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Lecture I: Q function and advantage function in RL



AGENT ENVIRONMENT

-State s €S
' - Take action a € A
- - Get reward 7

-Newstate s’ € S

Figure: Illustration of reinforcement learning

m Learning the (stochastic) environment while trying to find optimal
control to achieve certain objectives

m Examples: Chess and Go, video games, autonomous driving, robots

m Analytically, RL ~ MDP /control plus learning



RL in continuous-time

For a given control process (a;);>o taking values in A C R¥, consider the
state dynamics governed by the SDE:

dXt = b(t, Xt, at)dt + 0'(t7 Xt, 31_»)d.Wt7 vt > 0.

Objective: determine the optimal control that maximizes the total reward:

T
]E|:/ r(taxtaat) dt+g(XT) )
0

without knowing the coefficients b, o, r, g.



Admissible controls

» Open loop
» (*) Closed loop most relevant class in RL
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Deterministic policy for classical control

Classical control
» coefficients are given

» the optimal control is characterized, under mild conditions, by
aj =p*(t, X" ), vt>0,

where
» p* 1[0, T] x RY — A'is an (optimal) deterministic policy
(a.k.a. feedback control)
> u* is continuous/differentiable with proper regularity conditions

RL: try to learn this optimal policy without knowing the coefficients,
and/or the for of payoff/reward function
Key concepts: Q function and advantage function



Q function in Markov decision process: introduction

o A tuple (S, A,P,R,v,s)

vV v v v Y

V(s) = maximize, [Z’y R(st, a:)|s0 —s]

subject to Ser1~ P(st,ar), ar~m(sy), t=0,1,...

st € S the state of the agent at time ¢

a; € A the action of the agent at time t

ay ~ m(st) where 7 : S — P(A) is the policy of the agent
Instantaneous reward R(s;, a;) sampled from some distribution
Time-homogeneous Markov transition kernel P(s;, a;) € P(S)
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e Reinforcement learning in discrete time
» MDP with unknown P and r
» Policy
> 71 :S — A pure strategy < strict control

» m:S — P(A) mixed strategy <> relaxed control (to find optimal
decision under exploration-exploitation context)



Q Function and Bellman Equation

» @ function, one of the basic quantities used for RL

oo
. t — —
Q(s,a): = E E ~Yir(se, at)|so =s,a0 = a
t=0
’

= Er(s, a) +v ]ES’NP(57a) V(s')

—— —_——
reward of taking action a reward of playing optimal afterwards

» The value function (of a given policy )
Vﬂ(s) = EaNW(s)[Qﬂ(s’ a)]

» Advantage function: quantifying the quality of a specific action a
over average actions given a specific state s

A(s,a) = Q™(s,a) — V™ (s)
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Bellman Equation for Q Function

» The Bellman equation for the Q-function given by
Qﬂ-(sa a) = ]E[R(S, a)] + 7ES'NP(s,a),a~7r(5/) [QW (5/7 a/)]

> V(s) = maxaea Q(s, a), then 7*(s) € argmaxaec 4 Q(s, a)
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Q-function update for T = oo

Qt+1(5t7 3t)

— (1 = Bi(st, ar)) Qe(st, ar) +5:(st, ar) [R(St» ar)+7 maélix Q:(st+1, 3,)}

old value
new value

> n'(s,a): i-th time to visit (s, a)
» (Watkins and Dayan 1992),

Zﬂn"(s,a) = 00, 2:(5#(5,3))2 < o0,
i=1 i=1

then Q:(s,a) — Q(s,a) as t — o0, Vs, a with probability 1
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Outline

Q function in RL

Q function: illustration example



Example of Q-function

Consider this house. You start in 2 and you want to go outside.
Quickest path? (Ok, not too hard here, but imagine 100 rooms...)
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Example

Note: problem and pictures (with minor modifications) from
http://mnemstudio.org/path-finding-g-learning-tutorial.htm

Let us solve the problem by the Q learning approach. First, let us
formalize the model
» State space S ={0,1,2,3,4,5}. Thatis, s; = 5 means that at time
t, we are in room number 5
> Action space A ={0,1,2,3,4,5}. Thatis, a; =5 means that at
time t, our action is move to room number 5
» Transition function sy11 = P(st, a:) = a;. Note that no noise here,
deterministic system
» Reward function R =7



Example

Recall: R(s, a) is the reward if you are in state s and choose action
a (that is, you are in room s and move to room a). We choose

® R(s,a) =0if (s,a) are linked  (alternative = —1)
® R(s,a) =—1if (s,a) are not linked  (alternative = —oc)
e R(s,a) =100 if a is the target state

Action
ﬂ 2 State 0 1 2 3 4 5

O ||-1-1-1-1 0 -1
-1 -1 -1 0 -1 100
-1 -1 -1 0-1 -1

0-1-1 0 -1100
-1 0 -1-1 0100
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Example

Algorithm.
1. Initialize the matrix @ with all zeros.
2a. Randomly choose the initial state s € S.
2b. Randomly choose an (admissible) action a € A and use
approximated dynamic programming to update Q(s, a). You
are now in state s = a.
2c. Repeat (2a)-(2b) until you touch the target state.
3. Repeat (2a)-(2b)-(2c) for N iterations.

