
Tractable infinite dimensional models: theory and applications

Sara Svaluto-Ferro

Winter School

Soesterberg, January 2025



Overview of the course

(i) Affine and Polynomial processes
(ii) Measure-valued diffusions

2.1 HJM drift condition
2.2 Examples

(iii) Signatures
3.1 Something as... Taylor
3.2 Something as... Stone Weierstrass



Part I: Affine and Polynomial processes

(based on Lecture Notes of Martin Larsson)



Introduction



How to work with dXt = b(Xt)dt + σ(Xt)dWt , X0 = x0?

A model is only useful if statements can be made about its properties.

Feynman–Kac formula: Under suitable conditions and for any T ≥ 0 it holds

E[f (XT )] = u(0, x0)

for a large class of functions f , where u : [0,T ]× R→ R solves the partial
differential equation

ut(t, x) + b(x)ux(t, x) +
1
2
σ(x)2uxx(t, x) = 0, (t, x) ∈ [0,T )× R,

u(T , x) = f (x), x ∈ R.

A variety of numerical methods exist for solving such equations.

Monte-Carlo simulation: which in its basic form consists of generating a large
number of independent replications X (1)

T , . . . ,X
(n)
T of XT , and then using the

law of large numbers to obtain

E[f (XT )] ≈ 1
n

n∑
i=1

f (X
(i)
T ).



What about some particularly-tractable processes?

If the dimensionality of X grows large, or if E[f (XT )] has to be computed a
large number of times (e.g. for different functions f or different coefficients b
and σ), such methods eventually become computationally taxing.

However, for some classes of stochastic processes some shortcuts are available.
This is in particular the case for

• Affine jump-diffusions, for f (x) = eux where u is constant, and

• Polynomial jump-diffusions, for f (x) a polynomial in x .

The scope is surprisingly broad. In finance this leads to models for equities,
interest rates, credit risk, optimal investment, economic equilibrium, etc.

The goal of the first part of this course is to understand the theory behind such
processes.



Jump-diffusions



Jump-diffusions

... i.e. semimartingales whose characteristics are of a particularly nice form.

Definition
Let X be a d-dimensional special semimartingale. We say that X is a
(time-homogeneous) jump-diffusion if its characteristics (B,C , µp) are of the
form

Bt =

∫ t

0
b(Xs) ds, Ct =

∫ t

0
a(Xs) ds, µp(dt, dξ) = ν(Xt−, dξ)dt

for some measurable functions b : Rd → Rd and a : Rd → Rd×d , and a kernel
ν(x , dξ) from Rd into Rd such that
a(x) is symmetric positive semidefinite,
ν(x , {0}) = 0, and

∫
Rd |ξ|2 ∧ |ξ|ν(x , dξ) <∞ for all x ∈ Rd .

We refer to (b, a, ν) as the coefficients of X .

Example: let X be a solution of the SDE

dXt = b(Xt)dt + σ(Xt)dWt + γ(Xt)d(Nt − λt),

for a Brownian motion W and a Poisson process N with intensity λ. Then X is
a jump-diffusion with coefficients (b, σ2, λδγ(·)).



Generator

What about...the drift of (f (Xt))t≥0?

Definition
Let X be a jump-diffusion with coefficients (b, a, ν). The extended generator of X is
the operator G defined by

Gf (x) = b(x)>∇f (x)+
1
2

Tr(a(x)∇2f (x))+

∫
Rd

(
f (x + ξ)− f (x)− ξ>∇f (x)

)
ν(x , dξ)

for any C2 function f such that the integral is well-defined. For d = 1 it reads

Gf (x) = b(x)f ′(x) +
1
2
a(x)f ′′(x) +

∫
R

(
f (x + ξ)− f (x)− ξf ′(x)

)
ν(x , dξ).

Intuition: Ito!! Let X be a jump-diffusion with coefficients (b, a, ν) and generator G.
Then the process M f given by

M f
t = f (Xt)− f (X0)−

∫ t

0
Gf (Xs)ds

is well-defined and a local martingale for any sufficiently integrable C2 function
f : Rd → R.



Polynomial jump diffusions



Polynomial operator

Definition
The operator G is called polynomial on E if it is well-defined on Pol(E) and

G(Poln(E)) ⊆ Poln(E)

for each n ∈ N. In this case, we call X a polynomial jump-diffusion on E .

Proposition

Assume G is well-defined on Pol(E). Then the following are equivalent:

(i) G is polynomial on E ;

(ii) The coefficients (b, a, ν) satisfy

b ∈ Pol1(E),

a +

∫
Rd

ξξ>ν( · , dξ) ∈ Pol2(E),∫
Rd

ξαν( · , dξ) ∈ Pol|α|(E),

for all |α| ≥ 3.



Examples

Consider
dXt = b(Xt)dt + σ(Xt)dWt + γ(Xt)d(Nt − λt),

for a Brownian motion W and a Poisson process N with intensity λ.

Then X is a jump-diffusion with coefficients (b, σ2, λδγ(·)).

=⇒ If b, σ2 + λγ2, λγk is a polynomial of degree 1,2, and k respectively, then
X is a polynomial process.

Examples include: Brownian motion (b = 0, σ = 1, γ = 0), OU processes
(b(x) = κ(θ − x), σ = 1, γ = 0), geometric Brownian motion
(b = 0, σ(x) = x , γ = 0), CIR diffusion process (b = 0, σ(x) =

√
x , γ = 0), a

constant process jumping to 0 at an exponential(λ)-time
(b = −λx , σ(x) = 0, γ = −x),...



The moment formula

Our next goal is to establish the moment formula, which describes how to
calculate conditional expectations of the form

E[p(XT ) | Ft ]

where X is a polynomial jump-diffusion and p is a polynomial. This is the most
important result about polynomial jump-diffusions!



The moment formula: first in 1d
Let X be a polynomial jump-diffusion with generator G, fix n ∈ N and let
H(x) := (1, x , x2, . . . , xn).
Every p ∈ Poln(R) has a coordinate representation with respect to such basis,
and we denote its coordinate (column) vector by ~p ∈ R1+n. Thus

p(x) = H(x)~p = 1p0 + . . .+ xnpn x ∈ R.

Since G is polynomial, G(xk)(x) ∈ Poln(R) and hence

G(xk)(x) = H(x)~qk = 1qk,0 + . . .+ xnqk,n,

for some ~qk ∈ R1+n.
By linearity of G we get

Gp(x) = G(1)(x)p0 + . . .+ G(xn)(x)pn

= (H(x)~q0)p0 + . . .+ (H(x)~qn)pn

= H(x)(~q0, . . . , ~qn)~p

= H(x)G~p.

The moment formula then states that

E[p(XT ) | Ft ] = H(Xt)e
(T−t)G ~p, for t ≤ T .



The moment formula
Fix n ∈ N and set N = dim Poln(E) (=

(
n+d
d

)
if E = Rd , but may be smaller in

general). Choose h1, . . . , hN ∈ Poln(Rd) such that

h1|E , . . . , hN |E form a basis for Poln(E).

Define the (row) vector valued function

H : Rd → RN , H(x) = (h1(x), . . . , hN(x)).

For each p ∈ Poln(E) define ~p ∈ RN such that

p(x) = H(x)~p, x ∈ E .

Let G be polynomial and thus map Poln(E) linearly to itself. Choosing ~qk ∈ RN

such that Ghk(x) := H(x)~qk we get

Gp(x) = H(x)(~q1, . . . , ~qN)~p =: H(x)G~p, x ∈ E ,

Theorem
Let X be an E -valued polynomial process with generator G. Then for any
p ∈ Poln(E) with coordinate vector ~p ∈ R1+N , the moment formula holds,

E[p(XT ) | Ft ] = H(Xt)e
(T−t)G ~p, for t ≤ T .



Example

Example

Consider the one-dimensional polynomial diffusion,

dXt = (b + βXt)dt +
√

a + αXt + AX 2
t dWt

for some real parameters b, β, a, α,A. Its generator is

Gf (x) = (b + βx)f ′(x) +
1
2

(a + αx + Ax2)f ′′(x),

and the corresponding matrix is given by

G =



0 b 2 a
2 0 · · · 0

0 β 2
(
b + α

2

)
3 · 2 a

2 0
...

0 0 2
(
β + A

2

)
3
(
b + 2α2

) . . . 0

0 0 0 3
(
β + 2A

2

) . . . n(n − 1) a
2

... 0
. . . n

(
b + (n − 1)α2

)
0 . . . 0 n

(
β + (n − 1)A

2

)


.



Idea of the proof
Fix (for simplicity) X0 = x0 ∈ R. The proof is based on three results.

