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Cyber-risk

Definition [Institute of Risk Management]: any risk of financial loss, disruption
or damage to the reputation of an organisation from some sort of failure of its
information technology systems.

Image source: ENISA Threat Landspace report (2024).
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Facts on cyber-risk in Europe

ENISA Threat Landscape report (2025)
▶ Public Administration is the most targeted sector in the EU (38.5%)
▶ The transport sector came in second (7.5%), with most reported incidents in
air and logistics, with a focus on the maritime sector

▶ Phishing was the dominant intrusion vector, accounting for approx. 60% of
cases, followed by exploitation of vulnerabilities (21.3%)

▶ At least 88 hacktivist groups claimed they targeted EU organisations.
Pro-Russia nexus hacktivist groups remain prevalent, with 63.1% of attacks.

AON 10th Global Risk Management Survey (2025):
▶ Cyber attack or data breach tops the global agenda – again – remaining the
number one current and future risk for the third time.
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Never/ever happened to you?

Question: How do I know if it is a ransomware attack?

★ You will not be able to access your device or the data on it: the files are
encrypted.

★ Usually you are asked to contact the attacker via an anonymous email
address to make a payment in a cryptocurrency.

Recent attacks - The Netherlands:

January 2025: no classes and exams postponed after cyberattack on
Eindhoven University of Technology. The university took its systems offline
for a week. Attackers had been active on the network for five days: they
exploited leaked account credentials to log in via the VPN connection.

June 2025: International Criminal Court was the target of a ‘sophisticated
and targeted’ cyberattack. The ICC did not disclose whether sensitive
information was stolen or who was behind the attack but stated that the
attack had been stopped in time.
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In the Netherlands ... 1

Increasingly complex threat assessment due to increasing cyber capabilities
worldwide;

Digital dependencies, resulting from geopolitical developments, increase the
risk;

Generative AI amplifies existing threats to digital security;

No data on average losses;

In 2024, there were at least 121 unique ransomware incidents in the
Netherlands (147 in 2023) - source the National Cyber Security Centre
(NCSC), the Police, the Public Prosecution Service (OM), Cyberveilig
Nederland;

Cybercriminals are not using new techniques to deploy ransomware;

Criminals most often still gain access through software vulnerabilities and by
taking over accounts.

1Source: Cybersecurity Assessment Netherlands 2025, https:
//english.nctv.nl/documents/2025/12/02/cybersecurity-assessment-netherlands-2025
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Which challenges?

Citing Zeller et al. (2022), [15]:

Limited availability and incomplete nature of data 2

Dynamic and constantly evolving risk type

Interdependence/accumulation risk

Difficult monetary impact determination.

2An excellent data analysis is present in the PhD thesis by Yousra Cherkaoui, Institut
Polytechnique de Paris. Dataset used: Hackmageddon (date, type, category, geographic area,
sector), containing exploited vulnerabilities.
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What do we do here?

Key questions:

How to describe in a realistic way the arrival of cyber-attacks?

How to reduce losses from cyber-attacks by investing in cyber-security?

How to determine the optimal investment in cyber-security?

Our contributions:

Introduce a continuous-time model based on Hawkes processes;

Develop a stochastic version of the Gordon-Loeb model;

Formulate the problem as a stochastic optimal control problem;

Numerical solution and analysis, to evaluate the optimal investment in
cyber-security and the associated reduction of IT vulnerability.

G. Callegaro Cyber-Security Investment with Attacks Clustering 8



What do we do here?

Key questions:

How to describe in a realistic way the arrival of cyber-attacks?

How to reduce losses from cyber-attacks by investing in cyber-security?

How to determine the optimal investment in cyber-security?

Our contributions:

Introduce a continuous-time model based on Hawkes processes;

Develop a stochastic version of the Gordon-Loeb model;

Formulate the problem as a stochastic optimal control problem;

Numerical solution and analysis, to evaluate the optimal investment in
cyber-security and the associated reduction of IT vulnerability.

G. Callegaro Cyber-Security Investment with Attacks Clustering 8



The Gordon-Loeb model (2002)
The basics

Aim: Determine the optimal amount to invest in security to protect an IT system.

Key ingredients:

p ∈ [0, 1]: the probability that an attack occurs;

ℓ > 0: the potential loss;

v ∈ [0, 1]: the vulnerability of the IT system, i.e., the probability of an attack
to penetrate into the system (breach).

The expected loss is ℓpv.
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The Gordon-Loeb model
The security breach probability function

The entity can invest an amount z in IT security.

Investment z reduces the vulnerability;

Security breach probability function: S (z , v ) < v , in [0, 1].

Assumptions on S

(A1) S (z , 0) = 0 for all z : an invulnerable system remains invulnerable.

(A2) For all v , S (0, v ) = v : if no investment then the vulnerability remains equal to v .

(A3) For all v ∈ (0, 1) and all z , Sz (z , v ) < 0 and Szz (z , v ) > 0.

G. Callegaro Cyber-Security Investment with Attacks Clustering 10



The Gordon-Loeb model

Examples of security breach probability functions

SI (z , v ) =
v

(az + 1)b
and SII (z , v ) = vaz+1.