4. Compute the optimal control.



Example

Recall the equation to update the matrix Q:

Q(s,a) + (1 —n)Q(s,a) + n(R(s, a)+v rar)g% Q(f(s, a, &), a’)).

To simplify, we here take n = 1 (all the focus on the present
iteration), and v = 0.8. The update then reads

Q(s,a) «+ R(s,a) +0.8 max Q(a,d).

a’€A, 2’ admissible

Let's see the details...



Example

We first initialize the matrix @ to zero.

Action
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Example

Randomly choose an initial state, say 1. The admissible actions are
{3,5}. Randomly choose one, say 5. Then we update Q(1,5) as

Q" "(1,5)— K(1,5) 08 max Q(5,4)
ae

= R(1,5) + 0.8max{Q(5, 1), Q(5,4), Q(5,5)}
= 100 + 0.8 max{0, 0, 0} = 100.

Action

State 0 1 2 3 4 5 01 2 3 4 5
o1 11198 1 ofo o 0 0 0 0
1o 0 0 0 0100
1 [-1 -1 =1 0 -1 100 g e

R= 2 |-1 -1 -1 0 -1 -1 0= 2 0
2 30 0o 0 0 0 0

3 -1 0 0-1 0 -1 ilo 66000
4 ]10-1-1 0 -1100 sl 60 0o

5 -1 0-1-1 0100
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Example

We are now in state 5. Since this is the target state, we have
finished this episode.

We now run a second episode, starting from another a randomly
chosen initial state...



Example

Randomly choose an initial state, say 3. The admissible actions are
{1,2,4}. Randomly choose one, say 1. We update Q(3,1) as

Q"™"(3,1) = R(3,1) + 0.8 max Q(1,4a)

= R(3,1) + 0.8 max{Q(1,3), Q(1,5)}
= 0+ 0.8 max{0, 100} = 80.

Action o . =
State 0 1 2 3 4 5 g - 2 =
S Ly ofo o o o o0 o
1o 0o o 0o 0100
1 |-1 -1 -1 0 -1100 O=2|0 0o o o o o
R= 2 |-1 -1 -1 0 -1 -1 “ 3l o8 o 0o o0 o
3|-1 0 0-1 0 -1 4 o 0 0 0 0 0
4 o -1-1 0-1100 sl o 0o 0 0 o0 o0
5 -1 0 -1 -1 0100



Example

We are now in state 1, not the target state, so we go on. The
admissible actions are {3,5}. Randomly choose one, say 5. We
update Q(1,5) as

Qnew(]_’ 5) = R(l, 5) + 0.8 ITJ]EBZ Q(l’ a’)

= R(1,5) + 0.8 max{Q(5,1), Q(5,3), Q(5,5)}
=100 + 0.8 max{0,0,0} = 100. (no update)

Action

state 0 1 2 3 4 5 01 2 3 4 5
g =10 <1 .1 6 -1 ofo o 0 0 0 0
1] 0o o o o o100
e o et
R= 2 [-1-1-1 0-1 -1 3]l o0s 0 0o 0 o
3 0/-1 0 0-1 0 -1 410 0 0 0 0o o
4 0-1-1 0-1100 5 o 0 0 0 0 0

5 1-1 0-1-1 0100
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Example

We are now in state 5. Since this is the target state, we have
finished this episodes.

We repeat several times...

After several episodes, we get

Action g 1 2 31 1 5§

S“g’ ‘f } I I ; 51 o[ 0 0 0 0400 0
111 - 1l o o 032 o0 500

- B O 310 0 oy a0 0
sl 08 6 3| 0400 256 0400 0

4 0 -1 -1 0 =1 100 4 1320 0 0 320 0 500

s |-1 0 -1-1 0100 5| 0400 0 0 400 500
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Example

Recall that the optimal control is (s the initial state):

* * *
dpg — arg max S,a dq = arg max an, a
0 gaeAQ(’ )= 1 gaeAQ( 0> )=



Example

Recall that the optimal control is (s the initial state):

ay = argmax Q(s,a), ai = argmax Q(ag, a),
acA acA

Example: if you start in 0, then 0 — 4 — 5.
Example: if you start in 2, then either2 +3 —+4 —-+50r2—53—1—5.

