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VALUE-OF-THE-FIRM APPROACH

Advantages:
• An approach based on the volatility of the total value of a

firm. The credit risk is thus measured in a standard way.

• The random time of default is defined in an intuitive way;
it reflects the notion of the firm’s insolvency.

• Valuation of defaultable claims relies on similar techniques
as the valuation of exotic options in the Black-Scholes setup.

• The concept of the distance to default, which measures the
obligor’s leverage relative to the volatility of its assets values,
may serve to reflect credit ratings.

• Dependent defaults are easy to handle through correlation
of processes corresponding to different names.

Disadvantages:
• Assumes the total value of the firm’s assets can be easily

observed.

• Postulates that the total value of the firm’s assets is a trad-
able security.

• Generates low credit spreads for corporate bonds close to
maturity.

• Requires a judicious specification of the default barrier in
order to get a good fit with the observed spread curves.



VALUE-OF-THE-FIRM APPROACH

1 Basic Assumptions

We fix a finite horizon date T ∗ > 0, and we suppose that
the underlying probability space (Ω,F , P), endowed with some
filtration F = (Ft)0≤t≤T ∗, is sufficiently rich to support the
following objects:
• the short-term interest rate process r,

• the firm’s value process V, which models the total value
of the firm’s assets,

• the barrier process v, which will serve to specify the default
time,

• the promised contingent claim X representing the firm’s
liabilities to be redeemed at time T ≤ T ∗,

• the process C, which models the promised dividends, i.e.,
the firm’s liabilities stream that is redeemed continuously or
discretely over time to the holder of a defaultable claim,

• the recovery claim X̃, which represents the recovery payoff
received at time T, if default occurs prior to or at the claim’s
maturity date T,

• the recovery process Z, which specifies the recovery payoff
at time of default, if it occurs prior to or at the maturity
date T.



1.1 Defaultable Claims

Technical Assumptions:

We postulate that the processes V, Z, C, and v are progres-
sively measurable with respect to the filtration F, and that the
random variables X and X̃ are FT -measurable. In addition, C
is assumed to be a process of finite variation, with C0 = 0. We
assume without mentioning that all random objects introduced
above satisfy suitable integrability conditions.

1.1.1 Probabilities P and P∗

The probability measure P is assumed to represent the real-
world (or statistical ) probability, as opposed to the spot mar-
tingale measure (or the risk-neutral probability). The latter
probability is denoted by P∗ in what follows.

1.1.2 Default Time

Let us denote by τ the random time of default. It is essential to
emphasise that the various approaches to valuing and hedging
of defaultable securities differ between themselves with regard
to the ways in which the default event – and thus also the
default time τ – are modeled. In the structural approach, the
default time τ will be typically defined in terms of the value
process V and the barrier process v.



We set

τ := inf { t > 0 : t ∈ T , Vt ≤ vt}
with the usual convention that the infimum over the empty
set equals +∞. The set T is assumed to be a Borel measur-
able subset of the time interval [0, T ] (or [0,∞) in the case of
perpetual claims).

In most structural models, the default time τ is given by the
formula:

τ := inf { t > 0 : t ∈ [0, T ], Vt ≤ v̄(t)},
where v̄ : [0, T ] → R+ is some deterministic function, known
as the barrier.

Predictability of τ

Typically, τ will be an F-stopping time, and since the underlying
filtration F in most structural models is generated by a standard
Brownian motion, τ will be an F-predictable stopping time (as
any stopping time with respect to a Brownian filtration).

The latter property means that within the framework of the
structural approach there exists a sequence of increasing stop-
ping times announcing the default time; in this sense, the de-
fault time can be forecasted with some degree of certainty.



In the intensity-based approach, the default time will not be a
predictable stopping time with respect to the ‘enlarged’ filtra-
tion, denoted by G in Part 3. In typical examples, the filtration
G will encompass some Brownian filtration F, but G will be
strictly larger than F. At the intuitive level, in the intensity-
based approach the occurrence of the default event comes as
a total surprise. For any date t, the value γt of the default
intensity yields the conditional probability of the occurrence of
default over an infinitesimally small time interval [t, t + dt].

1.1.3 Recovery Rules

If default occurs after time T, the promised claim X is paid in
full at time T. Otherwise, depending on the adopted model,
either (1) the amount X̃ is paid at the maturity date T, or (2)
the amount Zτ is paid at time τ.

