

A control-theoretical perspective of continuous time reinforcement learning

Xin Guo

UC Berkeley

email: xinguo@berkeley.edu

23rd Winter School on Mathematical Finance, Jan 19-21, 2026

Mini-course outline

- ▶ Part I: Introduction to Q and advantage function in RL
- ▶ Part II: DPP for MFC with learning & characterization for Q function in continuous-time RL
- ▶ Part III: Regret Analysis in RL via Stability of HJB and BSDE
- ▶ Part IV: Connecting RL, LLM, and Generative Diffusion Models
- ▶ Part V: RDE for General RL

Lecture I: Q function and advantage function in RL

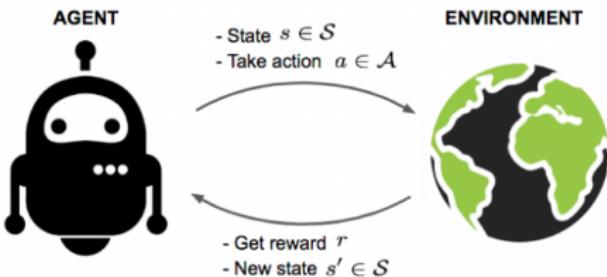


Figure: Illustration of reinforcement learning

- Learning the (stochastic) environment while trying to find optimal control to achieve certain objectives
- Examples: Chess and Go, video games, autonomous driving, robots
- Analytically, RL \sim MDP/control plus learning

RL in continuous-time

For a given control process $(a_t)_{t>0}$ taking values in $A \subset \mathbb{R}^k$, consider the state dynamics governed by the SDE:

$$dX_t = b(t, X_t, a_t)dt + \sigma(t, X_t, a_t)dW_t, \quad \forall t > 0.$$

Objective: determine the optimal control that maximizes the total reward:

$$\mathbb{E} \left[\int_0^T r(t, X_t, a_t) dt + g(X_T) \right],$$

without knowing the coefficients b, σ, r, g .

Admissible controls

- ▶ Open loop
- ▶ (*) Closed loop most relevant class in RL

Deterministic policy for classical control

Classical control

- ▶ coefficients are given
- ▶ the optimal control is characterized, under mild conditions, by

$$a_t^* = \mu^*(t, X_t^{\mu^*}), \quad \forall t \geq 0,$$

where

- ▶ $\mu^* : [0, T] \times \mathbb{R}^d \rightarrow A$ is an (optimal) deterministic policy
(a.k.a. feedback control)
- ▶ μ^* is continuous/differentiable with proper regularity conditions

RL: try to learn this optimal policy without knowing the coefficients, and/or the form of payoff/reward function

Key concepts: Q function and advantage function

Q function in Markov decision process: introduction

- A tuple $(\mathcal{S}, \mathcal{A}, P, R, \gamma, s_0)$

$$V(s) = \underset{\pi}{\text{maximize}} \quad \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \middle| s_0 = s \right]$$

subject to $s_{t+1} \sim P(s_t, a_t), \quad a_t \sim \pi(s_t), \quad t = 0, 1, \dots$

- ▶ $s_t \in \mathcal{S}$ the state of the agent at time t
- ▶ $a_t \in \mathcal{A}$ the action of the agent at time t
- ▶ $a_t \sim \pi(s_t)$ where $\pi : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$ is the policy of the agent
- ▶ Instantaneous reward $R(s_t, a_t)$ sampled from some distribution
- ▶ Time-homogeneous Markov transition kernel $P(s_t, a_t) \in \mathcal{P}(\mathcal{S})$

- Reinforcement learning in discrete time
 - ▶ MDP with *unknown* P and r
 - ▶ Policy
 - ▶ $\pi : \mathcal{S} \rightarrow \mathcal{A}$ pure strategy \leftrightarrow strict control
 - ▶ $\pi : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$ mixed strategy \leftrightarrow relaxed control (to find optimal decision under **exploration-exploitation** context)

Q Function and Bellman Equation

- ▶ Q function, one of the basic quantities used for RL

$$\begin{aligned} Q(s, a) : &= \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \mid s_0 = s, a_0 = a \right] \\ &= \underbrace{\mathbb{E} r(s, a)}_{\text{reward of taking action } a} + \gamma \underbrace{\mathbb{E}_{s' \sim P(s, a)} V(s')}_{\text{reward of playing optimal afterwards}} \end{aligned}$$

