δa∗(0, q) = Dξ +
1

k
ln

(
f 0
q

f 0
q−∆

)

f 0 ∈ R2Q+1 is characterized by:

argmin
‖f ‖2=1

∑
|q|≤Q

αq2f 2
q + ηξ

 Q−∆∑
q=−Q

(fq+∆ − fq)2 + (fQ)2 + (f−Q)2

 .
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The case Λb(δ) = Λa(δ) = Ae−kδ (VI)

Continuous counterpart

f̃ 0 ∈ L2(R) characterized by:

argmin
‖f̃ ‖L2(R)=1

∫ ∞
−∞

(
αx2 f̃ (x)2 + ηξ∆2 f̃ ′(x)2

)
dx .

f̃ 0(x) ∝ exp

(
− 1

2∆

√
α
ηξ
x2

)
Hence, we get an approximation of the form:

f 0
q ∝ exp

(
− 1

2∆

√
α
ηξ
q2

)



The case Λb(δ) = Λa(δ) = Ae−kδ (VI)

Continuous counterpart

f̃ 0 ∈ L2(R) characterized by:

argmin
‖f̃ ‖L2(R)=1

∫ ∞
−∞

(
αx2 f̃ (x)2 + ηξ∆2 f̃ ′(x)2

)
dx .

f̃ 0(x) ∝ exp

(
− 1

2∆

√
α
ηξ
x2

)

Hence, we get an approximation of the form:

f 0
q ∝ exp

(
− 1

2∆

√
α
ηξ
q2

)



The case Λb(δ) = Λa(δ) = Ae−kδ (VI)

Continuous counterpart

f̃ 0 ∈ L2(R) characterized by:

argmin
‖f̃ ‖L2(R)=1

∫ ∞
−∞

(
αx2 f̃ (x)2 + ηξ∆2 f̃ ′(x)2

)
dx .

f̃ 0(x) ∝ exp

(
− 1

2∆

√
α
ηξ
x2

)
Hence, we get an approximation of the form:

f 0
q ∝ exp

(
− 1

2∆

√
α
ηξ
q2

)



The case Λb(δ) = Λa(δ) = Ae−kδ (VII)

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model A: ξ = γ)

δb∗∞(q) ' 1

∆ξ
ln

(
1 +

∆ξ

k

)
+

2q + ∆

2

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ

δa∗∞(q) ' 1

∆ξ
ln

(
1 +

∆ξ

k

)
− 2q −∆

2

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ

Remark: these formulas are used by many practitioners in Europe and
Asia on quote-driven markets.



The case Λb(δ) = Λa(δ) = Ae−kδ (VIII)

Using the continuous counterpart, we get:

Closed-form approximations: optimal quotes (Model B: ξ = 0)

δb∗∞(q) ' 1

k
+

2q + ∆

2

√
γσ2e

2kA∆

δa∗∞(q) ' 1

k
− 2q −∆

2

√
γσ2e

2kA∆



The case Λb(δ) = Λa(δ) = Ae−kδ (IX)

A good way to analyze the result is to consider the spread ψ = δb + δa

and the skew ζ = δb − δa.

Closed-form approx.: spread and skew (Model A, ξ = γ)

ψ∗∞(q) ' 2

∆ξ
ln

(
1 +

∆ξ

k

)
+ ∆

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ

ζ∗∞(q) ' 2q

√
γσ2

2kA∆

(
1 +

∆ξ

k

)1+ k
∆ξ



The case Λb(δ) = Λa(δ) = Ae−kδ (X)

Closed form approx.: spread and skew (Model B, ξ = 0)

ψ∗∞(q) ' 2

k
+ ∆

√
γσ2e

2kA∆

ζ∗∞(q) ' 2q

√
γσ2e

2kA∆



Extensions

Basic ideas

• Other objective functions.

• Including a drift and / or price jumps (easy).

• Including stoch. vol. models (easy but lead to a system of parabolic
PDEs in dimension depending of the number of factors).

• Modeling price by microstructural models / point processes:
→ lead to a system of PDEs with nonlocal terms.
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Extensions

Important practical considerations

• Multiple sizes of transactions (one quote per size): does not change
the class of equations.

• Multiple tiers of clients (quotes per tier): does not change the class
of equations
→ can also be useful to get signal/drift.

• Asymmetric long/short penalties (important for bonds).

• Better modelling of adverse selection → trades convey information
depending on id and price (a fair deal with a standard client may be
better than a seemingly good deal with an informed client).

• Price signalling: need to model the impact of streamed prices.

