

Path-Signatures: Memory and Stationarity

Eduardo Abi Jaber

Based on joint works with

Paul Gassiat (Université Gustave Eiffel)

Louis-Amand Gérard (GEFIP)

Yuxing Huang (New York University)

Camille Illand (BNP)

Shaun Li (Morgan Stanley)

Xuyang Lin (New York University)

Dimitri Sotnikov (Ecole Polytechnique)

Winter School on Mathematical Finance - Soesterberg

Memory Matters

Memory matters!

Many dynamical systems exhibit **path-dependent** behaviors such as

- ▶ long/short-memory effects
- ▶ lead-lag relationships
- ▶ multiple time scales

Memory matters!

Many dynamical systems exhibit **path-dependent** behaviors such as

- ▶ long/short-memory effects
- ▶ lead-lag relationships
- ▶ multiple time scales

Main Question How to model these **path-dependent** (non-Markovian) effects in a mathematically tractable way?

Big picture

- ▶ In a random environment: **stochastic model**
- ▶ Based on available **information**: \mathcal{F}_t
- ▶ Determine **actions**: hedging strategy, optimal investment/liquidation, etc.
- ▶ Evaluate **rewards** / quantities of interest: $\mathbb{E}[\xi | \mathcal{F}_t]$, option prices, etc.:

Big picture

- ▶ In a random environment: **stochastic model**
- ▶ Based on available **information**: \mathcal{F}_t
- ▶ Determine **actions**: hedging strategy, optimal investment/liquidation, etc.
- ▶ Evaluate **rewards** / quantities of interest: $\mathbb{E}[\xi | \mathcal{F}_t]$, option prices, etc.:

Summarize then Linearize

1. Identify good **“Markovian”** variables to capture the available information such that the quantities of interest become

$$f(t, Y_t^1, \dots, Y_t^n)$$

2. **Ideally**, variables that **linearize** the problem (semi-explicit formulas, fast computation). For example, a **polynomial** function of a factor Y is a **linear** function of the extended vector of monomials $(1, Y, Y^2, Y^3, \dots, Y^m)$.

Main Question How to model these **path-dependent** (non-Markovian) effects in a mathematically tractable way?

Main Question How to model these **path-dependent** (non-Markovian) effects in a mathematically tractable way?

Mathematical tools for memory-aware modeling

- ▶ Volterra processes
- ▶ Path-signatures

Memory-Aware modeling

Key object I: Volterra processes

5

Named after the Italian mathematician **Vito Volterra**

(1860–1940): mathematical biology and integral equations, one of the founders of functional analysis

Volterra processes are the continuous-time analogue of moving averages:

- Discrete-time intuition: weighted averages

$$\sum_{i=1}^N e^{-\lambda(t-t_i)} \Delta_i Z$$

- **Volterra processes** (continuous time)

$$X_t = \int_0^t K(t-s) dZ_s$$

- The kernel K encodes *memory* and persistence
- Timely in math finance

Vito Volterra

Memory-Aware modeling

Key object II: Path signatures

Introduced by the mathematician **Kuo Tsai Chen** (1923–1987): algebraic topology and analysis
Path signatures are sequence of **iterated integrals** associated with a path.

- ▶ For a path Z , its (truncated) signature is

$$(1, \int dZ, \int dZ \otimes dZ, \dots)$$

- ▶ An algebraic object encoding the *entire path*
- ▶ **Analogue of polynomials on path space**

Central in rough paths theory (Lyons), controlled differential equations, machine learning on time series, and emerging financial applications.

Kuo Tsai Chen
<https://sites.google.com/view/abijabereduardo/>

Why do we love polynomials?

Polynomials

Why do we love polynomials / power series?

8

► Universal approximators

- **Stone–Weierstrass** uniform approximation on compact sets.
- **Taylor expansion** local approximation with explicit coefficients and quantitative error.

► Linearization via lifting for $u : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$:

$$u(t, x) \approx \sum_{i=0}^M \alpha_i(t) x^i = \langle \alpha(t), \mathbf{x} \rangle, \quad \mathbf{x} := (1, x, x^2, \dots, x^M)$$

Nonlinearity in x becomes linearity in the lifted state \mathbf{x} .

► Products are linearized thanks to **Cauchy's product**

$$\sum_{i=0}^M \alpha_i(t) x^i \sum_{j=0}^N \beta_j(t) x^j = \sum_{k=0}^{M+N} \gamma_k(t) x^k = \langle \gamma(t), \mathbf{x} \rangle, \quad \text{with} \quad \gamma_k(t) = \sum_{j=0}^k \alpha_{k-j}(t) \beta_j(t)$$

Polynomials

Why do we love polynomials / power series?

8

► Universal approximators

- **Stone–Weierstrass** uniform approximation on compact sets.
- **Taylor expansion** local approximation with explicit coefficients and quantitative error.

► Linearization via lifting for $u : [0, T] \times \mathbb{R} \rightarrow \mathbb{R}$:

$$u(t, x) \approx \sum_{i=0}^M \alpha_i(t) x^i = \langle \alpha(t), \mathbf{x} \rangle, \quad \mathbf{x} := (1, x, x^2, \dots, x^M)$$

Nonlinearity in x becomes linearity in the lifted state \mathbf{x} .

► Products are linearized thanks to **Cauchy's product**

$$\sum_{i=0}^M \alpha_i(t) x^i \sum_{j=0}^N \beta_j(t) x^j = \sum_{k=0}^{M+N} \gamma_k(t) x^k = \langle \gamma(t), \mathbf{x} \rangle, \quad \text{with} \quad \gamma_k(t) = \sum_{j=0}^k \alpha_{k-j}(t) \beta_j(t)$$

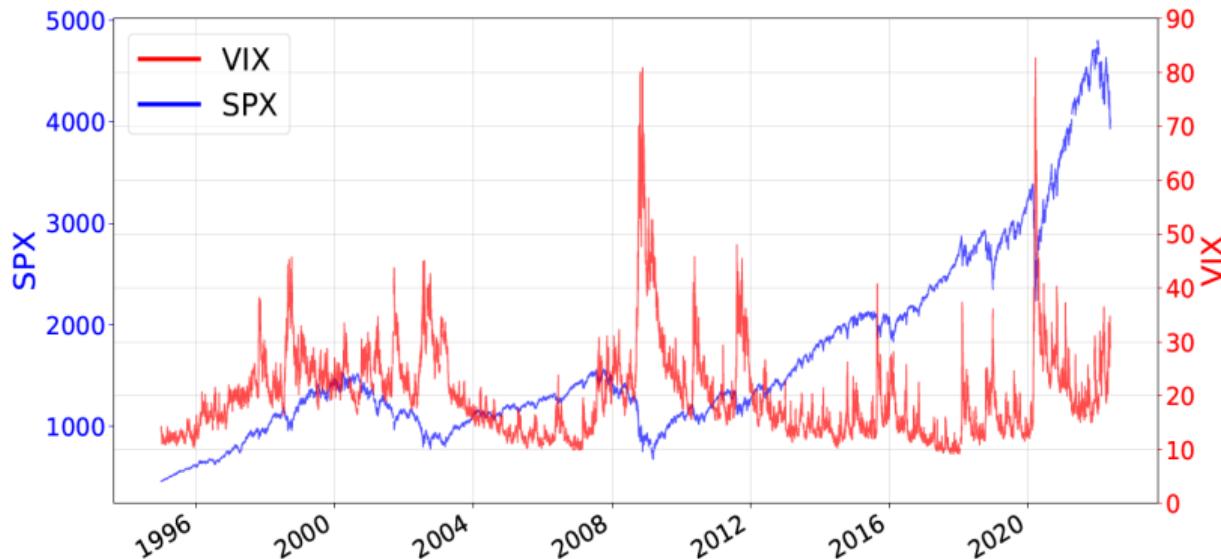
Summarize then **Linearize**

Okay... but can
polynomials be
useful in finance ?

Polynomials

A Financial Problem SPX/VIX

10



- ▶ **VIX**: the "fear" index that reflects market's expectations for volatility of the **S&P 500** over the next 30 days

Polynomials

SPX-VIX joint calibration problem

- ▶ Related literature strongly agrees that *conventional (parametric) one-factor continuous Markovian stochastic volatility models* are not able to achieve a decent joint calibration
- ▶ Our main motivations can be stated as follows:

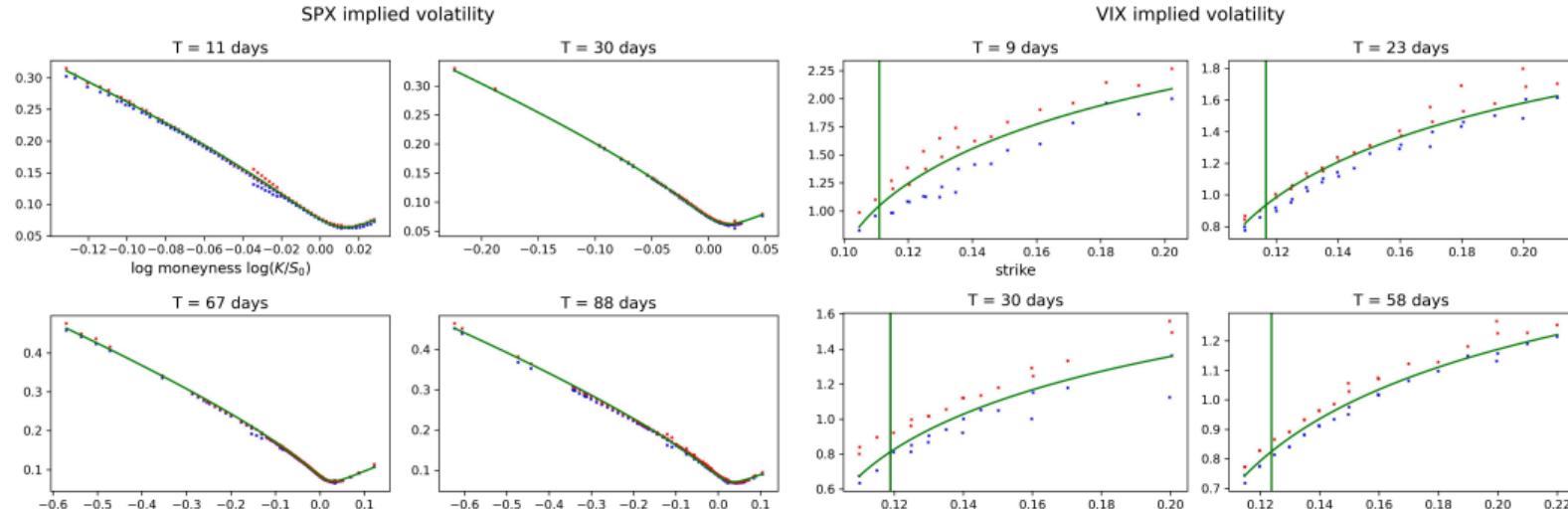
*Can joint calibration be achieved by a **simple** model?*

*If so, can we do it in a **tractable** way?*

Polynomials

SPX and VIX: A sneak peak at the results

12



Joint calibration of SPX IV, VIX IV and VIX futures on 23 October, 2017 using the exponential kernel K^{\exp} with 6 parameters.
The blue and red dots are bid/ask implied vol, green lines are model fit. Vertical bars represents VIX futures price.

Characteristics of iv: steeper SPX slopes for small T , upward slope for VIX, difficulty to match levels.

The Quintic Ornstein-Uhlenbeck Model

Ref

- ▶ *The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles*, with **Camille Illand** and **Shaun Li**, Risk Magazine, Cutting Edge section (2023).
- ▶ *Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints* with **Camille Illand** and **Shaun Li**, Mathematical Finance (2025).

Quintic OU volatility model

The model

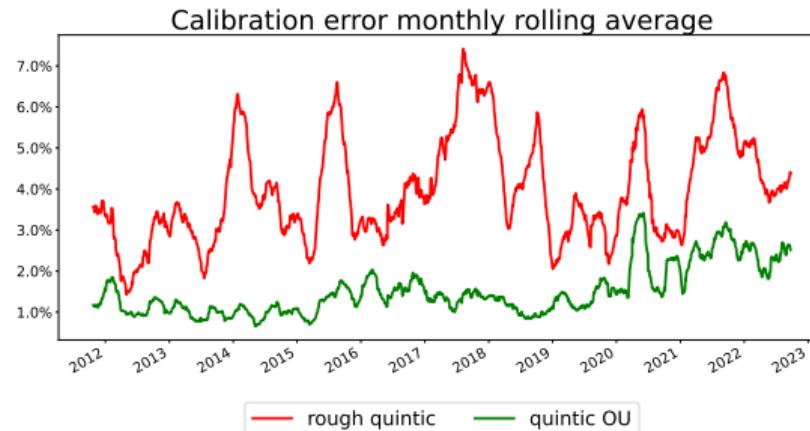
$$\begin{aligned}\frac{dS_t}{S_t} &= \sigma_t dB_t, \quad S_0 > 0, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp, \\ \sigma_t &= g_0(t) p(X_t), \quad p(x) = \alpha_0 + \alpha_1 x + \alpha_3 x^3 + \alpha_5 x^5, \\ X_t &= \eta \int_0^t e^{-\lambda(t-s)} dW_s,\end{aligned}$$

- ▶ non-negative coefficients $\alpha_0, \alpha_1, \alpha_3, \alpha_5 \geq 0$,
- ▶ p polynomial of degree five to **reproduce upward slope of the VIX smile**. Restricting α to be non-negative allows the sign of the **leverage effect** to be the same as ρ .
- ▶ input curve g_0 allowing the model to **match term-structures** observed on the market.

