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Memory Matters
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Memory-Aware modeling

e
Memory matters! J

Many dynamical systems exhibit path-dependent behaviors such as
» long/short-memory effects
» lead-lag relationships
» multiple time scales
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Memory-Aware modeling

e
Memory matters! J

Many dynamical systems exhibit path-dependent behaviors such as
» long/short-memory effects
» lead-lag relationships
» multiple time scales

Main Question How to model these path-dependent (non-Markovian) effects in a
mathematically tractable way?
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Memory-Aware modeling

Big picture
» In a random environment: stochastic model
» Based on available information: F;
> Determine actions: hedging strategy, optimal investment/liquidation, etc.
> Evaluate rewards / quantities of interest: E[¢ | F;], option prices, etc.:
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Memory-Aware modeling

Big picture
» In a random environment: stochastic model
» Based on available information: F;
> Determine actions: hedging strategy, optimal investment/liquidation, etc.
> Evaluate rewards / quantities of interest: E[¢ | F;], option prices, etc.:
Summarize then Linearize

1. ldentify good “Markovian” variables to capture the available information such that the
quantities of interest become
1
f(t, Y ..., YY)

2. ldeally, variables that linearize the problem (semi-explicit formulas, fast computation).
For example, a polynomial function of a factor Y is a linear function of the extended
vector of monomials (1,Y, Y2, Y3, ..., Y™).
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Memory-Aware modeling

Main Question How to model these path-dependent (non-Markovian) effects in a
mathematically tractable way?
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Memory-Aware modeling

Main Question How to model these path-dependent (non-Markovian) effects in a
mathematically tractable way?

Mathematical tools for memory-aware modeling
» Volterra processes

» Path-signatures

https://sites.google.com/view/abijabereduardo/


https://sites.google.com/view/abijabereduardo/

Memory-Aware modeling

Key object |: Volterra processes

Named after the Italian mathematician Vito Volterra
(1860-1940): mathematical biology and integral equations, one

of the founders of functional analysis
Volterra processes are the continuous-time analogue of moving

averages:

» Discrete-time intuition: weighted averages

N

—A(t—=ti) A
Z e A:Z

i=1

> Volterra processes (continuous time)

t
X :/ K(t—s)dZ
0

» The kernel K encodes memory and persistence

Vito Volterra

» Timely in math finance
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Memory-Aware modeling

Key object II: Path signatures

Introduced by the mathematician Kuo Tsai Chen
(1923-1987): algebraic topology and analysis

Path signatures are sequence of iterated integrals
associated with a path.

» For a path Z, its (truncated) signature is
(1, /dz, /dZ®dZ, )

» An algebraic object encoding the entire path
» Analogue of polynomials on path space
Central in rough paths theory (Lyons), controlled differential

equations, machine learning on time series, and emerging
financial applications.

Kuo Tsai Chen
https://sites.google.com/view/abijabereduardo/


https://sites.google.com/view/abijabereduardo/

Why do we love
polynomials?
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Polynomials

Why do we love polynomials / power series?

» Universal approximators

> Stone—Weierstrass uniform approximation on compact sets.
» Taylor expansion local approximation with explicit coefficients and quantitative error.

> Linearization via lifting for v: [0, T] x R — R:

Nonlinearity in x becomes linearity in the lifted state x.

» Products are linearized thanks to Cauchy’s product

M+N

Za,a Zﬁ,mxf > w06t = (o)) with e Zak_, 10
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Polynomials

Why do we love polynomials / power series?

» Universal approximators

> Stone—Weierstrass uniform approximation on compact sets.
» Taylor expansion local approximation with explicit coefficients and quantitative error.

> Linearization via lifting for v: [0, T] x R — R:

Nonlinearity in x becomes linearity in the lifted state x.

» Products are linearized thanks to Cauchy’s product

M+N

Za,a Zﬁ,mxf > w06t = (o)) with e Zak_, 10

Summarize then Linearize
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Okay... but can
polynomials be
useful in finance ?
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Polynomials

A Financial Problem SPX/VIX
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> VIX: the "fear" index that reflects market's expectations for volatility of the S&P 500
over the next 30 days
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Polynomials

SPX-VIX joint calibration problem

> Related literature strongly agrees that conventional (parametric) one-factor continuous
Markovian stochastic volatility models are not able to achieve a decent joint calibration

» Our main motivations can be stated as follows:

Can joint calibration be achieved by a simple model?

If so, can we do it in a tractable way?
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Polynomials

SPX and VIX: A sneak peak at the results

SPX implied volatility VIX implied volatility
T = 11 days T = 30 days T = 9 days T = 23 days
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Joint calibration of SPX IV, VIX IV and VIX futures on 23 October, 2017 using the exponential kernel K®? with 6 parameters.
The blue and red dots are bid/ask implied vol, green lines are model fit. Vertical bars represents VIX futures price.

Characteristics of iv: steeper SPX slopes for small T, upward slope for VIX, difficulty to match
levels.
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The Quintic Ornstein-Uhlenbeck Model

Ref
» The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles,
with Camille llland and Shaun Li, Risk Magazine, Cutting Edge section (2023).

» Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with
quantization hints with Camille llland and Shaun Li, Mathematical Finance (2025).
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Quintic OU volatility model

The model

—L =0dB:, So>0, B=pW++1—-p2W,

or = go(t)p(Xe), p(x) =ap+aix+ asx® + asx®,

t
Xe =1 / e M= gy,
0

» non-negative coefficients «vy, a1, as, as > 0,

» p polynomial of degree five to reproduce upward slope of the VIX smile. Restricting a to
be non-negative allows the sign of the leverage effect to be the same as p.