• D2C vs. D2D (internalization vs. externalization) + market impact
on the D2D segment.
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Regarding extensions

Many effects can be taken into account in the one-asset case

• Important in itself.

• Important for decentralized finance
→ In 2021, 3 days before Christmas, I received an email from David
Bouba who co-founded an AMM (Swaap): a whitepaper, interesting
remarks, and an invitation to discuss with him.
→ Less than a year later, we released a paper to build AMM based
on price oracles or offchain reference prices (Bergault, Bertucci,
Bouba, Guéant).

• Not really satisfying for FX (correlations + triplets) or corporate
bonds (many securities for one issuer).
→ diversification and liquidity differences must be taken into
account.
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Organization of the FX market
(Schrimpf-Sushko)

RFSs and RFQs (D2C) and access to multiple platforms (D2D and
all-to-all) → dealers can internalize or externalize the flow.
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Numerical approximation

• Equations are there but no grid in high dimension

• Simple structure for the risk with a few risk factors

• (Deep) Reinforcement Learning (slow and the danger of NN).

• Trick in Bergault, Evangelista, Guéant, Vieira:
• HJB equations associated with continuous state space optimal

control problems boil down to Riccati equations when Hamiltonians
are quadratic.

• For HJ equations on graphs, the easy case is that of exponential
Hamiltonians (hence the special case of exponential intensities).

• But...
• Quadratic approximations of the H functions (makes sense for not

too asymmetric flows)...
• Gives an approximate value function θ̃: Polynomial of degree 2 in y

with coefficients solving a Riccati-like equation (no curse of
dimensionality).

• θ̃ is plugged in the above equations to get great pricing and hedging
strategies.
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• Quadratic approximations of the H functions (makes sense for not

too asymmetric flows)...
• Gives an approximate value function θ̃: Polynomial of degree 2 in y

with coefficients solving a Riccati-like equation (no curse of
dimensionality).

• θ̃ is plugged in the above equations to get great pricing and hedging
strategies.
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Approximation of the Hamiltonians

Hb
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Example (video)

Time for a short animation



The problem with precious metals

• In many cases, market making on the spot market and hedging on
both the (illiquid) spot market and the (liquid) futures market.

• Futures hedging is imperfect → the remaining (basis) risk cannot be
modelled with a Brownian motion: it is stationary.

The dynamics of prices (Nested OU)

• Spot: dSt = σSdW
S
t , σS > 0.

• Futures: Ft = St + Et .
We want prices with linear dynamics to stay in the quadratic value
case:

dEt = −kE (Et − Dt) dt + σEdW
E
t , kE , σE > 0,

dDt = −kD
(
Dt − D̄

)
dt + σDdW

D
t , kD , σD ≥ 0, D̄ ∈ R,

where (W S
t ,W

E
t ,W

D
t )t is a three-dimensional Brownian motion

with correlation matrix R (covariance matrix: Σ).
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Other state variables

Inventories

• Spot – jumps (trade with clients) and execution:

dqSt =

∞∫
z=0

zJb(dt, dz)−
∞∫

z=0

zJa(dt, dz) + vS
t dt.

• Futures – execution: dqFt = vF
t dt.

where the intensities are

Λb(z , δ) = Λa(z , δ) = Λ(z , δ) = λ(z)f (δ) with f (δ) =
1

1 + eα+βδ
.
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Other state variables

Cash

The resulting cash process (Xt)t follows:

dXt =

∞∫
z=0

Sa(t, z)zJa(dt, dz)−
∞∫

z=0

Sb(t, z)zJb(dt, dz)

−vS
t Stdt − LS(vS

t )dt − vF
t Ftdt − LF (vF

t )dt

where LS(vS
t ) and LF (vF

t ) account for execution costs upon externalizing.



Stochastic optimal control

Objective function

The goal is now to maximize

E
[
− exp

(
−γ
(
XT + qSTST + qFTFT − K

(
(qST )2 + (qFT )2

)))]
by selecting δb, δa, vS and vF optimally.



Hamilton-Jacobi-Bellman equation

0 = ∂tu − kE (E − D) ∂Eu − kD
(
D − D̄

)
∂Du

+
1

2
Tr(Σ∇2

SEDu) + Lbu + Lau

+ sup
vS

(
vS∂qSu −

(
LS(vS) + vSS

)
∂xu
)

+sup
vF

(
vF∂qF u −

(
LF (vF ) + vF (S + E )

)
∂xu
)
,

with terminal condition

u(T , x , qS , qF ,S ,E ,D)

= − exp
(
−γ
(
x + qSS + qF (S + E )− K

(
(qS)2 + (qF )2

)))
.