Quintic OU volatility model

The model

15



Flexibility

- ▶ Remarkable joint fits of SPX-VIX volatility surfaces (**1 week to 3 months**), daily calibration across more than 10 years of data
- ▶ Consistently outperforms in **all market conditions** more complex (rough) models:

$$X_t = \int_0^t (t-s)^{H-1/2} dW_s, \quad H < 1/2.$$

fractional (and singular) kernels do not align well with market data on short term.

- ▶ Deep pricing with quantization hints method

Quintic OU volatility model

The model

16

$$\begin{aligned}\frac{dS_t}{S_t} &= \sigma_t dB_t, \quad S_0 > 0, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp, \\ \sigma_t &= g_0(t)p(X_t), \quad p(x) = \alpha_0 + \alpha_1 x + \alpha_3 x^3 + \alpha_5 x^5, \\ X_t &= \eta \int_0^t e^{-\lambda(t-s)} dW_s,\end{aligned}$$

Tractability

- ▶ Explicit expression for the VIX

$$\text{VIX}_T^2 := \frac{100^2}{\Delta} \int_T^{T+\Delta} \mathbb{E}[\sigma_u^2 \mid \mathcal{F}_T] du,$$

with $\Delta = 30$ days, which is polynomial in the OU process X_T . \Rightarrow Pricing VIX products by integration against Gaussian density

- ▶ Pricing of SPX products: Simulation of X is exact. Other alternatives than MC or PDE methods?

Faster and more accurate pricing of SPX derivatives?

Ref

- ▶ *Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models*, with **Shaun Li** and **Xuyang Lin**, **Finance & Stochastics** (2025).

Fourier pricing in polynomial OU model

Intuition

$$\frac{dS_t}{S_t} = \sigma_t dB_t, \quad S_0 > 0, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp,$$

$$\sigma_t = g_0(t) p(X_t) \quad p(x) = \sum_{k=0}^{\infty} \alpha_k x^k,$$

$$dX_t = (a + bX_t)dt + c dW_t.$$

Fourier pricing in polynomial OU model

Intuition

$$\frac{dS_t}{S_t} = \sigma_t dB_t, \quad S_0 > 0, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp,$$

$$\sigma_t = g_0(t) p(X_t) \quad p(x) = \sum_{k=0}^{\infty} \alpha_k x^k,$$

$$dX_t = (a + bX_t)dt + c dW_t.$$

- ▶ Stein-Stein/Schobel-Zhu model: $p(x) = x$;
- ▶ Bergomi model $p(x) = \exp(x)$;
- ▶ Quintic OU model: $p(x) = p_0 + \alpha_1 x + \alpha_3 x^3 + \alpha_5 x^5$.

More generally, the model is well-defined with $\int_0^T \mathbb{E}[\sigma_s^2]ds < \infty$, or with p falling into a class of power series which contains all polynomial and exponential functions.

Fourier pricing in polynomial OU model

Intuition

$$\frac{dS_t}{S_t} = \sigma_t dB_t, \quad S_0 > 0, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp,$$

$$\sigma_t = g_0(t) p(X_t) \quad p(x) = \sum_{k=0}^{\infty} \alpha_k x^k,$$

$$dX_t = (a + bX_t)dt + c dW_t.$$

- For $p(x) = x$, the volatility is affine in X (Stein-Stein/Schobel-Zhu model) and the model is affine (Duffie, Filipovic, and Schachermayer (2002)) in $(1, X, X^2)$ in the sense that the characteristic function is given by

$$\mathbb{E} \left[\exp \left(u \log \frac{S_T}{S_t} + v \int_t^T \sigma_s^2 ds \right) \mid \mathcal{F}_t \right] = \exp (\psi_0(t) + \psi_1(t)X_t + \psi_2(t)X_t^2)$$

where (ψ_0, ψ_1, ψ_2) solve a system of Riccati ODEs \Rightarrow Fast pricing by Fourier inversion methods.

Fourier pricing in polynomial OU model

Intuition

20

$$\frac{dS_t}{S_t} = \sigma_t dB_t, \quad S_0 > 0, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp,$$

$$\sigma_t = g_0(t) \mathbf{p}(X_t) \quad \mathbf{p}(x) = \sum_{k=0}^{\infty} \alpha_k x^k,$$

$$dX_t = (a + bX_t)dt + c dW_t.$$

- For general \mathbf{p} , one expects the model to be affine in $(1, X, X^2, \dots, X^n, \dots)$ so that an Ansatz of the characteristic function:

$$\mathbb{E} \left[\exp \left(u \log \frac{S_T}{S_t} + v \int_t^T \sigma_s^2 ds \right) \mid \mathcal{F}_t \right] = \exp \left(\sum_{k \geq 0} \psi_k(t) X_t^k \right)$$

This is in accordance with recent expansions of characteristic function in (Cuchiero, Svaluto-Ferro, and Teichmann, 2023; Friz, Gatheral, and Radoičić, 2022)

Fourier pricing in polynomial OU model

Riccati ODE

21

$$\begin{aligned}\psi'_k(t) &= \left(g(t) + \frac{f(t)}{2}(f(t) - 1) \right) g_0^2(T - t)(\alpha * \alpha)_k \\ &+ bk\psi_k(t) + a(k+1)\psi_{k+1}(t) + \frac{c^2(k+2)(k+1)}{2}\psi_{k+2}(t) \\ &+ \frac{c^2}{2}(\tilde{\psi}(t) * \tilde{\psi}(t))_k + \rho f(t)g_0(T - t)c(\alpha * \tilde{\psi}(t))_k.\end{aligned}$$

with $\tilde{\psi}_k = (k+1)\psi_{k+1}$ and $(u * v)_k = \sum_{i=0}^k u_i v_{k-i}$.

Fourier pricing in polynomial OU model

Riccati ODE

21

$$\begin{aligned}\psi'_k(t) = & \left(g(t) + \frac{f(t)}{2}(f(t) - 1) \right) g_0^2(T - t)(\alpha * \alpha)_k \\ & + bk\psi_k(t) + a(k+1)\psi_{k+1}(t) + \frac{c^2(k+2)(k+1)}{2}\psi_{k+2}(t) \\ & + \frac{c^2}{2}(\tilde{\psi}(t) * \tilde{\psi}(t))_k + \rho f(t)g_0(T - t)c(\alpha * \tilde{\psi}(t))_k.\end{aligned}$$

with $\tilde{\psi}_k = (k+1)\psi_{k+1}$ and $(u * v)_k = \sum_{i=0}^k u_i v_{k-i}$.

Joint characteristic functional

Assume that there exists a solution $(\psi_k)_{\geq 0}$ to the infinite dimensional Riccati equation such that $\sum_k |\psi_k(t)|x^k$ has infinite radius of convergence and $\Re(\sum_k \psi_k(t)x^k) \leq 0$. Then,

$$\mathbb{E} \left[\exp \left(\int_t^T f(T-s) d \log S_s + \int_t^T g(T-s) \sigma_s^2 ds \right) \middle| X_t \right] = \exp \left(\sum_{k \geq 0} \psi_k(T-t) X_t^k \right).$$

Fourier pricing in polynomial OU model

Riccati ODE

22

$$\begin{aligned}\psi'_k(t) = & \left(g(t) + \frac{f(t)}{2}(f(t) - 1) \right) g_0^2(T - t)(\alpha * \alpha)_k \\ & + bk\psi_k(t) + a(k + 1)\psi_{k+1}(t) + \frac{c^2(k + 2)(k + 1)}{2}\psi_{k+2}(t) \\ & + \frac{c^2}{2}(\tilde{\psi}(t) * \tilde{\psi}(t))_k + \rho f(t)g_0(T - t)c(\alpha * \tilde{\psi}(t))_k.\end{aligned}$$

with $\tilde{\psi}_k = \psi_{k+1}(k + 1)$ and $(u * v)_k = \sum_{i=0}^k u_i v_{k-i}$.

Fourier pricing in polynomial OU model

Riccati ODE

22

$$\begin{aligned}\psi'_k(t) = & \left(g(t) + \frac{f(t)}{2}(f(t) - 1) \right) g_0^2(T - t)(\alpha * \alpha)_k \\ & + bk\psi_k(t) + a(k + 1)\psi_{k+1}(t) + \frac{c^2(k + 2)(k + 1)}{2}\psi_{k+2}(t) \\ & + \frac{c^2}{2}(\tilde{\psi}(t) * \tilde{\psi}(t))_k + \rho f(t)g_0(T - t)c(\alpha * \tilde{\psi}(t))_k.\end{aligned}$$

with $\tilde{\psi}_k = \psi_{k+1}(k + 1)$ and $(u * v)_k = \sum_{i=0}^k u_i v_{k-i}$.

- **Theoretically** Not-standard infinite dimensional Riccati equations, no existence theory/result in the literature. Can be related to analyticity of solutions to PDE...
- **Numerically** Truncate system to some N but **stiff** system:

- the calibrated coefficients (b, c) are large in general and the coefficients $(k + 1)(k + 2)$ become very large with the dimension k .
- Standard Euler Schemes/ Explicit Runge-Kutta method are not enough.

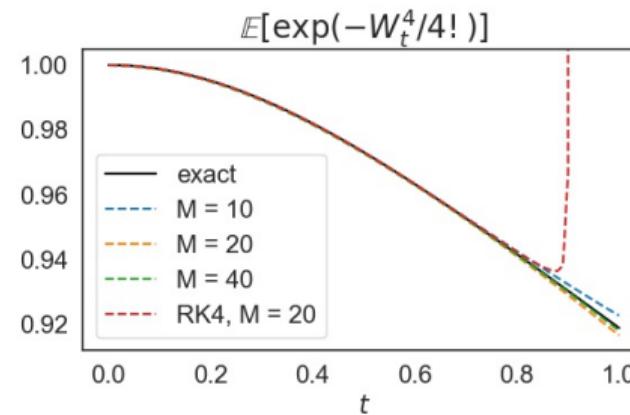
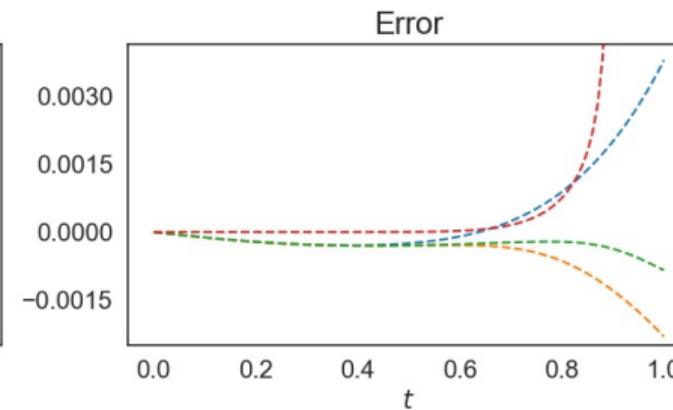
Fourier pricing in polynomial OU model