(i) M f
t = f (Xt)− f (X0)−

∫ t

0 Gf (Xs) ds, is a local martingale for f ∈ Pol(E).

(ii) Let f ∈ Pol(E) and define Γ(f , f ) = G(f 2)− 2f Gf . Then Γ(f , f )(x) ≥ 0
for all x ∈ E , and

(M f )2 −
∫ ·

0
Γ(f , f )(Xs)ds

is a local martingale.

(iii) For any k ∈ N there exists a constant C ∈ R+ such that

E[1 + |Xt |2k ] ≤ (1 + |x0|2k) eCt , t ≥ 0.

−→ For each f ∈ Pol(E), the process (M f
t )t≥0, is a true martingale.

−→ Setting F (T ) := E[H(XT )|Ft ] we get that

0 = F (T )− F (t)−
∫ T

0
F (s)Gds ⇒ F (T ) = F (t)e(T−t)G ,

and thus multiplying by ~p:

E[p(XT ) | Ft ] = H(XT )e(T−t)G ~p.



Affine jump-diffusions



Affine Jump-diffusions

We now turn to affine jump-diffusions. Recall that we have fixed a state space
E ⊆ Rd and an E -valued jump-diffusion X with coefficients (b, a, ν) and generator

Gf (x) = b(x)>∇f (x)+
1
2

Tr(a(x)∇2f (x))+

∫
Rd

(
f (x + ξ)− f (x)− ξ>∇f (x)

)
ν(x , dξ).

Definition
The operator G is called affine on E if there exist functions R0, . . . ,Rd from iRd to C
such that

Geu
>x =

(
R0(u) +

d∑
i=1

Ri (u)xi

)
eu
>x

holds for all x ∈ E and u ∈ iRd . In this case, we call X an affine jump-diffusion on E .



Characterization of affine jump-diffusions

Proposition

The following are equivalent:

(i) G is affine on E ;

(ii) The coefficients (b, a, ν) are affine of the form

b(x) = b0 + x1b1 + · · ·+ xdbd ,

a(x) = a0 + x1a1 + · · ·+ xdad ,

ν(x , · ) = ν0 + x1ν1 + · · ·+ xdνd

for all x ∈ E , for some matrices ai ∈ Sd , vectors bi ∈ Rd , and signed
measures νi on Rd such that νi ({0}) = 0 and

∫
Rd |ξ| ∧ |ξ|2 |νi |(dξ) <∞,

i = 0, . . . , d .

In this case, the functions R0, . . . ,Rd can be taken to be given by

Ri (u) = b>i u +
1
2
u>aiu +

∫
Rd

(
eu
>ξ − 1− u>ξ

)
νi (dξ).



Affine ⇒ Polynomial?

Corollary

If X is an affine jump-diffusion on E and G is well-defined on Pol(E), then X is
a polynomial jump-diffusion on E .



Affine transform formula

Affine jump-diffusions on E not only satisfy the moment formula, subject to
the generator being well-defined on Pol(E). Their characteristic functions are
also analytically tractable.

Theorem
Assume X is an affine jump-diffusion on E . Fix u ∈ Cd such that Re u>x ≤ 0
and T > 0. Let φ : [0,T ]→ C and ψ = (ψ1, . . . , ψd) : [0,T ]→ Cd be
functions that solve the generalized Riccati equations

φ′(τ) = R0(ψ(τ)), φ(0) = 0,

ψ′i (τ) = Ri (ψ(τ)), ψi (0) = ui , i = 0, . . . , d ,

for τ ∈ [0,T ], where

Ri (u) = b>i u +
1
2
u>aiu +

∫
Rd

(
eu
>ξ − 1− u>ξ

)
νi (dξ).

If Reφ(τ) + Reψ(τ)>x ≤ 0 for all (τ, x) ∈ [0,T ]× E , then the affine
transform formula holds,

E[eu
>XT | Ft ] = eψ0(T−t)+ψ(T−t)>Xt , t ≤ T .



Careful

Compared to the moment formula, the proof of the affine transform formula
looks rather short and simple. This is deceptive, because several questions are
left unanswered:

(i) nothing is said about existence and uniqueness of solutions of the
generalized Riccati equations;

(ii) even if existence and uniqueness is established abstractly, one still has to
verify

Reφ(τ) + Reψ(τ)>x ≤ 0 for all (τ, x) ∈ [0,T ]× E ,

which can be difficult if the solution is not explicitly given; and

(iii) it is often of interest to obtain the affine transform formula for u with
non-zero real part. The martingale property of M then becomes more
difficult to verify.



Fourier pricing

Consider an affine jump-diffusion X on E ⊆ Rd and suppose that the logprice
satisfies log St = Yt := X 1

t . To price European puts (and similarly for other
options), we need to compute

EQ[(K − ST )+ | Ft ] = EQ[(K − eYT )+ | Ft ].

Idea: We know how to compute quantities like EQ[eu
>XT | Ft ] in a tractable

way. Moreover, for K > 0 and w > 0 it holds

(K − ey )+ =
1
2π

∫
R
e(iλ−w)y Kw+1−iλ

(iλ− w)(iλ− w − 1)
dλ

for all y ∈ R. An application of Fubini solves the problem!

EQ[(K − ST )+ | Ft ] = EQ[(K − eYT )+ | Ft ]

= EQ

[
1
2π

∫
R
e(iλ−w)YT

Kw+1−iλ

(iλ− w)(iλ− w − 1)
dλ | Ft

]
=

1
2π

∫
R
EQ[e(iλ−w)YT | Ft ]

Kw+1−iλ

(iλ− w)(iλ− w − 1)
dλ.



Part II: Measure-valued processes for energy markets

(Based on joint work with C. Cuchiero, L. Di Persio and F. Guida)



Energy markets and their financial products

• We consider energy markets, in particular electricity and gas markets,
whose essential products are based on futures contracts.

−→ Futures contract: the price of delivery of electricity/gas over a future time
interval [τ1, τ2] is fixed in the present. Denoting by t the present, the
corresponding price is denoted by F (t, τ1, τ2).

• Idea: F (t, τ1, τ2) can be written as a weighted integral of instantaneous
forward prices f (t, u) with delivery at one fixed time u ∈ [τ1, τ2], i.e.

F (t, τ1, τ2) =

∫ τ2

τ1

w(u, τ1, τ2)f (t, u)du,

where w(u, τ1, τ2) denotes some weight function (see Benth et al. (’08)).
−→ The “present” is changing day by day, hence "prices" are changing day by

day, leading to a function-valued stochastic process (f (t, ·))t∈[0,T ].
• Why do we want to model this stochasticity? Prices of options written on

F (t, τ1, τ2) for different maturities t and different delivery periods [τ1, τ2]
are available! This means that quantities as

EQ[(F (t, τ1, τ2)− K)+]

can be red from the market, where Q denotes a so called equivalent
martingale measure.



Solving couple of problems

Given: (f (t, ·))t∈[0,T ] where f (t, u) is the price at time t for the instantaneous
delivery at time u and T is a fixed time horizon.

• First problem: The support of f (t, ·) is [t,T ] −→ it changes over time!
Solution: Musiela parametrization: (f (t, t + ·))t∈[0,T ].

• Second problem: Are we assuming to much regularity? Prices can jump at
predictable times (see Fontana et al. (2020)), e.g. due to maintenance
works or predictable dates of political decisions.

• Evolution of gas spot prices in
the last 5 years (Eur/MWh).

• The last spike (end of August
2022) corresponds to the
announcement of an indefinite
shutdown of Nordstream 1 by
Gasprom.

Solution: Rather than using f (t, t + x)dx , we can also use a measure µt

on [0,T ]. Future prices at time t ∈ [0, τ1] then become

F (t, τ1, τ2) =

∫
(τ1−t,τ2−t]

w(t + x , τ1, τ2)dµt(dx).



Part II.1: HJM drift condition



Other financial conditions: Absence of arbitrage

• Arbitrage: strategy permitting to (possibly) obtain something in exchange
of nothing. A good model for pricing should not allow such strategies!

• By Cuchiero, Klein, Teichmann (’16) one can exclude arbitrage
opportunities by requiring that there exists an equivalent measure Q such
that all traded products

{F (t, τ1, τ2)t∈[0,τ1]| 0 ≤ τ1 < τ2 ≤ T} are local Q-martingales. (1.1)

• Question: How does this translate to the underlying measure-valued
process (µt)t≥0?



Including no arbitrage conditions
• State space M+(E): nonnegative measures on E = [0,T ], equipped with the

weak-topolgy.

• Notation: 〈φ, µ〉 =
∫
E φ(x)µ(dx)

• Following an Heath-Jarrow-Morton (HJM) approach such martingality can be
guaranteed imposing conditions on the “drift” of (µt)t∈[0,T ].