» input curve gy allowing the model to match term-structures observed on the market.
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Quintic OU volatility model

The model

Calibration error monthly rolling average

3.0%
2.0%
1.0%

o

o B S P

Flexibility —— rough quintic  —— quintic OU
» Remarkable joint fits of SPX-VIX volatility surfaces (1 week to 3 months), daily
calibration across more than 10 years of data
> Consistently outperforms in all market conditions more complex (rough) models:

t
X: :/ (t—s)"~Y2dw,, H<1/2
0

fractional (and singular) kernels do not align well with market data on short term.
» Deep pricing with quantization hints method
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Quintic OU volatility model

The model

?:O’deh 50>07 B:PW+V1—P2WJ_7
t
0e = B(Dp(Xe),  px) = a0 + anx + and + asx”

t
Xe =1 / e M= gy,
0

)

Tractability
» Explicit expression for the VIX

100 [TFA
VIXF = N /T Efo? | Fr]du,

with A = 30 days, which is polynomial in the OU process Xt. = Pricing VIX products by
integration against Gaussian density

» Pricing of SPX products: Simulation of X is exact. Other alternatives than MC or PDE
methods?
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Faster and more accurate pricing of SPX derivatives?

Ref

» Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models, with
Shaun Li and Xuyang Lin, Finance & Stochastics (2025).
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Fourier pricing in polynomial OU model

Intuition

dsS

=B, S >0, B=pW /1o AW
t

=go(t)p(Xe) p(x) = Zakx

dXt = (a + bXt)dt + Cth.
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Fourier pricing in polynomial OU model

Intuition

dsS

=B, S >0, B=pW /1o AW
t

=go(t)p(Xe) p(x) = Zakx
dXt = (a + bXt)dt + Cth.

> Stein-Stein/Schobel-Zhu model: p(x) =
> Bergomi model p(x) = exp(x);
» Quintic OU model: p(x) = po + a1x + asx® + asx>.

More generally, the model is well-defined with fOT E[02]ds < oo, or with p falling into a class of
power series which contains all polynomial and exponential functions.
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Fourier pricing in polynomial OU model

Intuition

(ft_a-l’dBta 50>07 B:PW+VI_P2WL7
t

=go(t)p(Xe) p(x) = Zakx
dXt = (a + bXt)dt + Cth.

> For p(x) = x, the volatility is affine in X (Stein-Stein/Schobel-Zhu model) and the model
is affine (Duffie, Filipovic, and Schachermayer (2002)) in (1, X, X?) in the sense that the
characteristic function is given by

S T

E lexp <u|og < + v/ deS) ) ]-'t] = exp (1ho(t) + Y1 () Xe + 12(£)X7)
t

where (1o, 11, 12) solve a system of Riccati ODEs = Fast pricing by Fourier inversion

methods.
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Fourier pricing in polynomial OU model

Intuition

dsS
=B, S >0, B=pW /1o AW
t
=go(t)p(Xe) p(x) = Zakx

dXt = (a + bXt)dt + Cth.

> For general p, one expects the model to be affine in (1, X, X?,...,X",...) so that an
Ansatz of the characteristic function:

-
exp (ulog% + v/ ofds> ‘ ]-'t] = exp Z¢k(t)Xf
t t

k>0

E

This is in accordance with recent expansions of characteristic function in (Cuchiero,
Svaluto-Ferro, and Teichmann, 2023; Friz, Gatheral, and Radoici¢, 2022)
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Fourier pricing in polynomial OU model

Riccati ODE

ui(0) = (80 + "ir(9) - )T - 1)@= a)y

c2(k+2)(k+1)
2

2 _ -
+ S W)+ B0 + pF(£)eo(T = B)c(a s ()i
with @Zk = (k+ 1)tgy1 and (ux v)e = Z;(:o UiVik_j.

+ bkti(t) + a(k + L)ty (t) + Vit(t)

https://sites.google.com/view/abijabereduardo/


https://sites.google.com/view/abijabereduardo/

Fourier pricing in polynomial OU model

Riccati ODE

ui(0) = (80 + "ir(9) - )T - 1)@= a)y

2(k +2)(k +1)
2

2 - ~ _
+ j(w(t) #(t))k + pf(t)go(T — t)c(a* ¥(t))x-
with ¢ = (k + 1)¢q1 and (u* v)y = ZLO UjVk—i.

Joint characteristic functional

+ bkti(t) + a(k + L)ty (t) + Vit(t)

Assume that there exists a solution (¢x)>0 to the infinite dimensional Riccati equation such
that that 3, [¢x(t)|x* has infinite radius of convergence and Re(>", 1k(t)x*) < 0. Then,

T T
E lexp </t f(T —s)dlog Ss +/t g(T — s)aﬁds) = exp (Z (T — t)Xt") .

k>0

X

v,
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Fourier pricing in polynomial OU model

Riccati ODE

ui() = (gt + 1

+ bkii(t) + a(k + 1)thx4a(t) +

(F() = 1)) g3(T — t)(a * )

2(k+2)(k+1)

> Yr42(t)

+ S+ T+ (el T — el s H(O)

with zzk = Ypr1(k+ 1) and (uxv), = Zf'(:o UiVi—;.
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Fourier pricing in polynomial OU model

Riccati ODE

ui() = (gt + 1

+ bkii(t) + a(k + 1)thx4a(t) +

(F() = 1)) g3(T — t)(a * )

2(k+2)(k+1)