0 1 2 3 4 5
o[ o o o 0400 0
1| 0 o0 0320 0500
=210 0 0320 0 o0
3 0400 256 0 400 0
41320 0 0 320 0 500
5| 0400 0 0 400 300
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Lecture Il: MFC with learning & characterization of Q-function in
continuous-time RL

26
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Outline

MFC with learning



Extension to McKean-Vlasov Control

Consider the state dynamics

X2V = b(s, XE, Pyew)ds + o(s, XEY, Py )A W,
X{ ~v

and the associated value function

.
E [/ r(s, XS, Pyev)ds+ g (X%”JP’X:TW)} .
t



Dynamic programming principle for MFC

e MFC is time-inconsistent

» Strict controls/without learning: Pham and Wei (2016, 2017),
Bayraktar, Cosso, Pham (2018), Wu and Zhang (2019), Djete,
Possamai, and Tan (2022), Talbi, Touzi, and Zhang (2023)

> Relaxed control for MFC with learning: Gu, G., Wei, and Xu (2023)
e Time consistency property is foundation for MDP, RL, and MARL
» Value-based method: Q learning

> Policy-based method: Actor-Critic algorithm



DPP for MFC with learning (Gu, G. Wei, and Xu, (2023))

Idea:

> Identify the “correct” Q function: with a wrong form of Q function,
Q-table will converge to different values with different initial
population distribution

» Need to work with the correct “state-action” space

» Similar to the MFC theory, "lift" the state-action space into their
probability measure space
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Q function on the probability measure space

Define Integrated Q (IQ) function for MFC ~ Q(s,a) No  Q(u, h) Yes

Q(u, h) = E {f(sm BO,M)‘ So ~ {4, Ao ~ h}

reward of taking ag ~ h

+ Esle(so,ao,/L) [Z ’th(sh ag, /~Lt)

t=1

ay ~ 7T;,k‘|

reward of playing optimal afterwards a; ~ m;

> 7 is the set of local policies h: S — P(A)
> V(u) =sup, Q(u, h) — to find optimal policy (if exists)

" (u) € argmax Q(u, h)
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DPP for 1Q Function

Bellman Equation for IQ Function (Gu, G., Wei, Xu, 2023)
For any u € P(S) and h € H,

Q(u.h) = #(u, h) +~ sup Q(®(u, h), ).
heH

v

H:={h:8 — P(A)}: set of local policies P(A) x ...P(A)
—_—
S|

Aggregated reward: P(u, h) :=3__  u(s)h(s,a)r(s, a, 1)
Aggregated dynamics

> O(u, h) =37, P(s, p, a)u(s)h(s, a): aggregated dynamics
> per1 = ®(ue, h): distribution at time t + 1, flow property

H is key for DPP of the 1Q function

v

v

v



Insight of DPP

» Centralized training with decentralized execution: when rewards can
be decomposed additively across agent observations

Qi (1 h Zo.ocal( (s, 3) ) u(s)h(s, )
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Two key quantities in continuous time RL

» Q-function?

» Advantage function?
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First approach: stochastic policy with entropy regularizatior
Exploratory formulation [Wang, Zariphopoulou and Zhou (2020)]

Consider stochastic policies 7 : [0, T] x RY — P(A), and the corresponding
exploratory state dynamics:

dXT = b™(t, X[)dt + 57 (t, X7 )dW,,
where
b™(t,x) = [, b(t, x, a)w(dalt,x), 57 (t,x) \/fA (t,x, a)w(dalt, x).

Maximize the entropy-regularized objective function over 7:

E [ (77(6.X7) — vKL(x( [, 7)) dt + g(X7)]

where F7(t,x) = [, r(t,x,a)r(alt,x)da, and v > 0 is a given parameter.
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Stochastic policy with entropy regularization

» Stochastic policy and exploratory dynamics capture exploration: at
each state, sampling actions according to a distribution.

XmL = b(t,Xt, at)dt + O'(t, Xt, at)th, ag ~ 7T(da|t, Xt)

» Optimal exploratory policy is Gaussian in LQ-RL

» Based on this framework, many discrete-time RL algorithms are
extended to continuous-time, e.g., temporal difference learning [Jia
and Zhou (2022a)], g-learning [Jia and Zhou (2022b)], policy
gradient and actor-critic learning [Jia and Zhou (2023)].
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Issues with stochastic policy approach

» Inconsistent with classical control framework with deterministic
policy

> Recovering a deterministic policy from a learned stochastic one is
challenging (except the LQ setting).