- ▶ The value function (of a given policy π)

$$V^\pi(s) = \mathbb{E}_{a \sim \pi(s)} [Q^\pi(s, a)]$$

- ▶ Advantage function: quantifying the quality of a specific action a over average actions given a specific state s

$$A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)$$

Bellman Equation for Q Function

- ▶ The Bellman equation for the Q -function given by

$$Q^\pi(s, a) = \mathbb{E}[R(s, a)] + \gamma \mathbb{E}_{s' \sim P(s, a), a \sim \pi(s')} [Q^\pi(s', a')]$$

- ▶ $V(s) = \max_{a \in \mathcal{A}} Q(s, a)$, then $\pi^*(s) \in \arg \max_{a \in \mathcal{A}} Q(s, a)$

Q-function update for $T = \infty$

$$Q_{t+1}(s_t, a_t)$$

$$\leftarrow (1 - \beta_t(s_t, a_t)) \underbrace{Q_t(s_t, a_t)}_{\text{old value}} + \beta_t(s_t, a_t) \underbrace{\left[R(s_t, a_t) + \gamma \max_{a'} Q_t(s_{t+1}, a') \right]}_{\text{new value}}$$

- ▶ $n^i(s, a)$: i -th time to visit (s, a)
- ▶ (Watkins and Dayan 1992),

$$\sum_{i=1}^{\infty} \beta_{n^i(s, a)} = \infty, \quad \sum_{i=1}^{\infty} (\beta_{n^i(s, a)})^2 < \infty,$$

then $Q_t(s, a) \rightarrow Q(s, a)$ as $t \rightarrow \infty$, $\forall s, a$ with probability 1

Outline

Q function in RL

Q function

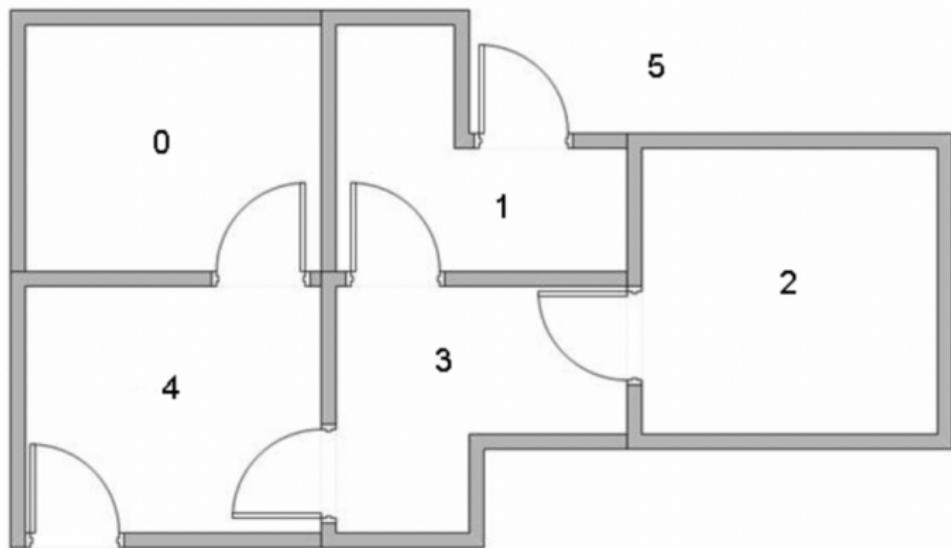
Q function: illustration example

MFC with learning

Characterization of Q in continuous-time RL

Example of Q-function

Consider this house. You start in 2 and you want to go outside. Quickest path? (Ok, not too hard here, but imagine 100 rooms...)



Example

Note: problem and pictures (with minor modifications) from
<http://mnemstudio.org/path-finding-q-learning-tutorial.htm>

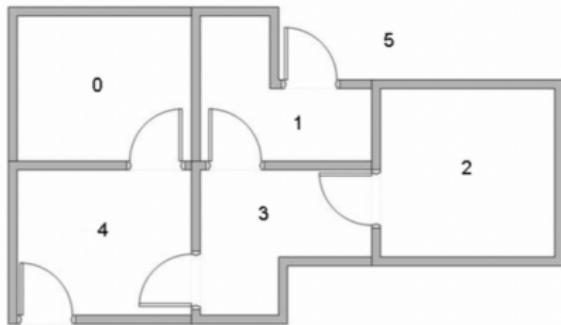
Let us solve the problem by the Q learning approach. First, let us formalize the model