Theorem
Let (µt)t≥0 be an M+(E)-valued process such that the future prices are given by

F (t, τ1, τ2) =

∫
(τ1−t,τ2−t]

w(t + x ; τ1, τ2)µt(dx), t ∈ [0, τ1]

for w(·; τ1, τ2) ∈ C∞(R). Then the market is free of arbitrage if there exists an
equivalent measure Q such that

EQ[ sup
t∈[0,T ]

µt(E)] <∞

and for all φ ∈ D = {x 7→ φ|E (x) : φ ∈ C∞(R) s.t. φ′(0) = 0}(
〈φ, µt〉+

∫ t

0
〈φ′, µs〉ds

)
t∈[0,T ]

(HJM-cond)

is a Q-martingale.

Note that (HJM-cond) is a weak formulation of “dµt(dx) = d
dx
µt(dx)dt + dNt(dx)”,

where N denotes a measure-valued (local) martingale.



Mathematics: first in 1D

Consider a set of functions D ⊆ C 2(R). A diffusion type operator
L : D → C(R) is a linear operator admitting the representation

Lf (x) = b(x)f ′(x) +
1
2
a(x)f ′′(x).

A real valued process (Xt)t∈[0,T ] is called solution to the martingale problem for
L if (

f (Xt)− f (X0)−
∫ t

0
Lf (Xs)ds

)
t∈[0,T ]

is a local martingale for each f ∈ D.



Markovian setting for measure-valued diffusions

• Consider cylindrical functions M(E)→ R lying in

FD =
{
ν 7→ f (ν) = Φ(〈g1, ν〉, . . . , 〈gm, ν〉) : Φ ∈ C∞(Rm), gk ∈ D, m ∈ N0

}
,

with D = {x 7→ φ|E (x) : φ ∈ C∞(R) s.t. φ′(0) = 0} (being a dense linear
subspace of C(E)) and define FD

c := FD(M+(E)) ∩ Cc (M+(E)).

• Directional derivatives: a function f : M(E)→ R is called differentiable at ν in
direction δx for x ∈ E if

∂x f (ν) := lim
ε→0

f (ν + εδx )− f (ν)

ε

exists. We write ∂f (ν) for the map x 7→ ∂x f (ν) and ∂k f (ν) for the higher order
derivatives from E k to R.

• For f ∈ FD , we have for instance

∂f (ν) =
m∑
i=1

∂iΦ(〈g1, ν〉, . . . , 〈gm, ν〉)gi ,

which is thus a function in D.



Diffusion-type operators and martingale problems

Definition

• A linear operator L : FD
c → C0(M+(E)) is called diffusion-type operator if it

admits a representation

Lf (ν) = B(∂f (ν), ν) +
1
2
Q(∂2f (ν), ν)

for some operators B : D ×M+(E)→ R and Q : D ⊗D ×M+(E)→ R such that
B(·, ν) and Q(·, ν) are linear for all ν ∈ M+(E).

• An M+(E)-valued process (µt)t∈[0,T ] with continuous trajectories is called
solution to the martingale problem for L if

N f
t = f (µt)− f (µ0)−

∫ t

0
Lf (µs)ds, t ∈ [0,T ]

defines a local martingale for every f in FD
c .



Existence result

Note that M+(E) is a locally compact and separable space, hence Martingale problem
existence results in form of the positive maximum principle can be applied.

Theorem
Let L be diffusion-type operator such that ν 7→ Q(∂2f (ν), ν) ∈ C0(M+(E)) for all
f ∈ FD

c . Suppose that the drift part B is given by

B(∂f (ν), ν) = −〈
d

dx
∂f (ν), ν〉.

If the diffusion part Q satisfies the positive maximum principle, i.e. it holds that

f ∈ FD
c , ν

∗ ∈ M+(E), sup
M+(E)

f = f (ν∗) ≥ 0 implies Q(∂2f (ν∗), ν∗) ≤ 0,

then there exists an M+(E)-valued solution to the martingale problem for L which
satisfies the HJM condition.

Remark: The operator corresponding to the drift part −〈 d
dx
∂f (ν), ν〉 satisfies the

positive maximum principle due to the choice of D.



Part II.2: Examples



Towards tractable examples

How can these models be used? Are there particular convenient choices of the
parameters (B and Q) in this sense?
• As B is fully specified due to the HJM condition the only freedom consists in

choosing the covariance structure Q.

• An analogue to neural SPDEs is to parametrize the map
M+(E)→ R : ν 7→ Q(g , ν) for g ∈ D ⊗ D via neural networks taking measures
as inputs
−→ See e.g. Benth et al. (’21); Acciaio et al. (’22), C., Schmocker and
Teichmann (’22) for neural networks with infinite dimensional inputs.

• Alternative: let (µt)t∈[0,T ] lie in the class of polynomial and affine
measure-valued diffusions.



Polynomial diffusions

Definition
A linear operator L is called M+(E)-polynomial if it maps cylindrical polynomials PD

(i.e. p(〈φ1, ν〉, . . . , 〈φn, ν〉) for a polynomial p) to polynomials (i.e. a slightly larger
class than cylindrical polynomials) of same or lower degree.

Why is it nice? Because each quantity of the form

EQ[p(〈φ1, µt〉, . . . , 〈φn, µt〉)]

for a polynomial p of degree k can be computed solving a system of k + 1 linear-PDEs.



Polynomial specification

Theorem
Let L be a diffusion operator given by Lf (ν) = −〈 d

dx
∂f (ν), ν〉+ 1

2Q(∂2f (ν), ν).

• Then L is M+(E)-polynomial if and only if ν 7→ Q(g , ν) is quadratic for every
g ∈ D ⊗ D, i.e.

Q(g , ν) = Q0(g) + 〈Q1(g), ν〉+ 〈Q2(g), ν2〉

for linear operators Q0,Q1,Q2.

• Moreover, if Q0 = 0 and if

• Q1(g)(x) = α(x)g(x , x) with α ∈ C+(E) and
• Q2(g)(x , y) = 1

2 (π(x , y)g(x , x) + π(y , x)g(y , y) + 2β(x , y)g(x , y)),

for some functions π and β satisfying certain admissibility conditions,

then there is an M+(E)-valued solution to the martingale problem for L.

Observation: The map M+(E)→ R : ν 7→ Q(g , ν) reduces to a quadratic function
whose coefficients are parametrized by functions α, β, π which in turn can be
parametrized by usual neural networks.

Example: choosing Q1 = 0 we get a Black-Scholes-type measure valued model.



Affine measure-valued HJM-models: an example

Let (µt)t∈[0,T ] be a solution of the martingale problem for

Lf (ν) = −〈
d

dx
∂f (ν), ν〉+

1
2
〈α(diag∂2f (ν)), ν〉,

α ∈ C+(E).

• This corresponds to a variant of the Dawson-Watanabe superprocess. Its
diffusion part is analogous to the one-dimensional Feller diffusion.

• This is an example of an M+(E) measure valued affine process.

• Why is it nice? Its Fourier-Laplace transform for some function
u ∈ C(E ,R− + iR) is given by

E[exp(〈u, µt〉)] = exp(〈ψ(t, u), µ0〉),

where ψ solves the following nonlinear Riccati PDE

∂tψ(t, u)(x) = −
d

dx
ψ(t, u)(x) +

1
2
α(x)ψ(t, u)2(x), ψ(0, u) = u.

• Somehow surprisingly, this can be solved explicitly

ψ(t, u)(x) =
u
(
(x − t)+

)
1− u

(
(x − t)+

) ∫ t
0

1
2α
(
(x − s)+

)
ds
.



Computational aspects: how to choose α?

Recall that from the market we can read many quantities of the form

EQ[(F (t, τ1, τ2)− K)+] for F (t, τ1, τ2) = 〈w(t + ·, τ1, τ2)1(τ1,τ2](t + ·), µt〉.

One then applies Fourier pricing techniques.

• Recall that (x − K)+ =
∫
R exp((C + iλ)x)f̂K (λ)dλ.

• Apply Fubini and reduce the problem to compute

EQ[exp((C + iλ)〈w(t + ·, τ1, τ2)1(τ1,τ2](t + ·), µt〉)]

for each λ.

• Recall that we have an explicit representation of such quantities:

exp(〈ψα(t, uλ), µ0〉 for uλ(x) = (C + iλ)w(t + x , τ1, τ2)1(τ1,τ2](t + x).

• Insert back in the integral and obtain the desired quantity.

Observation: The computed expectation depends on the map α : E → R+. Idea: one
can now parametrize α with a neural network ad find the parameters that fit the most
the prices on the market!



Calibration to market data

• We calibrate the model to call option prices for one specific maturity and one
delivery period.

• We use EEX German Power data extracted from

https://www.eex.com/en/market-data/power/options

at March 22, 2022 and calibrate to call options with maturity April 26, 2022 and
delivery period one month, starting on May 1, 2022.