Numerical Illustration

23

Numerical solution of

$$\mathbb{E} \left[\exp \left(-\frac{W_t^4}{4!} \right) \right]$$

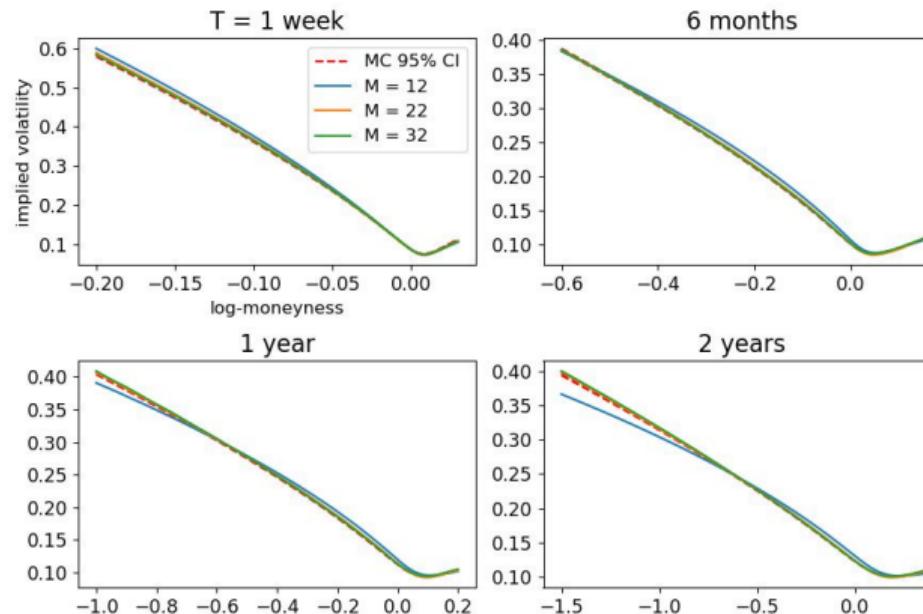


Fourier pricing in polynomial OU model

Numerical Illustration

24

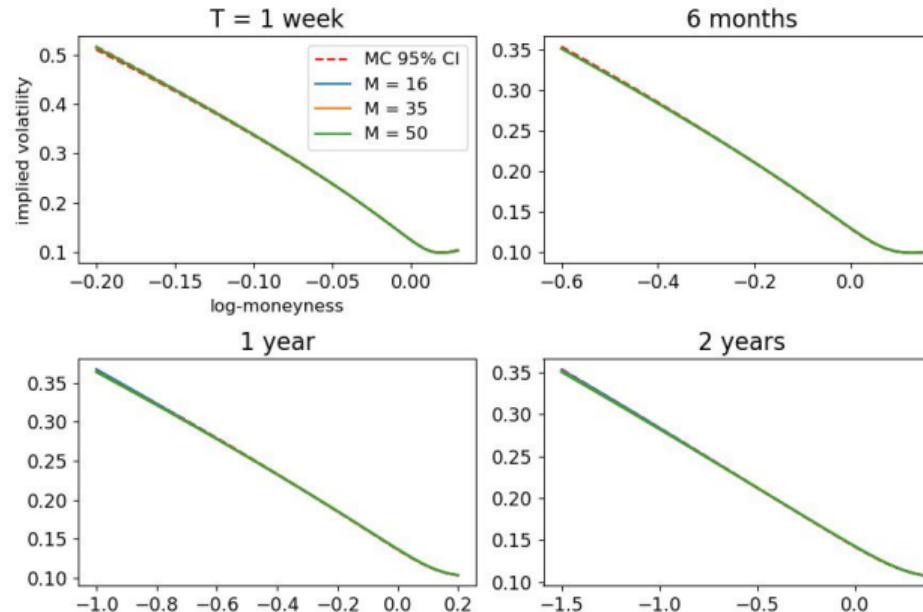
Fourier pricing for the Quintic OU model



Fourier pricing in polynomial OU model

Numerical Illustration

Fourier pricing for the one factor Bergomi model



How to incorporate more memory in polynomials?

Signatures!

Signatures

We already considered the sequence of monomials

$$(1, W_t, \frac{1}{2} W_t^2, \frac{1}{3!} W_t^3, \dots)$$

to linearize the pricing problem for the **Quintic model**. The sequence is called the **signature** of Brownian motion W and can be re-written as a sequence of iterated Stratonovich integrals

$$\left(1, \int_0^t dW_s, \int_0^t \int_0^{s_2} dW_{s_1} \circ dW_{s_2}, \int_0^t \int_0^{s_3} \int_0^{s_2} dW_{s_1} \circ dW_{s_2} \circ dW_{s_3}, \dots \right).$$

Signatures

We already considered the sequence of monomials

$$(1, W_t, \frac{1}{2} W_t^2, \frac{1}{3!} W_t^3, \dots)$$

to linearize the pricing problem for the **Quintic model**. The sequence is called the **signature** of Brownian motion W and can be re-written as a sequence of iterated Stratonovich integrals

$$\left(1, \int_0^t dW_s, \int_0^t \int_0^{s_2} dW_{s_1} \circ dW_{s_2}, \int_0^t \int_0^{s_3} \int_0^{s_2} dW_{s_1} \circ dW_{s_2} \circ dW_{s_3}, \dots\right).$$

It can be extended to a **path-dependent setting**, in particular with the time augmented process $\widehat{W} : s \mapsto (s, W_s)$ to get

$$\widehat{\mathbb{W}}_t = \left(1, t, W_t, \frac{1}{2} t^2, \int_0^t s dW_s, \int_0^t W_s ds, \frac{1}{2} W_t^2, \dots, \dots\right)$$

The signature of a path is defined as the sequence of **iterated integrals** of the path. It can be seen as the analogue of **polynomials on path spaces**.

Universality of linear combinations of signatures on path-space:

- ▶ Universal approximation

$$f(t, (W_u)_{u \leq t}) \approx \langle \ell_t, \widehat{\mathbb{W}}_t \rangle$$

- ▶ **Universal representation?**

$$f(t, (W_u)_{u \leq t}) = \langle \ell_t, \widehat{\mathbb{W}}_t \rangle$$

Linear combinations can have either

- ▶ finitely many non-zero terms: finite polynomials on path space
- ▶ infinitely many non-zero terms: power series on path space

Signatures

30

1 will denote the first coordinate of \widehat{W} , i.e. time, and **2** the second, the Brownian motion.

$$\left(\emptyset, \begin{pmatrix} \mathbf{1} \\ \mathbf{2} \end{pmatrix}, \begin{pmatrix} \mathbf{11} & \mathbf{12} \\ \mathbf{21} & \mathbf{22} \end{pmatrix}, \begin{pmatrix} \mathbf{111} & \mathbf{121} \\ \mathbf{211} & \mathbf{221} \\ & \mathbf{112} & \mathbf{122} \\ & \mathbf{212} & \mathbf{222} \end{pmatrix}, \dots \right)$$

Example

- $\langle \mathbf{12}, \widehat{W}_t \rangle = \int_0^t \int_0^s du dW_s,$
- $\langle \mathbf{21}, \widehat{W}_t \rangle = \int_0^t \int_0^s dW_u ds,$
- $\langle \mathbf{212}, \widehat{W}_t \rangle = \int_0^t \int_0^s \int_0^u dW_r \circ du \circ dW_s,$
- $\langle 2 \cdot \mathbf{212} - 3 \cdot \mathbf{12}, \widehat{W}_t \rangle = \int_0^t (2 \int_0^s W_u du - 3s) \circ dW_s,$
- etc.

Signatures

Definition and notations

If (e_1, e_2) basis of \mathbb{R}^2 , then for $(i_1, \dots, i_2) \in \{1, 2\}^n$, we write $e_{i_1} \otimes e_{i_2} \otimes \dots e_{i_n}$ as

$$i_1 \cdots i_n$$

$$V_n := \{i_1 \cdots i_n : i_k \in \{1, 2\} \text{ for } k = 1, 2, \dots, n\}.$$

Denote by \emptyset the empty word, and $V_0 := \{\emptyset\}$ basis for $(\mathbb{R}^2)^{\otimes 0} = \mathbb{R}$.

Signatures

Definition and notations

If (e_1, e_2) basis of \mathbb{R}^2 , then for $(i_1, \dots, i_2) \in \{1, 2\}^n$, we write $e_{i_1} \otimes e_{i_2} \otimes \dots e_{i_n}$ as

$$\mathbf{i}_1 \cdots \mathbf{i}_n$$

$$V_n := \{\mathbf{i}_1 \cdots \mathbf{i}_n : \mathbf{i}_k \in \{1, 2\} \text{ for } k = 1, 2, \dots, n\}.$$

Denote by \emptyset the empty word, and $V_0 := \{\emptyset\}$ basis for $(\mathbb{R}^2)^{\otimes 0} = \mathbb{R}$. It follows that $V := \cup_{n \geq 0} V_n$ represents the standard basis of $T((\mathbb{R}^2))$. In particular, every $\ell \in T((\mathbb{R}^2))$, can be decomposed as

$$\ell = \sum_{n=0}^{\infty} \sum_{\mathbf{v} \in V_n} \ell^{\mathbf{v}} \mathbf{v},$$

where $\ell^{\mathbf{v}}$ is the real coefficient of ℓ at coordinate \mathbf{v} .

Signatures

Definition and notations

If (e_1, e_2) basis of \mathbb{R}^2 , then for $(i_1, \dots, i_2) \in \{1, 2\}^n$, we write $e_{i_1} \otimes e_{i_2} \otimes \dots e_{i_n}$ as

$$i_1 \cdots i_n$$

$$V_n := \{i_1 \cdots i_n : i_k \in \{1, 2\} \text{ for } k = 1, 2, \dots, n\}.$$

Denote by \emptyset the empty word, and $V_0 := \{\emptyset\}$ basis for $(\mathbb{R}^2)^{\otimes 0} = \mathbb{R}$. It follows that $V := \cup_{n \geq 0} V_n$ represents the standard basis of $T((\mathbb{R}^2))$. In particular, every $\ell \in T((\mathbb{R}^2))$, can be decomposed as

$$\ell = \sum_{n=0}^{\infty} \sum_{v \in V_n} \ell^v v,$$

where ℓ^v is the real coefficient of ℓ at coordinate v .

$$\langle \ell, \widehat{W}_t \rangle := \sum_{n=0}^{\infty} \sum_{v \in V_n} \ell^v \widehat{W}_t^v.$$

for admissible elements ℓ in

$$\mathcal{A} := \{\ell \in T((\mathbb{R}^2)) : \|\ell\|_t^{\mathcal{A}} < \infty \text{ for all } t \in [0, T] \text{ a.s.}\}, \quad \|\ell\|_t^{\mathcal{A}} := \sum_{n=0}^{\infty} \left| \sum_{v \in V_n} \ell^v \widehat{W}_t^v \right|, \quad t \geq 0,$$

Signatures

Analogy with power series

Object	Interpretation	1-dim	2-dim
X	Path	W_t	$\widehat{W}_t = (t, W_t)$
\mathbb{X}_t	Signature	$(1, W_t, \frac{W_t^2}{2!}, \dots)$	$\widehat{\mathbb{W}}_t := \left(1, \binom{t}{W_t}, \dots\right)$
$\langle \ell, \mathbb{X}_t \rangle$	Linear combination (possibly infinite)	$\sum_n \ell_n \frac{W_t^n}{n!}$ (power series)	$\sum_n \sum_{\mathbf{w} \in V^n} \ell^{\mathbf{w}} \widehat{\mathbb{W}}_t^{\mathbf{w}}$
$\langle \ell, \mathbb{X}_t \rangle \langle h, \mathbb{X}_t \rangle$	Product is linearized	$\sum_n (\hat{\ell} * \hat{h})_n \frac{W_t^n}{n!}$ (Cauchy)	$\langle \ell \sqcup h, \widehat{\mathbb{W}}_t \rangle$ (Shuffle)
$F \approx f$	Approximation power	$F(W_t) \approx \sum_n \hat{f}_n W_t^n$	$F(t, (W_s)_{s \leq t}) \approx \langle f, \widehat{\mathbb{W}}_t \rangle$ (Stone-Weierstrass Theorem)

Definition (Shuffle product)

For words $v, w \in V$ and letters i, j :

$$(vi) \sqcup (wj) = (v \sqcup (wj))i + ((vi) \sqcup w)j, \quad w \sqcup \emptyset = \emptyset \sqcup w = w.$$

Extended by linearity to the elements $\ell = \sum_{n=0}^{\infty} \sum_{v \in V_n} \ell^v v$.

Shuffle property

If $\ell_1, \ell_2 \in \mathcal{A}$, then $\ell_1 \sqcup \ell_2 \in \mathcal{A}$ and

$$\langle \ell_1, \widehat{\mathbb{W}}_t \rangle \langle \ell_2, \widehat{\mathbb{W}}_t \rangle = \langle \ell_1 \sqcup \ell_2, \widehat{\mathbb{W}}_t \rangle.$$

Summarize then
Linearize

Back to our representation question

$$\begin{aligned} X_t &= X_0 + \int_0^t a(t, s, (X_u)_{u \leq s}) ds + \int_0^t b(t, s, (X_u)_{u \leq s}) dW_s \\ &= \langle \ell_t, \widehat{\mathbb{W}}_t \rangle? \end{aligned}$$

Based on

- ▶ *Path-dependent processes from signatures* with **Louis-Amand Gérard** and **Yuxing Huang**, 2024.

(!) Not a new question

- ▶ at least in the Markovian setting in 1980s: Ben Arous (1989) Doss, Fliess, Kunita, Sussmann, Yamato ...
- ▶ intimately related to convergence questions of stochastic Taylor expansion's (Azencott, Bismut, Baudoin, Malliavin, Platen, ...).