- ▶ State space $\mathcal{S} = \{0, 1, 2, 3, 4, 5\}$. That is, $s_t = 5$ means that at time t , we are in room number 5
- ▶ Action space $\mathcal{A} = \{0, 1, 2, 3, 4, 5\}$. That is, $a_t = 5$ means that at time t , our action is move to room number 5
- ▶ Transition function $s_{t+1} = P(s_t, a_t) = a_t$. Note that no noise here, deterministic system
- ▶ Reward function $R = ?$

Example

Recall: $R(s, a)$ is the reward if you are in state s and choose action a (that is, you are in room s and move to room a). We choose

- $R(s, a) = 0$ if (s, a) are linked (*alternative* = -1)
- $R(s, a) = -1$ if (s, a) are not linked (*alternative* = $-\infty$)
- $R(s, a) = 100$ if a is the target state



State	Action					
	0	1	2	3	4	5
0	-1	-1	-1	-1	0	-1
1	-1	-1	-1	0	-1	100
2	-1	-1	-1	0	-1	-1
3	-1	0	0	-1	0	-1
4	0	-1	-1	0	-1	100
5	-1	0	-1	-1	0	100

Example

Algorithm.

1. Initialize the matrix Q with all zeros.
- 2a. Randomly choose the initial state $s \in S$.
- 2b. Randomly choose an (admissible) action $a \in A$ and use approximated dynamic programming to update $Q(s, a)$. You are now in state $s = a$.
- 2c. Repeat (2a)-(2b) until you touch the target state.
3. Repeat (2a)-(2b)-(2c) for N iterations.
4. Compute the optimal control.

Example

Recall the equation to update the matrix Q :

$$Q(s, a) \leftarrow (1 - \eta)Q(s, a) + \eta \left(R(s, a) + \gamma \max_{a' \in A} Q(f(s, a, \bar{e}_t), a') \right).$$

To simplify, we here take $\eta = 1$ (all the focus on the present iteration), and $\gamma = 0.8$. The update then reads

$$Q(s, a) \leftarrow R(s, a) + 0.8 \max_{a' \in A, \text{ } a' \text{ admissible}} Q(a, a').$$

Let's see the details...

Example

We first initialize the matrix Q to zero.

$$R = \begin{array}{c} \text{Action} \\ \hline \text{State} \end{array} \begin{array}{c} 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\ \hline \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \begin{bmatrix} -1 & -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 & -1 & 100 \\ -1 & -1 & -1 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 & 0 & -1 \\ 0 & -1 & -1 & 0 & -1 & 100 \\ -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix} \end{array}$$
$$Q = \begin{array}{c} \text{Action} \\ \hline \text{State} \end{array} \begin{array}{c} 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \\ \hline \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

Example

Randomly choose an initial state, say 1. The admissible actions are $\{3, 5\}$. Randomly choose one, say 5. Then we update $Q(1, 5)$ as

$$\begin{aligned}Q^{new}(1, 5) &= R(1, 5) + 0.8 \max_{a' \in A} Q(5, a') \\&= R(1, 5) + 0.8 \max\{Q(5, 1), Q(5, 4), Q(5, 5)\} \\&= 100 + 0.8 \max\{0, 0, 0\} = 100.\end{aligned}$$

$$R = \begin{array}{c} \text{State} \\ \hline \text{0} \\ \text{1} \\ \text{2} \\ \text{3} \\ \text{4} \\ \text{5} \end{array} \begin{array}{c} \text{Action} \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \begin{bmatrix} -1 & -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 & -1 & 100 \\ -1 & -1 & -1 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 & 0 & -1 \\ 0 & -1 & -1 & 0 & -1 & 100 \\ -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix} \end{array}$$
$$Q = \begin{array}{c} \text{State} \\ \hline \text{0} \\ \text{1} \\ \text{2} \\ \text{3} \\ \text{4} \\ \text{5} \end{array} \begin{array}{c} \text{Action} \\ \hline 0 & 1 & 2 & 3 & 4 & 5 \\ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

Example

We are now in state 5. Since this is the target state, we have finished this episode.

We now run a second episode, starting from another a randomly chosen initial state...