• To provide just a calibration example, we use a simple L2-criterion, i.e. we
minimize ∑

K

|πmkt(K)− π0(K)|2,

where πmkt(K) denotes the market call option price with strike K and π0(K) the
model call option price obtained via Fourier pricing.

https://www.eex.com/en/market-data/power/options


Calibration to market data
• When starting from appropriately intialized parameters for the neural networks

such that the the curves look before training for instance like

the target curve can then be reached in around 150-300 gradient step iterations
and thus yields the following fast and accurate calibration results

Figura: Market versus model call option prices for options expiring on April 26,
2022, written on forward contracts with delivery during May.



Conclusion

• Measure valued processes for energy markets to model future prices.

• Mathematically convenient and tractable, in particular in the affine and
polynomial class.

• The “parameters” to calibrate are typically functions of the spatial variable.

• The universal approximation theorem suggests to parametrize them as neural
networks.

⇒ Neural measure-valued processes

⇒ Potentially highly parametric infinite dimensional stochastic models that can be
calibrated to market data.

• Outlook: Extend to time-inhomogenous measure-valued polynomial diffusions to
account for seasonality and calibrate slice-wise for each maturity.



Part III: Signatures



Signatures...why?

Because the (time extended) signature
of a continuous semimartingale uniquely
determines its path...

...and because every polynomial on
the signature has a linear representative.

−→ If ST = F ((Xt)t∈[0,T ]) for some continuous map F , then

ST ≈ L(X̂T )

for some linear map L, where X̂ denotes the signature of t 7→ (t,Xt).

−→ Linear regressions, affine and polynomial technology, and other
useful machinery can be applied!



Signature: definition and properties



Signature of a 1 dimensional path of finite variation
The signature (Xt)t∈[0,T ] of a 1-dimensional path (Xt)t∈[0,T ] of finite variation
is defined as

Xt = (1,
∫ t

0
1dXt1 ,

∫ t

0

∫ t1

0
1dXt2dXt1 ,

∫ t

0

∫ t1

0

∫ t2

0
1dXt3dXt2dXt1 , . . .),

where the integrals are all Rieman-Stiltjes integrals.

• State space: extended tensor algebra T ((R)) = {(a0, a1, a2, . . .) : ai ∈ R}.
• Notation: we use 〈e∅,Xt〉 := 1 and denote the element of Xt

corresponding to k iterated integrals with respect to X as

〈e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
k times

,Xt〉 or 〈e⊗k
1 ,Xt〉 or 〈eI ,Xt〉 for I := (1, . . . , 1︸ ︷︷ ︸

k times

)

• Observation: the k-th term of the signature, is given by the (k − 1)-th
term of the signature integrated from 0 to t:∫ t

0
〈e⊗(k−1)

1 ,Xs〉dXs = 〈e⊗k
1 ,Xt〉

• Attention: the signature of (Xt)t∈[0,T ] and (Xt + c)t∈[0,T ] for c ∈ R
coincide!



Signature of a 1 dimensional path of finite variation

The signature (Xt)t∈[0,T ] of a 1-dimensional path (Xt)t∈[0,T ] of finite variation
is the path taking values in T ((R)) given by

Xt = (〈e∅,Xt〉, 〈e1,Xt〉, 〈e⊗2
1 ,Xt〉, 〈e⊗3

1 ,Xt〉, . . .),

for 〈e∅,Xt〉 = 1 and 〈e⊗k
1 ,Xt〉 =

∫ t

0 〈e
⊗(k−1)
1 ,Xs〉dXs .



Signature of a d dimensional path of finite variation
The signature (Xt)t∈[0,T ] of an Rd -valued path (X 1

t , . . . ,X
d
t )t∈[0,T ] of finite

variation is defined as

Xt = (1,
∫ t

0
1dX 1

t1 , . . . ,

∫ t

0
1dX d

t1 ,

∫ t

0

∫ t1

0
1dX 1

t2dX
1
t1 ,

∫ t

0

∫ t1

0
1dX 1

t2dX
2
t1 . . .),

where the integrals are all Rieman-Stiltjes integrals.
• State space: extended tensor algebra

T ((Rd)) = {(a0, a1, . . .) : ai ∈ (Rd)⊗i︸ ︷︷ ︸
∼=Rdi ,i.e. 1 dim ∀ iterated integral of deep i

}.

• Notation: we denote the element of Xt corresponding to the i1-th element
of X , integrated wrt the i2-th component of X ,. . . , integrated wrt the
in-component of X as

〈ei1 ⊗ · · · ⊗ ein ,Xt〉 or 〈eI ,Xt〉 for I = (i1, . . . , in).

⇒ Example: Xt = (Yt ,Zt), 〈e1⊗ e2,Xt〉 =
∫ t

0

∫ s

0 1dYrdZs =
∫ t

0 (Ys −Y0)dZs .
• Observation: signature terms can be defined recursively: for

I = (i1, . . . , in) we have

〈eI ,Xt〉 =

∫ t

0
〈ei1 ⊗ · · · ⊗ ein−1 ,Xs〉dX in

s = 〈ei1 ⊗ · · · ⊗ ein ,Xs〉.



Signature of a d dimensional path of finite variation

The signature (Xt)t∈[0,T ] of a d-dimensional path (Xt)t∈[0,T ] of finite variation
is the path taking values in T ((Rd)) given by

Xt = (〈e∅,Xt〉, 〈e1,Xt〉, . . . , 〈ed ,Xt〉, 〈e⊗2
1 ,Xt〉, 〈e1 ⊗ e2,Xt〉, . . .),

for 〈e∅,Xt〉 = 1 and

〈eI ,Xt〉 =

∫ t

0
〈ei1 ⊗ · · · ⊗ ein−1 ,Xs〉dX in

s ,

for I = (i1, . . . in).



Signature of a d dimensional continuous semimartingale

The signature (Xt)t∈[0,T ] of a d-dimensional continuous semimartingale
(Xt)t∈[0,T ] is the process taking values in T ((Rd)) given by

Xt = (〈e∅,Xt〉, 〈e1,Xt〉, . . . , 〈ed ,Xt〉, 〈e⊗2
1 ,Xt〉, 〈e1 ⊗ e2,Xt〉, . . .),

for 〈e∅,Xt〉 = 1 and

〈eI ,Xt〉 =

∫ t

0
〈ei1 ⊗ · · · ⊗ ein−1 ,Xs〉 ◦ dX in

s ,

where I = (i1, . . . in) and ◦ (for now) denotes the Stratonivoch integral:∫ t

0
Yt ◦ dZt =

∫ t

0
YtdZt +

1
2

[Y ,Z ]t .



The shuffle property or the integration by parts formula

Stratonovich (and Riemann-Stiltjes) integrals satisfy the integration by parts
formula: ∫ t

0
Ys ◦ dZs = YtZt − Z0Y0 −

∫ t

0
Zs ◦ dYs .

Setting Yt = 〈eI ,Xt〉 and Zt = 〈eJ ,Xt〉 this yields

〈eI ,Xt〉〈eJ ,Xt〉 =

∫ t

0
〈eI ,Xt〉 ◦ d〈eJ ,Xt〉+

∫ t

0
〈eJ ,Xt〉 ◦ d〈eI ,Xt〉

=

∫ t

0
〈eI ,Xt〉〈eJ′ ,Xt〉 ◦ dX jm

t +

∫ t

0
〈eJ ,Xt〉〈eI ′ ,Xt〉 ◦ dX in

t ,

for eI = eI ′ ⊗ ein and eJ = eJ′ ⊗ ejm .

Defining eI � e∅ = e∅ � eI = eI and then recursively

eI � eJ := (eI � eJ′)⊗ ejm + (eJ � eI ′)⊗ ein

we get
〈eI ,Xt〉〈eJ ,Xt〉 = 〈eI � eJ ,Xt〉︸ ︷︷ ︸

linear combination of Xt ’s elements!

.

Every polynomial in the signature has a linear representation!



Examples examples...

Set for simplicity that X0 = 0.

〈e1,Xt〉2 = (Xt)
2 Itô

= 2
∫ t

0
XsdXs + [X ]t = 2

∫ t

0
Xs ◦ dXs = 2〈e1 ⊗ e1,Xt〉

⇒ e1 � e1 = 2e1 ⊗ e1

〈e1,Xt〉〈e2,Xt〉 = X 1
t X

2
t

Itô
=

∫ t

0
X 1

s dX
2
s +

∫ t

0
X 2

s dX
1
s + [X 1,X 2]t

=

∫ t

0
X 1

s ◦ dX 2
s +

∫ t

0
X 2

s ◦ dX 1
s = 〈e1 ⊗ e2,Xt〉+ 〈e2 ⊗ e1,Xt〉

⇒ e1 � e2 = e1 ⊗ e2 + e2 ⊗ e1

〈e1,Xt〉k = k!〈e⊗k
1 ,Xt〉

⇒ e1 � · · ·� e1 = k!e⊗k
1

⇒ 〈e⊗k
1 ,Xt〉 =

(Xt)
k

k!