In a general setting, we consider simultaneously both kinds of
recovery payoff, and thus a defaultable claim is formally defined
as a quintuple

DCT = (X, C, X̃, Z, τ ).

In most practical situations, however, we shall deal with only
one type of recovery payoff – that is, we shall set either X̃ = 0
or Z ≡ 0.



1.2 Risk-Neutral Valuation Formula

Suppose that our financial market model is arbitrage-free, in
the sense that there exists a spot martingale measure (risk-
neutral probability) P∗, meaning that price process of any
tradeable security, which pays no coupons or dividends, follows
an F-martingale under P∗, when discounted by the savings
account B, given as

Bt := exp (
∫ t
0 ru du).

We introduce the jump process Ht = 11{τ≤t}, and we denote
by D the process that models all cash flows received by the
owner of a defaultable claim. Let us denote

Xd(T ) = X 11{τ>T} + X̃ 11{τ≤T}.

Definition 1 The dividend process D of a defaultable con-
tingent claim DCT = (X,C, X̃, Z, τ ), which settles at time
T, equals

Dt = Xd(T ) 11{t≥T} +
∫

]0,t](1−Hu) dCu +
∫

]0,t] Zu dHu.

Notice that D is a process of finite variation, and
∫

]0,t](1−Hu) dCu =
∫

]0,t] 11{τ>u} dCu = Cτ− 11{τ≤t}+Ct 11{τ>t}.



It is apparent that if default occurs at some date t, the promised
dividend Ct−Ct−, which is due to be paid at this date, is not
received by the holder of a defaultable claim. Furthermore, if
we set τ ∧ t = min (τ, t) then

∫

]0,t] Zu dHu = Zτ∧t 11{τ≤t} = Zτ 11{τ≤t}.

The promised payoff X could be incorporated into the promised
dividends process C. However, this would be inconvenient,
since in practice the recovery rules concerning the promised
dividends C and the promised claim X are different, in gen-
eral. For instance, in the case of a defaultable coupon bond,
it is frequently postulated that in case of default the future
coupons are lost, but a strictly positive fraction of the face
value is usually received by the bondholder.

We are in a position to define the ex-dividend price Xd(t, T )
of a defaultable claim. At any time t, the random variable
Xd(t, T ) is meant to represent the current value of all future
cash flows associated with a given defaultable claim DCT. In
particular, we always have Xd(T, T ) = 0.

Definition 2 The (ex-dividend) price process of the default-
able claim DCT = (X,C, X̃, Z, τ ) is given as

Xd(t, T ) = Bt EP∗
(∫

]t,T ] B
−1
u dDu | Ft

)
.



1.3 Corporate Zero-Coupon Bond

Assume that C ≡ 0 and X = L for some positive constant
L > 0. Then the value process represents the arbitrage price of
a defaultable (corporate) zero-coupon bond with the face value
L.

The price D(t, T ) of such a bond equals

D(t, T ) = Bt EP∗(B
−1
T (L 11{τ>T} + X̃ 11{τ≤T}) | Ft).

It is convenient to rewrite the last formula as follows:

D(t, T ) = LBt EP∗(B
−1
T ( 11{τ>T} + δ(T ) 11{τ≤T}) | Ft),

where the random variable δ(T ) = X̃/L represents the so-
called recovery rate upon default. It is natural to assume
that 0 ≤ X̃ ≤ L so that δ(T ) satisfies 0 ≤ δ(T ) ≤ 1.

Alternatively, we may re-express the bond price as follows:

D(t, T ) = L(B(t, T )−Bt EP∗(B
−1
T w(T ) 11{τ≤T} | Ft)),

where

B(t, T ) := Bt EP∗(B
−1
T | Ft)

denotes the price of a unit default-free zero-coupon bond, and
w(T ) := 1− δ(T ) is the writedown rate upon default.



We conclude the value of a corporate bond depends on the
joint probability distribution under P∗ of the three-dimensional
random variable (BT , δ(T ), τ ) or, equivalently, of the three-
dimensional random variable (BT , w(T ), τ ).

Example. Merton’s (1974) model postulates that the recovery
payoff upon default equals ̂X = VT , where the random variable
VT represents the value of the firm at time T. Consequently,
the random recovery rate upon default equals δ(T ) = VT/L,
and the writedown rate upon default equals w(T ) = 1−VT/L.