Example

Randomly choose an initial state, say 3. The admissible actions are $\{1, 2, 4\}$. Randomly choose one, say 1. We update $Q(3, 1)$ as

$$\begin{aligned}Q^{new}(3, 1) &= R(3, 1) + 0.8 \max_{a' \in A} Q(1, a') \\&= R(3, 1) + 0.8 \max\{Q(1, 3), Q(1, 5)\} \\&= 0 + 0.8 \max\{0, 100\} = 80.\end{aligned}$$

$$R = \begin{array}{c|cccccc} \text{State} & \text{0} & \text{1} & \text{2} & \text{3} & \text{4} & \text{5} \\ \hline \text{0} & \begin{bmatrix} -1 & -1 & -1 & -1 & 0 & -1 \end{bmatrix} \\ \text{1} & \begin{bmatrix} -1 & -1 & -1 & 0 & -1 & 100 \end{bmatrix} \\ \text{2} & \begin{bmatrix} -1 & -1 & -1 & 0 & -1 & -1 \end{bmatrix} \\ \text{3} & \begin{bmatrix} -1 & 0 & 0 & -1 & 0 & -1 \end{bmatrix} \\ \text{4} & \begin{bmatrix} 0 & -1 & -1 & 0 & -1 & 100 \end{bmatrix} \\ \text{5} & \begin{bmatrix} -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix} \end{array}$$
$$Q = \begin{array}{c|cccccc} \text{Action} & \text{0} & \text{1} & \text{2} & \text{3} & \text{4} & \text{5} \\ \hline \text{0} & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \text{1} & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 100 \end{bmatrix} \\ \text{2} & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \text{3} & \begin{bmatrix} 0 & 80 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \text{4} & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ \text{5} & \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{array}$$

Example

We are now in state 1, not the target state, so we go on. The admissible actions are $\{3, 5\}$. Randomly choose one, say 5. We update $Q(1, 5)$ as

$$\begin{aligned}Q^{new}(1, 5) &= R(1, 5) + 0.8 \max_{a' \in A} Q(1, a') \\&= R(1, 5) + 0.8 \max\{Q(5, 1), Q(5, 3), Q(5, 5)\} \\&= 100 + 0.8 \max\{0, 0, 0\} = 100. \quad (no\ update)\end{aligned}$$

		Action					
State		0	1	2	3	4	5
0		-1	-1	-1	-1	0	-1
1		-1	-1	-1	0	-1	100
2		-1	-1	-1	0	-1	-1
3		-1	0	0	-1	0	-1
4		0	-1	-1	0	-1	100
5		-1	0	-1	-1	0	100

$$R = \begin{bmatrix} -1 & -1 & -1 & -1 & 0 & -1 \\ -1 & -1 & -1 & 0 & -1 & 100 \\ -1 & -1 & -1 & 0 & -1 & -1 \\ -1 & 0 & 0 & -1 & 0 & -1 \\ 0 & -1 & -1 & 0 & -1 & 100 \\ -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix}$$

$$Q = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 100 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 80 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example

We are now in state 5. Since this is the target state, we have finished this episodes.

We repeat several times...

After several episodes, we get

$$R = \begin{array}{c} \text{Action} \\ \hline \text{State} \end{array} \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & \begin{bmatrix} -1 & -1 & -1 & -1 & 0 & -1 \end{bmatrix} \\ 1 & \begin{bmatrix} -1 & -1 & -1 & 0 & -1 & 100 \end{bmatrix} \\ 2 & \begin{bmatrix} -1 & -1 & -1 & 0 & -1 & -1 \end{bmatrix} \\ 3 & \begin{bmatrix} -1 & 0 & 0 & -1 & 0 & -1 \end{bmatrix} \\ 4 & \begin{bmatrix} 0 & -1 & -1 & 0 & -1 & 100 \end{bmatrix} \\ 5 & \begin{bmatrix} -1 & 0 & -1 & -1 & 0 & 100 \end{bmatrix} \end{array}$$

$$Q = \begin{array}{c} \text{Action} \\ \hline \text{State} \end{array} \begin{array}{cccccc} 0 & 1 & 2 & 3 & 4 & 5 \\ \hline 0 & \begin{bmatrix} 0 & 0 & 0 & 0 & 400 & 0 \end{bmatrix} \\ 1 & \begin{bmatrix} 0 & 0 & 0 & 320 & 0 & 500 \end{bmatrix} \\ 2 & \begin{bmatrix} 0 & 0 & 0 & 320 & 0 & 0 \end{bmatrix} \\ 3 & \begin{bmatrix} 0 & 400 & 256 & 0 & 400 & 0 \end{bmatrix} \\ 4 & \begin{bmatrix} 320 & 0 & 0 & 320 & 0 & 500 \end{bmatrix} \\ 5 & \begin{bmatrix} 0 & 400 & 0 & 0 & 400 & 500 \end{bmatrix} \end{array}$$

