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6 Empirical Observations on the Price

Process

EMPIRICAL OBSERVATIONS
I

² FROM TIME SERIES DATA.

1. IT HAS BEEN KNOWN SINCE EARLYWORK
BY FAMA THAT DAILY RETURNS AREMORE
LONG-TAILED RELATIVE TO THE NOR-
MAL DENSITY, WITH AN APPROACH TO
NORMALITY ASWE CONSIDERMONTHLY
RETURNS.

2. MORE RECENTLYWE HAVE EVALUATIONS
OF ONE MINUTE, 15 MINUTE, HOURLY,
AND DAILY RETURN DATA ON S&P 500
FUTURES RETURN DATA THAT CONFIRMS
AND EXAGGERATES THIS PICTURE.



S&P 500 FUTURES RETURNS

NOV. 1992-FEB. 1993

1 Min. 15 Min. Hourly Daily

Kurtosis 58.59 13.85 5.97 10.31

Â2 test statistic 437.12 931.85 98.323 123.84

Â2 critical value 5% 9.26 5.7 3.57 0.989

Source: Doctoral Dissertation of Theiry An¶e, Univer-

sit¶e de Paris IX Dauphine-ESSEC.



EMPIRICAL OBSERVATIONS
II

² FROM OPTIONS DATA.

{ BLACK-MERTON-SCHOLES IMPLIED VOLATIL-

ITY SMILES FROM OPTIONS DATA ALSO

SUGGEST LONGER THAN NORMAL RISK

NEUTRAL TAILS FOR RETURN DATA

{ SKEWNESS PREMIA DOCUMENTED BY BATES

SUGGEST LONGER LEFT TAILS THAN RIGHT

TAILS FOR THE RISK NEUTRAL PROCESS.
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EMPIRICAL OBSERVATIONS
III

² FROM THE ANALYSIS OF EXTREMES.

1. THE LIMITING DISTRIBUTION OF THEMAX-
IMA ORMINIMA OF INDEPENDENTLY SAM-
PLED OBSERVATIONS FROM A DISTRI-
BUTION IS KNOWN TO BELONG UP TO
A SCALE AND SHIFT CONSTANT TO EI-
THER THE

GUMBEL, WEIBULL OR FRECHET

FAMILIES OF DISTRIBUTIONS

² 1. THE NORMAL OR LOGNORMAL IS IN THE
DOMAIN OF ATTRACTION OF THE GUM-
BEL

2. THE LOG GAMMA OR THE VG MODEL
DISCUSSED LATER IS IN THE DOMAIN OF
ATTRACTION OF THEWEIBULL OR FRECHET.



² FOR DAILY RETURN DATA ON THE DJIA FOR
100 YEARS WE ESTIMATED BY MAXIMUM

LIKELIHOOD THE GUMBEL AND WEIBULL

OR FRECHET DENSITIES FOR THEMAXIMUM

AND MINIMUM RETURN OVER 100 DAYS

DISTRIBUTION OF EXTREMES

MIN DAILY DROP100 DAY
GUMBELL LL WEIBULL LL P VALUE

1897-1997 768.37 808.58 0.00
1897-1945 380.22 389.98 0.01
1946-1997 409.93 434.74 0.00

MAX DAILY RISE 100 DAY
GUMBELL LL FRECHET LL P VALUE

1897-1997 811.66 833.77 0.01
1897-1945 395.79 408.92 0.01
1946-1997 358.33 432.95 0.01



EMPIRICAL OBSERVATIONS IV

EMPIRICAL OBSERVATIONS
IV

² FROM THE HISTOGRAM OF UP AND DOWN

MOVES.

1. TREATING 100 YEAR DJIA DAILY RETURN

AS ARRIVAL RATE OF JUMPS IN A L¶EVY

MEASUREWE ESTIMATE BY REGRESSIONS

A COMMON JUMPDIFFUSION FORMTHAT

IS NOT COMPLETELYMONOTONE (MORE

ON THIS LATER) AND A GENERALIZED

VG FORM THAT IS COMPLETELY MONO-

TONE

2. THE JUMP DIFFUSION ASSERTS LOG AR-

RIVAL RATE LINEAR IN JUMP SIZE AND

ITS SQUARE



3. THE GENERALIZED VG ASSERTS LOG AR-

RIVAL RATE LINEAR IN JUMP SIZE AND

LOG JUMP SIZE



REGRESSION OF LOG
ARRIVAL RATES ON JUMP

SIZES

LOG ARRIVAL OF DOWN MOVE
CONST SIZE LOG SIZE RSQ

1897-1997 -9.88(1.44) -31.6(8.36) -1.92(0.32) 0.97
1897-1945 -8.51(1.45) -33.0(8.53) -1.65(0.32) 0.97
1946-1997 -12.35(2.22) -32.0(17.78) -2.41(0.45) 0.95