Representation formulas with signatures

A simple recipe

36

Ornstein-Uhlenbeck (OU) process X :

$$X_t = x + \int_0^t \kappa(\theta - X_t) dt + \eta \int_0^t dW_s,$$

1. Write SDE in Stratonovich form, which here is the same.

Representation formulas with signatures

A simple recipe

36

Ornstein-Uhlenbeck (OU) process X :

$$X_t = x + \int_0^t \kappa(\theta - X_t) dt + \eta \int_0^t dW_s,$$

1. Write SDE in Stratonovich form, which here is the same.
2. Algebraic equation for candidate ℓ such as $X_t = \langle \ell, \widehat{\mathbb{W}}_t \rangle$

$$\ell = x \emptyset + (\kappa\theta - \kappa\ell) \mathbf{1} + \eta \mathbf{2} = p + \ell q$$

with

$$p = (x \emptyset + \kappa\theta \mathbf{1} + \eta \mathbf{2}), \quad q = -\kappa \mathbf{1}.$$

Representation formulas with signatures

A simple recipe

36

Ornstein-Uhlenbeck (OU) process X :

$$X_t = x + \int_0^t \kappa(\theta - X_t) dt + \eta \int_0^t dW_s,$$

1. Write SDE in Stratonovich form, which here is the same.
2. Algebraic equation for candidate ℓ such as $X_t = \langle \ell, \widehat{\mathbb{W}}_t \rangle$

$$\ell = x \emptyset + (\kappa\theta - \kappa\ell) \mathbf{1} + \eta \mathbf{2} = p + \ell q$$

with

$$p = (x \emptyset + \kappa\theta \mathbf{1} + \eta \mathbf{2}), \quad q = -\kappa \mathbf{1}.$$

3. Solve the linear algebraic equation

$$\ell = p(\emptyset - q)^{-1} = p \sum_k q^{\otimes k}$$

Representation formulas with signatures

A simple recipe

36

Ornstein-Uhlenbeck (OU) process X :

$$X_t = x + \int_0^t \kappa(\theta - X_t) dt + \eta \int_0^t dW_s,$$

1. Write SDE in Stratonovich form, which here is the same.
2. Algebraic equation for candidate ℓ such as $X_t = \langle \ell, \widehat{W}_t \rangle$

$$\ell = x \emptyset + (\kappa\theta - \kappa\ell) \mathbf{1} + \eta \mathbf{2} = p + \ell q$$

with

$$p = (x \emptyset + \kappa\theta \mathbf{1} + \eta \mathbf{2}), \quad q = -\kappa \mathbf{1}.$$

3. Solve the linear algebraic equation

$$\ell = p(\emptyset - q)^{-1} = p \sum_k q^{\otimes k}$$

4. Prove that $\ell \in \mathcal{A}$ so that $\langle \ell, \widehat{W}_t \rangle$ is well defined, apply Itô and prove that it solves the SDE ...

Representation formulas with signatures

Example 1: OU

37

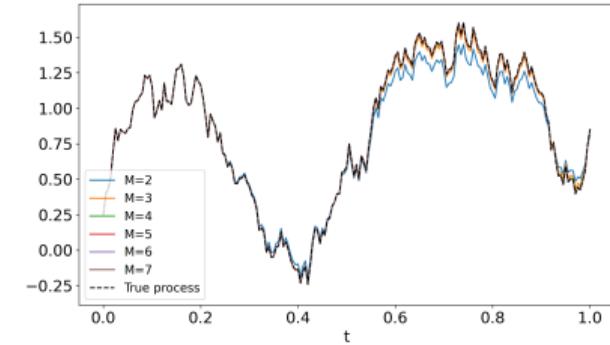
The Ornstein-Uhlenbeck (OU) process X :

$$dX_t = \kappa(\theta - X_t)dt + \eta dW_t, \quad X_0 = x \in \mathbb{R},$$

$$X_t = \langle \ell^{\text{OU}}, \widehat{\mathbb{W}}_t \rangle, \quad \ell^{\text{OU}} = (x\emptyset + \kappa\theta\mathbf{1} + \eta\mathbf{2})e^{\frac{\mathbb{W} - \kappa\mathbf{1}}{\eta}} \in \mathcal{A},$$

where

$$e^{\frac{\mathbb{W} \ell}{\eta}} := \emptyset + \ell + \frac{1}{2}\ell^{\mathbb{W} 2} + \cdots + \frac{1}{n!}\ell^{\mathbb{W} n} + \cdots$$



To be more explicit, up to order 3:

$$\ell^{\text{OU}} = \left(x, \begin{pmatrix} -\kappa(x - \theta) \\ \eta \end{pmatrix}, \begin{pmatrix} \kappa^2(x - \theta) & 0 \\ -\kappa\eta & 0 \end{pmatrix}, \begin{pmatrix} -\kappa^3(x - \theta) & 0 \\ 0 & 0 \\ \kappa^2\eta & 0 \\ 0 & 0 \end{pmatrix}, \dots \right).$$

Representation formulas with signatures

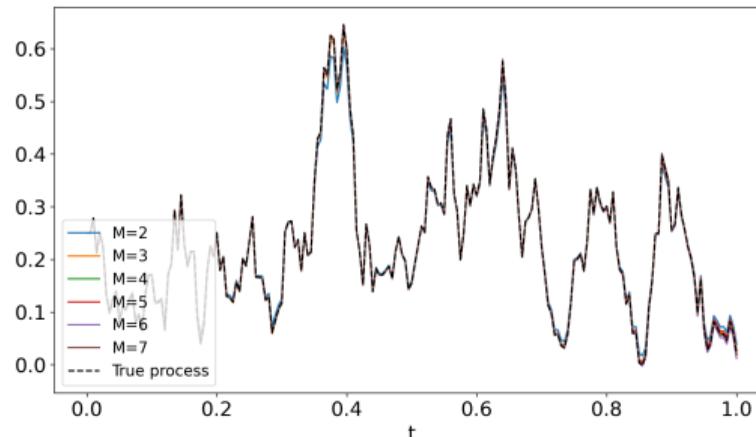
Example 2: Geometric Brownian motion

38

The mean-reverting geometric Brownian motion

$$dY_t = \kappa(\theta - Y_t)dt + (\eta + \alpha Y_t)dW_t, \quad Y_0 = y \in \mathbb{R},$$

$$Y_t = \langle \ell^{\text{mGBM}}, \widehat{\mathbb{W}}_t \rangle, \quad \ell^{\text{mGBM}} = \left(y\cancel{\otimes} + \left(\kappa\theta - \frac{\alpha\eta}{2} \right) \mathbf{1} + \eta \mathbf{2} \right) e^{\sqcup \left(-\left(\kappa + \frac{\alpha^2}{2} \right) \mathbf{1} + \alpha \mathbf{2} \right)} \in \mathcal{A},$$



Representation formulas with signatures

Example 3: path-dependent processes

39

Certain linear Volterra equations:

$$X_t = X_0 + \int_0^t K_1(t-s)(a_0 + a_1 X_s)ds + \int_0^t K_2(t-s)(b_0 + b_1 X_s)dW_s.$$

Representation formulas with signatures

Example 3: path-dependent processes

39

Certain linear Volterra equations:

$$X_t = X_0 + \int_0^t K_1(t-s)(a_0 + a_1 X_s)ds + \int_0^t K_2(t-s)(b_0 + b_1 X_s)dW_s.$$

we will need the following structure on the kernels K_1 and K_2 :

$$K_1(u) = \int_{[0,\infty)} e^{-xu} \mu_1(dx) \quad \text{and} \quad K_2(u) = \int_{[0,\infty)} e^{-xu} \mu_2(dx),$$

for finite measures μ_1 and μ_2 and such that

$$\int_{[0,\infty)} x^n \mu_1(dx) + \int_{[0,\infty)} x^n \mu_2(dx) < M^n, \quad n \in \mathbb{N},$$

for some constant $M > 0$. (!) Singular kernels such as the fractional kernel $t^{H-1/2}$ with $H < 1/2$ are excluded.

Representation formulas with signatures

Example 3: path-dependent processes

40

Certain linear Volterra equations:

$$Y_t = Y_0 + \int_0^t K_1(t-s)(a_0 + a_1 X_s)ds + \int_0^t K_2(t-s)(b_0 + b_1 X_s)dW_s.$$

Signature representation

$$Y_t = \langle \ell^{\text{Vol}}, \widehat{\mathbb{W}}_t \rangle, \quad \ell^{\text{Vol}} = p^{\text{Vol}}(\emptyset - q)^{-1}$$

$$p := a_0 \mathbf{1} \int_{[0, \infty)} e^{\mathbb{W} - x \mathbf{1}} \mu_1(dx) + b_0 (2 - \frac{1}{2} b_1 K_2(0) \mathbf{1}) \int_{[0, \infty)} e^{\mathbb{W} - x \mathbf{1}} \mu_2(dx) + Y_0 \emptyset,$$

$$q := a_1 \mathbf{1} \int_{[0, \infty)} e^{\mathbb{W} - x \mathbf{1}} \mu_1(dx) + b_1 (2 - \frac{1}{2} b_1 K_2(0) \mathbf{1}) \int_{[0, \infty)} e^{\mathbb{W} - x \mathbf{1}} \mu_2(dx),$$

Representation formulas with signatures

Example 3: path-dependent processes

41

For more general kernels, possibly singular:

Approximation result

Let K_1, K_2 be locally square-integrable kernels. For $n \in \mathbb{N}$, let $\mu_1^n(dx) = \sum_{i=1}^n c_i \delta_{x_i}(dx)$ and $\mu_2^n(dx) = \sum_{i=1}^n d_i \delta_{y_i}(dx)$, for some $c_i, d_i, x_i, y_i \in \mathbb{R}$, and let K_1^n, K_2^n be the corresponding kernels and $Y_t^n = \langle \ell_n^{\text{Vol}}, \widehat{\mathbb{W}}_t \rangle$ as in previous theorem both with μ_1^n and μ_2^n instead of μ_1 and μ_2 . Assume that

$$\int_0^T |K_1^n(s) - K_1(s)|^2 ds + \int_0^T |K_2^n(s) - K_2(s)|^2 ds \rightarrow 0, \quad \text{as } n \rightarrow \infty.$$

Then,

$$\sup_{t \in [0, T]} \mathbb{E} \left[|Y_t - \langle \ell_n^{\text{Vol}}, \widehat{\mathbb{W}}_t \rangle|^p \right] \rightarrow 0, \quad \text{as } n \rightarrow \infty, \quad p \in \mathbb{N}.$$

Representation formulas with signatures

Example 3: path-dependent processes

42

Gaussian Volterra processes including non-semimartingale processes such as the Riemann-Liouville fractional Brownian motion

$$W_t^H = \int_0^t (t-s)^{H-1/2} dW_s, \quad H \in (0, 1).$$

For instance, the (time-dependent) representation of W^H reads

$$W_t^H = \langle \ell_t^{\text{RL}}, \widehat{\mathbb{W}}_t \rangle, \quad \ell_t^{\text{RL}} = 1_{\{t>0\}} t^{H-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{(\frac{1}{2} - H)^{\bar{n}}}{t^n} \mathbf{1}^{\otimes n} \mathbf{2},$$

where $(\cdot)^{\bar{n}}$ is the rising factorial. This shows that $\langle \ell, \widehat{\mathbb{W}}_t \rangle$ is not always a semimartingale.