Example

Recall that the optimal control is (s the initial state):

$$a_0^* = \arg \max_{a \in A} Q(s, a), \quad a_1^* = \arg \max_{a \in A} Q(a_0^*, a), \quad \dots$$

Example

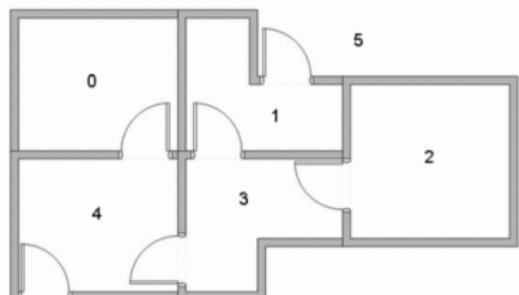
Recall that the optimal control is (s the initial state):

$$a_0^* = \arg \max_{a \in A} Q(s, a), \quad a_1^* = \arg \max_{a \in A} Q(a_0^*, a), \quad \dots$$

Example: if you start in 0, then $0 \rightarrow 4 \rightarrow 5$.

Example: if you start in 2, then either $2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ or $2 \rightarrow 3 \rightarrow 1 \rightarrow 5$.

$$Q = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 400 & 0 \\ 1 & 0 & 0 & 0 & 320 & 0 \\ 2 & 0 & 0 & 0 & 320 & 0 \\ 3 & 0 & 400 & 256 & 0 & 400 \\ 4 & 320 & 0 & 0 & 320 & 0 \\ 5 & 0 & 400 & 0 & 0 & 400 \end{bmatrix}$$



Lecture II: MFC with learning & characterization of Q-function in continuous-time RL

Outline

Q function in RL

Q function

Q function: illustration example

MFC with learning

Characterization of Q in continuous-time RL

Extension to McKean-Vlasov Control

Consider the state dynamics

$$\begin{aligned} dX_s^{t,\nu} &= b(s, X_s^{t,\nu}, \mathbb{P}_{X_s^{t,\nu}}) ds + \sigma(s, X_s^{t,\nu}, \mathbb{P}_{X_s^{t,\nu}}) dW_s, \\ X_t^{t,\nu} &\sim \nu, \end{aligned}$$

and the associated value function

$$\mathbb{E} \left[\int_t^T r \left(s, X_s^{t,\nu}, \mathbb{P}_{X_s^{t,\nu}} \right) ds + g \left(X_T^{t,\nu}, \mathbb{P}_{X_T^{t,\nu}} \right) \right].$$

Dynamic programming principle for MFC

- MFC is time-inconsistent
 - ▶ Strict controls/without learning: Pham and Wei (2016, 2017), Bayraktar, Cocco, Pham (2018), Wu and Zhang (2019), Djete, Possamai, and Tan (2022), Talbi, Touzi, and Zhang (2023)
 - ▶ Relaxed control for MFC with learning: Gu, G., Wei, and Xu (2023)
- Time consistency property is foundation for MDP, RL, and MARL
 - ▶ Value-based method: Q learning
 - ▶ Policy-based method: Actor-Critic algorithm

DPP for MFC with learning (Gu, G. Wei, and Xu, (2023))

Idea:

- ▶ Identify the “correct” Q function: with a wrong form of Q function, Q-table will converge to different values with different initial population distribution
- ▶ Need to work with the correct “state-action” space
- ▶ Similar to the MFC theory, “lift” the state-action space into their probability measure space

Q function on the probability measure space

Define Integrated Q (IQ) function for MFC $Q(s, a)$ **No** $Q(\mu, h)$ **Yes**

$$Q(\mu, h) := \underbrace{\mathbb{E} \left[r(s_0, a_0, \mu) \mid s_0 \sim \mu, a_0 \sim h \right]}_{\text{reward of taking } a_0 \sim h} + \underbrace{\mathbb{E}_{s_1 \sim P(s_0, a_0, \mu)} \left[\sum_{t=1}^{\infty} \gamma^t r(s_t, a_t, \mu_t) \mid a_t \sim \pi_t^* \right]}_{\text{reward of playing optimal afterwards } a_t \sim \pi_t^*}$$