⇒ If X is 1-dimensional: Xt = (1,Xt ,
(Xt)

2

2!
,

(Xt)
3

3!
, . . .)



Examples, examples,...

Example

Set Xt = t. Then

Xt = (1, t, t2

2 ,
t3

6 , . . . ,
tk

k!
, . . .).

Example

Let X be a one dimensional continuous semimartingale with X0 = 0. Then

Xt = (1,Xt ,
X2
t
2 ,

X3
t
6 , . . . ,

X k
t
k!
, . . .).

Example

Consider X̂t = (t,Xt), where X is a one dimensional continuous semimartingale
with X0 = 0. Then

X̂t = (1, t,Xt ,
t2

2 ,
∫ t

0 sdXs ,
∫ t

0 Xsds,
X2
t
2 ,

t3

6 , . . .).



The half-shuffle property

Setting
eI �̃eJ := (eI � eJ′)⊗ ejm

where eJ = eJ′ ⊗ ejm we get∫ t

0
〈eI ,Xs〉 ◦ d〈eJ ,Xs〉 = 〈eI �̃eJ ,Xt〉.

The signature of 〈eI ,X〉 can be written as linear combination of the signature
of X.



Uniqueness of the time extended signature

...namely: the value X̂T of the signature X̂ of X̂t := (t,Xt) at time T uniquely
determines the trajectories of (Xt − X0)t∈[0,T ].

Why? For each k and i ∫ T

0
(X i

s − X i
0)
sk

k!
ds

can be written as (finite) linear combination of X̂T ’s components!

Welcome back Markovianity :).



The Chen relation

Set

Xs,t = (〈e∅,Xs,t〉, 〈e1,Xs,t〉, . . . , 〈ed ,Xs,t〉, 〈e⊗2
1 ,Xs,t〉, 〈e1 ⊗ e2,Xs,t〉, . . .),

for 〈e∅,Xs,t〉 = 1 and

〈eI ,Xs,t〉 =

∫ t

s

〈ei1 ⊗ · · · ⊗ ein−1 ,Xs,r 〉 ◦ dX in
r ,

where I = (i1, . . . in) and ◦ denotes the Stratonivoch integral.

Lemma (Chen relation)

〈eI ,X0,t〉 =
∑

eI1⊗eI2 =eI

〈eI1 ,X0,s〉〈eI2 ,Xs,t〉.



Examples examples
Chen relation: 〈eI ,X0,t〉 =

∑
eI1⊗eI2 =eI

〈eI1 ,X0,s〉〈eI2 ,Xs,t〉.

For I = (1) it reads

〈e(1),X0,t〉︸ ︷︷ ︸
=Xt−X0

= 〈e(1),X0,s〉〈e∅,Xs,t〉︸ ︷︷ ︸
=(Xs−X0)

+ 〈e∅,X0,s〉〈e(1),Xs,t〉︸ ︷︷ ︸
=(Xt−Xs )

.

For I = (1, 1) it reads

〈e(1,1),X0,t〉︸ ︷︷ ︸
=

(Xt−X0)2
2

= 〈e(1,1),X0,s〉〈e∅,Xs,t〉︸ ︷︷ ︸
=

(Xs−X0)2
2

+ 〈e(1),X0,s〉〈e(1),Xs,t〉︸ ︷︷ ︸
=(Xs−X0)(Xt−Xs )

+ 〈e∅,X0,s〉〈e(1,1),Xs,t〉︸ ︷︷ ︸
=

(Xt−Xs )2
2

.

It can also be used for:

E[〈eI ,X0,t〉|Fs ] =
∑

eI1⊗eI2 =eI

〈eI1 ,X0,s〉E[〈eI2 ,Xs,t〉|Fs ].

If X has independent increments this reduces to

E[〈eI ,X0,t〉|Fs ] =
∑

eI1⊗eI2 =eI

〈eI1 ,X0,s〉E[〈eI2 ,Xs,t〉].



Stone Weierstrass or the universal approximation theorem

Fix a continuous semimartingale X with X0 = 0.

Let (X̂2
t )t∈[0,T ] denote the signature of (t,Xt) truncated at level 2:

X̂2
t = (1, t,X 1

t , . . . ,X
d
t ,

∫ t

0
s ◦ ds, . . . ,

∫ t

0
X d

s ◦ dX d
s )

Then every quantity of the form

f
(

(X̂2
t )t∈[0,T ]

)
for some continuous map f can be almost surely approximated arbitrarily well
on compact sets by objects of the form

∑
I∈I λI 〈eI , X̂T 〉, where λI ∈ R and I

contains a finite number of indices I .



Polynomiality: a and b have to be...linear?

Let X be the R-valued process given by

dXt = b(Xt)dt +
√

a(Xt)dWt

for some polynomials a and b. Choose for simplicity X0 = 0.

Lift X to its signature Xt = (1,Xt ,
X2
t
2 , . . .).

Observe that:

• a and b are linear maps in X. Even more!

• d
X k

t

k!
=

X k−1
t

(k − 1)!
b(Xt) +

1
2

X k−2

(k − 2)!
a(Xt)︸ ︷︷ ︸

linear in Xt !

dt +

√( X k−1
t

(k − 1)!

)2
a(Xt)︸ ︷︷ ︸

linear in Xt !

dWt

= Lk,b(Xt)dt +
√

Lk,a(Xt)dWt ,

for some linear maps Lk,b and Lk,a.

X is a candidate affine AND a polynomial process!



Even better: Polynomiality with polynomial diffusions

Let X be the R-valued polynomial process given by

dXt = b(Xt)dt +
√

a(Xt)dWt

for some polynomials a and b of degree 2 and 1, respectively. Choose for
simplicity X0 = 0.

Lift X to its truncated signature X≤n
t = (1,Xt ,

X2
t
2 , . . . ,

Xn

n!
).

Observe that for each k ≤ n

d
X k

t

k!
=

X k−1
t

(k − 1)!
b(Xt) +

1
2

X k−2

(k − 2)!
a(Xt)︸ ︷︷ ︸

linear in X≤n
t !

dt +

√( X k−1
t

(k − 1)!

)2
a(Xt)︸ ︷︷ ︸

quadratic in X≤n
t !

dWt

= Lk,b(X≤n
t )dt +

√
Qk,a(X≤n

t )dWt ,

for some linear map Lk,b and and some quadratic map Qk,a.

X≤n is a finite dimensional polynomial process!



Some classics
A super-basic-but-still-useful example: let X be a vector of d correlated
Brownian motions.Then the only non zero elements of the expected signature
are given by

E[〈e⊗k0
0 ⊗eJ1⊗e

⊗k1
0 ⊗eJ2⊗· · ·⊗e

⊗km
0 ,Xt〉] =

t
∑m

i=0 ki+
∑m

i=1 hi(∑m
i=0 ki +

∑m
i=1 hi

)
!

(
1
2

)∑m
i=1 hi m∏

i=1

ρ(Ji ),

where |Ji | = 2hi and ρ(J) :=
∏|J|/2

k=1 ρj2k−1,j2k .

Black Scholes: Fix

dXt = σXtdBt =
√

X 2
0 σ

2〈e∅,Xt〉+ 2X0σ2〈e1,Xt〉+ 2σ2〈e1 ⊗ e1,Xt〉dBt .

Then
E[(〈e∅,Xt〉, 〈e0,Xt〉, . . . , 〈e1 ⊗ e1,Xt〉)] = (1, 0, . . . , 0)etG

>

where

G> =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0

X 2
0σ

2 0 2X0σ2 0 0 0 2σ2


.



Expected signature for polynomial processes
(i) Write the coefficients a and b in terms of X≤2. We need to identify b and

a such that

b(Xt) = 〈b,X≤2
t 〉 and a(Xt) = 〈a,X≤2

t 〉.
Example: for a(Xt) = Xt we get

a(Xt) = (Xt − X0) + X0 = 〈e1,X≤2
t 〉+ X0〈e∅,X≤2

t 〉 = 〈X0e∅ + e1,X≤2
t 〉.

(ii) Deduce the linear map L corresponding to the drift of 〈eI ,Xt〉:

d〈eI ,Xt〉 = 〈eI ′ ,Xt〉〈b,X≤2
t 〉+

1
2
〈eI ′′ ,Xt〉〈a,X≤2

t 〉,

where for I = (i1, . . . , in) we set I ′ = (i1, . . . , in−1).
(iii) Construct its matrix representation with respect to the basis elements eI ,

i.e.: find a matrix G such that

Gvec(eI ) = vec(LeI ).

(iv) Conclude with the moment formula.

Theorem
For T , t ≥ 0 and each |I | ≤ n it holds E[vec(Xn

T+t)|FT ] = etG
>
vec(Xn

T ), i.e.

