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Memory Matters
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Memory-Aware modeling

Memory matters!

Many dynamical systems exhibit path-dependent behaviors such as
▶ long/short-memory effects
▶ lead-lag relationships
▶ multiple time scales

Main Question How to model these path-dependent (non-Markovian) effects in a
mathematically tractable way?
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Memory-Aware modeling

Big picture
▶ In a random environment: stochastic model
▶ Based on available information: Ft

▶ Determine actions: hedging strategy, optimal investment/liquidation, etc.
▶ Evaluate rewards / quantities of interest: E[ξ | Ft ] , option prices, etc.:

Summarize then Linearize
1. Identify good “Markovian” variables to capture the available information such that the

quantities of interest become
f
(
t,Y 1

t , . . . ,Y n
t
)

2. Ideally, variables that linearize the problem (semi-explicit formulas, fast computation).
For example, a polynomial function of a factor Y is a linear function of the extended
vector of monomials (1,Y , Y 2, Y 3, . . . , Y m).
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Memory-Aware modeling

Main Question How to model these path-dependent (non-Markovian) effects in a
mathematically tractable way?

Mathematical tools for memory-aware modeling
▶ Volterra processes
▶ Path-signatures
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Memory-Aware modeling
Key object I: Volterra processes

Named after the Italian mathematician Vito Volterra
(1860–1940): mathematical biology and integral equations, one
of the founders of functional analysis
Volterra processes are the continuous-time analogue of moving
averages:
▶ Discrete-time intuition: weighted averages

N∑
i=1

e−λ(t−ti ) ∆i Z

▶ Volterra processes (continuous time)

Xt =
∫ t

0
K(t − s) dZs

▶ The kernel K encodes memory and persistence
▶ Timely in math finance Vito Volterra
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Memory-Aware modeling
Key object II: Path signatures

Introduced by the mathematician Kuo Tsai Chen
(1923–1987): algebraic topology and analysis
Path signatures are sequence of iterated integrals
associated with a path.

▶ For a path Z , its (truncated) signature is(
1,
∫

dZ ,
∫

dZ ⊗ dZ , . . .
)

▶ An algebraic object encoding the entire path
▶ Analogue of polynomials on path space

Central in rough paths theory (Lyons), controlled differential
equations, machine learning on time series, and emerging
financial applications.

Kuo Tsai Chen
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Why do we love
polynomials?
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Polynomials
Why do we love polynomials / power series?

▶ Universal approximators
▶ Stone–Weierstrass uniform approximation on compact sets.
▶ Taylor expansion local approximation with explicit coefficients and quantitative error.

▶ Linearization via lifting for u : [0,T ] × R → R:

u(t, x) ≈
M∑

i=0
αi(t) x i = ⟨α(t), x⟩, x := (1, x , x2, . . . , xM)

Nonlinearity in x becomes linearity in the lifted state x.
▶ Products are linearized thanks to Cauchy’s product

M∑
i=0

αi(t)x i
N∑

j=0
βj(t)x j =

M+N∑
k=0

γk(t)xk = ⟨γ(t), x⟩, with γk(t) =
k∑

j=0
αk−j(t)βj(t)

Summarize then Linearize
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Okay... but can
polynomials be

useful in finance ?
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Polynomials
A Financial Problem SPX/VIX

▶ VIX: the "fear" index that reflects market’s expectations for volatility of the S&P 500
over the next 30 days
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Polynomials
SPX-VIX joint calibration problem

▶ Related literature strongly agrees that conventional (parametric) one-factor continuous
Markovian stochastic volatility models are not able to achieve a decent joint calibration

▶ Our main motivations can be stated as follows:

Can joint calibration be achieved by a simple model?

If so, can we do it in a tractable way?
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Polynomials
SPX and VIX: A sneak peak at the results

Joint calibration of SPX IV, VIX IV and VIX futures on 23 October, 2017 using the exponential kernel K exp with 6 parameters.
The blue and red dots are bid/ask implied vol, green lines are model fit. Vertical bars represents VIX futures price.

Characteristics of iv: steeper SPX slopes for small T , upward slope for VIX, difficulty to match
levels.
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The Quintic Ornstein-Uhlenbeck Model

Ref
▶ The quintic Ornstein-Uhlenbeck volatility model that jointly calibrates SPX & VIX smiles,

with Camille Illand and Shaun Li, Risk Magazine, Cutting Edge section (2023).
▶ Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with

quantization hints with Camille Illand and Shaun Li, Mathematical Finance (2025).
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Quintic OU volatility model
The model

dSt
St

= σtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) = α0 + α1x + α3x3 + α5x5,

Xt = η

∫ t

0
e−λ(t−s)dWs ,

▶ non-negative coefficients α0, α1, α3, α5 ≥ 0,
▶ p polynomial of degree five to reproduce upward slope of the VIX smile. Restricting α to

be non-negative allows the sign of the leverage effect to be the same as ρ.
▶ input curve g0 allowing the model to match term-structures observed on the market.
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Quintic OU volatility model
The model