LOG ARRIVAL OF UP MOVES
CONST SIZE LOG SIZE RSQ

1897-1997 -11.55(1.71) -24.5(9.10) -2.25(0.38) 0.96
1897-1945 -10.29(1.65) -25.4(8.97) -1.99(0.37) 0.97
1946-1997 -13.66(3.23) -25.8(24.45) -2.67(0.65) 0.93

LOG ARRIVAL FOR JUMP DIFFUSION
CONST SIZE SIZE^2 RSQ

1897-1997 -3.66(0.53) -1.73(3.86) -447(66) 0.70
1897-1945 -3.36(0.48) -1.77(3.66) -421(62) 0.71
1946-1997 -3.17(0.65) 1.54(8.98) -928(191) 0.64



EMPIRICAL OBSERVATIONS V

² For multivariate Gaussian returns one may deduce
independence from zero correlations. Hence zero

correlations in return levels would imply zero cor-

relations among the squares.

² From 4 years of daily data on the SPX returns

we observe the following results for regressions of

returns on their lagged values and the regressions

of squared returns on their lagged values.

Return Dependencies

Slope SE R2 F pvalue
Return -.0093 .03 .0000086 .117 .7321
Level
Squared .2517 .1021 .0633 91.55 0
Returns

² The presence of strong correlation at the squared
level also argues for the absence of joint normality

of returns.



7 No Arbitrage and Asset Returns

1. The implications of no arbi-
trage

(a) Discounted Prices are Martingales under a change

of measure and hence by Girsanov's Theorem,

they are semimartingales under the original

statistical measure.

(b) Semimartingales can be written as time changed

Brownian motion and hence if X(t) is the log

price process we may write

X(t) =W (T (t))

for an increasing random process T (t) that is

a process for the time change.



(c) X(t) is a continuous process essentially only

if T (t) is continuous, but then we must have

T (t) =
Z t
0
a(u)du+

Z t
0
b(u)dZ(u)

for a Brownian motion Z(t):

It follows from the fact that T is increasing

that b = 0; and hence that the time change is

locally deterministic.

² In fact a(t) is then the local variance and
local volatility is all that we need to be con-

cerned about in describing risk exposures.

(d) Supposing the time change to be related to lo-

cally random economic activity like the arrival

of orders or information we conclude that the

time change and the price process is discontin-

uous with possibly no continuous martingale

component.



8 The Economic Foundations

1. The time interval of our economy is [0,¨].

2. Our fundamental departure from traditional mod-

eling assumptions is in the ¯ltration describing the

evolution of the underlying uncertainty.

² Traditionally these are modeled by continu-
ous martingales or stochastic integrals with

respect to Brownian motion.

² We consider instead increasing random pro-

cesses that are of necessity pure jump pro-

cesses representing cummulated demand and

supply shocks for the asset or commodity un-

der consideration.



3. Let U(t) be the process of cummulated demand

shocks. U(t) is a strictly increasing pure jump

process and

u(t) = ¢U(t) = U(t)¡ U(t ) ¸ 0

represents the number of units of the asset de-

manded by some economic agent at the prevailing

market price of p(t ):

U(t) models the arrival of orders to buy at market.

4. Analogously let V (t) represent the cummulated

level of supply shocks with

v(t) = ¢V (t) = V (t)¡ V (t ) ¸ 0

being the number of units of the asset that some

economic agent wishes to sell at the prevailing

market price of p(t ):



5. ASSUMPTION

We suppose that at any instant of continuous

time the market processes either a market buy

or market sell order. These two types of orders

do not coincide in their arrival time on the time

continuum.

6. QUALIFICATION

We do not model the determination of u(t); v(t)

as the outcome of optimizing behavior on the part

of economic agents. The motivations for such

orders may well include in addition to liquidity or

information based trades, the demand and supply

generated by chartists for example.

The processes U(t); V (t) are the primitives of our

model.