Hamilton-Jacobi-Bellman equation

Nonlocal jump operators:

Lbu(t, x , qS, qF,S ,E ,D)

=

∞∫
0

sup
δb

f (δb)
(
u(t, x − z(S − δb), qS + z , qF,S ,E ,D)

−u(t, x , qS, qF,S ,E ,D)
)
λ(z) dz

Lau(t, x , qS, qF,S ,E ,D)

=

∞∫
0

sup
δa

f (δa)
(
u(t, x + z(S + δa), qS− z , qF,S ,E ,D)

−u(t, x , qS, qF,S ,E ,D)
)
λ(z) dz
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Change of variables

Ansatz

u(t, x , qS , qF ,S ,E ,D)

= − exp
(
−γ
(
x + qSS + qF (S + E ) + θ(t, qS , qF ,E ,D)

))

New equation for θ

The equation for θ becomes:

0 = ∂tθ − kE (E − D)
(
qF + ∂Eθ

)
− kD

(
D − D̄

)
∂Dθ +

1

2
Tr(Σ̃∇2

EDθ)

−γ
2

 qS + qF

qF + ∂Eθ
∂Dθ

ᵀ

Σ

 qS + qF

qF + ∂Eθ
∂Dθ

+ JHθ +HS
(
∂qS θ

)
+HF

(
∂qF θ

)
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Notations
• Σ̃ is the submatrix of Σ obtained by removing the first row and the

first column
• HS and HF are the Hamiltonian functions defined by

HS : p ∈ R 7→ sup
vS

(
vSp − LS(vS)

)
HF : p ∈ R 7→ sup

vF

(
vFp − LF (vF )

)
• Nonlocal jump operators:

JHθ(t, qS , qF ,E ,D)

=

∞∫
0

zH

(
z ,
θ(t, qS , qF ,E ,D)− θ(t, qS + z , qF ,E ,D)

z

)
λ(z)dz

+

∞∫
0

zH

(
z ,
θ(t, qS , qF ,E ,D)− θ(t, qS − z , qF ,E ,D)

z

)
λ(z)dz

with H : (z , p) ∈ (0,+∞)× R 7→ sup
δ

f (δ)
γz (1− e−γz(δ−p)).



Solution

If we approximate the Hamiltonian terms by polynomials of degree 2, the
resulting approximation of θ will be a polynomial of degree 2, with
coefficients solving simple ODEs (Riccati and linear).

Optimal strategy



δb∗(t, z) = δ̄

(
z ,
θ(t, qSt−, q

F
t ,Et ,Dt)− θ(t, qSt− + z , qFt ,Et ,Dt)

z

)
δa∗(t, z) = δ̄

(
z ,
θ(t, qSt−, q

F
t ,Et ,Dt)− θ(t, qSt− − z , qFt ,Et ,Dt)

z

)
vS∗
t = HS ′ (∂qS θ(t, qSt−, q

F
t ,Et ,Dt)

)
vF∗
t = HF ′ (∂qF θ(t, qSt−, q

F
t ,Et ,Dt)

)
where δ̄(z , p) = f −1 (γzH(z , p)− ∂pH(z , p)).
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Stochastic filtering
• The spot and futures prices are observable, so is the basis (Et)t .

• (Dt)t is not observable. It has to be filtered.

The dynamics after filtering – Same Nested OU structure

Assuming d〈W S ,W E 〉 = ρdt and 〈W S ,W D〉 = 〈W E ,W D〉 = 0, we get:

dEt = −kE
(
Et − D̂t

)
dt + σEdŴ

E
t

dD̂t = −kD
(
D̂t − D̄

)
dt +

1√
1− ρ2

kE
σE
ν2
t dŴ

D
t

where

D̂t = E [Dt |(Ss)s≤t , (Es)s≤t ] , ν2
t = V (Dt |(Ss)s≤t , (Es)s≤t) ,

and

Ŵ E
t = W E

t +
kE
σE

∫ t

0

(Ds − D̂s)ds and Ŵ D
t =

Ŵ E
t − ρW S

t√
1− ρ2
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D
t

where

D̂t = E [Dt |(Ss)s≤t , (Es)s≤t ] , ν2
t = V (Dt |(Ss)s≤t , (Es)s≤t) ,

and
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Optimal strategies
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Optimal strategy
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Inventory probability distribution
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Volume shares
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Performance
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Questions

Thanks for your attention.
Questions?
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