Expected writedowns

Assume that the savings account B is non-random, that is, the
short-term rate r is deterministic. Then the price of a default-
free zero-coupon bond is B(t, T ) = BtB

−1
T , and the price of a

zero-coupon corporate bond equals

D(t, T ) = Lt(1− w∗(t, T )),

where Lt = LB(t, T ) is the present value of future liabilities,
and w∗(t, T ) is the conditional expected writedown rate un-
der P∗, given by the following equality:

w∗(t, T ) = EP∗(w(T ) 11{τ≤T} | Ft).

Notice that we may set w(T ) = 0 on the event {τ > T}.



The conditional expected writedown rate upon default equals,
under P∗,

w∗
t :=

EP∗(w(T ) 11{τ≤T} | Ft)

P∗{τ ≤ T | Ft} =
w∗(t, T )

p∗t
,

where

p∗t := P∗{τ ≤ T | Ft}
is the conditional risk-neutral probability of default. Finally,
let δ∗t := 1 − w∗

t be the conditional expected recovery rate
upon default under P∗. In terms of p∗t , δ

∗
t and p∗t , we obtain

D(t, T ) = Lt(1− p∗t ) + Ltp
∗
tδ
∗
t = Lt(1− p∗tw

∗
t ).

If the random variables w(T ) and τ are conditionally indepen-
dent with respect to the σ-field Ft under P∗, then we have
w∗

t = EP∗(w(T ) | Ft).

Example. In most intensity-based models, the recovery rate
is assumed to be non-random. Let the recovery rate δ(T ) be
constant, specifically, δ(T ) = δ for some real number δ. In this
case, the writedown rate w(T ) = w := 1− δ is non-random as
well. Then w∗(t, T ) = wp∗t and w∗

t = w for every 0 ≤ t ≤ T.
Furthermore,

D(t, T ) = Lt(1− p∗t ) + δLtp
∗
t = Lt(1− wp∗t ).



2 Classic Models

In most classic models, it is assumed that the value of the firm
process V is governed by the SDE:

dVt = Vt ((r − κ) dt + σV dW ∗
t ),

where κ is the constant payout ratio, and W ∗ follows the
Wiener process under the martingale measure P∗.

2.1 Merton’s Model

Basic assumption: A firm has a single liability with promised
terminal payoff L, interpreted as the zero-coupon bond with
maturity T. The ability of the firm to redeem its debt is deter-
mined by the total value VT of firm’s assets at time T. Default
may occur at time T only, and the default event corresponds
to the event {VT < L} so that the stopping time τ equals

τ = T 11{VT<L} +∞ 11{VT≥L}.

Moreover C = 0, Z = 0, and

X̃ = VT 11{VT<L} + L 11{VT≥L}

so that the payoff from the defaultable (corporate) bond at
maturity equals

DT = min (VT , L) = L−max (L− VT , 0).



Notice that in Merton’s setup, the valuation of the corporate
bond is equivalent to the valuation of a European put (or call)
option written on the firm’s value with strike equal to the bond’s
face value.

Let D(t, T ) be the price at time t < T of a defaultable (cor-
porate) bond, and let B(t, T ) stand for the price of a risk-free
(Treasury) bond.

It is clear that the value D(Vt) of the firm’s debt equals

D(Vt) = D(t, T ) = B(t, T )− Pt,

where Pt is the price of a put option with strike L and expiration
date T. It is apparent from that the value at time t of the firm’s
equity satisfies

E(Vt) := Vt −D(Vt) = Vt − LB(t, T ) + Pt = Ct,

where Ct stands in turn for the price at time t of a call option
written on the firm’s assets, with the strike price L and the
exercise date T. To justify the last equality above, we may
also observe that at time T we have

E(VT ) = VT −D(VT ) = VT −min (VT , L) = (VT − L)+.

We conclude that the firm’s equity can be seen as a call option
on the firm’s assets.



2.1.1 Merton’s Formula

Merton (1974) derived a closed-form expression for the arbi-
trage price of a corporate bond. Let N denote the standard
Gaussian cumulative distribution function:

N(x) =
1√
2π

∫ x
−∞ e−u2/2 du, ∀x ∈ R.

Proposition 1 For every 0 ≤ t < T the value D(t, T ) of a
corporate bond equals

Vte
−κ(T−t)N(− d1(Vt, T − t)) + LB(t, T )N(d2(Vt, T − t))

where

d1,2(Vt, T − t) =
ln(Vt//L) + (r − κ± 1

2σ
2
V )(T − t)

σV

√
T − t

.