8.0.1 Modeling the process of price increases

1. Economic agents realize that buy orders in ex-

ecution may face an adverse price response and

e®ectively communicate a curtailment of demand

in response to such price increases. They in fact

supply a demand function

qdut = qdu(p(t)=p(t ); ut; t)

where qdu(1; ut; t) = ut and

@qdu

@p(t)
< 0:



2. Market buy orders are cleared through meeting

or being crossed with limit sell orders. We sup-

pose the existence of supply at a positive price

response and all market buy orders are cleared

through such matching with the price response

being determined in the process. The supply func-

tion of the limit sell side is

qsut = qsu(p(t)=p(t ); ut; t)

where we suppose no supply without a price re-

sponse as markets are always already cleared so

qsu(1; ut; t) = 0;

and in addition

@qsu

@p(t)
> 0:



3. Market prices and transacted quantities are simul-

taneously determined by the market clearing con-

dition

qdut = qsut = qut :

We suppose that these equations are solved to

determine p(t) and qut in response to a demand

shock as

ln

Ã
p(t)

p(t )

!
= ©u(ut; t) > 0

qut = ªu(ut; t) > 0:



8.0.2 Modeling the Price Decrease

1. Similar to the modeling of price responses to a

demand shock we suppose that the price response

to a supply shock v(t) is given by

ln

Ã
p(t)

p(t )

!
= ¡©v(vt; t) < 0

qvt = ªv(vt; t) > 0:



8.0.3 The Price Process

1. Putting together the processes for price increases

and decreases we obtain the price process as

ln (p(t)) = ln (p(0)) +X
s·t

©u(¢U(s); s)¡
X
s·t

©v(¢V (s); s):

2. It follows that the resulting price process stands

in sharp contrast to traditional assumptions about

such processes in the ¯nance literature.

² Traditional process assumptions yield contin-
uous price processes: Ours is a pure jump pro-

cess.

² Traditional process assumptions yield processes
of in¯nite variation: Ours is a ¯nite variation

process as it is by construction a di®erence of

two increasing processes.



9 The Variance Gamma model as

the core example

² This is the Variance Gamma process de¯ned by
Brownian motion with drift µ and volatility ¾;
time changed by an increasing Gamma process
with unit mean rate and variance rate º resulting
in the three parameter process

X(t;¾; º; µ) = µG(t; º) + ¾W (G(t; º))

where G(t; º) is the Gamma process and W (t) is
a standard Brownian motion.

² The Variance Gamma process has a particularly
simple characteristic function given by evaluat-
ing the Gamma Characteristic function at iµu ¡
¾2u2=2 the log of the Gaussian characteristic func-
tion. It is

ÁVG(u) =

0@ 1

1¡ iµºu+ ¾2º
2 u

2

1At=º :



² The moment equations can be uniquely solved
for the parameters provided skewness satis¯es an

upper bound given in terms of kurtosis.

{ The moments are given by

V ariance = µ2º + ¾2

Central 3rd moment = 2µ3º2 + 3¾2µº

Central 4th moment = 3V ariance2 + 3¾4º

+12¾2µ2º2 + 6µ4º3

{ The bound on skewness is

1:5 ¤ skewness2 < (kurtosis¡ 3):



² We may also write X(t) as the di®erence of two
gamma processes

X(t) = Gp(t)¡Gn(t)
on writing

1

1¡ iµºu+ ¾2ºu2=2 =
Ã

1

1¡ i´pu

!Ã
1

1 + i´nu

!

whereby

´p ¡ ´n = µº

´p´n =
¾2º

2

1. (a) and hence

´p =

Ã
µ2º2

4
+
¾2º

2

!1=2
+
µº

2

´n =

Ã
µ2º2

4
+
¾2º

2

!1=2
¡ µº
2



with L¶evy density

kV G(x) =

8<: C
exp(¡Mx)

x x > 0

C
exp(¡Gjxj)

jxj x < 0

for

C =
1

º

G =
1

´n

M =
1

´p
:

² The parameter µ provides skewness to the distri-
bution as it enhances the left tail when negative

by both decreasing G and simultaneously increas-

ing M: The parameter º provides kurtosis which

in the absence of skew (µ = 0) is 3(1 + º):
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10 Economic interpretation of the

Parameters.

² The rates of decay on the left G and the right

M may be reparameterized in terms of directional

and size premia. The parameter C captures quadratic

variation.

{ The percentage excess price for a 2% down

move relative to a similar up move we call a

dircetional premium and for the parameter val-

ues of the above L¶evy density this is 39:097%:

{ The geometric average of a 2% percent move

independent of direction relative to a 4% move

we call a size premium and for the L¶evy density

shown this is 49:2866%:

{ The parameter C = 6:67 for the displayed

L¶evy density is a measure of the speed of the

economy as it essentially measures the rate at

which time or quadratic variation is changing.



² One may recover the exponential rates of decay
on the left and the right from a speci¯cation of

directional and size premia.



11 Contrast with Jump Di®usion

² We note by way of contrast that Jump Di®usion
models typically have ¯nite activity L¶evy densities

that are not completely monotone for their jump

components.

