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Mini-course outline

I Part I: Introduction to Q and advantage function in RL

I Part II: DPP for MFC with learning & characterization for Q
function in continuous-time RL

I Part III: Regret Analysis in RL via Stability of HJB and BSDE

I Part IV: Connecting RL, LLM, and Generative Diffusion Models

I Part V: RDE for General RL
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Lecture I: Q function and advantage function in RL
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RL in continuous-time

For a given control process (at)t>0 taking values in A ⊂ Rk , consider the
state dynamics governed by the SDE:

dXt = b(t,Xt , at)dt + σ(t,Xt , at)dWt , ∀t > 0.

Objective: determine the optimal control that maximizes the total reward:

E
[ ∫ T

0

r
(
t,Xt , at

)
dt + g(XT )

]
,

without knowing the coefficients b, σ, r , g .
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Admissible controls

I Open loop

I (*) Closed loop most relevant class in RL
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Deterministic policy for classical control

Classical control

I coefficients are given

I the optimal control is characterized, under mild conditions, by

a∗t = µ∗(t,Xµ∗

t ), ∀t ≥ 0,

where
I µ∗ : [0,T ]× Rd → A is an (optimal) deterministic policy

(a.k.a. feedback control)
I µ∗ is continuous/differentiable with proper regularity conditions

RL: try to learn this optimal policy without knowing the coefficients,
and/or the for of payoff/reward function
Key concepts: Q function and advantage function
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Q function in Markov decision process: introduction

• A tuple (S,A,P,R, γ, s0)

V (s) = maximizeπ E
[∞∑
t=0

γtR(st , at)
∣∣∣s0 = s

]
subject to st+1 ∼ P(st , at), at ∼ π(st), t = 0, 1, . . .

I st ∈ S the state of the agent at time t

I at ∈ A the action of the agent at time t

I at ∼ π(st) where π : S → P(A) is the policy of the agent

I Instantaneous reward R(st , at) sampled from some distribution

I Time-homogeneous Markov transition kernel P(st , at) ∈ P(S)
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• Reinforcement learning in discrete time

I MDP with unknown P and r

I Policy
I π : S → A pure strategy ↔ strict control
I π : S → P(A) mixed strategy ↔ relaxed control (to find optimal

decision under exploration-exploitation context)
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Q Function and Bellman Equation

I Q function, one of the basic quantities used for RL

Q(s, a) : = E

[ ∞∑
t=0

γtr(st , at)|s0 = s, a0 = a

]
= Er(s, a)︸ ︷︷ ︸

reward of taking action a

+γ Es′∼P(s,a)V (s ′)︸ ︷︷ ︸
reward of playing optimal afterwards

I The value function (of a given policy π)

V π(s) = Ea∼π(s)[Q
π(s, a)]

I Advantage function: quantifying the quality of a specific action a
over average actions given a specific state s

Aπ(s, a) = Qπ(s, a)− V π(s)
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Bellman Equation for Q Function

I The Bellman equation for the Q-function given by

Qπ(s, a) = E[R(s, a)] + γEs′∼P(s,a),a∼π(s′) [Qπ(s ′, a′)]

I V (s) = maxa∈AQ(s, a), then π∗(s) ∈ arg maxa∈AQ(s, a)
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Q-function update for T =∞

Qt+1(st , at)

← (1− βt(st , at))Qt(st , at)︸ ︷︷ ︸
old value

+βt(st , at)
[
R(st , at) + γmax

a′
Qt(st+1, a

′)
]

︸ ︷︷ ︸
new value

I ni (s, a): i-th time to visit (s, a)

I (Watkins and Dayan 1992),

∞∑
i=1

βni (s,a) =∞,
∞∑
i=1

(βni (s,a))
2 <∞,

then Qt(s, a)→ Q(s, a) as t → ∞, ∀s, a with probability 1
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Outline

Q function in RL
Q function
Q function: illustration example

MFC with learning

Characterization of Q in continuous-time RL



Example of Q-function
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Example

Note: problem and pictures (with minor modifications) from
http://mnemstudio.org/path-finding-q-learning-tutorial.htm

Let us solve the problem by the Q learning approach. First, let us
formalize the model

I State space S = {0, 1, 2, 3, 4, 5}. That is, st = 5 means that at time
t, we are in room number 5

I Action space A = {0, 1, 2, 3, 4, 5}. That is, at = 5 means that at
time t, our action is move to room number 5

I Transition function st+1 = P(st , at) = at . Note that no noise here,
deterministic system

I Reward function R =?
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Example
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Lecture II: MFC with learning & characterization of Q-function in
continuous-time RL
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Extension to McKean-Vlasov Control

Consider the state dynamics

dX t,ν
s = b(s,X t,ν

s ,PX t,ν
s

)ds + σ(s,X t,ν
s ,PX t,ν

s
)dWs ,

X t,ν
t ∼ ν,

and the associated value function

E

[∫ T

t

r
(
s,X t,ν

s ,PX t,ν
s

)
ds + g

(
X t,ν
T ,PX t,ν

T

)]
.
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Dynamic programming principle for MFC