2012
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2015
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2017
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2019
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2021

2022
2023
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Calibration error monthly rolling average

rough quintic quintic OUFlexibility
▶ Remarkable joint fits of SPX-VIX volatility surfaces (1 week to 3 months), daily

calibration across more than 10 years of data
▶ Consistently outperforms in all market conditions more complex (rough) models:

Xt =
∫ t

0
(t − s)H−1/2dWs , H < 1/2.

fractional (and singular) kernels do not align well with market data on short term.
▶ Deep pricing with quantization hints methodEduardo Abi Jaber | Quintic model https://sites.google.com/view/abijabereduardo/
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Quintic OU volatility model
The model

dSt
St

= σtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt), p(x) = α0 + α1x + α3x3 + α5x5,

Xt = η

∫ t

0
e−λ(t−s)dWs ,

Tractability
▶ Explicit expression for the VIX

VIX2
T := 1002

∆

∫ T+∆

T
E[σ2

u | FT ]du,

with ∆ = 30 days, which is polynomial in the OU process XT . ⇒ Pricing VIX products by
integration against Gaussian density

▶ Pricing of SPX products: Simulation of X is exact. Other alternatives than MC or PDE
methods?
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Faster and more accurate pricing of SPX derivatives?

Ref
▶ Fourier-Laplace transforms in polynomial Ornstein-Uhlenbeck volatility models, with

Shaun Li and Xuyang Lin, Finance & Stochastics (2025).
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Fourier pricing in polynomial OU model
Intuition

dSt
St

= σtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt) p(x) =
∞∑

k=0
αkxk ,

dXt = (a + bXt)dt + cdWt .

▶ Stein-Stein/Schobel-Zhu model: p(x) = x ;
▶ Bergomi model p(x) = exp(x);
▶ Quintic OU model: p(x) = p0 + α1x + α3x3 + α5x5.

More generally, the model is well-defined with
∫ T

0 E[σ2
s ]ds < ∞, or with p falling into a class of

power series which contains all polynomial and exponential functions.
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Fourier pricing in polynomial OU model
Intuition

dSt
St

= σtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt) p(x) =
∞∑

k=0
αkxk ,

dXt = (a + bXt)dt + cdWt .

▶ For p(x) = x , the volatility is affine in X (Stein-Stein/Schobel-Zhu model) and the model
is affine (Duffie, Filipovic, and Schachermayer (2002)) in (1,X ,X 2) in the sense that the
characteristic function is given by

E

[
exp

(
u log ST

St
+ v

∫ T

t
σ2

s ds
) ∣∣∣ Ft

]
= exp

(
ψ0(t) + ψ1(t)Xt + ψ2(t)X 2

t
)

where (ψ0, ψ1, ψ2) solve a system of Riccati ODEs ⇒ Fast pricing by Fourier inversion
methods.
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Fourier pricing in polynomial OU model
Intuition

dSt
St

= σtdBt , S0 > 0, B = ρW +
√

1 − ρ2W ⊥,

σt = g0(t)p(Xt) p(x) =
∞∑

k=0
αkxk ,

dXt = (a + bXt)dt + cdWt .

▶ For general p, one expects the model to be affine in (1,X ,X 2, . . . ,X n, . . .) so that an
Ansatz of the characteristic function:

E

[
exp

(
u log ST

St
+ v

∫ T

t
σ2

s ds
) ∣∣∣ Ft

]
= exp

∑
k≥0

ψk(t)X k
t


This is in accordance with recent expansions of characteristic function in (Cuchiero,
Svaluto-Ferro, and Teichmann, 2023; Friz, Gatheral, and Radoičić, 2022)
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Fourier pricing in polynomial OU model
Riccati ODE

ψ′
k(t) =

(
g(t) + f (t)

2 (f (t) − 1)
)

g2
0 (T − t)(α ∗ α)k

+ bkψk(t) + a(k + 1)ψk+1(t) + c2(k + 2)(k + 1)
2 ψk+2(t)

+ c2

2 (ψ̃(t) ∗ ψ̃(t))k + ρf (t)g0(T − t)c(α ∗ ψ̃(t))k .

with ψ̃k = (k + 1)ψk+1 and (u ∗ v)k =
∑k

i=0 uivk−i .