- ▶ \mathcal{H} is the set of local policies $h : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})$
- ▶ $V(\mu) = \sup_h Q(\mu, h) \rightarrow$ to find optimal policy (if exists)

$$\pi^*(\mu) \in \arg \max_h Q(\mu, h)$$

DPP for IQ Function

Bellman Equation for IQ Function (Gu, G., Wei, Xu, 2023)

For any $\mu \in \mathcal{P}(\mathcal{S})$ and $h \in \mathcal{H}$,

$$Q(\mu, h) = \hat{r}(\mu, h) + \gamma \sup_{h' \in \mathcal{H}} Q(\Phi(\mu, h), h').$$

- ▶ $\mathcal{H} := \{h : \mathcal{S} \rightarrow \mathcal{P}(\mathcal{A})\}$: set of local policies $\underbrace{\mathcal{P}(\mathcal{A}) \times \dots \mathcal{P}(\mathcal{A})}_{|\mathcal{S}|}$
- ▶ Aggregated reward: $\hat{r}(\mu, h) := \sum_{s,a} \mu(s)h(s, a)r(s, a, \mu)$
- ▶ Aggregated dynamics
 - ▶ $\Phi(\mu, h) := \sum_{s,a} P(s, \mu, a)\mu(s)h(s, a)$: aggregated dynamics
 - ▶ $\mu_{t+1} = \Phi(\mu_t, h)$: distribution at time $t + 1$, flow property
- ▶ \mathcal{H} is key for DPP of the IQ function

Insight of DPP

- ▶ Centralized training with decentralized execution: when rewards can be decomposed additively across agent observations

$$Q_{\text{global}}^{\pi}(\mu, h) = \sum_{s,a} Q_{\text{local}}^{\pi}(\mu(s), h(s, a)) \mu(s) h(s, a)$$

Two key quantities in continuous time RL

- ▶ Q-function?
- ▶ Advantage function?

First approach: stochastic policy with entropy regularization

Exploratory formulation [Wang, Zariphopoulou and Zhou (2020)]

Consider **stochastic policies** $\pi : [0, T] \times \mathbb{R}^d \rightarrow \mathcal{P}(A)$, and the corresponding **exploratory** state dynamics:

$$dX_t^\pi = \tilde{b}^\pi(t, X_t^\pi)dt + \tilde{\sigma}^\pi(t, X_t^\pi)dW_t,$$

where

$$\tilde{b}^\pi(t, x) = \int_A b(t, x, a)\pi(da|t, x), \quad \tilde{\sigma}^\pi(t, x) = \sqrt{\int_A \sigma^2(t, x, a)\pi(da|t, x)}.$$

Maximize the **entropy-regularized** objective function over π :

$$\mathbb{E} \left[\int_0^T (\tilde{r}^\pi(t, X_t^\pi) - \gamma \text{KL}(\pi(\cdot|t, X_t^\pi))) dt + g(X_T^\pi) \right],$$

where $\tilde{r}^\pi(t, x) = \int_A r(t, x, a)\pi(a|t, x)da$, and $\gamma > 0$ is a given parameter.

Stochastic policy with entropy regularization

- ▶ Stochastic policy and exploratory dynamics capture **exploration**: at each state, sampling actions according to a distribution.

$$dX_t = b(t, X_t, a_t)dt + \sigma(t, X_t, a_t)dW_t, \quad a_t \sim \pi(da|t, X_t).$$

- ▶ Optimal exploratory policy is Gaussian in LQ-RL
- ▶ Based on this framework, many discrete-time RL algorithms are extended to continuous-time, e.g., temporal difference learning [Jia and Zhou (2022a)], q -learning [Jia and Zhou (2022b)], policy gradient and actor-critic learning [Jia and Zhou (2023)].

Issues with stochastic policy approach

- ▶ Inconsistent with classical control framework with deterministic policy
- ▶ Recovering a deterministic policy from a learned stochastic one is challenging (except the LQ setting).
- ▶ Exploratory dynamics requires continuously sampling independent actions at different states, which is infeasible both theoretically and practically [Jia, Ouyang and Zhang (2025)].
- ▶ Frequent sampling makes actions discontinuous over time, in contrast to deterministic policy.

New approach: directly characterize a deterministic policy!