> Yr42(t)

+ S+ T+ (el T — el s H(O)

with sz = Ypr1(k+ 1) and (uxv), = Zf'(:o UiVi—;.
» Theoretically Not-standard infinite dimensional Riccati equations, no existence
theory/result in the literature. Can be related to analyticity of solutions to PDE...
» Numerically Truncate system to some N but stiff system:

> the calibrated coefficients (b, c) are large in general and the coefficients (k + 1)(k + 2)
become very large with the dimension k.
» Standard Euler Schemes/ Explicit Runge-Kutta method are not enough.
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Fourier pricing in polynomial OU model

Numerical lllustration

Numerical solution of

Elexp(—W}4! )] Error
1.00 '
: 0.0030
0.98 i
—— exact i 0.0015
096 | ____ V=10 :
e M= ' 0.0000
0.94 M=20 j
——— M=40 S
_____ - -0.0015
— RK4, M = 20
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Fourier pricing in polynomial OU model

Numerical lllustration

Fourier pricing for the Quintic OU model

T =1 week 6 months

56 0.40

A === MC95%Cl 035
z05 — M=12 :

2 i — M=22 0.30

Ehd — M=32 0.25

E 0.3 0.20

go2 0.15

0.1 0.10

~020 -015 -0.10 -0.05 0.00 06 -04 02 00
log-moneyness
1 year 2 years

0.40 0.40

0.35 0.35

0.30 0.30

0.25 0.25

0.20 0.20

0.15 0.15

0.10 0.10

-10 -0.8 -0.6 -0.4 -02 00 02 -1.5 -1.0 -0.5 0.0

https://sites.google.com/view/abijabereduardo/


https://sites.google.com/view/abijabereduardo/

Fourier pricing in polynomial OU model

Numerical lllustration

Fourier pricing for the one factor Bergomi model

T =1 week 6 months
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How to incorporate
more memory in
polynomials?
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Signatures!
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Signatures

We already considered the sequence of monomials

1
(1, W,, = W,_?, 3 wW3,..)

to linearize the pricing problem for the Quintic model. The sequence is called the signature of
Brownian motion W and can be re-written as a sequence of iterated Stratonovich integrals

t t S t S3 S2
(1,/ dWs,/ / dw,, odWsZ,/ / / dW,, o dW,, o dWS3,...> .
0 0 JO 0 JO 0
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Signatures

We already considered the sequence of monomials

1
(1, W,, = W,_?, 3 wW3,..)

to linearize the pricing problem for the Quintic model. The sequence is called the signature of
Brownian motion W and can be re-written as a sequence of iterated Stratonovich integrals

t t S t S3 S2
(1,/ dWs,/ / dw,, odWsZ,/ / / dW,, o dW,, o dWS3,...> .
0 0 JO 0 JO 0

It can be extended to a path-dependent setting, in particular with the time augmented
process W : s+ (s, W;s) to get

P 1 t t 1
W, = (l,t, Wt,§t27/ des,/ Wsds,EWE,...,...)
0 0

The signature of a path is defined as the sequence of iterated integrals of the path. It can be
seen as the analogue of polynomials on path spaces.
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Signatures

Universality of linear combinations of signatures on path-space:

» Universal approximation
f(t7 (Wu)ugt) ~ <£taWt>

» Universal representation?
f(t; (Wu)ugt) = <£t7wt>

Linear combinations can have either
» finitely many non-zero terms: finite polynomials on path space

» infinitely many non-zero terms: power series on path space

https://sites.google.com/view/abijabereduardo/
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Signatures

1 will denote the first coordinate of W, i.e. time, and 2 the second, the Brownian motion.

111 121

o 1 11 12 211 221
"\2)7\21 22)° 112 122

212 222

12,W,) = [ [ dudW,
21, W,) = [ [*dW,ds,

12,W,) = [7 [ [ dW, o duo dW,
2-212-3-12,W,) = [; (2 f W,du — 3s) o dW,

etc.

(
(
(2
(

vy Vv VY yYy
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Signatures

Definition and notations

n

If (e1, €2) basis of R?, then for (i1, ..., i) € {1,2}", we write e;, @ €, ®...e¢;, as
i-in

Vo i={i1- -in:ik € {1,2} for k =1,2,..., n}.
Denote by @ the empty word, and V, := {@} basis for (R?)®? = R.
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Signatures

Definition and notations

If (e1, €2) basis of R?, then for (i1, ..., i) € {1,2}", we write e;, @ €, ®...e¢;, as
i
Vpi={it--intik€{1,2} for k=1,2,...,n}.
Denote by @ the empty word, and Vg := {@} basis for (R?)®° = R. It follows that

V := Up>0V, represents the standard basis of T((R?)). In particular, every £ € T((R2)), can
be decomposed as s

0=y 3",

n=0veV,
where ¢V is the real coefficient of ¢ at coordinate v.
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Signatures

Definition and notations

If (e1, €2) basis of R?, then for (i1, ..., i) € {1,2}", we write e;, @ €, ®...e¢;, as

i1 R '
={iy-in ik € {1, 2}fork—1,2,...7 n}.
Denote by @ the empty word, and VO := {@} basis for (R?)®% = R. It follows that

V := Up>0V, represents the standard basis of T((R?)). In particular, every £ € T((R?)), can

be decomposed as s
0=y 3",

n=0veV,
where ¢V is the real coefficient of ¢ at coordinate v.