Joint characteristic functional
Assume that there exists a solution (ψk)≥0 to the infinite dimensional Riccati equation such
that that

∑
k |ψk(t)|xk has infinite radius of convergence and Re(

∑
k ψk(t)xk) ≤ 0. Then,

E

[
exp

(∫ T

t
f (T − s)d log Ss +

∫ T

t
g(T − s)σ2

s ds
)∣∣∣∣∣Xt

]
= exp

∑
k≥0

ψk(T − t)X k
t

 .
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Fourier pricing in polynomial OU model
Riccati ODE

ψ′
k(t) =

(
g(t) + f (t)

2 (f (t) − 1)
)

g2
0 (T − t)(α ∗ α)k

+ bkψk(t) + a(k + 1)ψk+1(t) + c2(k + 2)(k + 1)
2 ψk+2(t)

+ c2

2 (ψ̃(t) ∗ ψ̃(t))k + ρf (t)g0(T − t)c(α ∗ ψ̃(t))k .

with ψ̃k = ψk+1(k + 1) and (u ∗ v)k =
∑k

i=0 uivk−i .

▶ Theoretically Not-standard infinite dimensional Riccati equations, no existence
theory/result in the literature. Can be related to analyticity of solutions to PDE...

▶ Numerically Truncate system to some N but stiff system:
▶ the calibrated coefficients (b, c) are large in general and the coefficients (k + 1)(k + 2)

become very large with the dimension k.
▶ Standard Euler Schemes/ Explicit Runge-Kutta method are not enough.
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Fourier pricing in polynomial OU model
Numerical Illustration

Numerical solution of
E
[
exp(−W 4

t
4! )

]
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Fourier pricing in polynomial OU model
Numerical Illustration

Fourier pricing for the Quintic OU model
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Fourier pricing in polynomial OU model
Numerical Illustration

Fourier pricing for the one factor Bergomi model
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How to incorporate
more memory in

polynomials?
Eduardo Abi Jaber | Quintic model https://sites.google.com/view/abijabereduardo/

https://sites.google.com/view/abijabereduardo/


27

Signatures!
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Signatures

We already considered the sequence of monomials

(1,Wt ,
1
2W 2

t ,
1
3!W 3

t , . . .)

to linearize the pricing problem for the Quintic model. The sequence is called the signature of
Brownian motion W and can be re-written as a sequence of iterated Stratonovich integrals(

1,
∫ t

0
dWs ,

∫ t

0

∫ s2

0
dWs1 ◦ dWs2 ,

∫ t

0

∫ s3

0

∫ s2

0
dWs1 ◦ dWs2 ◦ dWs3 , . . .

)
.

It can be extended to a path-dependent setting, in particular with the time augmented
process Ŵ : s 7→ (s,Ws) to get

Ŵt =
(

1, t,Wt ,
1
2 t2,

∫ t

0
sdWs ,

∫ t

0
Wsds, 1

2W 2
t , . . . , ...

)
The signature of a path is defined as the sequence of iterated integrals of the path. It can be
seen as the analogue of polynomials on path spaces.
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Signatures

Universality of linear combinations of signatures on path-space:
▶ Universal approximation

f (t, (Wu)u≤t) ≈ ⟨ℓt , Ŵt⟩

▶ Universal representation?
f (t, (Wu)u≤t) = ⟨ℓt , Ŵt⟩

Linear combinations can have either
▶ finitely many non-zero terms: finite polynomials on path space
▶ infinitely many non-zero terms: power series on path space
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Signatures

1 will denote the first coordinate of Ŵ , i.e. time, and 2 the second, the Brownian motion.

∅,
(

1
2

)
,

(
11 12
21 22

)
,


111 121
211 221

112 122
212 222

 , · · ·


Example
▶ ⟨12, Ŵt⟩ =

∫ t
0
∫ s

0 dudWs ,
▶ ⟨21, Ŵt⟩ =

∫ t
0
∫ s

0 dWuds,
▶ ⟨212, Ŵt⟩ =

∫ t
0
∫ s

0
∫ u

0 dWr ◦ du ◦ dWs ,
▶ ⟨2 · 212 − 3 · 12, Ŵt⟩ =

∫ t
0
(
2
∫ s

0 Wudu − 3s
)

◦ dWs ,
▶ etc.
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Signatures
Definition and notations

If (e1, e2) basis of R2, then for (i1, . . . , i2) ∈ {1, 2}n, we write ei1 ⊗ ei2 ⊗ . . . ein as
i1 · · · in

Vn := {i1 · · · in : ik ∈ {1, 2} for k = 1, 2, . . . , n}.
Denote by ∅ the empty word, and V0 := {∅} basis for (R2)⊗0 = R.

It follows that
V := ∪n≥0Vn represents the standard basis of T ((R2)). In particular, every ℓ ∈ T ((R2)), can
be decomposed as

ℓ =
∞∑

n=0

∑
v∈Vn

ℓvv,

where ℓv is the real coefficient of ℓ at coordinate v.