The unique replicating strategy for a defaultable bond involves
holding at any time 0 ≤ t < T the φ1

tVt units of cash invested
in the firm’s value and φ2

tB(t, T ) units of cash invested in
default-free bonds, where

φ1
t = e−κ(T−t)N(− d1(Vt, T − t))

and

φ2
t =

D(t, T )− φ1
tVt

B(t, T )
= LN(d2(Vt, T − t)).



2.1.2 Credit Spreads

For the sake of notational simplicity, we set κ = 0. Then Mer-
ton’s formula becomes:

D(t, T ) = LB(t, T )(N(d− σV

√
T − t) + ΓtN(−d)),

where Γt = Vt/LB(t, T ) and

d = d(Vt, T − t) =
ln(Vt/L) + (r + σ2

V /2)(T − t)

σV

√
T − t

.

Notice that LB(t, T ) represents the current value of the face
value of the firm’s debt, so that Γt can be seen as a proxy of
the asset-to-debt ratio Vt/D(t, T ). Let us denote

B(t, T ) = e−r(T−t), D(t, T ) = e−rd
t (T−t).

The credit spread of the defaultable bond equals

rd
t − r = −(N(d− σV

√
T − t) + ΓtN(−d))/(T − t) > 0.

This agrees with the well-known fact that risky bonds have an
expected return in excess of the risk-free interest rate.

On the other hand, however, when t tends to T, the credit
spread in Merton’s model tends either to 0 or to infinity, de-
pending on whether Vt < L or Vt > L.



2.2 Black and Cox Model

The original Merton model does not allow for a premature de-
fault, in the sense that the default may only occur at the ma-
turity of the claim. Several authors put forward structural-type
models in which this restrictive and unrealistic feature is re-
laxed. In most of these models, the time of default is given as
the first passage time of the value process V to a determinis-
tic or random barrier. The default may thus occur at any time
before or on the bond’s maturity date T.

The challenge is to appropriately specify the lower threshold v,
the recovery process Z, and to compute the corresponding func-
tional that appears on the right-hand side of the risk-neutral
valuation formula:

Xd(t, T ) := Bt EP∗(
∫

]t,T ] B
−1
u dDu | Ft).

As one might easily guess, this is a non-trivial problem, in gen-
eral. In addition, the practical problem of the lack of direct
observations of the value process V largely limits the applica-
bility of the first-passage-time models.

Notation: As a rule, the default time will be denoted by τ ;
the symbols τ̄ , τ̂ and τ̂ are reserved to some auxiliary random
times.



2.2.1 Corporate Zero-Coupon Bond

Black and Cox (1976) extend Merton’s (1974) research in sev-
eral directions, by taking into account such specific features of
debt contracts as: safety covenants, debt subordination, and
restrictions on the sale of assets. They assume that the firm’s
stockholders (or bondholders) receive a continuous dividend
payment, proportional to the current value of the firm. Specif-
ically, they postulate that

dVt = Vt((r − κ) dt + σV dW ∗
t ),

where the constant κ ≥ 0 represents the payout ratio, and
σV > 0 is the constant volatility. The short-term interest rate
r is assumed to be constant.

Safety covenants

Safety covenants provide the firm’s bondholders with the right
to force the firm to bankruptcy or reorganization if the firm is
doing poorly according to a set standard. The standard for a
poor performance is set by Black and Cox in terms of a time-
dependent deterministic barrier v̄(t) = Ke−γ(T−t), t ∈ [0, T ),
for some constant K > 0. As soon as the value of firm’s
assets crosses this lower threshold, the bondholders take over
the firm. Otherwise, default takes place at debt’s maturity or
not depending on whether VT < L or not.



Default Time

Let us set:

vt =




v̄(t), for t < T,
L, for t = T .

The default event occurs at the first time t ∈ [0, T ] at which
the firm’s value Vt falls below the level vt, or the default event
does not occur at all. The default time equals ( inf ∅ = +∞)

τ = inf { t ∈ [0, T ] : Vt < vt}.
The recovery process Z and the recovery payoff X̃ are propor-
tional to the value process: Z ≡ β2V and X̃ = β1VT for some
constants β1, β2 ∈ [0, 1].

The classic case examined by Black and Cox (1976) corresponds
to β1 = β2 = 1.