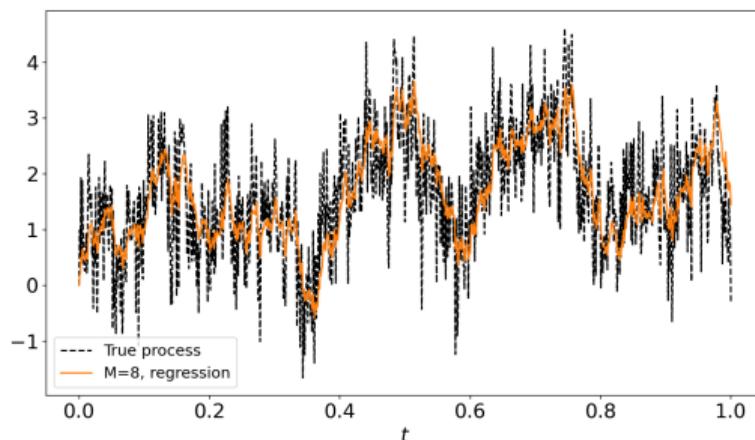
Representation formulas with signatures

Example 3: path-dependent processes

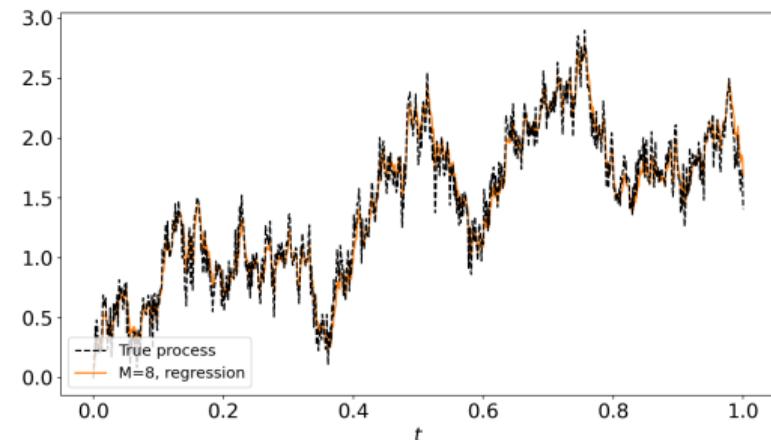
43

The Riemann-Liouville fractional Brownian motion

$$W_t^H = \int_0^t (t-s)^{H-1/2} dW_s, \quad H \in (0, 1).$$



(a) $H = 0.1$



(b) $H = 0.3$

Representation formulas with signatures

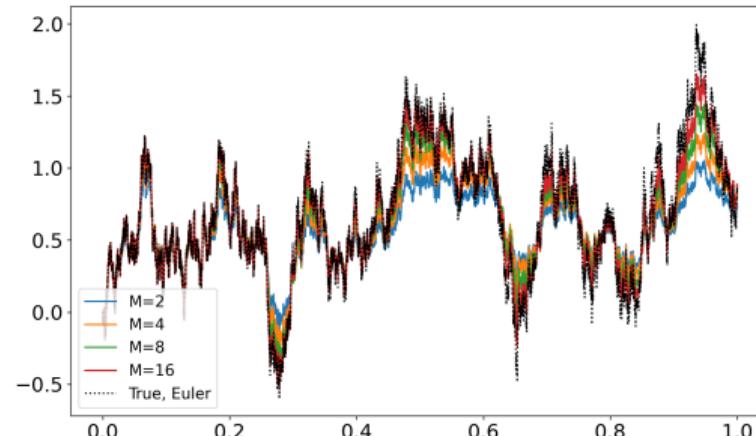
Example 3: path-dependent processes

44

The shifted Riemann-Liouville fractional Brownian motion

$$W_t^{H, \eta} = \int_0^t (\eta + t - s)^{H-1/2} dW_s, \quad H \in (0, 1).$$

$$\eta = \frac{1}{52}, \quad H = 0.1.$$



Towards Signature volatility models

$$\frac{dS_t}{S_t} = \Sigma_t dB_t, \quad \Sigma_t = \langle \sigma_t, \widehat{\mathbb{W}}_t \rangle, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp.$$

Based on

- ▶ *Signature volatility models: pricing and hedging with Fourier* with **Louis-Amand Gérard**, *SIAM Journal on Financial Mathematics*, to appear (2025)

Refs

- ▶ Perez Arribas, Salvi, and Szpruch (2020)
- ▶ Cuchiero, Gazzani, Möller, and Svaluto-Ferro (2025).

Tractability of signature volatility models

Characteristic functional

Theorem

Let $f, g : [0, T] \rightarrow \mathbb{C}$ be measurable and bounded functions. Assume that there exists ψ solution to the following system of time-dependent Riccati equations

$$\dot{\psi}_t = \frac{1}{2}(\psi_t|_2) \square^2 + \rho f(t)(\sigma \square \psi_t|_2) + \frac{1}{2}\psi_t|_{22} + \psi_t|_1 + \left(\frac{f(t)^2 - f(t)}{2} + g(t) \right) \sigma \square^2, \quad \psi_0 = 0,$$

such that $\psi_t \in \mathcal{I}$ and $\Re(\langle \psi_{T-t}, \widehat{\mathbb{W}}_t \rangle) \leq 0$, then, the joint characteristic functional is given by

$$\mathbb{E} \left[\exp \left(\int_t^T f(T-s) d \log S_s + \int_t^T g(T-s) \sigma_s^2 ds \right) \middle| \mathcal{F}_t \right] = \exp \left(\langle \psi_{T-t}, \widehat{\mathbb{W}}_t \rangle \right).$$

- ▶ Similar representations for signature SDEs (Cuchiero, Svaluto-Ferro, and Teichmann, 2023).
- ▶ Related representations Friz, Gatheral, and Radoičić (2022); Lyons, Ni, and Tao (2024)

Volterra Bergomi model

$$dS_t = S_t \sigma_t dB_t$$

$$\sigma_t = \sigma_0 e^{\eta X_t - \frac{\eta^2}{2} \text{Var}(X_t)}, \quad X_t = \int_0^t K(t-s) dW_s$$

Volterra Bergomi model

$$dS_t = S_t \sigma_t dB_t$$

$$\sigma_t = \sigma_0 e^{\eta X_t - \frac{\eta^2}{2} \text{Var}(X_t)}, \quad X_t = \int_0^t K(t-s) dW_s$$

- ▶ n-factor Bergomi model (under-parametrized version with same BM)

$$K(t) = \sum_{i=1}^n c_i e^{-\lambda_i t}.$$

- ▶ Rough Bergomi of Bayer, Friz, and Gatheral (2016)

$$K(t) = ct^{H-1/2}, \quad H \in (0, 1/2)$$

- ▶ Shifted fractional kernel

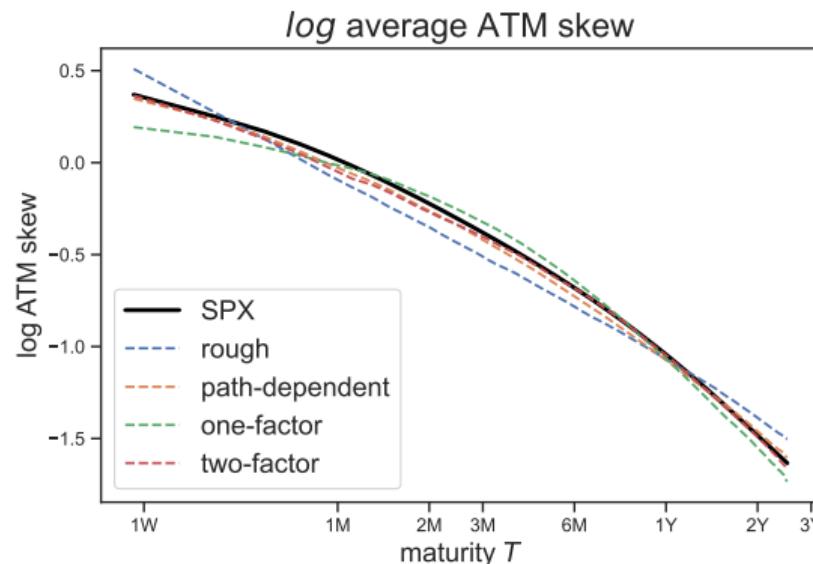
$$K(t) = c(\eta + t)^{H-1/2}, \quad \eta > 0, \quad H \in \mathbb{R}.$$

Application: Fourier pricing and hedging in Volterra Bergomi Models

Data to Kernels

Log-plot SPX ATM skew is **concave, flattening behavior** at short maturities

$$T \rightarrow \partial_k \sigma_{iv}(T, k) |_{k=0}$$



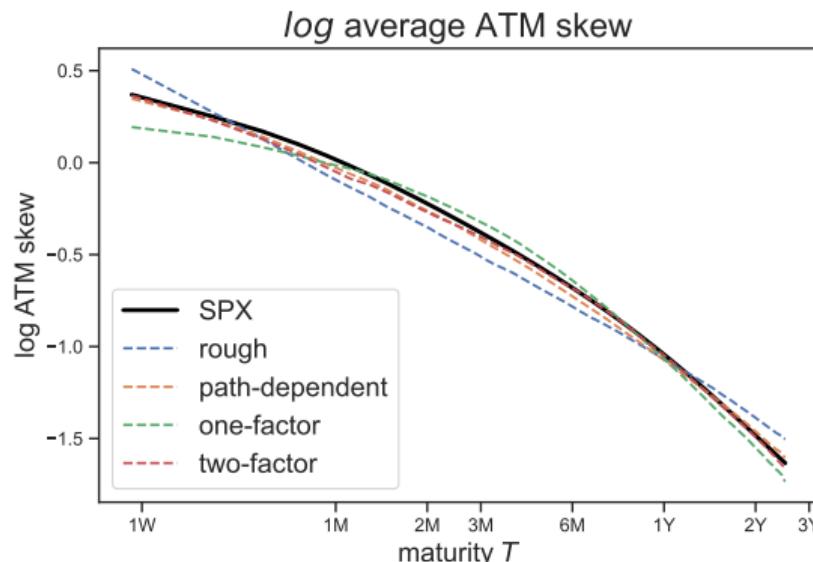
Application: Fourier pricing and hedging in Volterra Bergomi Models

Data to Kernels

48

Log-plot SPX ATM skew is **concave, flattening behavior** at short maturities

$$T \rightarrow \partial_k \sigma_{iv}(T, k) |_{k=0}$$



- ▶ **Exponential kernel** $K(t) = ce^{-\lambda t}$ gets shape but **lacks flexibility**
- ▶ Two time scales captured via **double-exponential kernel**
$$K(t) = c_1 e^{-\lambda_1 t} + c_2 e^{-\lambda_2 t}$$
- ▶ **Fractional kernel** $K(t) = ct^{H-1/2}$ ($H \in (0, 1/2)$) implies monofractal scaling (straight line) and blow up at 0, **inconsistent with data**
- ▶ **Shifted fractional kernel**
$$K(t) = c(a + t)^{H-1/2}$$
 with $a > 0$ breaks monofractality/roughness and decouples short and long term behaviour
- ▶ AJ and Li (2025); Bergomi (2015); Delemotte et al. (2023); Guyon and El Amrani (2022)

Application: Fourier pricing and hedging in Volterra Bergomi Models

Data to Kernels

49



- ▶ Daily calibration of SPX vol surface (maturities couple of days to 3 years) on more than 10 years
- ▶ **Rough Bergomi model does not align with market data.**
- ▶ Non-rough path-dependent Bergomi models aligns much better in **all market conditions**
- ▶ Deep pricing with quantization hints method

Application: Fourier pricing and hedging in Volterra Bergomi Models

The Shifted fractional Bergomi model as signature volatility model

50

Shifted fractional Bergomi model

$$dS_t = S_t \sigma_t dB_t$$

$$\sigma_t = \sigma_0 e^{\eta W_t^{H,a} - \frac{\eta^2}{2} \text{Var}(W_t^{H,a})}$$

with

$$W_t^{H,a} = \int_0^t (a + t - s)^{H-1/2} dW_s, \quad a > 0, \quad H \in \mathbb{R}.$$

Application: Fourier pricing and hedging in Volterra Bergomi Models

The Shifted fractional Bergomi model as signature volatility model

50

Shifted fractional Bergomi model

$$dS_t = S_t \sigma_t dB_t$$

$$\sigma_t = \sigma_0 e^{\eta W_t^{H,a} - \frac{\eta^2}{2} \text{Var}(W_t^{H,a})}$$

with

$$W_t^{H,a} = \int_0^t (a + t - s)^{H-1/2} dW_s, \quad a > 0, \quad H \in \mathbb{R}.$$

Recast into **signature volatility model** $\sigma_t = \langle \ell_t, \widehat{\mathbb{W}}_t \rangle$:

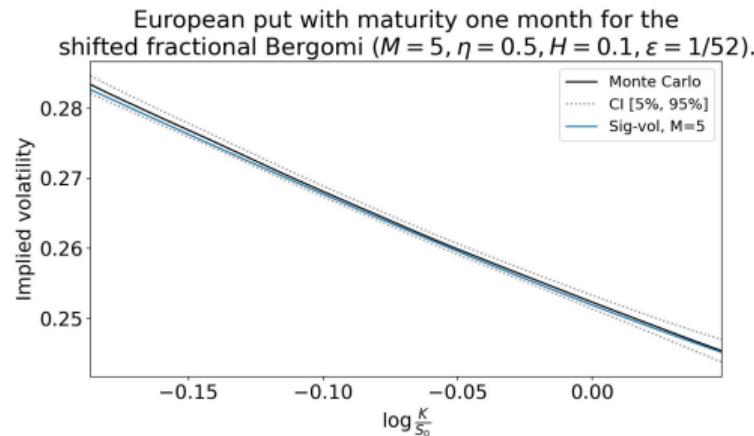
- $W_t^{H,a} = \langle \ell_t^{H,a}, \widehat{\mathbb{W}}_t \rangle$ with $\ell_t^{H,a} = 1_{\{t>0\}} (t+a)^{H-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{(\frac{1}{2}-H)^{\bar{n}}}{(t+a)^n} \mathbf{1} \otimes^n \mathbf{2}$,
- using the **Shuffle product**

$$e^{\eta W_t^H} = \sum_{n \geq 0} \frac{\eta^n \langle \ell_t^{H,a}, \widehat{\mathbb{W}}_t \rangle^n}{n!} = \sum_{n \geq 0} \frac{\eta^n \langle (\ell_t^{H,a})^{\sqcup n}, \widehat{\mathbb{W}}_t \rangle}{n!} = \langle e^{\sqcup \eta \ell_t^{H,a}}, \widehat{\mathbb{W}}_t \rangle$$