⟨ℓ, Ŵt⟩ :=
∞∑

n=0

∑
v∈Vn

ℓvŴv
t .

for admissible elements ℓ in
A :=

{
ℓ ∈ T ((R2)) : ∥ℓ∥A

t < ∞ for all t ∈ [0,T ] a.s.
}
, ∥ℓ∥A

t :=
∞∑

n=0

∣∣∣∣∣∑
v∈Vn

ℓvŴv
t

∣∣∣∣∣ , t ≥ 0,
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Signatures
Analogy with power series

Object Interpretation 1-dim 2-dim
X Path Wt Ŵt = (t,Wt)

Xt Signature (1,Wt ,
W 2

t
2! , · · · ) Ŵt :=

(
1,
(

t
Wt

)
, · · ·

)

⟨ℓ,Xt⟩
Linear combination
(possibly infinite)

∑
n ℓn

W n
t

n!
(power series)

∑
n
∑

w∈V n
ℓwŴw

t

⟨ℓ,Xt⟩⟨h,Xt⟩ Product is linearized
∑

n(ℓ̂ ∗ ĥ)n
W n

t
n!

(Cauchy)
⟨ℓ ⊔⊔ h, Ŵt⟩

(Shuffle)

F ≈ f Approximation power F (Wt) ≈
∑

n f̂nW n
t F (t, (Ws)s≤t) ≈ ⟨f , Ŵt⟩

(Stone-Weierstrass Theorem)
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Signatures
Shuffle property

Definition (Shuffle product)
For words v,w ∈ V and letters i, j:
(vi) ⊔⊔ (wj) = (v ⊔⊔ (wj))i + ((vi) ⊔⊔ w)j, w ⊔⊔ ∅ = ∅ ⊔⊔ w = w.
Extended by linearity to the elements ℓ =

∑∞
n=0
∑

v∈Vn
ℓvv.

Shuffle property
If ℓ1, ℓ2 ∈ A, then ℓ1 ⊔⊔ ℓ2 ∈ A and

⟨ℓ1, Ŵt⟩⟨ℓ2, Ŵt⟩ = ⟨ℓ1 ⊔⊔ ℓ2, Ŵt⟩.
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Summarize then
Linearize
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Back to our representation question

Xt = X0 +
∫ t

0
a(t, s, (Xu)u≤s)ds +

∫ t

0
b(t, s, (Xu)u≤s)dWs

= ⟨ℓt , Ŵt⟩?

Based on
▶ Path-dependent processes from signatures with Louis-Amand Gérard and Yuxing

Huang, 2024.
(!) Not a new question
▶ at least in the Markovian setting in 1980s: Ben Arous (1989) Doss, Fliess, Kunita,

Sussmann, Yamato . . .
▶ intimately related related to convergence questions of stochastic Taylor expansion’s (

Azencott, Bismut, Baudoin, Malliavin, Platen, . . . ).
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Representation formulas with signatures
A simple recipe

Ornstein-Uhlenbeck (OU) process X :

Xt = x +
∫ t

0
κ(θ − Xt)dt + η

∫ t

0
dWs ,

1. Write SDE in Stratonovich form, which here is the same.

2. Algebraic equation for candidate ℓ such as Xt = ⟨ℓ, Ŵt⟩

ℓ = x∅ + (κθ − κℓ)1 + η2 = p + ℓq

with
p = (x∅ + κθ1 + η2), q = −κ1.

3. Solve the linear algebraic equation

ℓ = p(∅ − q)−1 = p
∑

k
q⊗k

4. Prove that ℓ ∈ A so that ⟨ℓ, Ŵt⟩ is well defined, apply Itô and prove that it solves the
SDE . . .
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Representation formulas with signatures
Example 1: OU

The Ornstein-Uhlenbeck (OU) process X :
dXt = κ(θ − Xt)dt + ηdWt , X0 = x ∈ R,

Xt = ⟨ℓOU, Ŵt⟩, ℓOU = (x∅ + κθ1 + η2)e
⊔⊔−κ1

∈ A,

where

e
⊔⊔ℓ

:= ∅ + ℓ+ 1
2ℓ

⊔⊔2 + · · · + 1
n!ℓ

⊔⊔n + · · ·

To be more explicit, up to order 3:

ℓOU =

x ,
(

−κ(x − θ)
η

)
,

(
κ2(x − θ) 0

−κη 0

)
,


−κ3(x − θ) 0

0 0
κ2η 0
0 0

 , · · ·

 .
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Representation formulas with signatures
Example 2: Geometric Brownian motion

The mean-reverting geometric Brownian motion
dYt = κ(θ − Yt)dt + (η + αYt)dWt , Y0 = y ∈ R,

Yt = ⟨ℓmGBM, Ŵt⟩, ℓmGBM =
(

y∅ +
(
κθ − αη

2

)
1 + η2

)
e⊔⊔
(

−
(

κ+ α2
2

)
1+α2

)
∈ A,
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Representation formulas with signatures
Example 3: path-dependent processes