• MFC is time-inconsistent

I Strict controls/without learning: Pham and Wei (2016, 2017),
Bayraktar, Cosso, Pham (2018), Wu and Zhang (2019), Djete,
Possamai, and Tan (2022), Talbi, Touzi, and Zhang (2023)

I Relaxed control for MFC with learning: Gu, G., Wei, and Xu (2023)

• Time consistency property is foundation for MDP, RL, and MARL

I Value-based method: Q learning

I Policy-based method: Actor-Critic algorithm
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DPP for MFC with learning (Gu, G. Wei, and Xu, (2023))

Idea:

I Identify the “correct” Q function: with a wrong form of Q function,
Q-table will converge to different values with different initial
population distribution

I Need to work with the correct “state-action” space

I Similar to the MFC theory, “lift” the state-action space into their
probability measure space
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Q function on the probability measure space

Define Integrated Q (IQ) function for MFC Q(s, a) No Q(µ, h) Yes

Q(µ, h) := E
[
r(s0, a0, µ)

∣∣∣ s0 ∼ µ, a0 ∼ h
]

︸ ︷︷ ︸
reward of taking a0 ∼ h

+ Es1∼P(s0,a0,µ)

[ ∞∑
t=1

γtr(st , at , µt)

∣∣∣∣∣ at ∼ π∗t
]

︸ ︷︷ ︸
reward of playing optimal afterwards at ∼ π∗t

I H is the set of local policies h : S → P(A)

I V (µ) = suph Q(µ, h) → to find optimal policy (if exists)

π∗(µ) ∈ arg max
h

Q(µ, h)
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DPP for IQ Function

Bellman Equation for IQ Function (Gu, G., Wei, Xu, 2023)

For any µ ∈ P(S) and h ∈ H,

Q(µ, h) = r̂(µ, h) + γ sup
h′∈H

Q(Φ(µ, h), h′).

I H := {h : S → P(A)}: set of local policies P(A)× . . .P(A)︸ ︷︷ ︸
|S|

I Aggregated reward: r̂(µ, h) :=
∑

s,a µ(s)h(s, a)r(s, a, µ)

I Aggregated dynamics
I Φ(µ, h) :=

∑
s,a P(s, µ, a)µ(s)h(s, a): aggregated dynamics

I µt+1 = Φ(µt , h): distribution at time t + 1, flow property

I H is key for DPP of the IQ function
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Insight of DPP

I Centralized training with decentralized execution: when rewards can
be decomposed additively across agent observations

Qπ
global(µ, h) =

∑
s,a

Qπ
local

(
µ(s), h(s, a)

)
µ(s)h(s, a)
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Two key quantities in continuous time RL

I Q-function?

I Advantage function?
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First approach: stochastic policy with entropy regularization
Exploratory formulation [Wang, Zariphopoulou and Zhou (2020)]

Consider stochastic policies π : [0,T ]× Rd → P(A), and the corresponding
exploratory state dynamics:

dXπ
t = b̃π(t,Xπ

t )dt + σ̃π(t,Xπ
t )dWt ,

where

b̃π(t, x) =
∫
A
b(t, x , a)π(da|t, x), σ̃π(t, x) =

√∫
A
σ2(t, x , a)π(da|t, x).

Maximize the entropy-regularized objective function over π:

E
[∫ T

0

(
r̃π(t,Xπ

t )− γKL(π(·|t,Xπ
t ))
)
dt + g(Xπ

T )
]
,

where r̃π(t, x) =
∫
A
r(t, x , a)π(a|t, x)da, and γ > 0 is a given parameter.
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Stochastic policy with entropy regularization

I Stochastic policy and exploratory dynamics capture exploration: at
each state, sampling actions according to a distribution.

dXt = b(t,Xt , at)dt + σ(t,Xt , at)dWt , at ∼ π(da|t,Xt).

I Optimal exploratory policy is Gaussian in LQ-RL

I Based on this framework, many discrete-time RL algorithms are
extended to continuous-time, e.g., temporal difference learning [Jia
and Zhou (2022a)], q-learning [Jia and Zhou (2022b)], policy
gradient and actor-critic learning [Jia and Zhou (2023)].
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Issues with stochastic policy approach

I Inconsistent with classical control framework with deterministic
policy

I Recovering a deterministic policy from a learned stochastic one is
challenging (except the LQ setting).

I Exploratory dynamics requires continuously sampling independent
actions at different states, which is infeasible both theoretically and
practically [Jia, Ouyang and Zhang (2025)].

I Frequent sampling makes actions discontinuous over time, in
contrast to deterministic policy.

New approach: directly characterize a deterministic policy!
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General idea (Cheng, G., Zhang (2025))

Approximate the (optimal) deterministic policy (DPG) in a parametric
form {µφ}φ∈Rn , and optimize the policy parameterization by gradient
methods.