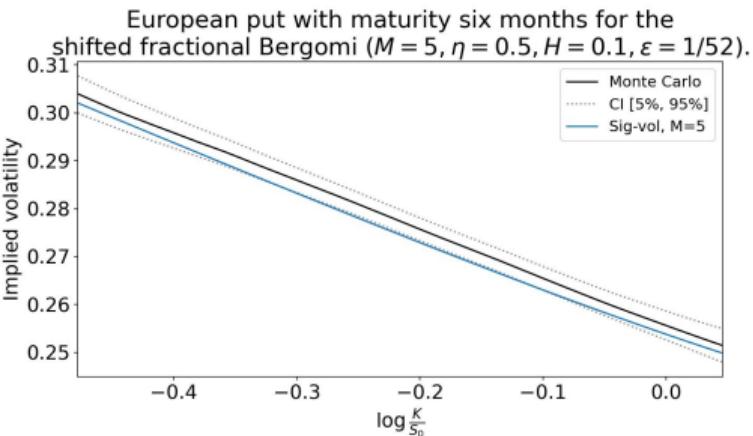
Application: Fourier pricing and hedging in Volterra Bergomi Models

Fourier Pricing

Shifted fractional Bergomi model by **Fourier pricing** in signature volatility model:



(c) 1 month

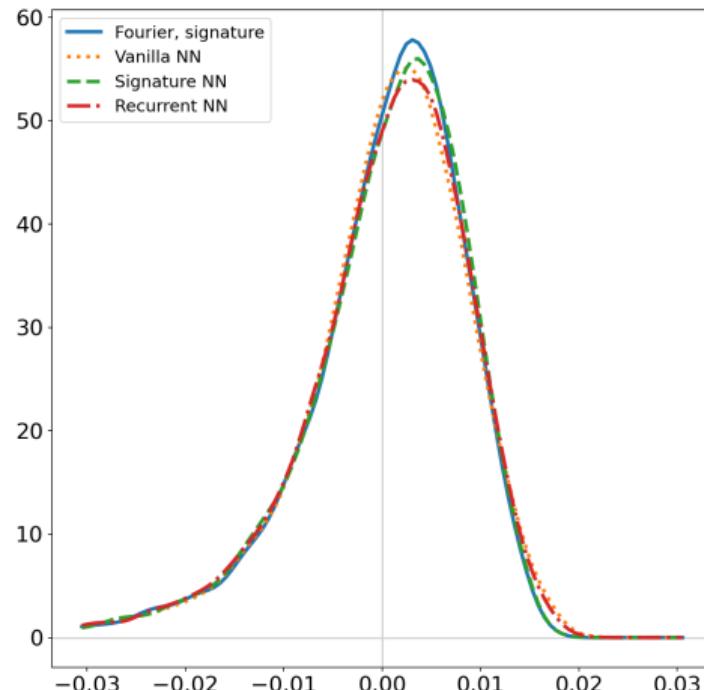


(d) 6 months

Application: Fourier pricing and hedging in Volterra Bergomi Models

Fourier hedging

Shifted fractional Bergomi model by **Fourier quadratic hedging** in signature volatility model:



How to truncate?

$$dS_t^N = S_t^N \langle \sigma^N, \widehat{\mathbb{W}}_t \rangle dB_t, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp.$$

Based on

- ▶ *Martingale property and moment explosions in signature volatility models* with **Paul Gassiat** and **Dimitri Sotnikov**

How to truncate?

$$dS_t^N = S_t^N \langle \sigma^N, \widehat{\mathbb{W}}_t \rangle dB_t, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp.$$

Assume non-zero leading coefficient $\sigma^{2^{\otimes N}} \neq 0$ in front of the word $2^{\otimes N}$, (i.e. the term W_t^N .) and non-zero correlation ρ and $N \geq 2$:

How to truncate?

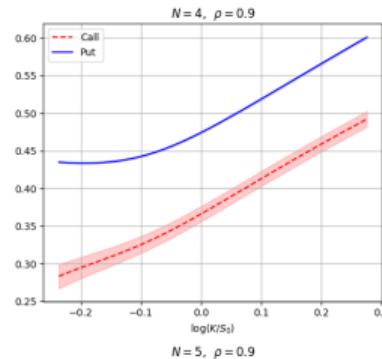
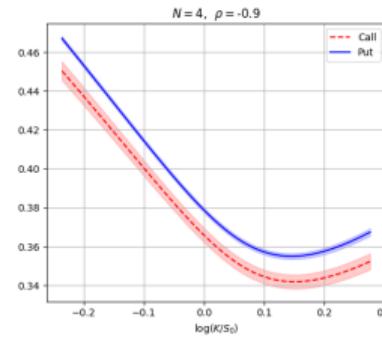
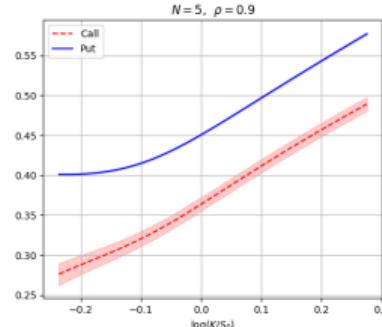
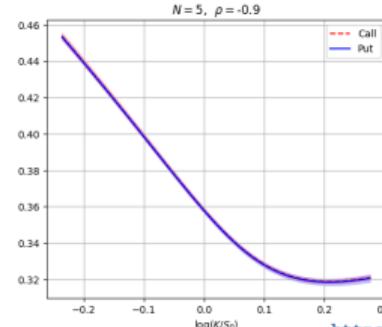
$$dS_t^N = S_t^N \langle \sigma^N, \widehat{\mathbb{W}}_t \rangle dB_t, \quad B = \rho W + \sqrt{1 - \rho^2} W^\perp.$$

Assume non-zero leading coefficient $\sigma^{2^{\otimes N}} \neq 0$ in front of the word $2^{\otimes N}$, (i.e. the term W_t^N .) and non-zero correlation ρ and $N \geq 2$:

The price process S^N is a **true martingale** if and only if N is odd and $\rho \sigma^{2^{\otimes N}} \leq 0$.

How to truncate?

The price process S^N is a **true martingale** if and only if N is odd and $\rho\sigma^{2^{\otimes N}} \leq 0$.



Stationarity?

Motivation

Time invariance and fading memory

57

Two important properties when modeling **memory effects** of dynamical systems:

- ▶ **Time invariance** the output signal Y_t at time t depends only on the continuous input signal $(X_s)_{-\infty < s \leq t}$ up to time t , but not on the absolute time t .

$$Y_t = F((X_{t-s})_{s \geq 0}).$$

⇒ Postulates, in some sense, a **stationarity** in the relationship between input and output.

Motivation

Time invariance and fading memory

Two important properties when modeling **memory effects** of dynamical systems:

- ▶ **Time invariance** the output signal Y_t at time t depends only on the continuous input signal $(X_s)_{-\infty < s \leq t}$ up to time t , but not on the absolute time t .

$$Y_t = F((X_{t-s})_{s \geq 0}).$$

⇒ Postulates, in some sense, a **stationarity** in the relationship between input and output.

- ▶ **Fading memory** the influence of the distant past diminishes over time, i.e. Y_t gradually “forgets” the remote history of X .

Motivation

Time invariance and fading memory

Two important properties when modeling **memory effects** of dynamical systems:

- ▶ **Time invariance** the output signal Y_t at time t depends only on the continuous input signal $(X_s)_{-\infty < s \leq t}$ up to time t , but not on the absolute time t .

$$Y_t = F((X_{t-s})_{s \geq 0}).$$

⇒ Postulates, in some sense, a **stationarity** in the relationship between input and output.

- ▶ **Fading memory** the influence of the distant past diminishes over time, i.e. Y_t gradually “forgets” the remote history of X .
 - ▶ This idea dates back to the works of Volterra (1887) and Wiener (1958).

Motivation

Time invariance and fading memory

Two important properties when modeling **memory effects** of dynamical systems:

- ▶ **Time invariance** the output signal Y_t at time t depends only on the continuous input signal $(X_s)_{-\infty < s \leq t}$ up to time t , but not on the absolute time t .

$$Y_t = F((X_{t-s})_{s \geq 0}).$$

⇒ Postulates, in some sense, a **stationarity** in the relationship between input and output.

- ▶ **Fading memory** the influence of the distant past diminishes over time, i.e. Y_t gradually “forgets” the remote history of X .
 - ▶ This idea dates back to the works of Volterra (1887) and Wiener (1958).
 - ▶ Boyd and Chua (1985) formalize this concept by requiring the functional F to be continuous not with respect to the uniform topology, but with respect to a *weighted* uniform topology:
F has fading memory if its output remains close for input paths that are close in the recent past, even if they differ in the distant past.

Motivation

Problem formulation

58

- We are interested in modeling **time-invariant** dependence between two time series $(X_t, Y_t)_{t \in \mathbb{R}}$, i.e.

$$Y_t = F(X_{s \in (-\infty, t]}),$$

for some continuous function F .

- In practice, often only a **single realization** of a time series or dynamical system is observed (financial data), from the **infinitely distant past $-\infty$ up to t** .

Problem

Can we generalize the exponential moving average (EMA)

$$y_n = \sum_{k \geq 0} e^{-\lambda k} x_{n-k}$$

to a framework that:

- is **universal** and captures **nonlinear** features of the time series;
- Preserves the **Markov** property;
- Remains mathematically **tractable**?

The Exponentially Fading Memory Signature

Based on

- ▶ *Exponentially Fading Memory Signature* with **Dimitri Sotnikov**

Fading Memory Signature

Definition

- ▶ We consider an \mathbb{R}^d -valued increment continuous semimartingales X , i.e., for all $s \in \mathbb{R}$, the process $(X_{s+t} - X_s)_{t \geq 0}$ is a semimartingale in the usual sense with respect to $(\mathcal{F}_{s+t})_{t \geq 0}$.
- ▶ Vector $\lambda = (\lambda^1, \dots, \lambda^d) \in \mathbb{R}^d$ with positive entries.

Fading Memory Signature

Definition

60

- We consider an \mathbb{R}^d -valued increment continuous semimartingales X , i.e., for all $s \in \mathbb{R}$, the process $(X_{s+t} - X_s)_{t \geq 0}$ is a semimartingale in the usual sense with respect to $(\mathcal{F}_{s+t})_{t \geq 0}$.
- Vector $\lambda = (\lambda^1, \dots, \lambda^d) \in \mathbb{R}^d$ with positive entries.

Fading Memory Signature

The fading-memory λ -signature of X is defined by the components

$$\mathbb{X}_t^{\lambda, i_1 \dots i_n} := \int_{-\infty < u_1 < \dots < u_n < t} e^{-\lambda^{i_1}(t-u_1)} dX_{u_1}^{i_1} \circ \dots \circ e^{-\lambda^{i_n}(t-u_n)} dX_{u_n}^{i_n}, \quad i_k \in \{1, \dots, d\},$$

and on $[s, t]$

$$\mathbb{X}_{s,t}^{\lambda, i_1 \dots i_n} := \int_{s < u_1 < \dots < u_n < t} e^{-\lambda^{i_1}(t-u_1)} dX_{u_1}^{i_1} \circ \dots \circ e^{-\lambda^{i_n}(t-u_n)} dX_{u_n}^{i_n}.$$

Fading Memory Signature

Time augmentation

61

First two levels for the time-extended Brownian motion

The first elements of $\widehat{\mathbb{W}}_t^\lambda$ are given by

$$\widehat{\mathbb{W}}_t^{\lambda,0} = 1, \quad \widehat{\mathbb{W}}_t^{\lambda,1} = \binom{\lambda^{-1}}{Y_t}, \quad \widehat{\mathbb{W}}_t^{\lambda,2} = \binom{\frac{\lambda^{-2}}{2!}}{\int_{-\infty}^t e^{-2\lambda(t-s)} Y_s ds \quad \lambda^{-1} \int_{-\infty}^t e^{-2\lambda(t-s)} dW_s \quad \frac{Y_t^2}{2!}},$$

where $Y = (Y_t)_{t \in \mathbb{R}}$ is a stationary Ornstein–Uhlenbeck process defined by

$$Y_t = \int_{-\infty}^t e^{-\lambda(t-s)} dW_s.$$

Moreover, $\widehat{\mathbb{W}}_t^{\lambda,2^{\otimes n}} = \frac{Y_t^n}{n!}$.