Certain linear Volterra equations:

Xt = X0 +
∫ t

0
K1(t − s)(a0 + a1Xs)ds +

∫ t

0
K2(t − s)(b0 + b1Xs)dWs .

we will need the following structure on the kernels K1 and K2:

K1(u) =
∫

[0,∞)
e−xuµ1(dx) and K2(u) =

∫
[0,∞)

e−xuµ2(dx),

for finite measures µ1 and µ2 and such that∫
[0,∞)

xnµ1(dx) +
∫

[0,∞)
xnµ2(dx) < Mn, n ∈ N,

for some constant M > 0. (!) Singular kernels such as the fractional kernel tH−1/2 with
H < 1/2 are excluded.
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Representation formulas with signatures
Example 3: path-dependent processes

Certain linear Volterra equations:

Yt = Y0 +
∫ t

0
K1(t − s)(a0 + a1Xs)ds +

∫ t

0
K2(t − s)(b0 + b1Xs)dWs .

Signature representation

Yt = ⟨ℓVol, Ŵt⟩, ℓVol = pVol(∅ − q)−1

p : = a01
∫

[0,∞)
e⊔⊔−x1µ1(dx) + b0(2 − 1

2b1K2(0)1)
∫

[0,∞)
e⊔⊔−x1µ2(dx) + Y0∅,

q : = a11
∫

[0,∞)
e⊔⊔−x1µ1(dx) + b1(2 − 1

2b1K2(0)1)
∫

[0,∞)
e⊔⊔−x1µ2(dx),
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Representation formulas with signatures
Example 3: path-dependent processes

For more general kernels, possibly singular:

Approximation result
Let K1,K2 be locally square-integrable kernels. For n ∈ N, let µn

1(dx) =
∑n

i=1 ciδxi (dx) and
µn

2(dx) =
∑n

i=1 diδyi (dx), for some ci , di , xi , yi ∈ R, and let K n
1 ,K n

2 be the corresponding
kernels and Y n

t = ⟨ℓVol
n , Ŵt⟩ as in previous theorem both with µn

1 and µn
2 instead of µ1 and µ2.

Assume that∫ T

0
|K n

1 (s) − K1(s)|2ds +
∫ T

0
|K n

2 (s) − K2(s)|2ds → 0, as n → ∞.

Then,
sup

t∈[0,T ]
E
[
|Yt − ⟨ℓVol

n , Ŵt⟩|p
]

→ 0, as n → ∞, p ∈ N.
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Representation formulas with signatures
Example 3: path-dependent processes

Gaussian Volterra processes including non-semimartingale processes such as the
Riemann-Liouville fractional Brownian motion

W H
t =

∫ t

0
(t − s)H−1/2dWs , H ∈ (0, 1).

For instance, the (time-dependent) representation of W H reads

W H
t = ⟨ℓRL

t , Ŵt⟩, ℓRL
t = 1{t>0}tH− 1

2

∞∑
n=0

( 1
2 − H

)n̄

tn 1⊗n2,

where (·)n̄ is the rising factorial. This shows that ⟨ℓ, Ŵt⟩ is not always a semimartingale.

Eduardo Abi Jaber | Quintic model https://sites.google.com/view/abijabereduardo/

https://sites.google.com/view/abijabereduardo/


43

Representation formulas with signatures
Example 3: path-dependent processes

The Riemann-Liouville fractional Brownian motion

W H
t =

∫ t

0
(t − s)H−1/2dWs , H ∈ (0, 1).

(a) H = 0.1 (b) H = 0.3
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Representation formulas with signatures
Example 3: path-dependent processes

The shifted Riemann-Liouville fractional Brownian motion

W H,η
t =

∫ t

0
(η + t − s)H−1/2dWs , H ∈ (0, 1).

η = 1
52 , H = 0.1.
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Towards Signature volatility models

dSt
St

= ΣtdBt , Σt = ⟨σt , Ŵt⟩, B = ρW +
√

1 − ρ2W ⊥.

Based on

▶ Signature volatility models: pricing and hedging with Fourier with Louis-Amand Gérard,
SIAM Journal on Financial Mathematics, to appear (2025)

Refs
▶ Perez Arribas, Salvi, and Szpruch (2020)
▶ Cuchiero, Gazzani, Möller, and Svaluto-Ferro (2025).
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Tractability of signature volatility models
Characteristic functional

Theorem
Let f , g : [0,T ] → C be measurable and bounded functions. Assume that there exists ψ
solution to the following system of time-dependent Riccati equations

ψ̇t = 1
2(ψt |2)⊔⊔2 + ρf (t)(σ ⊔⊔ ψt |2) + 1

2ψt |22 + ψt |1 +
(

f (t)2 − f (t)
2 + g(t)

)
σ⊔⊔2, ψ0 = 0,

such that ψt ∈ I and Re(⟨ψT−t , Ŵt⟩) ≤ 0, then, the joint characteristic functional is given by

E

[
exp

(∫ T

t
f (T − s)d log Ss +

∫ T

t
g(T − s)σ2

s ds
)∣∣∣∣∣Ft

]
= exp

(
⟨ψT−t , Ŵt⟩

)
.