To summarize, we consider the following model:

X = L, C ≡ 0, Z ≡ β2V, X̃ = β1VT , τ = τ̄ ∧ τ̂ ,

where the early default time τ̄ equals

τ̄ = inf { t ∈ [0, T ) : Vt < v̄(t)},
and τ̂ stands for Merton’s default time:

τ̂ = T 11{VT<L} +∞ 11{VT≥L}.



2.2.2 Bond Valuation

We postulate, in addition, that v̄(t) ≤ LB(t, T ) or, more ex-
plicitly,

Ke−γ(T−t) ≤ Le−r(T−t), t ∈ [0, T ], (1)

so that, in particular, K ≤ L. Condition (1) ensures that the
payoff to the bondholder at the default time τ never exceeds
the face value of debt, discounted at a risk-free rate.

PDE Approach

The pricing function u = u(V, t) of a defaultable bond solves
the following PDE:

ut(V, t) + (r−κ)V uV (V, t) + 1
2σ

2
V V 2uV V (V, t)− ru(V, t) = 0

with the boundary condition u(Ke−γ(T−t), t) = β2Ke−γ(T−t)

and the terminal condition u(V, T ) = min (β1V, L).

Probabilistic Approach.

Notice that for any t < T the price D(t, T ) = u(Vt, t) of a
defaultable bond admits the following probabilistic representa-
tion, on the set {τ > t} = {τ̄ > t}

D(t, T ) = EP∗(Le−r(T−t) 11{τ̄≥T, VT ≥L} | Ft)

+ EP∗(β1VTe−r(T−t) 11{τ̄≥T, VT<L} | Ft)

+ EP∗(Kβ2e
−γ(T−τ̄)e−r(τ̄−t) 11{t<τ̄<T} | Ft).



After default – that is, on the set {τ ≤ t} = {τ̄ ≤ t}, we
clearly have

D(t, T ) = β2v̄(τ )B−1(τ, T )B(t, T ) = Kβ2e
−γ(T−τ)er(t−τ).

Computation:

• the first two conditional expectations in the valuation for-
mula can be computed by using the formula for the condi-
tional probability P∗{Vs ≥ x, τ ≥ s | Ft},

• to evaluate the third conditional expectation, we shall em-
ploy the conditional probability law of the first passage time
of the process V to the barrier v̄(t).

We are thus in a position to state the valuation result due to
Black and Cox (1976). We denote â = ν̂σ−2

V and

ν = r − κ− 1
2σ

2
V , ν̂ = ν − γ = r − κ− γ − 1

2σ
2
V .

2.2.3 Black and Cox Formula

For the sake of brevity, in the statement of Proposition 2 we
shall write σ instead of σV .

Proposition 2 Assume that ν̂2 + 2σ2(r − γ) > 0. Prior to
bond’s default, that is: on the set {τ > t}, the price process
D(t, T ) = u(Vt, t) of a defaultable bond equals



D(t, T ) = LB(t, T )(N(h1(Vt, T − t))−R2â
t N(h2(Vt, T − t)))

+ β1Vte
−κ(T−t)(N(h3(Vt, T − t))−N(h4(Vt, T − t)))

+ β1Vte
−κ(T−t)R2â+2

t (N(h5(Vt, T − t))−N(h6(Vt, T − t)))

+ β2Vt(R
θ+ζ
t N(h7(Vt, T − t)) + Rθ−ζ

t N(h8(Vt, T − t))),

where Rt = v̄(t)/Vt, θ = â + 1, ζ = σ−2
√
ν̂2 + 2σ2(r − γ)

and

h1(Vt, T − t) =
ln (Vt/L) + ν(T − t)

σ
√

T − t
,

h2(Vt, T − t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
,

h3(Vt, T − t) =
ln (L/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h4(Vt, T − t) =
ln (K/Vt)− (ν + σ2)(T − t)

σ
√

T − t
,

h5(Vt, T − t) =
ln v̄2(t)− ln(LVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h6(Vt, T − t) =
ln v̄2(t)− ln(KVt) + (ν + σ2)(T − t)

σ
√

T − t
,

h7(Vt, T − t) =
ln (v̄(t)/Vt) + ζσ2(T − t)

σ
√

T − t
,

h8(Vt, T − t) =
ln (v̄(t)/Vt)− ζσ2(T − t)

σ
√

T − t
.