{ These processes model the behavior of fre-

quent small moves using a di®usion.

{ They model rare large moves by an uncon-

nected and orthogonal jump process.

{ The jump component can induce blips in the

L¶evy density on the right or the left.

² We speculate that perhaps

{ an in¯nite activity L¶evy process,

{ with a monotone density that links small and

large behavior,



{ adequately dispenses with the need to con-

sider an additional, orthogonal and unrelated

di®usion component.



12 Option Pricing with L¶evy process

models using the FFT

² We typically model the stock price risk neutrally
by

S(t) = S(0) exp (r ¡ q + !) t+X(t)

where X(t) is a process with a known character-

istic function

Á(u) = E [exp(iuX(t))]

= exp(tÃ(u))

² To organize the forward price at S(0) exp(r¡ q)t
we take the value of ! as de¯ned by

! = ¡Ã(¡i):

² We employ the fast Fourier transform as devel-

oped in Carr and Madan (1998). If we de¯ne the



transform of the modi¯ed call price in log strike

by

°(u) =
Z 1
¡1

eiuke®kC(k)dk

where k is the log of the strike and C(k) is the price

of a European call of maturity T and strike ek; then

°(u) =
e¡rtÁlnS(®+ 1 + iu)
(®+ iu)(®+ 1 + iu)

Call prices may be recovered easily on inversion.

C(k) =
e¡®k
2¼

Z 1
¡1

e¡iuk°(u)du

² The method is valid and applicable once we have
analytical expressions for the characteristic func-

tions of the log price. It may be applied uniformly

across all strikes to provide us with very fast al-

gorithms for surface calibration.



12.1 Calculation of Modi¯ed Call transform

from the characteristic function

² We have noting x = ln(S(T ) that
°(u)

=
Z 1
¡1

eiuk
Z 1
k
e¡rte®k(ex ¡ ek)q(x)dxdk

= e¡rt
Z 1
¡1

q(x)
Z x
¡1

(ex+(®+iu)k ¡ e(®+1+iu)k)dkdx
= e¡rt

Z 1
¡1

q(x)e(®+1+iu)x £·
1

®+ iu
¡ 1

®+ 1 + iu

¸
dx

= e¡rt Á(u¡ i(®+ 1))
(®+ iu)(®+ 1 + iu)



13 The CGMY Process, mea-

sure changes and ¯ne struc-

ture questions

² The CGMY process is obtained on generalizing

the VG L¶evy density to

kCGMY (x) =

8><>:
C
exp(¡Mx)
x1+Y

x > 0

C
exp(¡Gjxj)
jxj1+Y x < 0

² The parameter Y captures the ¯ne structure of

the process in the following way

Y < ¡1 FA and not CM
¡1 · Y < 0 FA and CM
0 · Y < 1 IA and FV
1 · Y < 2 IV



² The CGMY characteristic function is obtained

on integration as

log [ÁCGMY (u)] =

tC¡(¡Y )
(
M ¡ iu)Y ¡MY+

(G+ iu)Y ¡GY
)

² The density is quite robust and we illustrate a few
parameter settings

² The CGMY e is the process
XCGMY e(t) = XCGMY (t) + ´W (t)

² The CGMY e characteristic function is given by
log [ÁCGMY e(u)] = log [ÁCGMY (u)]¡ ´2u2t=2
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13.1 The CGMYe Stock Price

Process

² The CGMY e stock price process is de¯ned by
S(t) = S(0) exp

³³
¹+ ! ¡ ´2=2

´
t+XCGMY e(t)

´

where

! = ¡1
t
log (ÁCGYM(¡i))

and ensures that the mean rate of return is ¹:

² The log characteristic function of the log Stock
price is

log (ÁlnS(u)) =

iu(ln(S(0)) + (¹+ ! ¡ ´2=2)t) +
log [ÁCGMY e(u)]



² For the risk neutral process we employ the same
process with the mean rate set to equal the inter-

est rate and the other parameters determined by

matching option prices.



14 Analyzing the Results

² Higher Moments of the CGMYe Process
E [X ¡E[X]]2 = ´2 +

Z 1
¡1

x2k(x)dx

E [X ¡E[X]]3 =
Z 1
¡1

x3k(x)dx

E [X ¡E[X]]4 = 3 (V ariance)2 +
Z 1
¡1

x4k(x)dx

² Decomposition of Quadratic Variation

The quadratic variation contributed by the di®usion
component is

´2t

The contribution of the CGMY jump component is

C¡(2¡ Y )
·

1

M2¡Y +
1

G2¡Y
¸
:

obtained on integrating x2 against the L¶evy measure.