Fading Memory Signature

Time augmentation

61

First two levels for the time-extended Brownian motion

The first elements of $\widehat{\mathbb{W}}_t^\lambda$ are given by

$$\widehat{\mathbb{W}}_t^{\lambda,0} = 1, \quad \widehat{\mathbb{W}}_t^{\lambda,1} = \binom{\lambda^{-1}}{Y_t}, \quad \widehat{\mathbb{W}}_t^{\lambda,2} = \binom{\frac{\lambda^{-2}}{2!}}{\int_{-\infty}^t e^{-2\lambda(t-s)} Y_s ds \quad \lambda^{-1} \int_{-\infty}^t e^{-2\lambda(t-s)} dW_s \quad \frac{Y_t^2}{2!}},$$

where $Y = (Y_t)_{t \in \mathbb{R}}$ is a stationary Ornstein–Uhlenbeck process defined by

$$Y_t = \int_{-\infty}^t e^{-\lambda(t-s)} dW_s.$$

Moreover, $\widehat{\mathbb{W}}_t^{\lambda,2^{\otimes n}} = \frac{Y_t^n}{n!}$.

- ▶ Note that the first two levels are **stationary**!

First properties

Time Invariance and Stationarity

62

If we shift the inputs by h , we shift the output by h :

Time Invariance

If $X = (X_t)_{t \in \mathbb{R}}$ is a continuous semimartingale and $Y = X_{\cdot+h}$ for some $h \in \mathbb{R}$, then

$$\mathbb{Y}_t^\lambda = \mathbb{X}_{t+h}^\lambda.$$

Stationarity

Suppose that $X = (X_t)$ is an \mathbb{R}^d -valued continuous semimartingale with **stationary increments**. Then, $\mathbb{X}^\lambda = (\mathbb{X}_t^\lambda)_{t \in \mathbb{R}}$ is a stationary $\mathcal{T}((\mathbb{R}^d))$ -valued process. In particular, for all $t \in \mathbb{R}$,

$$\mathcal{L}(\mathbb{X}_t^\lambda) = \mathcal{L}(\mathbb{X}_0^\lambda).$$

- In particular, this holds for $X_t = (t, W_t)$.

Applications to learning

Application 1: **Regression** and Prediction

We observe a signal $S_t = \sin(Z_t)$, where

$$dZ_t = -\mu Z_t dt + \nu dW_t,$$

Goal do a linear regression of S_t against

1. The standard time-augmented signature of $\widehat{W}_t = (t, W_t)$:

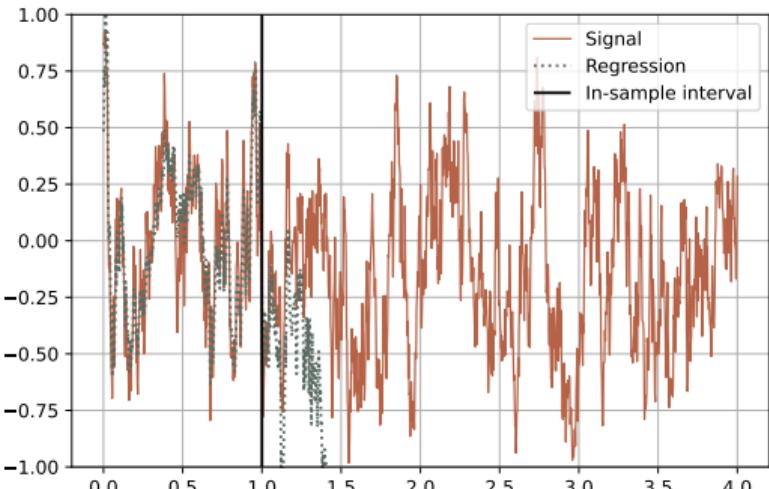
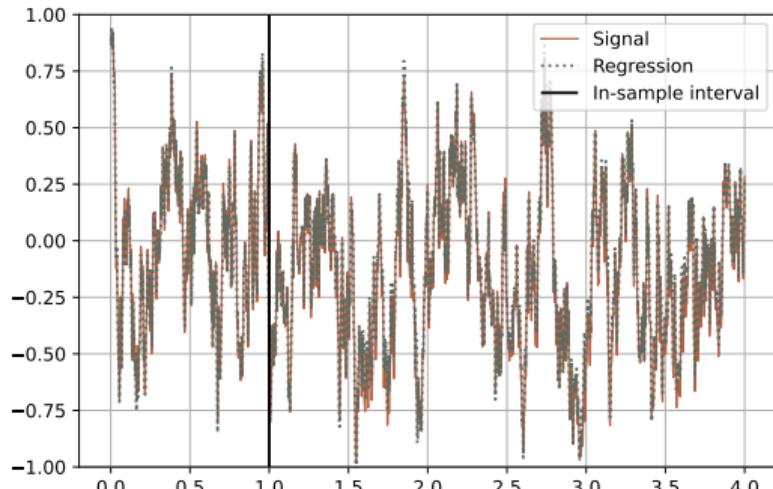
$$S_t \approx \langle \ell, \widehat{\mathbb{W}}_t \rangle$$

2. The EFM-signature of $\widehat{W}_t = (t, W_t)$:

$$S_t = \langle \ell, \widehat{\mathbb{W}}_t^\lambda \rangle$$

Estimate ℓ observing W and the signal S .

Application: Regression



Signature (on the left) and Fading memory signature (on the right) regression. Signal parameters are $\mu = 25$, $\nu = 3$, truncation order is $N = 5$. Vertical bar separates in-sample and out-of-sample data.

Contact

- ▶ eduardo.abi-jaber@polytechnique.edu
- ▶ <https://sites.google.com/view/abijabereduardo/>

References I

E. AJ and S. Li. Volatility models in practice: Rough, path-dependent, or markovian? *Mathematical Finance*, 2025.

C. Bayer, P. Friz, and J. Gatheral. Pricing under rough volatility. *Quantitative Finance*, 16(6): 887–904, 2016.

L. Bergomi. Smile dynamics IV. *Risk Magazine*, 2009.

L. Bergomi. *Stochastic volatility modeling*. CRC press, 2015.

F. Bourgey, J. Delemotte, and S. De Marco. Smile dynamics and rough volatility. *Available at SSRN*, 2024.

S. P. Boyd and L. O. Chua. Fading memory and the problem of approximating nonlinear operators with volterra series. 1985. URL
<https://api.semanticscholar.org/CorpusID:14862233>.

C. Cuchiero, S. Svaluto-Ferro, and J. Teichmann. Signature sdes from an affine and polynomial perspective. *arXiv preprint arXiv:2302.01362*, 2023.

References II

C. Cuchiero, G. Gazzani, J. Möller, and S. Svaluto-Ferro. Joint calibration to spx and vix options with signature-based models. *Mathematical Finance*, 35(1):161–213, 2025.

J. Delemotte, S. D. Marco, and F. Segonne. Yet another analysis of the sp500 at-the-money skew: Crossover of different power-law behaviours. *Available at SSRN 4428407*, 2023.

D. Duffie, D. Filipovic, and W. Schachermayer. Affine processes and application in finance. Technical report, National Bureau of Economic Research, 2002.

P. K. Friz and J. Gatheral. Computing the ssr. *Quantitative Finance*, 25(5):701–710, 2025.

P. K. Friz, J. Gatheral, and R. Radoičić. Forests, cumulants, martingales. *The Annals of Probability*, 50(4):1418–1445, 2022.

J. Guyon and M. El Amrani. Does the term-structure of equity at-the-money skew really follow a power law? *Available at SSRN 4174538*, 2022.

T. Lyons, H. Ni, and J. Tao. A pde approach for solving the characteristic function of the generalised signature process. *arXiv preprint arXiv:2401.02393*, 2024.

I. Perez Arribas, C. Salvi, and L. Szpruch. Sig-sdes model for quantitative finance. pages 1–8, 10 2020. doi: [10.1145/3383455.3422553](https://doi.org/10.1145/3383455.3422553).

V. Volterra. *Sopra le funzioni che dipendono da altre funzioni*. 1887.

N. Wiener. *Nonlinear Problems in Random Theory*. M.I.T. paperback series. MIT Press, 1958. ISBN 9780262730129. URL <https://books.google.fr/books?id=HQBRAAAAMAAJ>.

What about dynamical properties and longer maturities?

Ref

- ▶ *Capturing Smile Dynamics with the Quintic Volatility Model: SPX, Skew-Stickiness Ratio and VIX with **Shaun Li** (2025).*

Volatility Dynamics

Skew Stickiness Ratio

The **Skew Stickiness Ratio** (SSR), $\mathcal{R}_{t,T}$ is defined in Bergomi (2009) as

$$\mathcal{R}_{t,T} := \frac{1}{S_{t,T}} \frac{\partial_t \langle \hat{\sigma}^T, \log S \rangle_t}{\partial_t \langle \log S \rangle_t},$$

- ▶ $\hat{\sigma}_t^T$ denotes the ATM implied volatility
- ▶ and $S_{t,T}$ is the ATM (forward) skew.

The SSR can be interpreted as the instantaneous change of the ATM implied volatility with respect to the instantaneous change of the log-price, normalised by the ATM skew.

Volatility Dynamics

Skew Stickiness Ratio

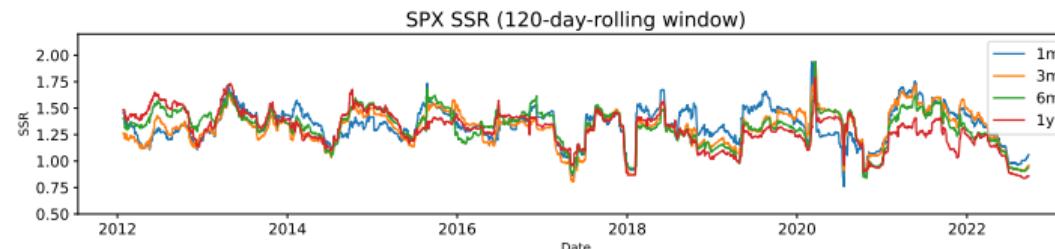
71

The **Skew Stickiness Ratio** (SSR), $\mathcal{R}_{t,T}$ is defined in Bergomi (2009) as

$$\mathcal{R}_{t,T} := \frac{1}{S_{t,T}} \frac{\partial_t \langle \hat{\sigma}^T, \log S \rangle_t}{\partial_t \langle \log S \rangle_t},$$

- ▶ $\hat{\sigma}_t^T$ denotes the ATM implied volatility
- ▶ and $S_{t,T}$ is the ATM (forward) skew.

The SSR can be interpreted as the instantaneous change of the ATM implied volatility with respect to the instantaneous change of the log-price, normalised by the ATM skew.



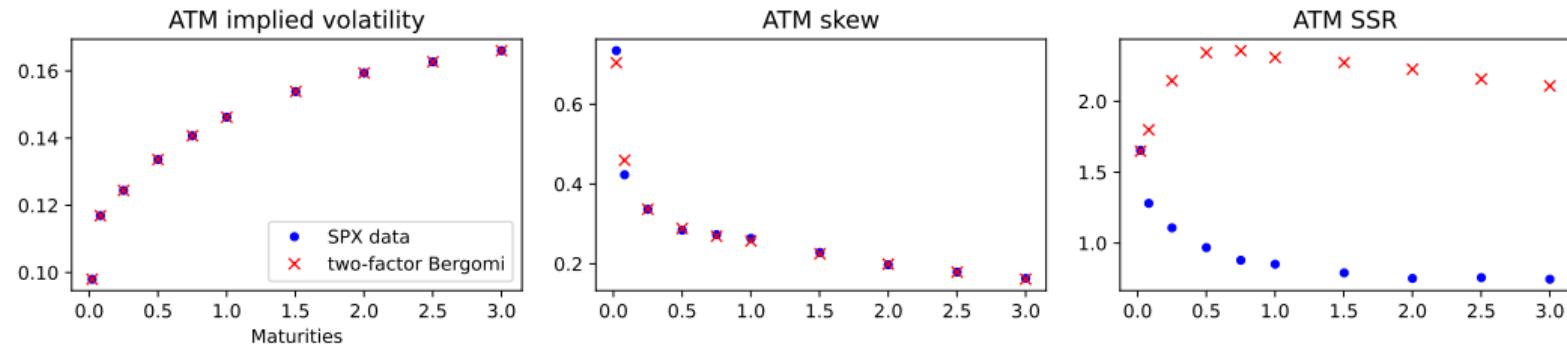
Empirical time series of the SSR from 2012 to 2022, computed using a 120-day rolling window.