Consider maximizing the reward over φ ∈ Rn:

V φ(t, x) := E

[∫ T

t

r(s,Xφ
s , µφ(s,Xφ

s ))ds + g(Xφ
T )

∣∣∣∣Xφ
t = x

]
,

where

dXφ
s = b(s,Xφ

s , µφ(s,Xφ
s ))ds + σ(s,Xφ

s , µφ(s,Xφ
s ))dWs .
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Deterministic policy gradient in continuous-time RL

Theorem 1 (Cheng, G., Zhang (2025))

Under suitable regularity conditions,

∂φV
φ(t, x) = Et,x

[∫ T

t
∂φµφ(s,Xφ

s )
>
∂aA

φ(s,Xφ
s , µφ(s,Xφ

s ))ds
]
,

where Aφ(t, x , a) := L[V φ](t, x , a) + r(t, x , a) is the Hamiltonian, with

L[ϕ](t, x , a) := ∂tϕ(t, x) + b(t, x , a)>∂xϕ(t, x)

+ 1
2

tr(σσ>(t, x , a)∂2
xxϕ(t, x)).

I Aφ is analogous to the advantage function in discrete-time DPG
[Silver et.al (2014)], and the q-function for stochastic policy
gradient [Jia and Zhou (2023)].
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Limit of discrete-time DPG
∂φV

φ(t, x) = Et,x
[∫ T

t ∂φµφ(s,Xφs )
>
∂aAφ(s,Xφs , µφ(s,Xφs ))ds

]

Let β = 0, and consider the time discretized objective

J∆t(φ) := E
[∑N−1

i=0 r(ti ,X
∆t,φ
ti

, µφ(ti ,X
∆t,φ
ti

))∆t + g(X∆t,φ
T )

]
,

where
X∆t,φ

ti+1
= X∆t,φ

ti
+ b(ti ,X

∆t,φ
ti

, µφ(ti ,X
∆t,φ
ti

))∆t

+ σ(ti ,X
∆t,φ
ti

, µφ(ti ,X
∆t,φ
ti

))
√

∆tωti .

The discrete-time DPG in [Silver et.al (2014)] gives

∂φJ∆t(φ) = E
[ N−1∑

i=0

∂φµφ(ti ,X
∆t,φ
ti

)>∂aA
∆t,φ(ti ,X

∆t,φ
ti

, µφ(ti ,X
∆t,φ
ti

))∆t
]
,

where A∆t,φ(t, x , a) := Q∆t,φ(t,x,a)−V∆t,φ(t,x)
∆t is the discrete-time

advantage rate function.
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How to learn Aφ?
Aφ(t, x , a) := L[Vφ](t, x , a) + r(t, x , a)

Theorem 2 (Cheng, G., Zhang (2025))

Let V̂ ∈ C 1,2([0,T ]× Rd) and q̂ ∈ C([0,T ]× Rd × A) satisfy for all
(t, x) ∈ [0,T ]× Rd ,

V̂ (T , x) = g(x), q̂(t, x , µφ(t, x)) = 0,

and there exists a neighborhood Oµφ(t,x) of µφ(t, x) s.t. ∀a ∈ Oµφ(t,x),(
V̂ (s,X t,x,a

s ) +
∫ s

t
(r − q̂)(u,X t,x,a

u , αu)du
)
s∈[t,T ]

is a martingale,

where

dX t,x,a
s = b(s,X t,x,a

s , αs)ds + σ(s,X t,x,a
s , αs)dWs , X t,x,a

t = x ,

and (αs)s≥t is a control process with lims↘t αs = a.

Then V̂ = V φ, and q̂ = Aφ in the neighborhood of µφ.
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Key insight from deterministic policy

I Explore the neighborhood of current actions, rather than the entire action
space

I Use data from the original state, rather than the exploratory state

I The Bellman condition only evaluates at the current action, while the
stochastic policy counterpart requires∫

A

(q̂(t, x , a)− γ log π(a|t, x))π(da|t, x) = 0,

which needs an additional Monte Carlo step to approximate the integral.

41 / 43



Extending DPG to continuous-time MFC with learning

Theorem 3 (Cheng, G., Pham, Zhang (2026))

∂φV
φ(t, x , ν) =

∫ T

t

∂φA[V φ](s,PX t,ν,φ
s

, φ)ds,

where A[ϕ](t, ν, φ) := Lφ[ϕ](t, ν) + 〈r(t, ·, ν, φ), ν〉, and

Lθ[ϕ](t, ν) :=∂tϕ(t, ν) + Eξ∼ν
[
b(t, ξ, ν, θ) · ∂µϕ(t, ν)(ξ)

+
1

2
Σ(t, ξ, ν, θ) : ∂v∂µϕ(t, ν)(ξ)

]
.

I A model-free characterization holds for A[V φ](t, ν, φ).
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