▶ Similar representations for signature SDEs (Cuchiero, Svaluto-Ferro, and Teichmann,
2023).

▶ Related representations Friz, Gatheral, and Radoičić (2022); Lyons, Ni, and Tao (2024)
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Application: Fourier pricing and hedging in Volterra Bergomi Models
Definition

Volterra Bergomi model
dSt = StσtdBt

σt = σ0eηXt − η2
2 Var(Xt ), Xt =

∫ t

0
K (t − s)dWs

▶ n-factor Bergomi model (under-parametrized version with same BM)

K (t) =
n∑

i=1
cie−λi t .

▶ Rough Bergomi of Bayer, Friz, and Gatheral (2016)
K (t) = ctH−1/2, H ∈ (0, 1/2)

▶ Shifted fractional kernel
K (t) = c(η + t)H−1/2, η > 0, H ∈ R.
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Application: Fourier pricing and hedging in Volterra Bergomi Models
Data to Kernels

Log-plot SPX ATM skew is concave, flattening
behavior at short maturities

T → ∂kσiv (T , k) |k=0

1W 1M 2M 3M 6M 1Y 2Y 3Y
maturity T

1.5

1.0

0.5

0.0

0.5

lo
g 

AT
M

 s
ke

w

log average ATM skew

SPX
rough
path-dependent
one-factor
two-factor

▶ Exponential kernel K(t) = ce−λt gets shape
but lacks flexibility

▶ Two time scales captured via
double-exponential kernel
K(t) = c1e−λ1t + c2e−λ2t

▶ Fractional kernel K(t) = ctH−1/2

(H ∈ (0, 1/2)) implies monofractal scaling
(straight line) and blow up at 0, inconsistent
with data

▶ Shifted fractional kernel
K(t) = c(a + t)H−1/2 with a > 0 breaks
monofractality/roughness and decouples
short and long term behaviour

▶ AJ and Li (2025); Bergomi (2015);
Delemotte et al. (2023); Guyon and
El Amrani (2022)
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(straight line) and blow up at 0, inconsistent
with data

▶ Shifted fractional kernel
K(t) = c(a + t)H−1/2 with a > 0 breaks
monofractality/roughness and decouples
short and long term behaviour

▶ AJ and Li (2025); Bergomi (2015);
Delemotte et al. (2023); Guyon and
El Amrani (2022)
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Application: Fourier pricing and hedging in Volterra Bergomi Models
Data to Kernels

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2022
2023

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

Calibration error: monthly rolling average

rough path-dependent one-factor two-factor

▶ Daily calibration of SPX vol surface (maturities couple of days to 3 years) on more than 10 years
▶ Rough Bergomi model does not align with market data.
▶ Non-rough path-dependent Bergomi models aligns much better in all market conditions
▶ Deep pricing with quantization hints method

AJ & Li (2025). Volatility Models in Practice: Rough, Path-Dependent, or Markovian? Mathematical Finance
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Application: Fourier pricing and hedging in Volterra Bergomi Models
The Shifted fractional Bergomi model as signature volatility model

Shifted fractional Bergomi model

dSt = StσtdBt

σt = σ0eηW H,a
t − η2

2 Var(W H,a
t )

with
W H,a

t =
∫ t

0
(a + t − s)H−1/2dWs , a > 0, H ∈ R.

Recast into signature volatility model σt = ⟨ℓt , Ŵt⟩:

▶ W H,a
t = ⟨ℓH,a

t , Ŵt⟩ with ℓH,a
t = 1{t>0}(t + a)H− 1

2
∑∞

n=0
( 1

2 −H)n̄

(t+a)n 1⊗n2,
▶ using the Shuffle product

eηW H
t =

∑
n≥0

ηn⟨ℓH,a
t , Ŵt⟩n

n! =
∑
n≥0

ηn⟨(ℓH,a
t )⊔⊔n, Ŵt⟩

n! = ⟨e⊔⊔ηℓH,a
t , Ŵt⟩
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Application: Fourier pricing and hedging in Volterra Bergomi Models
Fourier Pricing

Shifted fractional Bergomi model by Fourier pricing in signature volatility model:

(c) 1 month (d) 6 months
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Application: Fourier pricing and hedging in Volterra Bergomi Models
Fourier hedging

Shifted fractional Bergomi model by Fourier quadratic hedging in signature volatility
model:

Eduardo Abi Jaber | Quintic model https://sites.google.com/view/abijabereduardo/

https://sites.google.com/view/abijabereduardo/


53

How to truncate?

dSN
t = SN

t ⟨σN , Ŵt⟩dBt , B = ρW +
√

1 − ρ2W ⊥.