Figure: v = 0.65, a = 1.5 · 10−5, b = 1.
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The Gordon Loeb model
Optimal investment and ENBIS

They max the Expected Net Benefit of Investment in Information Security:

Cost-benefit trade-off

sup
z≥0

{(
v − S (z , v )

)
pℓ − z

}
.

Solution:

Optimal investment: z such that −Sz (z , v )pℓ = 1.

For the two standard S seen before, SI (z , v ) = v
(az+1)b and SII (z , v ) = vaz+1,

it holds that

z∗ (v ) < 1

e
vpℓ ≈ 37% of the expected losses
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The Gordon-Loeb Model
Comments and extensions

Very simple model (no dynamicity, no stochasticity).

... Yet interesting! It provides a benchmark for security investments.

Some extensions

More sophisticated security breach functions: Huang and Behara (2013), [7].

Dynamic with a real option approach: Tatsumi and Goto (2010), [13].

Applications to cyber-insurance: Young et al. (2016), [14], Mazzoccoli and
Naldi (2020), [9], Skeoch (2022), [12].

Our extension:

A continuous-time version with randomly arriving, and clustered, attacks and ran-
dom losses.
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Modelization of cyber-attacks
Hawkes processes

Evidence of contagion and clustering in cyber-attacks:
the occurrence of an attack increases the likelihood of further attacks;

Empirical evidence on the self-exciting behavior of cyber-attacks:
▶ Baldwin et al. (2017): SANS Institute database, threats to Internet services;
▶ Bessy-Roland et al. (2021): Privacy Rights Clearinghouse database;
▶ Boumezoued et al. (2023): three different vulnerabilities databases.

Hawkes process: counting process with a self-exciting intensity

Definition (Hawkes process)

N is a counting process with stochastic intensity 𝜆 given by

d𝜆t = −𝜉 (𝜆t − 𝛼)dt + 𝛽dNt , 𝜆0 > 0,

or

𝜆t = 𝛼 + (𝜆0 − 𝛼)e−𝜉 t + 𝛽

Nt∑︁
n=1

e−𝜉 (t−𝜏n ) .
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One trajectory (𝛼 = 27, 𝜆0 = 27, 𝜉 = 15, 𝛽 = 9)
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Our proposal
A dynamic version of the Gordon-Loeb model

On (Ω, F , P)
1 (𝜏i )i∈N: arrival times of cyber-attacks

2 N: counting process Nt =
∑+∞

i=1 11{𝜏i ≤t }
3 𝜂i : the potential random loss induced by the i-th attack, E[𝜂i ] = 𝜂

4 (zt )t∈[0,T ] : investment rate in security (control process)

5 𝜌 decaying factor and H cumulative investment

Ht = H0e
−𝜌t +

∫ t

0
e−𝜌(t−s )zsds , t ∈ [0,T ] .

6 Losses:
Potential losses Losses without investment Losses with investment

Ct =
∑Nt

i=1
𝜂i L0t =

∑Nt

i=1
𝜂i · Bv

i Lzt =
∑Nt

i=1
𝜂i · B

S (H𝜏i
,v )

i

Bv
i ∼ Be(v ), i.i.d. BS (h,v )

i
∼ Be (S (h, v ))
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The optimization problem
In the spirit of the Gordon-Loeb model:

sup
z∈Z

E

[ benefit︷    ︸︸    ︷
L0T − LzT −

(∫ T

0
zt +

𝛾

2
z2t dt

)
︸                     ︷︷                     ︸

quadratic cost

+

terminal utility︷  ︸︸  ︷
U (HT )

]

= sup
z∈Z

E

[ ∫ T

0

( benefit︷                 ︸︸                 ︷
(v − S (Ht , v ))𝜂𝜆t −zt −

𝛾

2
z2t︸       ︷︷       ︸

quadratic cost

)
dt +

terminal utility︷  ︸︸  ︷
U (HT )

]
.

d𝜆t= −𝜉 (𝜆t − 𝛼)dt + 𝛽dNt , 𝜆0 > 0

dHt= (−𝜌Ht + zt )dt, H0 > 0.

Z={(zt )t∈[0,T ] : zt ≥ 0, adapted w.r.t. F = (Ft )t∈[0,T ] , Ft = 𝜎(Ns , s ≤ t)
and E

[∫ T

0
z2t dt

]
< ∞}.

U (HT ): utility of IT cumulated security investment at T .
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Value function and optimal control

V (t, 𝜆, h) = supz∈Zt

J (t ,𝜆,h;z )︷                                                                               ︸︸                                                                               ︷
E

[∫ T

t

(
(v − S (Ht ,h,z

s , v ))𝜂𝜆t ,𝜆s − zs −
𝛾

2
z2s

)
ds + U (Ht ,h,z

T
)
]

Hamilton-Jacobi-Bellman equation:

𝜕V

𝜕t
− 𝜉 (𝜆 − 𝛼) 𝜕V

𝜕𝜆
− 𝜌h

𝜕V

𝜕h
+ 𝜆(V (t, 𝜆 + 𝛽, h) − V (t, 𝜆, h)) + (v − S (h, v ))𝜂𝜆

+

(
𝜕V
𝜕h − 1

)+
𝛾

©­­«
𝜕V

𝜕h
− 1 − 𝛾

2

(
𝜕V
𝜕h − 1

)+
𝛾

ª®®¬ = 0, V (T , 𝜆, h) = U (h).