(¢, W) .:ZZ@VW“

n=0veV,

for admissible elements /¢ in 00 -

A={leT(R)): |({ <ocforallte[o, Tlas}, [ef=> |>_ Wy
n=0 |veV,

https://sites.google.com/view/abijabereduardo/

t>0,
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Signatures

Analogy with power series

Object  Interpretation 1-dim 2-dim
X Path Wt Wt = (t, Wt)
. 2 = t
X; Signature (17Wt7%,--~) W, = (1, (Wt) 7>
Linear combination S0 we =
X . C . n=n pl W TW
<€7 t> (pOSSIb|y |nf|n|te) (power series) Z” wg\:/,,g Wi
~ ~ th —~
(6, X4)(h,X;)  Product is linearized Z,(](Cgaz(;);)w <£(§?|1ui:"flz\\)]t>
F ~f Approximation power | F(W;)~ >, , WP F(t, (Ws)s<e) = (f, Wt)
(Stone-Wesierstrass Theorem)
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Signatures
Shuffle property

Definition (Shuffle product)

For words v,w € V and letters i, j:
(vi) LU (wj) = (v LU (wj))i + ((vi) LLI w)j, wlllg=glllw=w.
Extended by linearity to the elements £ =372 37 - ('v.

Shuffle property
If 01,0, € A, then ¢; LLI ¢, € A and

(01, W) (b, W) = (01 LU €5, W,).
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Summarize then
Linearize


https://sites.google.com/view/abijabereduardo/

Back to our representation question

t t
X, =X0+/ at, s, (Xu)ugs)ds—i—/ b(t, s, (Xy)ues)dW.
0 0

- <£t7 Wt>?

Based on
» Path-dependent processes from signatures with Louis-Amand Gérard and Yuxing
Huang, 2024.
(') Not a new question
> at least in the Markovian setting in 1980s: Ben Arous (1989) Doss, Fliess, Kunita,
Sussmann, Yamato ...

> intimately related related to convergence questions of stochastic Taylor expansion’s (
Azencott, Bismut, Baudoin, Malliavin, Platen, ...).
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Representation formulas with signatures

A simple recipe

Ornstein-Uhlenbeck (OU) process X:

t

t
Xt=x+/ K(G—Xt)dt—{—n/ dW,
0 0

1. Write SDE in Stratonovich form, which here is the same.
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Representation formulas with signatures

A simple recipe

Ornstein-Uhlenbeck (OU) process X:

t

t
Xt=x+/ K(G—Xt)dt—{—n/ dW,
0 0

1. Write SDE in Stratonovich form, which here is the same.
2. Algebraic equation for candidate ¢ such as X; = (¢, W,)

L=xP+ (k0 — k)1 4+n2=p+Lq

with
p=(x@+ KOl +n2), q=—kl.
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Representation formulas with signatures

A simple recipe

Ornstein-Uhlenbeck (OU) process X:

t

t
Xt=x+/ K(G—Xt)dt—{—n/ dW,
0 0

1. Write SDE in Stratonovich form, which here is the same.
2. Algebraic equation for candidate ¢ such as X; = (¢, W,)

L=xP+ (k0 — k)1 4+n2=p+Lq

with
p=(x@+ KOl +n2), q=—kl.

3. Solve the linear algebraic equation

f:p(@—q)_l :qu®k
k
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Representation formulas with signatures

A simple recipe

Ornstein-Uhlenbeck (OU) process X:

t

t
Xt=x+/ K(G—Xt)dt—{—n/ dW,
0 0

1. Write SDE in Stratonovich form, which here is the same.
2. Algebraic equation for candidate ¢ such as X; = (¢, W,)

L=xP+ (k0 — k)1 4+n2=p+Lq
with
p=(x@+ KOl +n2), q=—kl.

3. Solve the linear algebraic equation
t=p(@—q)t=p) q**
K

4. Prove that ¢ € A so that (¢, WQ is well defined, apply Ité and prove that it solves the
SDE ...
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Representation formulas with signatures

Example 1: OU

The Ornstein-Uhlenbeck (OU) process X:
dX; = k(0 — Xe)dt + ndW;, Xo=x €R,

Xt — <€OU,Wt>, éOU = (X@ —+ k01 —+ nz)em—ml (= A, 1:25

where Z;Z
L 1 1 0.25
e ‘ =0 +0+ EEleJ2 4+ __ingJ" + .- 0.00
n

~0.25{ ~--- True process

To be more explicit, up to order 3:

0
o | —rk(x —6) kK2 (x —0) 0 0 0
- ) n ) —Kn) 0/’ HZ,’,} ol
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Representation formulas with signatures

Example 2: Geometric Brownian motion

The mean-reverting geometric Brownian motion
dY:y = k(0 — Yo)dt + (n+ aYy)dW:, Y=y €eR,

Y, = ((mCBM ), gmGBM _ (y@ n (119 _ %) 1 +772) (= (4 57)1402) €A

0.6
0.5
0.4
0.3 A
0.2

0.1

0.01 ——-- True process
0.0 0.2 0.4 0.6 0.8 1.0
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Representation formulas with signatures

Example 3: path-dependent processes

Certain linear Volterra equations:

t t
Xe :Xo+/ Kl(t—s)(ao+alX5)ds+/ Ka(t — s)(bo + b1.Xs)dWs.
0 0
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Representation formulas with signatures

Example 3: path-dependent processes

Certain linear Volterra equations:

t t
Xe = Xo + / Ki(t — s)(ao + a1 Xs)ds + / Ka(t — s)(bo + b1.Xs)dWs.
0 0
we will need the following structure on the kernels K; and Ka:

[0,00)