Issues with stochastic policy approach

- ▶ Inconsistent with classical control framework with deterministic policy
- ▶ Recovering a deterministic policy from a learned stochastic one is challenging (except the LQ setting).
- ▶ Exploratory dynamics requires continuously sampling independent actions at different states, which is infeasible both theoretically and practically [Jia, Ouyang and Zhang (2025)].
- ▶ Frequent sampling makes actions discontinuous over time, in contrast to deterministic policy.

New approach: directly characterize a deterministic policy!

General idea (Cheng, G., Zhang (2025))

Approximate the (optimal) deterministic policy (DPG) in a parametric form $\{\mu_\phi\}_{\phi \in \mathbb{R}^n}$, and optimize the policy parameterization by gradient methods.

Consider maximizing the reward over $\phi \in \mathbb{R}^n$:

$$V^\phi(t, x) := \mathbb{E} \left[\int_t^T r(s, X_s^\phi, \mu_\phi(s, X_s^\phi)) ds + g(X_T^\phi) \middle| X_t^\phi = x \right],$$

where

$$dX_s^\phi = b(s, X_s^\phi, \mu_\phi(s, X_s^\phi)) ds + \sigma(s, X_s^\phi, \mu_\phi(s, X_s^\phi)) dW_s.$$

Deterministic policy gradient in continuous-time RL

Theorem 1 (Cheng, G., Zhang (2025))

Under suitable regularity conditions,

$$\partial_\phi V^\phi(t, x) = \mathbb{E}^{t, x} \left[\int_t^T \partial_\phi \mu_\phi(s, X_s^\phi)^\top \partial_a A^\phi(s, X_s^\phi, \mu_\phi(s, X_s^\phi)) ds \right],$$

where $A^\phi(t, x, a) := \mathcal{L}[V^\phi](t, x, a) + r(t, x, a)$ is the Hamiltonian, with

$$\begin{aligned} \mathcal{L}[\varphi](t, x, a) := & \partial_t \varphi(t, x) + b(t, x, a)^\top \partial_x \varphi(t, x) \\ & + \frac{1}{2} \text{tr}(\sigma \sigma^\top(t, x, a) \partial_{xx}^2 \varphi(t, x)). \end{aligned}$$

- ▶ A^ϕ is analogous to the advantage function in discrete-time DPG [Silver et.al (2014)], and the q -function for stochastic policy gradient [Jia and Zhou (2023)].

Limit of discrete-time DPG

$$\partial_\phi V^\phi(t, x) = \mathbb{E}^{t, x} \left[\int_t^T \partial_\phi \mu_\phi(s, X_s^\phi)^\top \partial_a A^\phi(s, X_s^\phi, \mu_\phi(s, X_s^\phi)) ds \right]$$

Let $\beta = 0$, and consider the time discretized objective

$$J_{\Delta t}(\phi) := \mathbb{E} \left[\sum_{i=0}^{N-1} r(t_i, X_{t_i}^{\Delta t, \phi}, \mu_\phi(t_i, X_{t_i}^{\Delta t, \phi})) \Delta t + g(X_T^{\Delta t, \phi}) \right],$$

where

$$\begin{aligned} X_{t_{i+1}}^{\Delta t, \phi} &= X_{t_i}^{\Delta t, \phi} + b(t_i, X_{t_i}^{\Delta t, \phi}, \mu_\phi(t_i, X_{t_i}^{\Delta t, \phi})) \Delta t \\ &\quad + \sigma(t_i, X_{t_i}^{\Delta t, \phi}, \mu_\phi(t_i, X_{t_i}^{\Delta t, \phi})) \sqrt{\Delta t} \omega_{t_i}. \end{aligned}$$

The discrete-time DPG in [Silver et.al (2014)] gives

$$\partial_\phi J_{\Delta t}(\phi) = \mathbb{E} \left[\sum_{i=0}^{N-1} \partial_\phi \mu_\phi(t_i, X_{t_i}^{\Delta t, \phi})^\top \partial_a A^{\Delta t, \phi}(t_i, X_{t_i}^{\Delta t, \phi}, \mu_\phi(t_i, X_{t_i}^{\Delta t, \phi})) \Delta t \right],$$

where $A^{\Delta t, \phi}(t, x, a) := \frac{Q^{\Delta t, \phi}(t, x, a) - V^{\Delta t, \phi}(t, x)}{\Delta t}$ is the discrete-time advantage rate function.