Optimal control

z∗t =

(
𝜕V
𝜕h (t, 𝜆t ,Ht ) − 1

)+
𝛾

.
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Algorithm Numerical scheme based on the Method Of Lines

1: Choose 𝜆min, 𝜆max ,hmin, hmax .
2: Discretize [𝜆min, 𝜆max ], 𝜆0 = 𝜆min, 𝜆N = 𝜆max , 𝜆n − 𝜆n−1 = Δ𝜆.
3: Discretize [hmin, hmax ], h0 = hmin, hM = hmax , hm − hm−1 = Δh.
4: Define Vn,m (t) := V (t, 𝜆n, hm).
5: Approximate the partial derivatives w.r.t. 𝜆: 𝜕V

𝜕𝜆
(t, 𝜆n, hm) ≈ Vn,m (t )−Vn−1,m (t )

Δ𝜆
.

6: Approximate the partial derivatives w.r.t. h: 𝜕V
𝜕h (t, 𝜆n, hm) ≈

Vn,m+1 (t )−Vn,m (t )
Δh .

7: Let ñ =
⌊𝛽⌋
Δ𝜆

, V (t, 𝜆n + 𝛽, hm) ≈ V(n+ñ)∧N ,m (t).
8: Solve using an ODE solver the system given for every n,m by

V ′
n,m (t) = 𝜉 (𝜆n − 𝛼)

Vn,m (t) − Vn−1,m (t)
Δ𝜆

+ 𝜌h
Vn,m+1 (t) − Vn,m (t)

Δh

− 𝜆n (Vn+ñ∧N ,m (t) − Vn,m (t)) − (v − S (hm, v ))𝜂𝜆n

−

(
Vn,m+1 (t )−Vn,m (t )

Δh − 1
)+

𝛾

©­­«
Vn,m+1 (t) − Vn,m (t)

Δh
− 1 − 𝛾

2

(
Vn,m+1 (t )−Vn,m (t )

Δh − 1
)+

𝛾

ª®®¬ ,
Vn,m (T ) = U (hm).
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Numerical results
Parameters

S v a b
SI 0.65 0.1 1

Table: Security breach function, Skeoch, H. R. (2022), [12].

𝛼 𝜉 𝛽 𝜆0
27 15 9 27

Table: Hawkes intensity, Boumezoued et al. (2023), [5]. Intuition: 60 attacks on average
per year.

Optimization 𝛾 𝜂(k$) U (h) 𝜌 T

0.05 10
√
h 0.2 1

Table: Optimization problem parameters.
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Numerical results
Value function V (t , 𝜆, h)

t

0.0
0.2

0.4
0.6

0.8
1.0

h

0
10

20
30

40
50

V

0
50
100
150
200
250
300

= 27

(a) Value function for 𝜆 = 27.
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(b) Value function for h = 0.

Increasing in h: larger initial investment → greater benefit.

Increasing in 𝜆: larger risk → larger benefit.

Decreasing in t: investment is less relevant near T .
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Numerical results
Optimal control z∗t (𝜆, h)
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(a) Optimal control for 𝜆 = 27.
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(b) Optimal control for h = 0.

Decreasing in h: larger initial investment → smaller investment.

Increasing in 𝜆: larger risk → larger investment.

Decreasing in t: investment is less relevant near T .
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Numerical results
Comparison with a constant investment strategy

We choose zt ≡ z̄∗ solving J (t, 𝜆, h; z̄∗) = supz̄∈R+ J (t, 𝜆, h; z̄) and we plot

gain := 100 × V (t, 𝜆, h) − J (t, 𝜆, h; z̄∗)
J (t, 𝜆, h; z̄∗)
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Numerical results
Comparison with standard Poisson P

Consider P for the arrival of cyber-attacks, with constant 𝜆P s.t. E[PT ] = E[NT ]:

𝜆P =
𝜆0𝜉

𝜉 − 𝛽
+ 1 − e−𝜉T

T (𝜉 − 𝛽)

(
𝜆0 −

𝜆0𝜉

𝜉 − 𝛽

)
≈ 60.77.

Idea: The myopic firm correctly estimates the intensity, on average.
Value functions: Hawkes (blue) / Poisson (green)
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Numerical results
Comparison with Poisson along a trajectory
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Figure: Intensity trajectory (left) and optimal control (right).
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Conclusions and outlook

Continuous-time stochastic version of the Gordon-Loeb model;

Arrival process of cyber-attacks with clustering behavior;

Evidence of the impact of randomly arriving cyber-attacks;

More (numerical) results in the paper!

Next steps:

Rigorous theoretical analysis of the stochastic optimal control problem;

Introduction of cyber-insurance;

Calibration of the model to real data.
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Grazie!

Paper available on
https://arxiv.org/abs/2505.01221!
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