Ka(u) = / e Vpun(dx) and  Ko(u) = / e~y (d),
[0,00)
for finite measures p1 and po and such that

/ X"y (dx) —I—/ x"ua(dx) < M", neN,
[0,00) [0,00)

for some constant M > 0. (!) Singular kernels such as the fractional kernel t"~1/2 with
H < 1/2 are excluded.

https://sites.google.com/view/abijabereduardo/
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Representation formulas with signatures

Example 3: path-dependent processes

Certain linear Volterra equations:

t t
Yy = Yo+ / Kl(t — S)(ao + ale)ds + / Kz(t — S)(bo + b1X5)dW5.
0 0

Signature representation

Y, = <£V0I’T‘;§7t>7 Vol _ pVOI(Q _ q)—l

1
p:= apl : )eLu_Xlul(dX) + bo(2 = Eble(O)l)/[ )euJ_Xll,Lz(dX) + Yoo,
0,00 0,00

1
g:=al [ )e“L’_Xlul(dx) + by (2 — Eble(O)l)/[ )eLU_le,z(dX)7
0,00 0,00

v
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Representation formulas with signatures

Example 3: path-dependent processes

For more general kernels, possibly singular:

Approximation result

Let Ki, K> be locally square-integrable kernels. For n € N, let uf(dx) = >."_; ¢idx(dx) and
ps(dx) =37, didy.(dx), for some ¢, di, x;, yi € R, and let K, K§ be the corresponding
kernels and Y" = (£Y°! W,) as in previous theorem both with u] and u3 instead of 1 and pp.
Assume that

T T
/ |K{(s) — Ki(s)|?ds +/ |KJ(s) — Ka(s)]?ds — 0, as n— oc.
0 0

Then,
sup E [|Yt - (EX"',W,?)V’] —0, asn—o0, peN
te[0,T]

https://sites.google.com/view/abijabereduardo/
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Representation formulas with signatures

Example 3: path-dependent processes

Gaussian Volterra processes including non-semimartingale processes such as the
Riemann-Liouville fractional Brownian motion

t
Wt”:/ (t—s)"Y2dw,, He (0,1).
0

For instance, the (time-dependent) representation of W reads

H RL T RL H—1 S (%_H)F7 ®n
W, = (65, Wy), £ =10yt ZE T 172,
n=0

where (+)™ is the rising factorial. This shows that (E,WQ is not always a semimartingale.
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Representation formulas with signatures

Example 3: path-dependent processes

The Riemann-Liouville fractional Brownian motion

t
Wf’:/ (t—s)"Y2dw,, He (0,1).
0

3.0
4
2.5
3
2.0
2
15
1
1.0
0
0.5
=11 - True'process ' ! --=- True process
—— M=8, regression 0.0] — M=8, regression
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t
(a) H=0.1 (b) H=10.3
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Representation formulas with signatures

Example 3: path-dependent processes

The shifted Riemann-Liouville fractional Brownian motion

t
WtH”’z/ (n+t—s)"Y2aw,, He(0,1).
0

1
n=—, H=01
52
2.0
15
1.0
05
00 T 22
— M=8
— M=16
=057 ... True, Euler
00 02 04 06 08 10
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Towards Signature volatility models

d. —~
% = %dB;, Ti= (06, W), B=pW+\/1-p2W"
t

Based on

» Signature volatility models: pricing and hedging with Fourier with Louis-Amand Gérard,
SIAM Journal on Financial Mathematics, to appear (2025)

Refs
» Perez Arribas, Salvi, and Szpruch (2020)
» Cuchiero, Gazzani, Méller, and Svaluto-Ferro (2025).
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Tractability of signature volatility models

Characteristic functional

Let f,g : [0, T] — C be measurable and bounded functions. Assume that there exists 1
solution to the following system of time-dependent Riccati equations

2 _
e = 20 4 ()0 LU el) + ek + il + (M T g(r)> 12, gy =0,

such that ¥y € Z and iRe((wT_t,WQ) < 0, then, the joint characteristic functional is given by

T T
exp (/ f(T—s)dIogSs-i-/ g(T—s)afds)
t t

» Similar representations for signature SDEs (Cuchiero, Svaluto-Ferro, and Teichmann,
2023).
> Related representations Friz, Gatheral, and Radoi¢i¢ (2022); Lyons, Ni, and Tao (2024)

https://sites.google.com/view/abijabereduardo/
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Application: Fourier pricing and hedging in Volterra Bergomi Models

Definition @
Volterra Bergomi model
dSt = StO'tdBt

) t
[ ernxt_ﬂz_var(xt), Xt = / K(t — S)dWS
0

https://sites.google.com/view/abijabereduardo/
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Application: Fourier pricing and hedging in Volterra Bergomi Models

Definition

Volterra Bergomi model
dSt = StO'tdBt

2 t
[ ernxt_ﬂz_var(xt), Xt = / K(t — S)dWS
0
> n-factor Bergomi model (under-parametrized version with same BM)
n
K(t) = Z cie M,
i=1

> Rough Bergomi of Bayer, Friz, and Gatheral (2016)
K(t) = ctl=12 He(0,1/2)

» Shifted fractional kernel
K(t)=c(n+t)"7Y2 n>0, HeR.

https://sites.google.com/view/abijabereduardo/
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Application: Fourier pricing and hedging in Volterra Bergomi Models