Special Cases

Assume that β1 = β2 = 1 and the barrier function v̄ is such
that K = L. Then necessarily γ ≥ r. It can be checked that
for K = L we have D(t, T ) = D1(t, T ) + D3(t, T ) where:

D1(t, T ) = LB(t, T )(N(h1(Vt, T−t))−R2â
t N(h2(Vt, T−t)))

D3(t, T ) = Vt(R
θ+ζ
t N(h7(Vt, T−t))+Rθ−ζ

t N(h8(Vt, T−t))).

Case γ = r

If we also assume that γ = r then ζ = −σ−2ν̂, and thus

VtR
θ+ζ
t = LB(t, T ), VtR

θ−ζ
t = VtR

2â+1
t = LB(t, T )R2â

t .

It is also easy to see that in this case

h1(Vt, T − t) =
ln(Vt/L) + ν(T − t)

σ
√

T − t
= −h7(Vt, T − t),

while

h2(Vt, T−t) =
ln v̄2(t)− ln(LVt) + ν(T − t)

σ
√

T − t
= h8(Vt, T−t).

We conclude that if

v̄(t) = Le−r(T−t) = LB(t, T )

then D(t, T ) = LB(t, T ).



This result is quite intuitive. A corporate bond with a safety
covenant represented by the barrier function, which equals the
discounted value of the bond’s face value, is equivalent to a
default-free bond with the same face value and maturity.

Case γ > r

For K = L and γ > r, it is natural to expect that D(t, T )
would be smaller than LB(t, T ). It is also possible to show that
when γ tends to infinity (all other parameters being fixed), then
the Black and Cox price converges to Merton’s price.

Further Developments

The Black and Cox first-passage-time methodology was later
developed by, among others:

Brennan and Schwartz (1977, 1980) - convertible bonds,

Kim et al. (1993) - random barrier and random interest rates
(CIR model),

Nielsen et al. (1993) - random barrier and random interest
rates (Vasicek’s model),

Leland (1994) - optimal capital structure, bankruptcy costs,
tax benefits,

Longstaff and Schwartz (1995) - constant barrier and random
interest rates (Vasicek’s model)



2.2.4 Optimal Capital Structure

We consider a firm that has an interest paying bonds outstand-
ing. We assume that it is a consol bond, which pays continu-
ously coupon rate c. Assume that r > 0 and the payout rate
κ is equal to zero. This condition can be given a financial in-
terpretation as the restriction on the sale of assets, as opposed
to issuing of new equity. Equivalently, we may think about a
situation in which the stockholders will make payments to the
firm to cover the interest payments. However, they have the
right to stop making payments at any time and either turn the
firm over to the bondholders or pay them a lump payment of
c/r per unit of the bond’s notional amount.

Recall that we denote by E(Vt) (D(Vt), resp.) the value at
time t of the firm equity (debt, resp.), hence the total value of
the firm’s assets satisfies Vt = E(Vt) + D(Vt).

Black and Cox (1976) argue that there is a critical level of
the value of the firm, denoted as v∗, below which no more
equity can be sold. The critical value v∗ will be chosen by
stockholders, whose aim is to minimize the value of the bonds,
and thus to maximize the value of the equity. Notice that v∗

is nothing else than a constant default barrier in the problem
under consideration; the optimal default time τ ∗ thus equals
τ ∗ = inf { t ≥ 0 : Vt ≤ v∗}.



To find the value of v∗, let us first fix the bankruptcy level v̄.
The ODE for the pricing function u∞ = u∞(V ) of a consol
bond takes the following form

1
2V

2σ2u∞V V + rV u∞V + c− ru∞ = 0,

subject to the lower boundary condition u∞(v̄) = min (v̄, c/r)
and the upper boundary condition

lim
V→∞u∞V (V ) = 0.

For the last condition, observe that when the firm’s value grows
to infinity, the possibility of default becomes meaningless, so
that the value of the defaultable consol bond tends to the value
c/r of the default-free consol bond. The general solution has
the following form:

u∞(V ) =
c

r
+ K1V + K2V

−α,

where α = 2r/σ2 and K1, K2 are some constants, to be de-
termined from boundary conditions. We find that K1 = 0,
and

K2 =





v̄α+1 − (c/r)v̄α, if v̄ < c/r,
0, if v̄ ≥ c/r.

Hence, if v̄ < c/r then

u∞(Vt) =
c

r
+


v̄α+1 − c

r
v̄α


 V −α

t =
c

r


1−



v̄

Vt



α

 + v̄


v̄

Vt



α

.