E[〈eI ,Xn
T+t〉|FT ] =

∑
|J|≤n

(etG
>

)IJ〈eJ ,Xn
T 〉.



Summarizing: Nice properties of the signature

• Linearity: for each I , J there is a linear combination of indices I � J such
that

〈eI ,Xt〉〈eJ ,Xt〉 = 〈eI � eJ ,Xt〉︸ ︷︷ ︸
linear combination of Xt ’s elements!

.

Every polynomial in the signature has a linear representation! Example:

〈e1,Xt〉2 = (Xt)
2 Itô

= 2
∫ t

0
XsdXs + [X ]t = 2

∫ t

0
Xs ◦ dXs = 2〈e1 ⊗ e1,Xt〉.

• Uniqueness: the value of the signature of X̂t := (t,Xt) at time T uniquely
determines the trajectories of (Xt − X0)t∈[0,T ].
Welcome back Markovianity :).
• Universal approximation theorem: For K compact, f : K → R continuous,

and ε > 0, there is a finite set I and λI ∈ R such that

|f (X̂2)−
∑
I∈I

λI 〈eI , X̂T 〉|1{X̂2∈K} < ε,

almost surely.
Door open for linear approximations!
• Signature of polynomial processes are polynomial processes.

The expected signature can is available in closed form!



Part III.1: Something as...Taylor

(joint work with F.Bandi and R.Renò)



An illustrative example

Let W 1 be the first component of a Brownian motion.

• Consider a stochastic process S admitting the representation

St = S0 +

∫ t

0
c0(s)ds +

∫ t

0
c1(s)dW 1

s .

• Suppose that the processes c0 and c1 admit the same representation:

c0(t) = c0(0) +

∫ t

0
c00(s)ds +

∫ t

0
c10(s)dW 1

s ,

c1(t) = c1(0) +

∫ t

0
c01(s)ds +

∫ t

0
c11(s)dW 1

s .

• Then

St = S0 +

∫ t

0
c0(s)︸ ︷︷ ︸

=c0(0)+
∫ s
0 c00(r)dr+

∫ s
0 c10(r)dW 1

r

ds +

∫ t

0
c1(s)︸ ︷︷ ︸

=c1(0)+
∫ s
0 c01(r)dr+

∫ s
0 c11(r)dW 1

r

dW 1
s

= S0 + c0(0)t + c1(0)W 1
t + (linear combination of double integrals)︸ ︷︷ ︸

=:ε1(t)



An illustrative example: a further step

St = S0 +

∫ t

0
c0(s)︸ ︷︷ ︸

=c0(0)+
∫ s
0 c00(r)dr+

∫ s
0 c10(r)dW 1

r

ds +

∫ t

0
c1(s)︸ ︷︷ ︸

=c1(0)+
∫ s
0 c01(r)dr+

∫ s
0 c11(r)dW 1

r

dW 1
s ,

= S0 + c0(0)t + c1(0)W 1
t

+

∫ t

0

∫ s

0
c00(r)drds +

∫ t

0

∫ s

0
c10(r)dW 1

r ds

+

∫ t

0

∫ s

0
c01(r)drdW 1

s +

∫ t

0

∫ s

0
c11(r)dW 1

r dW
1
s .

• Suppose that the processes c00, c01, c10, and c11 admit the same representation:

cij (s) = cij (0) +

∫ s

0
c0ij (r)dr +

∫ s

0
c1ij (r)dW 1

r .

• Then

St = S0 + c0(0)

∫ t

0
1ds + c1(0)

∫ t

0
1dW 1

s

+c00(0)

∫ t

0

∫ s

0
1drds + c10(0)

∫ t

0

∫ s

0
1dW 1

r ds

+c01(0)

∫ t

0

∫ s

0
1drdW 1

s + c11(0)

∫ t

0

∫ s

0
1dW 1

r dW
1
s

+(linear combination of triple integrals) =: ε2(t),



An illustrative example: as many steps as we want

Assuming that the procedure can be repeated till depth n and setting Ŵ 0
t = t

and Ŵ 1
t = Wt we get

St = S0 +
n∑

k=1

∑
(i1,...,in)∈{0,1}n

∫ t

0

∫ tn

0
· · ·
∫ t2

0
1dŴ i1

t1 · · · dŴ
in
tn

+(linear combination of n + 1 iterated integrals) =: εn(t)

Why is this nice?

• εn(t) is an error term in cases of interests. Example: if
t 7→ E[ci1,...,in+1(t)2N ] is bounded on [0, δ], for all m ≤ 2N we get

E[|εn(t)|m] ≤ Ctm(n+1)/2.

• St − εn(t) is linear map of a Markovian process.

• The red building blocks are signature’s components: multiplying two of
them we obtain a linear combination of them. . . and many other cool
properties!



A bit of signature

For Ŵ 0
t = t, Ŵ 1

t = Wt , and I = (i1, . . . , in) we write

〈I , Ŵt〉 :=

∫ t

0

∫ tn

0
· · ·
∫ t2

0
1dŴ i1

t1 · · · dŴ
in
tn .

The sequence-valued process Ŵ of all such iterated integrals is called
Itô-signature of Ŵ .

Given some coefficients cI we also write

〈c, Ŵt〉 := c∅ +
∑
I

cI 〈I , Ŵt〉.



An illustrative example: as many steps as we want

Assuming that the procedure can be repeated till depth n and setting Ŵ 0
t = t

and Ŵ 1
t = Wt we get

St = S0 +
n∑

k=1

∑
(i1,...,in)∈{0,1}n

∫ t

0

∫ tn

0
· · ·
∫ t2

0
1dŴ i1

t1 · · · dŴ
in
tn

+(linear combination of n + 1 iterated integrals) =: εn(t)

Why is this nice?

• εn(t) is an error term in cases of interests. Example: if
t 7→ E[ci1,...,in+1(t)2N ] is bounded on [0, δ], for all m ≤ 2N we get

E[|εn(t)|m] ≤ Ctm(n+1)/2.

• St − εn(t) is linear map of a Markovian process.

• The red building blocks are signature’s components: multiplying two of
them we obtain a linear combination of them. . . and many other cool
properties!



Back to Markovianity

Suppose that S is n-times Ŵ differentiable, i.e.

St = 〈c, Ŵt〉+ εn(t),

where c is a vector of coefficients cI ∈ R and

εn(t) =
∑

I=(i1,...,in+1)

∫ t

0

∫ tn+1

0
· · ·
∫ t2

0
cI (t1)dŴ i1

t1 · · · dŴ
in+1
tn+1 ,

for some stochastic process t 7→ cI (t).

If t 7→ E[ci1,...,in+1(t)2N ] is bounded on [0, δ], for all m ≤ 2N we get

E[|εn(t)|m] ≤ Ctm(n+1)/2.

This implies that for each differentiable f with ‖f ′‖ <∞ it holds

E[f (St)] = E[f (〈c, Ŵt〉)] + o(tn/2).

The same applies to moments f (x) = xk for k ≤ 2N.

The red term is the expectation of a function applied to the Markov process Ŵ!



An illustrative example: as many steps as we want

Assuming that the procedure can be repeated till depth n and setting Ŵ 0
t = t

and Ŵ 1
t = Wt we get

St = S0 +
n∑

k=1

∑
(i1,...,in)∈{0,1}n

∫ t

0

∫ tn

0
· · ·
∫ t2

0
1dŴ i1

t1 · · · dŴ
in
tn

+(linear combination of n + 1 iterated integrals) =: εn(t)

Why is this nice?

• εn(t) is an error term in cases of interests. Example: if
t 7→ E[ci1,...,in+1(t)2N ] is bounded on [0, δ], for all m ≤ 2N we get

E[|εn(t)|m] ≤ Ctm(n+1)/2.

• St − εn(t) is linear map of a Markovian process.

• The red building blocks are signature’s components: multiplying two of
them we obtain a linear combination of them. . . and many other cool
properties!



Markovianity is useful

Remark: Given a sufficiently integrable Markov process and a sufficiently
differentiable map f

dYt := b(Yt)dt +
√

a(Yt)dWt ,

by Itô formula it holds

f (Yt) =

∫ t

0
Gf (Ys)ds + martingale

for Gf (y) = b(y)f ′(y) + 1
2a(y)f ′′(y).

This implies that

dn

dtn
E[f (Yt)] =

dn−1

dtn−1E[Gf (Yt)] =
dn−2

dtn−2E[(GGf )(Yt)] . . . = E[(G · · · G︸ ︷︷ ︸
n times

f )(Yt)].

By Taylor we can conclude that

E[f (Yt)] = f (Y0) + Gf (Y0)t + GGf (Y0)
t2

2
+ . . .+ G · · · G︸ ︷︷ ︸

n times

f (Y0)
tn

n!
+ o(tn).