Volatility Dynamics

Skew Stickiness Ratio

Calibrating smiles and SSR is **notoriously difficult** for stochastic volatility models Bourgey, Delemotte, and De Marco (2024); Friz and Gatheral (2025). **Two factor Bergomi model:**

SPX term structure 6 May 2024



Calibrated two factor Bergomi model on term structures May 6, 2024.

Volatility Dynamics

Two factor Quintic model

73

$$dS_t = S_t \sigma_t \left(\rho dW_t + \sqrt{1 - \rho^2} dW_t^\perp \right), \quad S_0 > 0,$$

$$\sigma_t = g_0(t)p(\textcolor{red}{Z}_t), \quad p(z) = \sum_{k=0}^5 \alpha_k \textcolor{red}{z}^k,$$

$$\textcolor{red}{Z}_t = \theta X_t + (1 - \theta) Y_t,$$

$$\textcolor{red}{X}_t = \int_0^t e^{-\lambda_x(t-s)} dW_s, \quad \textcolor{red}{Y}_t = \int_0^t e^{-\lambda_y(t-s)} dW_s,$$

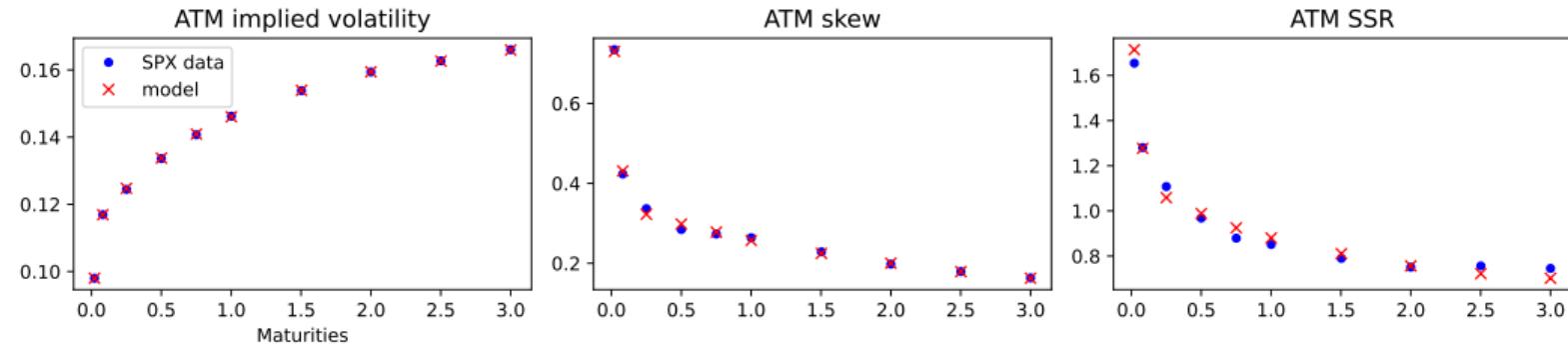
Volatility Dynamics

Two factor Quintic model

74

The **two factor Quintic model** is able to achieve impressive fits of the term structures of ATM-vol, skew and SSR:

SPX term structure 6 May 2024



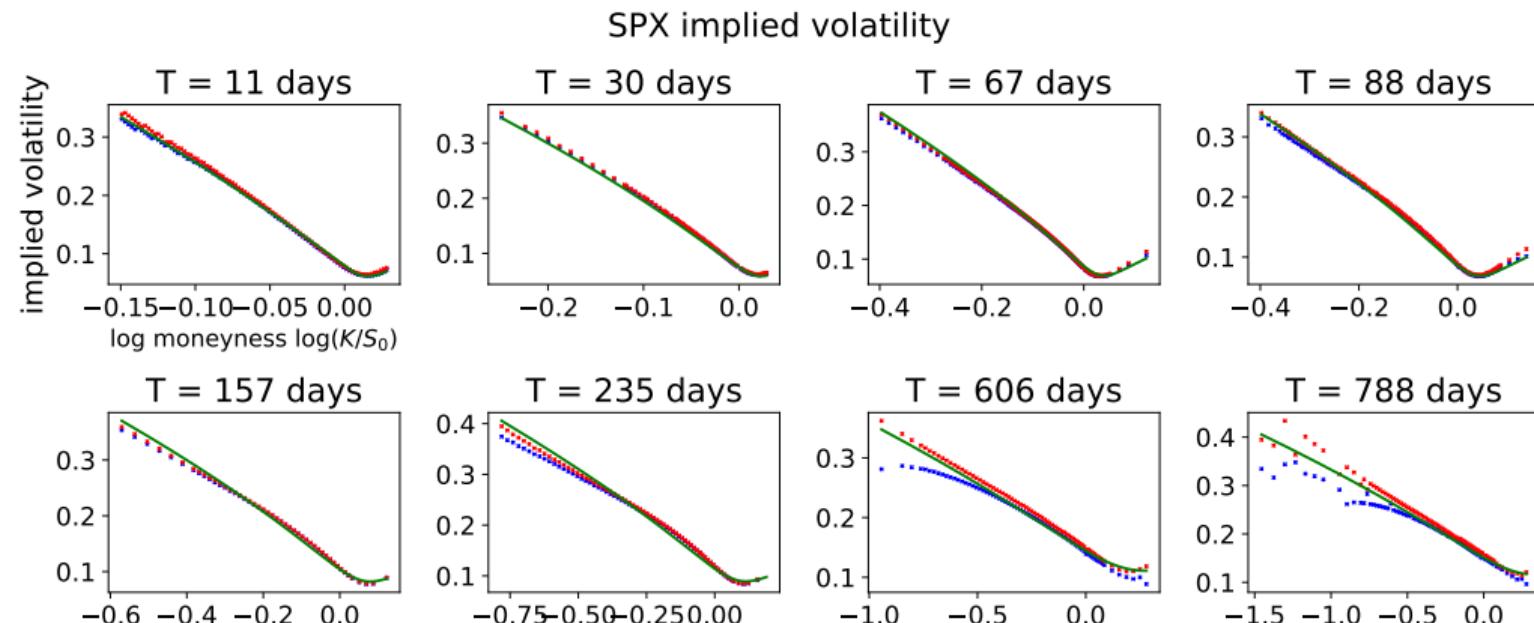
Calibrated two factor Quintic model on term structures May 6, 2024.

Volatility Dynamics

Two factor Quintic model

75

SPX and VIX:



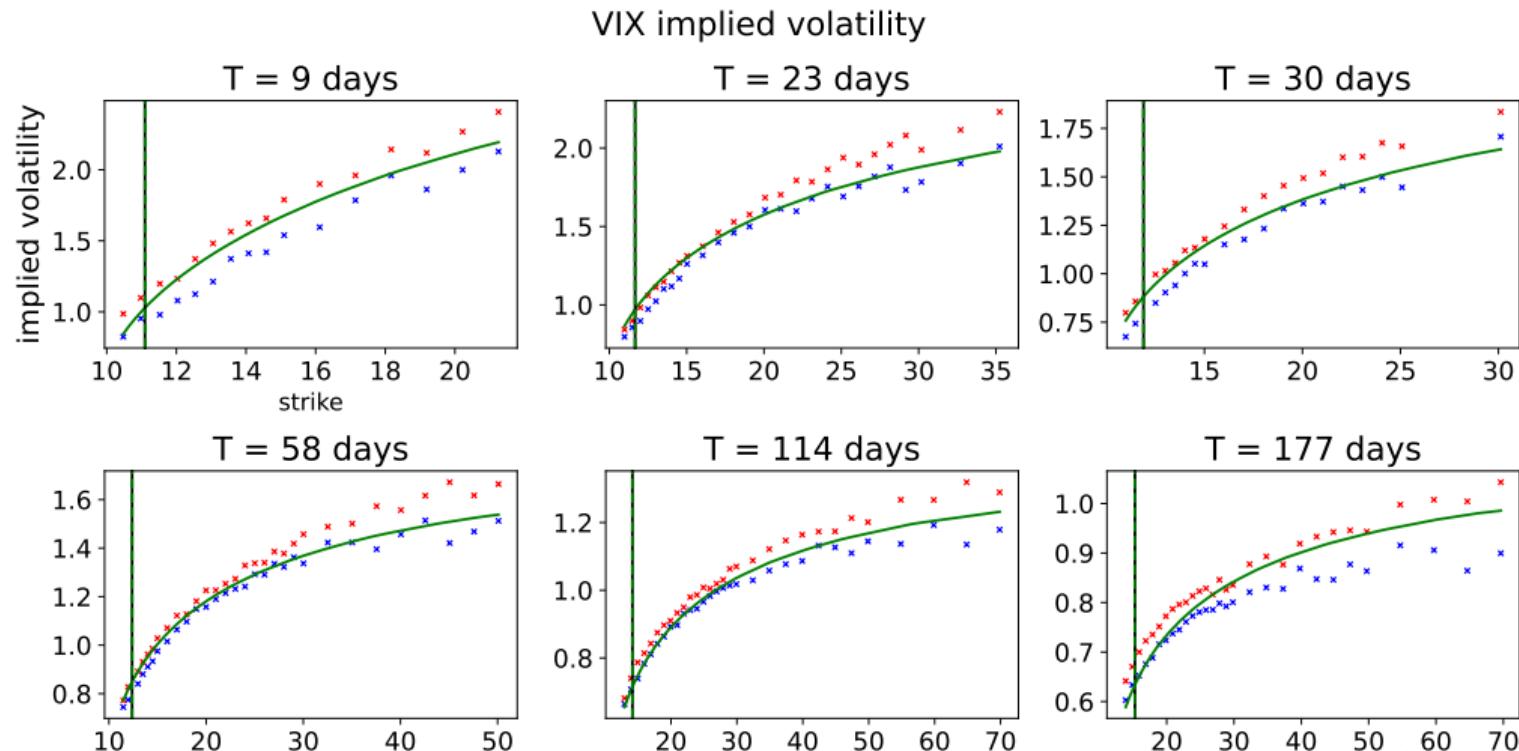
SPX & VIX smiles (bid/ask in blue/red dots) and VIX futures (vertical black lines) on 23 October 2017, jointly calibrated by the two-factor Quintic OU model (in green) with SSR penalisation.

Volatility Dynamics

Two factor Quintic model

76

SPX and VIX:

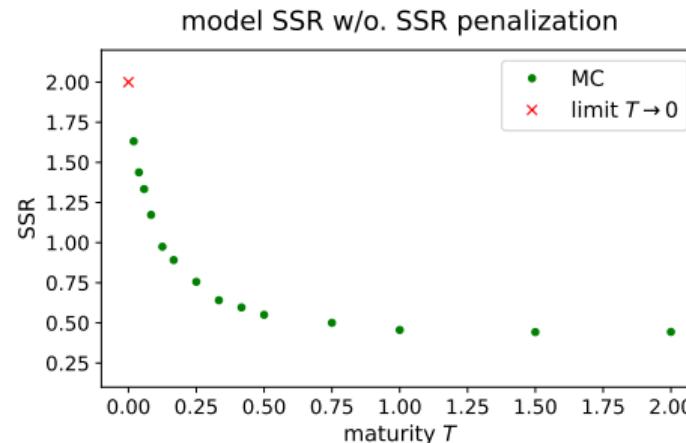
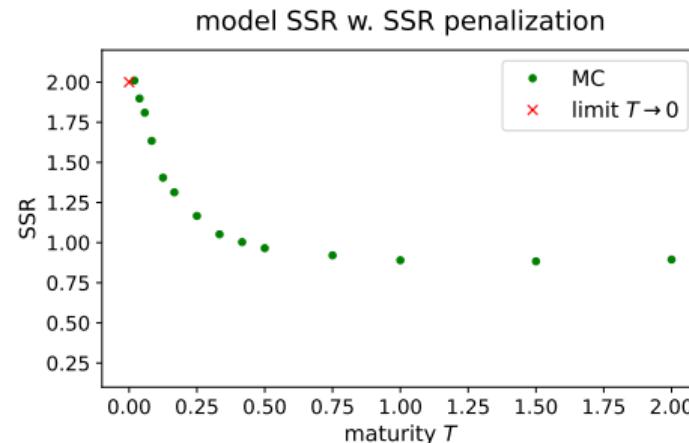


Volatility Dynamics

Two factor Quintic model

77

Penalisation for consistent values of SSR:



SSR of the two-factor Quintic OU model computed by finite difference and Monte Carlo. The left-hand side graph is the SSR of the two-factor Quintic OU model jointly calibrated to SPX and VIX smiles. The right-hand side graph is the SSR of the two-factor Quintic OU model jointly calibrated to SPX and VIX smiles, as well as the SSR.