It is in the interest of the stockholders to select the bankruptcy
level in such a way that the value of the debt, D(Vt) = u∞(Vt),
is minimized, and thus the value of firm’s equity

E(Vt) = Vt −D(Vt) = Vt − c

r
(1− q̄t)− v̄q̄t

is maximized. It is easy to check that the optimal level of the
barrier does not depend on the current value of the firm, and
it equals

v∗ =
c

r

α

α + 1
=

c

r + σ2/2
.

Given the optimal strategy of the stockholders, the price pro-
cess of the firm’s debt (i.e., of a consol bond) takes the form,
on the set {τ ∗ > t},

D∗(Vt) =
c

r
− 1

αV α
t




c

r + σ2/2




α+1

or, equivalently

D∗(Vt) =
c

r
(1− q∗t ) + v∗q∗t ,

where

q∗t =


v∗

Vt



α

=
1

V α
t




c

r + σ2/2




α

.



3 Stochastic Interest Rates

We assume that the underlying probability space (Ω,F , P),
endowed with the filtration F = (Ft)t≥0, supports the short-
term interest rate process r and the value process V.

The dynamics under the spot martingale measure P∗ of the
firm’s value and of the price of a default-free zero-coupon bond
B(t, T ) are

dVt = Vt((rt − κ(t)) dt + σ(t) dW ∗
t ),

and

dB(t, T ) = B(t, T )(rt dt + b(t, T ) dW ∗
t ),

respectively, where W ∗ is a d-dimensional standard Brownian
motion. Furthermore, κ : [0, T ] → R, σ : [0, T ] → Rd and
b(·, T ) : [0, T ] → Rd are assumed to be bounded functions.

The forward value FV (t, T ) := Vt/B(t, T ) of the firm satisfies
under the forward martingale measure PT

dFV (t, T ) = −κ(t)FV (t, T ) dt+FV (t, T )(σ(t)−b(t, T )) dW T
t ,

where the process W T , given by the formula

W T
t = W ∗

t −
∫ t
0 b(u, T ) du, ∀ t ∈ [0, T ],

is known to follow a d-dimensional SBM under PT .



For any t ∈ [0, T ], we set

F κ
V (t, T ) = FV (t, T )e−

∫ T
t κ(u) du.

Then

dF κ
V (t, T ) = F κ

V (t, T )(σ(t)− b(t, T )) dW T
t .

Furthermore, it is apparent that F κ
V (T, T ) = FV (T, T ) = VT .

We consider the following modification of the Black and Cox
approach:

X = L, Zt = β2Vt,
̂X = β1VT , τ = inf { t ∈ [0, T ] : Vt < vt},

where β2, β1 ∈ [0, 1] are constants, and the barrier v is given
by the formula

vt :=




KB(t, T )e

∫ T
t κ(u) du, for t < T,

L, for t = T,

where the constant K satisfies 0 < K ≤ L.

Let us denote, for any t ≤ T,

κ(t, T ) =
∫ T
t κ(u) du, σ2(t, T ) =

∫ T
t |σ(u)− b(u, T )|2du,

where | · | is the Euclidean norm in Rd. We write Ft = FV (t, T ),
and we denote

η+(t, T ) = κ(t, T )+1
2σ

2(t, T ), η−(t, T ) = κ(t, T )−1
2σ

2(t, T ).



Proposition 3 For any t < T, the forward price of a de-
faultable bond FD(t, T ) = D(t, T )/B(t, T ) equals on the set
{τ > t},

L(N(̂h1(Ft, t, T ))− (Ft/K)e−κ(t,T )N(̂h2(Ft, t, T )))

+ β1Fte
−κ(t,T )(N(̂h3(Ft, t, T ))−N(̂h4(Ft, t, T )))

+ β1K(N(̂h5(Ft, t, T ))−N(̂h6(Ft, t, T )))

+ β2KJ1(Ft, t, T ) + β2Fte
−κ(t,T )J2(Ft, t, T ),

where

̂h1(Ft, t, T ) =
ln (Ft/L)− η+(t, T )

σ(t, T )
,

̂h2(Ft, T, t) =
2 ln K − ln(LFt) + η−(t, T )

σ(t, T )
,

̂h3(Ft, t, T ) =
ln (L/Ft) + η−(t, T )

σ(t, T )
,

̂h4(Ft, t, T ) =
ln (K/Ft) + η−(t, T )

σ(t, T )
,

̂h5(Ft, t, T ) =
2 ln K − ln(LFt) + η+(t, T )

σ(t, T )
,

̂h6(Ft, t, T ) =
ln(K/Ft) + η+(t, T )

σ(t, T )
,

and for any fixed 0 ≤ t < T and Ft > 0

J1,2(Ft, t, T ) =
∫ T
t eκ(u,T ) dN



ln(K/Ft) + κ(t, T )± 1

2σ
2(t, u)

σ(t, u)


 .