Data to Kernels @

Log-plot SPX ATM skew is concave, flattening
behavior at short maturities

T — 8kU;V(T, k) |k:0

log average ATM skew

054 ~o_
0.0 -
=
[)
X
P 05+
g
< —_
j2]
L -104 ---- rough
---- path-dependent
_15] ~— one-factor .
---- two-factor N
T T T T T T T T
w M 2M  3M 6M 1Y 2y 3y
maturity T
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Application: Fourier pricing and hedging in Volterra Bergomi Models

Data to Kernels

Log-plot SPX ATM skew is concave, flattening » Exponential kernel K(t) = ce M gets shape
behavior at short maturities but lacks flexibility

T — Okoi(T, k) k=0 » Two time scales captured via
double-exponential kernel

log average ATM skew K(t) =ce Mt e
05 . > Fractional kernel K(t) = ct
(H € (0,1/2)) implies monofractal scaling
(straight line) and blow up at 0, inconsistent
with data

H—1/2

o
o
1

> Shifted fractional kernel
K(t) = c(a+ t)"/? with a > 0 breaks
monofractality /roughness and decouples

-0.5

log ATM skew

-1.09 ---- rough
--- path-dependent short and long term behaviour
---= one-fact
aan I X |> AJ and Li (2025); Bergomi (2015);
. . — . . — Delemotte et al. (2023); Guyon and
1w ™ 2M  3M 6M 1Y 2y 3y H
maturity T El Amrani (2022)
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Application: Fourier pricing and hedging in Volterra Bergomi Models

Data to Kernels @

Calibration error: monthly rolling average

17.5%
15.0%
12.5%
10.0%

7.5%

5.0%

2.5%

PN S P I I R AN i o
—— rough —— path-dependent ~—— one-factor —— two-factor
» Daily calibration of SPX vol surface (maturities couple of days to 3 years) on more than 10 years
» Rough Bergomi model does not align with market data.
» Non-rough path-dependent Bergomi models aligns much better in all market conditions
» Deep pricing with quantization hints method
AJ & Li (2025). Volatility Models in Practice: Rough, Path-Dependent, or Markovian? Mathematical Finance

https://sites.google.com/view/abijabereduardo/


https://sites.google.com/view/abijabereduardo/

Application: Fourier pricing and hedging in Volterra Bergomi Models

The Shifted fractional Bergomi model as signature volatility model e

Shifted fractional Bergomi model
dSt = StUtdBt

H,ain_2 H,a
oy = O—OeTIWz 5 Var(W,™7)

with .
WtH’a = / (a +t— S)H_l/dem a>0, HekR
0
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Application: Fourier pricing and hedging in Volterra Bergomi Models

The Shifted fractional Bergomi model as signature volatility model e

Shifted fractional Bergomi model

dSt = StUtdBt

H,.ain_2 H,a
oy = O—OeTIWz 5 Var(W,™7)

with .
:/ (a+t—s)""12dW,, a>0, HeR.
0

Recast into signature volatility model o, = <€t,w ):

> W2 = (02 W) with 67 = 100y (t + a)72 3200 ((t+a)2 1912,

» using the Shuffle product

H,a —~

(£H2 W) EHa Ln Y
enWH Z & nl ‘ Z u 2 = <eu_|ne , W)

n>0 n>0
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https://sites.google.com/view/abijabereduardo/

Application: Fourier pricing and hedging in Volterra Bergomi Models

Fourier Pricing

Shifted fractional Bergomi model by Fourier pricing in signature volatility model:

European put with maturity one month for the European put with maturity six months for the
shifted fractional Bergomi (M=5,n=0.5,H=0.1,¢ =1/52). Shlfted fractional Bergomi (M =5,n=0.5,H=0.1,e =1/52).
g, —— Monte Carlo . —— Monte Carlo
CI [5%, 95%] CI [5%, 95%]
0.28 —— Sig-vol, M=5 0.30 —— Sig-vol, M=5
> >
= £0.29
5027 ]
S 2028
kel ke
2026 £0.27
o o
£ £,
. 0.26
0.25
—-0.15 -0.10 -0.05 0.00 -0.4 -0.3 -0.2 -0.1 0.0
log & log &
(c) 1 month (d) 6 months
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Application: Fourier pricing and hedging in Volterra Bergomi Models

Fourier hedging e

Shifted fractional Bergomi model by Fourier quadratic hedging in signature volatility
model:

60

= Fourier, signature
=+ Vanilla NN

= = Signature NN

=+ Recurrent NN

50

40

30

20

10

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
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How to truncate?

dSN = SN(gN W,)dB,, B=pW +\/1— p2W".

Based on

» Martingale property and moment explosions in signature volatility models with Paul
Gassiat and Dimitri Sotnikov

https://sites.google.com/view/abijabereduardo/
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How to truncate?

dsy = SM(oN, Wo)dB,, B =pW +/1—2W*.

Assume non-zero leading coefficient 02" # 0 in front of the word 2®V, (i.e. the term W)
and non-zero correlation p and N > 2:

https://sites.google.com/view/abijabereduardo/
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How to truncate?

dsy = SM(oN, Wo)dB,, B =pW +/1—2W*.

Assume non-zero leading coefficient 02" # 0 in front of the word 2®V, (i.e. the term W)
and non-zero correlation p and N > 2:

A
The price process SN is a true martingale if and only if N is odd and po2°" < 0. J
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How to truncate?