» Exploratory dynamics requires continuously sampling independent
actions at different states, which is infeasible both theoretically and
practically [Jia, Ouyang and Zhang (2025)].

» Frequent sampling makes actions discontinuous over time, in
contrast to deterministic policy.
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Issues with stochastic policy approach

» Inconsistent with classical control framework with deterministic
policy

> Recovering a deterministic policy from a learned stochastic one is
challenging (except the LQ setting).

» Exploratory dynamics requires continuously sampling independent
actions at different states, which is infeasible both theoretically and
practically [Jia, Ouyang and Zhang (2025)].

» Frequent sampling makes actions discontinuous over time, in
contrast to deterministic policy.

New approach: directly characterize a deterministic policy!
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General idea (Cheng, G., Zhang (2025))

Approximate the (optimal) deterministic policy (DPG) in a parametric
form {e}pern, and optimize the policy parameterization by gradient
methods.

Consider maximizing the reward over ¢ € R":

T
Ve(t,x):=E l/ r(s,Xf,;w(s, X?))ds +g(X$)

Xf:x],

where

dX? = b(s, X2, (s, X))ds + o (s, X2, 1 (s, X&))dW.
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Deterministic policy gradient in continuous-time RL

Theorem 1 (Cheng, G., Zhang (2025))

Under suitable regularity conditions,
6¢> V¢(t7 X) =E" |:ftT 64#‘6”(57 XSQ)T82A¢(S7 Xsd)v [L¢(S, Xf))ds] )

where A®(t, x, a) == L[V?](t, x,a) + r(t,x, a) is the Hamiltonian, with

LIp)(t, x, a) = dep(t, x) + b(t, x, a) " dxip(t, x)
+ Ltr(oo " (t, x, 2)d%p(t, X)).
» A? is analogous to the advantage function in discrete-time DPG

[Silver et.al (2014)], and the g-function for stochastic policy
gradient [Jia and Zhou (2023)].
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Limit of discrete-time DPG
DV (t,%) = B [ [T 04, x2) " 9,A%(s, X2, o (5, X8))ds|

Let B = 0, and consider the time discretized objective
JAt(¢) =E [Z, -0 r(tfa X$t7¢7 :u¢(ti7Xt;Aty¢))At + g(X$t!¢)j| )

where
X200 = XE0P + b, XEU?, o (8, X20?)) At
+ Cl’(l',‘7 Xt?‘t’qs, ;L(;;(t,', Xﬁt’(ﬁ))\/ Atwy,.
The discrete-time DPG in [Silver et.al (2014)] gives

N—1
O dac(®) = | D~ Oapto (1, XE°0) T 0,4 (15, X200, o (8, X509 At

i=0

At,¢p _\/At, ¢ R . .
where ABE9(t, x, 3) == & (t’x’aitv (2 s the discrete-time
advantage rate function.
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How to learn A??
AP (t, x,a) == L[V?](t,x,a) + r(t,x,a)

Theorem 2 (Cheng, G., Zhang (2025))

Let V € C2([0, T] x RY) and § € C([0, T] x R? x A) satisfy for all
(t,x) € [0, T] x RY,

V(T7X):g(x)7 CA’(LX?/J'(P(t?X))Zoy

and there exists a neighborhood O“d) (tx) Of pg(t, x) s.t. Ya € o%(nx)r

(V(s X&) + [2(r — @) (u, X7 au)du) is a martingale,

sE[t, T]
where
dXI? = b(s, X%, as)ds + o(s, XE?, as)dWs, X7 = x,
and (as)s>+ is a control process with lims : s = a.

Then V = V?, and § = A? in the neighborhood of ug.



Key insight from deterministic policy

» Explore the neighborhood of current actions, rather than the entire action
space
» Use data from the original state, rather than the exploratory state

» The Bellman condition only evaluates at the current action, while the
stochastic policy counterpart requires

/A (4(t,x,a) — ylog m(alt, x)) w(da|t, x) =0,

which needs an additional Monte Carlo step to approximate the integral.
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Extending DPG to continuous-time MFC with learning

Theorem 3 (Cheng, G., Pham, Zhang (2026))

)
0, V2(tx,0) = [ BoAIVA)(s.Bygus, o),
where Alp](t, v, §) := £¢[<p](t, v)+(r(t,-,v,¢),v), and
£O[)(t,v) =0eplt, ) + B [b(t, €,1,0) - Dup(t, v)(€)

+ =X(t,&, v, 0): Gvauap(t,u)(f)].

1
2

» A model-free characterization holds for A[V?](t,v, ¢).
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