How to learn A^ϕ ?

$$A^\phi(t, x, a) := \mathcal{L}[V^\phi](t, x, a) + r(t, x, a)$$

Theorem 2 (Cheng, G., Zhang (2025))

Let $\hat{V} \in C^{1,2}([0, T] \times \mathbb{R}^d)$ and $\hat{q} \in C([0, T] \times \mathbb{R}^d \times A)$ satisfy for all $(t, x) \in [0, T] \times \mathbb{R}^d$,

$$\hat{V}(T, x) = g(x), \quad \hat{q}(t, x, \mu_\phi(t, x)) = 0,$$

and there exists a neighborhood $\mathcal{O}_{\mu_\phi(t, x)}$ of $\mu_\phi(t, x)$ s.t. $\forall a \in \mathcal{O}_{\mu_\phi(t, x)}$,

$$\left(\hat{V}(s, X_s^{t, x, a}) + \int_t^s (r - \hat{q})(u, X_u^{t, x, a}, \alpha_u) du \right)_{s \in [t, T]} \text{ is a martingale,}$$

where

$$dX_s^{t, x, a} = b(s, X_s^{t, x, a}, \alpha_s) ds + \sigma(s, X_s^{t, x, a}, \alpha_s) dW_s, \quad X_t^{t, x, a} = x,$$

and $(\alpha_s)_{s \geq t}$ is a control process with $\lim_{s \searrow t} \alpha_s = a$.

Then $\hat{V} = V^\phi$, and $\hat{q} = A^\phi$ in the neighborhood of μ_ϕ .

Key insight from deterministic policy

- ▶ Explore the neighborhood of current actions, rather than the entire action space
- ▶ Use data from the original state, rather than the exploratory state
- ▶ The Bellman condition only evaluates at the current action, while the stochastic policy counterpart requires

$$\int_A (\hat{q}(t, x, a) - \gamma \log \pi(a|t, x)) \pi(da|t, x) = 0,$$

which needs an additional Monte Carlo step to approximate the integral.

Extending DPG to continuous-time MFC with learning

Theorem 3 (Cheng, G., Pham, Zhang (2026))

$$\partial_\phi V^\phi(t, x, \nu) = \int_t^T \partial_\phi A[V^\phi](s, \mathbb{P}_{X_s^{t, \nu, \phi}}, \phi) ds,$$

where $A[\varphi](t, \nu, \phi) := \mathcal{L}^\phi[\varphi](t, \nu) + \langle r(t, \cdot, \nu, \phi), \nu \rangle$, and

$$\begin{aligned} \mathcal{L}^\theta[\varphi](t, \nu) := & \partial_t \varphi(t, \nu) + \mathbb{E}_{\xi \sim \nu} \left[b(t, \xi, \nu, \theta) \cdot \partial_\mu \varphi(t, \nu)(\xi) \right. \\ & \left. + \frac{1}{2} \Sigma(t, \xi, \nu, \theta) : \partial_\nu \partial_\mu \varphi(t, \nu)(\xi) \right]. \end{aligned}$$

- ▶ A model-free characterization holds for $A[V^\phi](t, \nu, \phi)$.

References

Today's lecture is based on the following materials and the references therein.

- ▶ Gu, Guo, Wei, Xu. Dynamic programming principle for mean field controls with learning. Operations Research, 71 (4), 1040-1054, 2023. (Arxiv: 1911.07314).
- ▶ Gu, Guo, Wei, Xu. Mean-Field controls with Q-learning for cooperative MARL: convergence and complexity analysis. SIAM Journal on Mathematics of Data Science. (4), 1168-1196, 2021. (ArXiv:2002.04131).
- ▶ Guo, Xu, Zariphopoulou. "Entropy regularizations for mean field games with learning." Mathematics of Operations Research, 47 (4), 3239-3260, 2022. (ArXiv 2010.00145 and SSRN 3702956).
- ▶ Gu, Guo, Wei, Xu. Multi-agent reinforcement learning, a decentralized network approach." Mathematics of Operations Research. 50 (1), 506-536, 2025.
- ▶ Cheng, Guo, Zhang. Bridging discrete and continuous RL: stable deterministic policy gradient with martingale characterization. arXiv:2509.23711.
- ▶ Cheng, Guo, Pham, Zhang, *Model-free sensitivity formula for McKean-Vlasov SDEs with application to policy gradient learning*, (2026), working paper.