N=4, p=0.9 N=4, p=-0.9
osof - can e
e 046 e
055 \,
044 AN
050 .
P 042 R
045 \
o — ~
040 X
) - 038 >
LES o N
= > 036 X
o == xy el
osaf—f———mme==miT
02
S2 w1 o @ o S2 w1 o @ o
log(KISo) log(KISo)
N=5, p=0.9 N=5, p=-0.9
--- call ode --- call
e Y
035 o
050 ™
_t” 040
040 —— = 038
Y 4 036
035 =
o < 034
oa0{ e \
| 032 -
02s
Sz %1 oo > o iy T w0 o PR
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Stationarity?
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Motivation

Time invariance and fading memory

Two important properties when modeling memory effects of dynamical systems:

» Time invariance the output signal Y; at time t depends only on the continuous input
signal (Xs)—co<s<¢ Up to time t, but not on the absolute time t.

Ye = F((thS)SZO)-

= Postulates, in some sense, a stationarity in the relationship between input and output.
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Motivation

Time invariance and fading memory

Two important properties when modeling memory effects of dynamical systems:

» Time invariance the output signal Y; at time t depends only on the continuous input
signal (Xs)—co<s<¢ Up to time t, but not on the absolute time t.

Ye = F((thS)SZO)-

= Postulates, in some sense, a stationarity in the relationship between input and output.

» Fading memory the influence of the distant past diminishes over time, i.e. Y; gradually
“forgets” the remote history of X.
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Motivation

Time invariance and fading memory

Two important properties when modeling memory effects of dynamical systems:

» Time invariance the output signal Y; at time t depends only on the continuous input
signal (Xs)—co<s<¢ Up to time t, but not on the absolute time t.

Ye = F((thS)SZO)-

= Postulates, in some sense, a stationarity in the relationship between input and output.

» Fading memory the influence of the distant past diminishes over time, i.e. Y; gradually
“forgets” the remote history of X.
» This idea dates back to the works of Volterra (1887) and Wiener (1958).
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Motivation

Time invariance and fading memory

Two important properties when modeling memory effects of dynamical systems:

» Time invariance the output signal Y; at time t depends only on the continuous input
signal (Xs)—co<s<¢ Up to time t, but not on the absolute time t.

Ye = F((thS)SZO)-

= Postulates, in some sense, a stationarity in the relationship between input and output.
» Fading memory the influence of the distant past diminishes over time, i.e. Y; gradually
“forgets” the remote history of X.

» This idea dates back to the works of Volterra (1887) and Wiener (1958).
> Boyd and Chua (1985) formalize this concept by requiring the functional F to be continuous
not with respect to the uniform topology, but with respect to a weighted uniform topology:

F has fading memory if its output remains close for input paths that are close in the recent
past, even if they differ in the distant past.
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Motivation

Problem formulation

> We are interested in modeling time-invariant dependence between two time series (Xe, Y:)ter, i.e.
Yt = F(XSE(foo,t])v

for some continuous function F.
» In practice, often only a single realization of a time series or dynamical system is observed
(financial data), from the infinitely distant past —oco up to t.

Problem
Can we generalize the exponential moving average (EMA)

— Ak
Yn = E € Xn—k

k>0

to a framework that:
» is universal and captures nonlinear features of the time series;

» Preserves the Markov property;

» Remains mathematically tractable?
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The Exponentially Fading Memory Signature

Based on

» Exponentially Fading Memory Signature with Dimitri Sotnikov

https://sites.google.com/view/abijabereduardo/
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Fading Memory Signature

Definition

» We consider an R9%valued increment continuous semimartingales X, i.e., for all s € R, the
process (Xs1¢ — Xs)e>0 is a semimartingale in the usual sense with respect to (Fsi+)e>o0-

» Vector A = (A1,...,A9) € R? with positive entries.
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Fading Memory Signature

Definition

» We consider an R9%valued increment continuous semimartingales X, i.e., for all s € R, the
process (Xs4+ — Xs)e>0 is a semimartingale in the usual sense with respect to (Fst¢)>0.

» Vector A = (A1,...,A9) € R? with positive entries.

Fading Memory Signature

The fading-memory A-signature of X is defined by the components
X;\’ilmi" = / e_Afl(t—Ul)dXL’;ll 0--:0 e_)‘in(t_u")dX[';"n, ik e {1,...,d},
—oo<u <---<up<t
and on [s, t]

Xap = / e M Emm) gxi o o @A (E=tn) g
) uy Un
s<up<---<up<t
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Fading Memory Signature

Time augmentation

First two levels for the time-extended Brownian motion

The first elements of W> are given by

2

- _ t _ —
WM =1 M= At W2 — )\T AT e 22)‘(t ) dW,
t 9 t Yt 9 t f_too e_2>\(t_s) sts % 3

where Y = (Y;)ter is a stationary Ornstein—Uhlenbeck process defined by

t
Y, = / e M=) g,
—00
)

/\)\ 2®n
Moreover, W = T
n!
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Fading Memory Signature

Time augmentation

First two levels for the time-extended Brownian motion

The first elements of W> are given by

5 o
WA 1 WM — A1 =oa A AL[E e 9 gu,
t =4 © =\ %) t = ft e=2\t=9)y_ds Y? >
—oo 2l

where Y = (Y;)ter is a stationary Ornstein—Uhlenbeck process defined by

t
Y, = / e M=) g,
—00
)

/\)\ 2®n
Moreover, W = T
n!

» Note that the first two levels are stationary!
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First properties

Time Invariance and Stationarity

If we shift the inputs by h, we shift the output by h:

Time Invariance

If X = (Xt)ter is a continuous semimartingale and Y. = X, for some h € R, then

A _ WA
Y2 = X2

Stationarity

Suppose that X = (X;) is an R9-valued continuous semimartingale with stationary
increments. Then, X* = (X),cr is a stationary T((R9))-valued process. In particular, for all
teR,

LX) = L(X3).