Based on
▶ Martingale property and moment explosions in signature volatility models with Paul

Gassiat and Dimitri Sotnikov
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How to truncate?

dSN
t = SN

t ⟨σN , Ŵt⟩dBt , B = ρW +
√

1 − ρ2W ⊥.

Assume non-zero leading coefficient σ2⊗N ̸= 0 in front of the word 2⊗N , (i.e. the term W N
t .)

and non-zero correlation ρ and N ≥ 2:

The price process SN is a true martingale if and only if N is odd and ρσ2⊗N ≤ 0.
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How to truncate?
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How to truncate?

The price process SN is a true martingale if and only if N is odd and ρσ2⊗N ≤ 0.
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Stationarity?
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Motivation
Time invariance and fading memory

Two important properties when modeling memory effects of dynamical systems:
▶ Time invariance the output signal Yt at time t depends only on the continuous input

signal (Xs)−∞<s≤t up to time t, but not on the absolute time t.

Yt = F ((Xt−s)s≥0).

⇒ Postulates, in some sense, a stationarity in the relationship between input and output.

▶ Fading memory the influence of the distant past diminishes over time, i.e. Yt gradually
“forgets” the remote history of X .

▶ This idea dates back to the works of Volterra (1887) and Wiener (1958).
▶ Boyd and Chua (1985) formalize this concept by requiring the functional F to be continuous

not with respect to the uniform topology, but with respect to a weighted uniform topology:
F has fading memory if its output remains close for input paths that are close in the recent

past, even if they differ in the distant past.
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Motivation
Problem formulation

▶ We are interested in modeling time-invariant dependence between two time series (Xt , Yt)t∈R, i.e.
Yt = F (Xs∈(−∞,t]),

for some continuous function F .
▶ In practice, often only a single realization of a time series or dynamical system is observed

(financial data), from the infinitely distant past −∞ up to t.

Problem
Can we generalize the exponential moving average (EMA)

yn =
∑
k≥0

e−λkxn−k

to a framework that:
▶ is universal and captures nonlinear features of the time series;
▶ Preserves the Markov property;
▶ Remains mathematically tractable?
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The Exponentially Fading Memory Signature

Based on
▶ Exponentially Fading Memory Signature with Dimitri Sotnikov
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Fading Memory Signature
Definition

▶ We consider an Rd -valued increment continuous semimartingales X , i.e., for all s ∈ R, the
process (Xs+t − Xs)t≥0 is a semimartingale in the usual sense with respect to (Fs+t)t≥0.

▶ Vector λ = (λ1, . . . , λd) ∈ Rd with positive entries.

Fading Memory Signature
The fading-memory λ-signature of X is defined by the components

Xλ,i1···in
t :=

∫
−∞<u1<···<un<t

e−λi1 (t−u1)dX i1
u1

◦ · · · ◦ e−λin (t−un)dX in
un
, ik ∈ {1, . . . ,d},

and on [s, t]

Xλ,i1···in
s,t :=

∫
s<u1<···<un<t

e−λi1 (t−u1)dX i1
u1

◦ · · · ◦ e−λin (t−un)dX in
un
.
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Fading Memory Signature
Definition

▶ We consider an Rd -valued increment continuous semimartingales X , i.e., for all s ∈ R, the
process (Xs+t − Xs)t≥0 is a semimartingale in the usual sense with respect to (Fs+t)t≥0.

▶ Vector λ = (λ1, . . . , λd) ∈ Rd with positive entries.

Fading Memory Signature
The fading-memory λ-signature of X is defined by the components

Xλ,i1···in
t :=

∫
−∞<u1<···<un<t

e−λi1 (t−u1)dX i1
u1

◦ · · · ◦ e−λin (t−un)dX in
un
, ik ∈ {1, . . . ,d},

and on [s, t]

Xλ,i1···in
s,t :=

∫
s<u1<···<un<t

e−λi1 (t−u1)dX i1
u1

◦ · · · ◦ e−λin (t−un)dX in
un
.
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Fading Memory Signature
Time augmentation

First two levels for the time-extended Brownian motion
The first elements of Ŵλ

t are given by

Ŵλ,0
t = 1, Ŵλ,1

t =
(
λ−1

Yt

)
, Ŵλ,2

t =
(

λ−2

2! λ−1 ∫ t
−∞ e−2λ(t−s)dWs∫ t

−∞ e−2λ(t−s)Ysds Y 2
t

2!

)
,

where Y = (Yt)t∈R is a stationary Ornstein–Uhlenbeck process defined by

Yt =
∫ t

−∞
e−λ(t−s)dWs .

Moreover, Ŵλ,2⊗n

t = Y n
t

n! .