² Explicit Measure Change.

Let the statistical L¶evy measure have parameters

C;G;M; Y

and suppose the risk neutral L¶evy measure is esti-

mated in the CGMY class with parameters

eC; eG; fM; eY
then

dQ

dP
= E(Y ¡ 1)

where

kQ(x) = Y (x)kP (x):



More explicitly we have·
dQ

dP

¸
t
= exp

µ
¡t

Z 1
¡1

(Y (x)¡ 1)kP (x)dx
¶

Y
s<t

Y (¢XCGMY (s))

where

Y (x) =

8><>:
eC
Cx

Y¡eY exp ³¡(fM ¡M)x
´

x > "eC
C jxjY¡

eY exp ³¡( eG¡G) jxj´ x < ¡"



15 Estimation Methodology and Re-

sults

² For the statistical estimation we invert using the
fast Fourier transform the log characteristic func-

tion for daily returns at obtain the density at a

prespeci¯ed grid of points.

² We also bin the data into this grid and maximize
the likelihood of the binned data for our param-

eter estimates. We employ N = 16384 = 214

which gives a spacing of :00154:

² For the statistical estimation we employ time se-
ries data on 13 stocks and 8 market indices.

² For the risk neutral process we ¯t the implied
option prices to market data by non-linear least

squares using option prices of a maturity between

one and two months.



² For the risk neutral process we use data on ¯ve
names including SPX index and estimate the pa-

rameters for ¯ve Wednesdays from October 14

1998 to February 10 1999.



Statistical Results
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16 Risk Neutral Results

1.1. Discussion of Results

(a) Skewness and Kurtosis

Statistical:

i. Skewness is small generally.

ii. Often the estimated skewness is positive.

iii. Kurtosis is generally present but is marginally

above 3 when annualized.

² For the excess daily kurtosis one has to
multiply the excess over 3 by 365, and this

is substantial.
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(b) Risk Neutral:

i. Skewness is substantial.

ii. Skewness is consistently negative.

iii. Kurtosis generally much larger than it is sta-

tistically.



(c) Decomposition of Predictable Quadratic Vari-
ation

i. The Statistical Process for the indices has
no di®usion component.

ii. Some Single names, 7 out of 13; do have
a di®usion component. Though they are
statistically insigni¯cant in all cases.

BA 15:32
GE 1:48
HWP 12:60
IBM 0:71
JNJ 0:23
MSFT 62:29
WMT 2:61

iii. This suggests that the di®usion component
is the diversi¯able noise component while
the correlated information component is pure
jump.

iv. The risk neutral process has no signi¯cant
di®usion component in all cases.



(d) The Fine Structure of Returns

Statistical

i. FA: BA, INTC,WMT.

ii. IA, FV: All the rest

iii. IV: MCD, BIX, SOX.

Risk Neutral

i. FA: SPX1014, MSFT1111

ii. IA, FV: All the rest.

iii. IV: IBM1111



(e) Explicit Measure Changes

SPX
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DISCUSSION OF MEASURE
CHANGE

² L¶evy densities are limits of probability densities

² The measure change function is the ratio of L¶evy
densities and we may build some intuition by con-

sidering ratios of probability densities.

² Economic theory for probability densities suggests
that

Y (x) =
U 0(c(S¡ex))pS(x)
U 0(c(S¡))pO(x)
U is the utility function

S = S¡ex is post jump stock price
c(S) is the investor's position

pS(x) is the subjective probability

pO(x) is the objective probability
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² Under Rational Expectations
pS(x) = pO(x)

² With a Lucas representative agent
c(S) = S

² Adding constant relative risk aversion we obtain
Y (x) = e¡®x

where ® is the coe±cient of relative risk aversion.

² { This is a decreasing function of x with no

room for the increase observed with respect

to positive values of x:



RESOLUTION 1.

² Failure of rational expectations:

{ Investors do not know the mean of the sta-

tistical distribution and the need to mix over

this parameter gives the subjective probability

greater spread relative to the objective proba-

bility.



RESOLUTION 2

² There are heteregeneous beliefs

² Subjective probabilities are closest to objective
beliefs for delta hedged option writers who closely

monitor movements in this probability.

² These writers delta hedge the position and hence
c(S ex) ¼ a¡ x2

² Marginal utility applied to a delta hedged option
write is U ¡ shaped and losses are experienced
with large market moves on either side.



RESOLUTION 3

² The measure change re°ects weighted individual
personalized state price densities

² Positive weights are given to persons both long
the market and short the market

² This leads to measure changes shaped like a hy-
perbolic cosine function