Markovianity is useful in our setting

Fix n even. For a sufficiently differentiable map f , we know that

E[f (St)] = E[f (〈c, Ŵt〉)] + o(tn/2),

and Ŵ is Markov.

Setting fc := f (〈c, ·〉) we thus obtain

E[f (St)] = fc(Ŵ0) + Gfc(Ŵ0)t + GGfc(Ŵ0)
t2

2
+ . . .+ G · · · G︸ ︷︷ ︸

n/2 times

fc(Ŵ0)
tn/2

(n/2)!
+o(tn/2),

where G denotes the generator of Ŵ.



Everything is explicit

One can show that G is mapping functions of the form f (〈c, ·〉)(〈d , ·〉) to linear
combination of functions of the form

f (k)(〈c, ·〉)(〈Gkc (d), ·〉)

for some bilinear operator Gk with k = 0, 1, 2.

Theorem
Consider an n-times Ŵ -differentiable process (St)t∈[0,T ] with expansion

St = 〈c, Ŵt〉+ εn(t).

Then for each f ∈ C n+1(R) it holds

E[f (St)] = f (S0)+

dn/2e∑
`=1

1
`!

( 2∑
k1,...,k`=0

f (k1+...+k`)(S0)Gc,k1,...,k`(∅)∅
)
t`+o(tn/2),

where Gc,k1,...,kn (d) = Gknc (· · · (Gk1c (d))).

Good news: Bilinear maps are easy to code!
Given f (S0), f ′(S0). . . , f (n+1)(S0) the coefficients can be computed by a
computer.



Example

Suppose that S is 2 times Ŵ -differentiable with

St = S0 +

∫ t

0
c0(s)︸ ︷︷ ︸

=c0(0)+
∫ s
0 c00(r)dr+

∫ s
0 c10(r)dW 1

r

ds +

∫ t

0
c1(s)︸ ︷︷ ︸

=c1(0)+
∫ s
0 c01(r)dr+

∫ s
0 c11(r)dW 1

r

dW 1
s

= S0 + c0(0)t + c1(0)W 1
t + . . .+ c11(0)

∫ t

0
W 1

s dW
1
s + ε2(t).

Then applying the theorem for n = 2 yields

E[e iu(St−S0)2 ] = 1 + iu(c1(0))2t + o(t).



Generalizations

The result generalizes to

• f (x) = xk for k ≤ 2N;

• a d-dimensional Brownian motion;

• the framework where the driver is given by e compound Poission processes
and d Brownian motions.

Also, as the knowledge on the Brownian motion goes much beyond the
generator of its signature, the door is open to many more applications.

Example: Edgeworth expansion

E
[

exp
(
iu
St − c0t

c1
√
t

)]
e

u2
2

= 1 +
[
− c11

c1

i

2
u3
]√

t

+
1
2

[
−
(c01

c1
+

c10

c1

)
u2 +

(c11

c1

)2(
− 1

2
u2 + u4 − 1

4
u6
)

+
(c21

c1

)2(1
3
u4 − 1

2
u2
)

− c111

c1

i

6
u3
]
t + o(t).



Part III.2: Something as...Stone-Weierstrass

(Joint work with C.Cuchiero, G.Gazzani, J.Möller, J.Teichmann)
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The model



The model
Goal: provide a good model for a set of traded assets S = (S1, . . . , SD).
→good = universal, tractable, and easy to calibrate.

Main ingredient: the market’s primary (underlying) process X̂t := (t,Xt).

Requested properties:
• The realizations of X̂ are available in form of time series data and/or the

law of X̂ under the pricing measure is known.
• It is reasonable to assume that:

• X is d-dimensional continuous semimartingale.
• X̂ encodes all the randomness of S in a good way, meaning that the paths

of S are continuous maps of the paths of X̂ .

The model: Sn(`)t = (S1
n (`1)t , . . . , S

D
n (`D)t), where

S j
n(`j)t := `j∅ +

∑
0<|I |≤n

`jI 〈eI , X̂t〉,

• X̂ is the signature of X̂ ,
• n ∈ N is the degree of truncation,
• `j∅, `

j
I ∈ R are the deterministic coefficients to be found.

See also Perez Arribas, Salvi, Szpruch (’20).



In one sentence: the model

S j
n(`j)t := `j∅ +

∑
0<|I |≤n

`jI 〈eI , X̂t〉,

is a linear model whose parameters are `jI and whose building blocks are

〈eI , X̂t〉 =

∫ t

0

∫ tn

0
· · ·
∫ t2

0
1 dX̂ i1

t1 · · · dX̂
in
tn

for some continuous semimartingale X̂ = (X̂ 0, X̂ 1, . . . , X̂ d).



The model: Sn(`)t := `∅ +
∑

0<|I |≤n `I 〈eI , X̂t〉 (D = 1)

Flexibility: From the UAT S can be approximated by Sn(`).

Universality: Any classical model driven by Brownian motions can be arbitrarily
well approximated. Extensions to Lévy driven models are possible (joint work
with F. Primavera).

Classical requirements: No arbitrage can easily be guaranteed.

Tractability: Time extended signature of Sn(`) can be written as map of (`, X̂).
−→ Knowing EQ[X̂t ], computing an approximation of the price of
(path-dependent) options reduces to evaluating a polynomial. Mathematically:

EQ[F ((Sn(`)t)t∈[0,T ])] ≈ P(`,EQ[X̂t ]),

for some some P such that P( · ,EQ[X̂T ]) is polynomial.

−→ Formulas for the computations of EQ[X̂t ] are available if X is a sufficiently
regular Markov (or non Markov) diffusion.



Calibration to option prices



Calibration to option prices

Model: Sn+1(`)t := Sn+1(`)0 + `∅〈ẽ∅, X̂t〉+
∑

0<|I |≤n `I 〈ẽI , X̂t〉. (D = d = 1)

Scenario: The following quantities are available:

• Prices of options on S .

• The law of the market’s primary (underlying) process X̂ under the pricing
measure Q.

Cool idea: Since computing the approximated price of an (even path
dependent) option with the proposed model reduces to evaluating a
polynomial, calibration on (even path dependent) option prices could be done
in a simple and efficient way.

−→ ...cool but dangerous! The given approximation has to be good enough in
each optimization’s step!

Alternative idea: Use Monte Carlo pricing (with variance reduction). Note that
there is no need of new simulations in the optimization procedure.



Calibration to option prices: procedure

Scenario: The following quantities are available:

• Prices π1, . . . , πN of N options with payoffs

F1((St)t∈[0,T1]), . . . ,FN((St)t∈[0,TN ]).

Procedure:

• Look for ` matching the corresponding option prices, i.e. minimizing the
expression

N∑
i=1

w i
(
PMC
i (`)− πi

)2
,

for some weights w i , where PMC (`) denotes the empirical mean of

Fi

(
(Sn(`)t)t∈[0,Ti ])

)
.

Important observation: the linearity of the model makes this procedure very
quick. Trajectories of X̂ could be simulated just once in advance and stored. A
coefficients update reduces to a scalar product.



Calibration to option prices: the Heston model
• Consider a Heston model (d=2, D=1):

dSt = µStdt + St

√
VtdB

P
t

dVt = κ(θ − Vt)dt + σ
√
VtdW

P
t ,

• Goal: approximate S with S3(`∗), using two Q-Brownian motions as
primary underlying process (`∗ ∈ R13).
• Test: Compute the implied volatility surface (using Monte Carlo) under

S3(`∗) (red) and compare it with the Heston’s one (blue).

Figura: IVSs and corresponding absolute error (7 maturities from 30 days to 2 years).



Calibration to option prices: S&P 500 17.03.2021
• Let S be the stochastic process describing the price of S&P 500 starting at

day 17.03.2021.
• Goal: approximate S with S4(`∗), using two Q-Brownian motions as

primary underlying process (`∗ ∈ R121).
• Test: Compute the implied volatility surface (using Monte Carlo) under

S4(`∗) and compare it with the market’s one.

Figura: IVSs and corresponding absolute error (6 maturities within 60 days and 2
years).



Remarks on the previous example
• The result is obtained using a closer-to-sup-norm loss function:

N∑
i=1

αεi
(
PMC
i (`)− πi

)p
,

where εi is the absolute error for the i-th price in a previous calibration
and α and p are big.
• The calibrated model produces a reasonable implied volatility surface also

for out of sample strikes and maturities.

Strikes

0.8
0.9

1.0
1.1

1.2
1.3

Matu
riti

es

0.25
0.50

0.75
1.00

1.25
1.50

1.75
2.00

IV

0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325

Figura: IVS of the calibrated model (6 maturities within 60 days and 2 years). Out of
sample represented as red dots.



What about including the VIX?



The VIX Index

The CBOE Volatility Index (VIX) is a popular measure of the market’s
expected volatility on the S&P-500 Index, calculated and published by the
Chicago Board Options Exchange (CBOE).