> In particular, this holds for X; = (t, W;).
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Applications to learning
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Application 1: Regression and Prediction

We observe a signal S; = sin(Z;), where
dZt = _,LLtht + Vth,

Goal do a linear regression of S; against

1. The standard time-augmented signature of W, = (t, We):

S = <£7Wt>

2. The EFM-signature of W, = (t, Wy):

S = <e, W¢>

Estimate £ observing W and the signal S.
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Application: Regression

1.00 T T T 1.00 T T T
| —— Signal | —— Signal
0.75 | I I I S PR Regression 1 075 | I I N I N PP Regression i
!J l — In-sample interval M , — In-sample interval
0.50 X Al I 0.50 , I R I
0.25 ‘ I 0.25 ‘ ‘ ill
0.00 J { 0.00 + l ’
0251 - u‘ | —0251 | { ]
—0.50 1 ] F " [ -0.50 171 ] ' t ‘ '.
-0.75 ! -0.75 : 1 ! : {
-1.00 T -1.00 T
0.0 0.5 1.0 2.0 2.5 3.0 3.5 4.0 0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0

Signature (on the left) and Fading memory signature (on the right) regression. Signal parameters are = 25, v = 3, truncation
order is N = 5. Vertical bar separates in-sample and out-of-sample data.
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Wrap-up

Questions

Contact
» eduardo.abi-jaber@polytechnique.edu
> https://sites.google.com/view/abijabereduardo/
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Volatility Dynamics

Two factor Quintic model

What about dynamical properties and longer maturities?

Ref

» Capturing Smile Dynamics with the Quintic Volatility Model: SPX, Skew-Stickiness Ratio
and VIX with Shaun Li (2025).
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Volatility Dynamics

Skew Stickiness Ratio

The Skew Stickiness Ratio (SSR), R; 1 is defined in Bergomi (2009) as

1 0,7, log$S):
Rt,T = 3
St,T at(log 5>t

» 5] denotes the ATM implied volatility
» and Sy 7 is the ATM (forward) skew.

The SSR can be interpreted as the instantaneous change of the ATM implied volatility with
respect to the instantaneous change of the log-price, normalised by the ATM skew.
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Volatility Dynamics

Skew Stickiness Ratio

The Skew Stickiness Ratio (SSR), R; 1 is defined in Bergomi (2009) as

1 0,7, log$S):
Rt,T = 3
St,T at(log S>t

» 5] denotes the ATM implied volatility
» and Sy 7 is the ATM (forward) skew.

The SSR can be interpreted as the instantaneous change of the ATM implied volatility with
respect to the instantaneous change of the log-price, normalised by the ATM skew.

SPX SSR (120-day-rolling window)
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Empirical time series of the SSR from 2012 to 2022, computed using a 120-day rolling window.
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Volatility Dynamics

Skew Stickiness Ratio

Calibrating smiles and SSR is notoriously difficult for stochastic volatility models Bourgey,
Delemotte, and De Marco (2024); Friz and Gatheral (2025). Two factor Bergomi model:

SPX term structure 6 May 2024

ATM implied volatility ATM skew ATM SSR
x 0} X X x
0.16 » * X « X x »
,( X
- 0.6 2.0
0.14 4 l X
» X 154 =
x 04 °® :
0124 x .
» .
e SPX data x x « 1.0 0
010 g X two-factor Bergomi 0.2 LS )-( - * o . . . o
T T T T T T T T T T T T T T T T T T T T T
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Maturities

Calibrated two factor Bergomi model on term structures May 6, 2024.
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Volatility Dynamics

Two factor Quintic model

dS: = .o (det /1o p2dwf) . S>0,

or = go(t)P(Z:), p(z) = Zakz
Zt: 0Xt + (1 — Q)Yt,

t t
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0 0
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Vol

atility Dynamics

Two factor Quintic model

The two factor Quintic model is able to achieve impressive fits of the term structures of
ATM-vol, skew and SSR:

SPX term structure 6 May 2024

ATM implied volatility ATM skew ATM SSR
016] © SPxdata . = x x 164 i
X model b g 061 :
x ! 1.4
0.14 4 x
,( x
x 1.2
x 0.4 s
0127 2 ‘ 1.04 ¥ «
" x 0.8 v ¥
0104 g 0.2 x . oo . . .
00 05 1.0 15 20 25 3.0 00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 3.0
Maturities

Calibrated two factor Quintic model on term structures May 6, 2024.
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Volatility Dynamics

Two factor Quintic model

SPX and VIX:
SPX implied volatility
> T =11 days T = 30 days T = 67 days T = 88 days
E 0.31 0.34 03l 0.3
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SPX & VIX smiles (bid/ask in blue/red dots) and VIX futures (vertical black lines) on 23 October 2017, jointly calibrated by the
two-factor Quintic OU model (in green) with SSR penalisation.
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Volatility Dynamics

Two factor Quintic model

SPX and VIX:

VIX implied volatility
T = 23 days
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Volatility Dynamics

Two factor Quintic model

Penalisation for consistent values of SSR:

model SSR w/o. SSR penalization

model SSR w. SSR penalization

2.001 x ¢ MC 2.001 e e MC
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SSR of the two-factor Quintic OU model computed by finite difference and Monte Carlo. The left-hand side graph is the SSR
of the two-factor Quintic OU model jointly calibrated to SPX and VIX smiles. The right-hand side graph is the SSR of the
two-factor Quintic OU model jointly calibrated to SPX and VIX smiles, as well as the SSR.
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