▶ Note that the first two levels are stationary!
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First properties
Time Invariance and Stationarity

If we shift the inputs by h, we shift the output by h:

Time Invariance
If X = (Xt)t∈R is a continuous semimartingale and Y· = X·+h for some h ∈ R, then

Yλ
t = Xλ

t+h.

Stationarity
Suppose that X = (Xt) is an Rd -valued continuous semimartingale with stationary
increments. Then, Xλ = (Xλ

t )t∈R is a stationary T ((Rd))-valued process. In particular, for all
t ∈ R,

L(Xλ
t ) = L(Xλ

0 ).

▶ In particular, this holds for Xt = (t,Wt).Eduardo Abi Jaber | Quintic model https://sites.google.com/view/abijabereduardo/
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Applications to learning
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Application 1: Regression and Prediction

We observe a signal St = sin(Zt), where

dZt = −µZtdt + νdWt ,

Goal do a linear regression of St against
1. The standard time-augmented signature of Ŵt = (t,Wt):

St ≈ ⟨ℓ, Ŵt⟩

2. The EFM-signature of Ŵt = (t,Wt):

St =
〈

ℓ, Ŵλ
t

〉

Estimate ℓ observing W and the signal S.
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Application: Regression

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Regression
In-sample interval
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1.00
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Regression
In-sample interval

Signature (on the left) and Fading memory signature (on the right) regression. Signal parameters are µ = 25, ν = 3, truncation
order is N = 5. Vertical bar separates in-sample and out-of-sample data.
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Wrap-up
Questions

Contact
▶ eduardo.abi-jaber@polytechnique.edu
▶ https://sites.google.com/view/abijabereduardo/
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Volatility Dynamics
Two factor Quintic model

What about dynamical properties and longer maturities?

Ref
▶ Capturing Smile Dynamics with the Quintic Volatility Model: SPX, Skew-Stickiness Ratio

and VIX with Shaun Li (2025).
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Volatility Dynamics
Skew Stickiness Ratio

The Skew Stickiness Ratio (SSR), Rt,T is defined in Bergomi (2009) as

Rt,T := 1
St,T

∂t⟨σ̂T , log S⟩t
∂t⟨log S⟩t

,

▶ σ̂T
t denotes the ATM implied volatility

▶ and St,T is the ATM (forward) skew.
The SSR can be interpreted as the instantaneous change of the ATM implied volatility with
respect to the instantaneous change of the log-price, normalised by the ATM skew.

2012 2014 2016 2018 2020 2022
Date

0.50
0.75
1.00
1.25
1.50
1.75
2.00

SS
R

SPX SSR (120-day-rolling window)
1m
3m
6m
1y

Empirical time series of the SSR from 2012 to 2022, computed using a 120-day rolling window.
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Volatility Dynamics
Skew Stickiness Ratio

Calibrating smiles and SSR is notoriously difficult for stochastic volatility models Bourgey,
Delemotte, and De Marco (2024); Friz and Gatheral (2025). Two factor Bergomi model:
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Maturities
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ATM implied volatility

SPX data
two-factor Bergomi
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ATM skew

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

ATM SSR

SPX term structure 6 May 2024

Calibrated two factor Bergomi model on term structures May 6, 2024.
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Volatility Dynamics
Two factor Quintic model

dSt = Stσt

(
ρdWt +

√
1 − ρ2dW ⊥

t

)
, S0 > 0,

σt = g0(t)p(Zt), p(z) =
5∑

k=0
αkzk ,

Zt= θXt + (1 − θ)Yt ,

Xt =
∫ t

0
e−λx (t−s)dWs , Yt =

∫ t

0
e−λy (t−s)dWs ,
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Volatility Dynamics
Two factor Quintic model

The two factor Quintic model is able to achieve impressive fits of the term structures of
ATM-vol, skew and SSR:
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SPX term structure 6 May 2024

Calibrated two factor Quintic model on term structures May 6, 2024.
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SPX and VIX:
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SPX implied volatility

SPX & VIX smiles (bid/ask in blue/red dots) and VIX futures (vertical black lines) on 23 October 2017, jointly calibrated by the
two-factor Quintic OU model (in green) with SSR penalisation.
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SPX and VIX:
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VIX implied volatility

SPX & VIX smiles (bid/ask in blue/red dots) and VIX futures (vertical black lines) on 23 October 2017, jointly calibrated by the
two-factor Quintic OU model (in green) with SSR penalisation.
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Penalisation for consistent values of SSR:
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SSR of the two-factor Quintic OU model computed by finite difference and Monte Carlo. The left-hand side graph is the SSR
of the two-factor Quintic OU model jointly calibrated to SPX and VIX smiles. The right-hand side graph is the SSR of the
two-factor Quintic OU model jointly calibrated to SPX and VIX smiles, as well as the SSR.
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