Corollary 1 Under the assumptions of Proposition 3, if κ ≡ 0
then

FD(t, T ) = L(N(− d1(Ft, t, T ))− (Ft/K)N(d6(Ft, t, T )))

+ β1Ft(N(d2(Ft, t, T ))−N(d4(Ft, t, T )))

+ β1K(N(d5(Ft, t, T ))−N(d3(Ft, t, T )))

+ β2KN(d3(Ft, t, T )) + β2FtN(d4(Ft, t, T )),

where

d1(Ft, t, T ) =
ln(L/Ft) + 1

2σ
2(t, T )

σ(t, T )
= d2(Ft, t, T ) + σ(t, T ),

d3(Ft, t, T ) =
ln(K/Ft) + 1

2σ
2(t, T )

σ(t, T )
= d4(Ft, t, T ) + σ(t, T ),

d5(Ft, t, T ) =
ln(K2/FtL) + 1

2σ
2(t, T )

σ(t, T )
= d6(Ft, t, T ) + σ(t, T ).

The formula of Corollary 1 covers as a special case the valuation
result established by Briys and de Varenne (1997).

Remarks. In some other recent studies of first passage time
models, in which the triggering barrier is assumed to be either
a constant or an unspecified stochastic process, typically no
closed-form solution for the value of a corporate debt is avail-
able, and thus a numerical approach is required (see Kim et al.
(1993), Longstaff and Schwartz (1995), Nielsen et al. (1993),
or Saá-Requejo and Santa-Clara (1999)).



4 Hybrid Models

Madan and Unal (1998) consider the discounted equity value
(including reinvested dividends) process E∗

t = Et/Bt as the
unique Markovian state variable in their intensity-based model.
The dynamics of E∗ under the spot martingale measure P∗ are:

dE∗
t = σE∗

t dW ∗
t , E∗

0 > 0,

for some constant volatility coefficient σ.

Madan and Unal (1998) postulate that the intensity of default
satisfies: λt = λ(E∗

t ) for some function λ : R+ → R+. The
default time τ is specified through the so-called canonical con-
struction, so that it is defined on an enlarged probability space
(Ω, G, Q∗), where Q∗ is an extension of P∗.

Madan and Unal (1998) propose to take the function

λ(x) = c (ln(x/v̄))−2,

where c and v̄ are strictly positive constants. It is interesting to
notice that the stochastic intensity λt = λ(E∗

t ) tends to infinity,
when the discounted equity value E∗

t approaches, either from
above or from below, the critical level v̄.

To avoid making a particular choice of a default-free term struc-
ture model, Madan and Unal (1998) focus on the futures price
of a corporate bond.



It is well known (Duffie and Stanton (1992) or Sect. 15.2 in
Musiela and Rutkowski (1997)) that the futures price πf(X)
of a contingent claim X, for the settlement date T, is given by
the conditional expectation under the spot martingale measure:

πf
t (X) = EQ∗(X | Gt), t ∈ [0, T ].

In our case, the futures price Df(t, T ) of a defaultable bond
with zero recovery equals Df(t, T ) = Q∗{τ > T | Gt}. More
explicitly,

Df(t, T ) = 11{τ>t} EP∗(e
− ∫ T

t λ(E∗u,u)du | Ft) = 11{τ>t}v(E∗
t , t)

for some function v : R+ → R+. By virtue of the Feynman-Kac
theorem, the function v satisfies, under mild technical assump-
tions, the following pricing PDE

vt(x, t) + 1
2σ

2(x, t)vxx(x, t)− λ(x, t)v(x, t) = 0

subject to the terminal condition v(x, T ) = 1. For the sake of
notational simplicity, we have assumed here that the process
W ∗ is one-dimensional.

Madan and Unal (1998) show that under these assumptions
the futures price of a corporate bond equals G(h(E∗

t , T − t)),
where the function h is explicitly known, and the function G
satisfies a certain second-order ODE.