The current VIX index value quotes the expected annualized change in the
SPX-500 over the following 30 days, based on options-based theory and current
options-market data, more precisely

VIXT :=

√
E
[
− 2

∆
log

(
ST+∆

ST

)
|FT

]
,

where ∆ = 30 days and S = (St)t≥0 denotes the S&P-500 index.



The model

We consider a model where the dynamics of the S&P-500 index and the
corresponding volatility process are given by

dSt = Stσ
S
t dBt

σS
t = `∅ +

∑
0<|I |≤n

`I 〈eI , X̂t〉,

where

• B = (Bt)t≥0 is a one-dimensional Brownian motion

• n ∈ N
• X = (X 1, . . . ,X d) is a d-dimensional continuous semimartingale.

Denoting Z = (X ,B), then the correlation matrix between X and B is
given by

ρi,j =
[Z i ,Z j ]√
[Z i ]

√
[Z j ]

∈ [−1, 1],

for all i , j = 1, . . . , d + 1, where [·, ·] denotes the quadratic covariation.

• ` := {`I ∈ R : |I | ≤ n} the collection of parameters of the model.



A reasonable choice for the primary process

Our choice for the primary process goes back to the good old polynomial
diffusions: we assume that

dXt = b(Xt)dt +
√

a(Xt)dWt ,

where

• b, a are polynomial of order one and two, respectively.

• W = (Wt)t≥0 is a d-dimensional Brownian motion.

Why? Because they are a wide class and the truncated time extended signature

X̂≤N
t := (1, 〈e0, X̂t〉, . . . , 〈e(d,...,d), X̂t〉)

of (Xt)t≥0 is a polynomial process too. We can thus compute its conditional
moments by means of a matrix exponential.

But why do we care? Because the VIX index on S can be re-written as

VIXT =

√
1
∆
E
[∫ T+∆

T

(σS
t )2dt|FT

]
,

and
∫ T+∆

T
(σS

t )2dt is a polynomial (of degree 1) in X̂2n+1
T and X̂2n+1

T+∆.



VIX with signatures

Theorem
Under the proposed model

VIXT (`) =

√
1
∆
`>Q(T )`,

where,

QIJ(T ) = E
[
〈(eI � eJ)⊗ e0, X̂T+∆〉|FT

]
− 〈(eI � eJ)⊗ e0, X̂T 〉

= ((eI � eJ)⊗ e0)>(e∆G> − Id)X̂2n+1
T ,

with G being the matrix associated to the generator G of X̂≤2n+1.

Observe that we use the same notation for elements of the tensor algebra and
their vectorisation.



VIX options

It is important to note that:

• The VIX is not a martingale.

• VIX options are therefore written on future contracts.

Recall that for a VIX-Future of maturity T , it’s settlement price at time
t ∈ [0,T ] is given by

FT
t := E

[
VIXT er(t−T )|Ft

]
.

In particular,

• At maturity it holds that FT
T = VIXT .

• The spot price of a VIX-option depends on the maturity, since the spot
price is FT

0 = E
[
VIXT e

−rT
]
.

• During calibration, also the Futures’ prices should be calibrated.



Calibration task
Let T be a set of maturities and K a set of strikes. Introduce

πmodel
VIX (`,T ,K) :=

1
NMC

NMC∑
i=1

(VIXT (`, ωi )−K)+, Fmodel
VIX (`,T ) :=

e−rT

NMC

NMC∑
i=1

VIXT (`, ωi ).

Then the loss function reads as follows:

LVIX(`) :=
∑

T∈T ,K∈K
L
(
πmodel

VIX (`,T ,K), πb,a
VIX(T ,K), σb,a

VIX(T ,K),Fmodel
VIX (`,T ),Fmkt

VIX (T )
)

where πb,a
VIX(T ,K), σb,a

VIX(T ,K),Fmkt
VIX (T ) denote market’s option bid/ask prices,

implied volatilities and market’s futures’ prices, respectively.

Our choice:

Lβ(π, πmkt,b,a, σmkt,b,a,F ,Fmkt) =((
β1̃{π/∈[πmkt,b,πmkt,a]} + (1− β)

)∣∣π − (πmkt,a + πmkt,b)/2
∣∣+
∣∣δmkte−rT (F − Fmkt)

∣∣
υmkt(σmkt,a − σmkt,b)

)2

,

where
• υmkt and δmkt denote the Vega and Delta of the option under the Black-Scholes

model which depend on the maturity and on the strike price;

• F and Fmkt denote futures with maturity T ;

• 1̃{x /∈[yb,ya]} := s(yb − x) + s(x − ya) for s(x) := 1
2 tanh(100x) + 1

2 a smooth
version of the indicator function.



Primary process

For X we choose a 2-dimensional Ornstein-Uhlenbeck processes

dX j
t = κj(θj − X j

t )dt +
√

a(Xt)dWt , X0 = x0,

for aij(Xt) = σiσjρij , and W being a d-dimensional Brownian motion.



Implied volatility

T1 = 0.0383 T2 = 0.0767 T3 = 0.1342 T4 = 0.2108 T5 = 0.2875 T6 = 0.3833
(90%,250%) (90%,250%) (80%,310%) (80%,300%) (75%,395%) (80%,405%)

d = 2, n = 3, κ = (0.1, 25)>, θ = (0.1, 4)>, σ = (0.7, 10)>, ρ =

1 −0.577 0.3
· 1 −0.6
· · 1





Future prices
Relative absolute error between the market future prices and the calibrated
ones:

T1 = 0.0383 T2 = 0.0767 T3 = 0.1342
εT1 = 7.0× 10−6 εT2 = 2.1× 10−3 εT3 = 1.3× 10−5

T4 = 0.2108 T5 = 0.2875 T6 = 0.3833
εT4 = 1.5× 10−4 εT5 = 1.9× 10−6 εT6 = 1.3× 10−6



Joint calibration of SPX and VIX options



SPX dynamics

Theorem
Under our model it holds

St(`) = S0 exp

{
−1
2
`>Q0(t)`+

∑
|I |≤n

`I 〈ẽI B , Ẑt〉
}
,

where Zt = (Xt ,Bt) and ẽI
k are linear combinations of indices. The

components of the matrix Q0(t) are given by

Q0
IJ(t) = 〈(eI � eJ)⊗ e0, X̂t〉.



Joint calibration of SPX and VIX options

Denote by LSPX(`) the SPX loss function, where

LSPX(`) :=
∑

T∈T ,K∈K

Lβ(πmodel
SPX (`,T ,K), πmkt,b

SPX (T ,K), πmkt,a
SPX (T ,K))

To achieve a joint calibration of the SPX/VIX options and VIX futures we
minimize

Ljoint(`, λ) := λLSPX(`) + (1− λ)LVIX(`),

for some λ ∈ (0, 1).



Parameters specifications

Maturity and moneyness specifications:

TVIX
1 = 0.0383 TVIX

2 = 0.0767
(90%,220%) (90%,220%)

T SPX
1 = 0.0383 T SPX

2 = 0.1205 T SPX
3 = 0.1588

(92%,105%) (70%,105%) (80%,120%)

The shortest maturity considered is of 14 days for both SPX and VIX, then the
second and third maturity of the SPX are 44 days and 58 days, respectively,
and the second one for the VIX is 28 days. Moreover, we consider a high
moneyness level (up to 220%) for VIX options, usually rather difficult to fit.

Models’ parameters: d = 3, n = 3 (hence ` ∈ R85), λ = 0.35, β = 1, and X
being a three dimensional OU process with

κ = (0.1, 25, 10)>, θ = (0.1, 4, 0.08)>, σ = (0.7, 10, 5)>,

ρ =


1 0.213 −0.576 0.329
· 1 −0.044 −0.549
· · 1 −0.539
· · · 1

 , X0 = (1, 0.08, 2)>.



Implied volatility and future prices



Trajectories

Let `? ∈ R85 be the calibrated parameters, fix T = 60 days, and sample a trajectory
for (Vt(`?))t∈[0,T ] with Vt = σS

t (`?)2, (VIXt(`?))t∈[0,T ], and (St(`?))t∈[0,T ].



Conclusions



Conclusions

• We saw that from a mathematical point of view signatures have some extremely
interesting properties and deserve to be used in a modeling context.

⇒ F ((Xt)t∈[0,T ]) ≈ L(X̂T ) for some linear map L.

• We introduced a linear model based on the signature of an underlying process.

⇒ Flexible: classical models can be approximated arbitrarily well.

⇒ Tractable: since as soon as EQ[X̂] is known, estimators for different quantities are
available in closed form.

• We illustrated a calibration method and the corresponding performance on
simulated and real data.

• We show how to extend this approach to obtain a tractable and flexible
representation of prices and corresponding VIX.

• We illustrated a calibration method and the corresponding performance on real
data.



Thank you for your attention!
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