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MAIN ISSUES

Valuation of basket credit derivatives:

• default swap of type F (Duffie 1988, Kijima & Muro-
machi 2000) – protection against the first default in a
basket of defaultable claims,

• default swap of type D (Kijima & Muromachi 2000) –
protection against the first two defaults in a basket of
defaultable claims,

• ith-to-default claim (Bielecki & Rutkowski 2000) – pro-
tection against the first i defaults in a basket of default-
able claims.

Technical issues:

• conditional independence (Kijima & Muromachi 2000),

• simulation of correlated defaults (Duffie & Singleton
1998),

• infectious defaults (Davis & Lo 1999),

• change of a probability measure (Kusuoka, 1999),

• asymmetric default intensities (Jarrow & Yu 2001),

• copulas (Schönbucher and Schubert 2001),

• dependent ratings (Bielecki & Rutkowski 2002).



1 Basket Credit Derivatives

Basket credit derivatives are credit derivatives deriving their
cash flows values (and thus their values) from credit risks
of several reference entities (or prespecified credit events).

We assume that:

• we are given a collection of default times τ1, . . . , τn

defined on a common probability space (Ω,G, Q∗),

• Q∗{τi = 0} = 0 and Q∗{τi > t} > 0 for every i and t,

• Q∗{τi = τj} = 0 for arbitrary i 6= j.

We associate with the collection τ1, . . . , τn the ordered
sequence τ(1) < τ(2) < · · · < τ(n), where τ(i) stands for
the random time of the ith default.

Formally:

τ(1) = min {τ1, τ2, . . . , τn}
and for i = 2, . . . , n

τ(i) = min {τk : k = 1, . . . , n, τk > τ(i−1)}.
In particular,

τ(n) = max {τ1, τ2, . . . , τn}.



1.1 ith-to-Default Contingent Claims

We set H i
t = 11{τi≤t} and we denote by Hi the filtration

generated by the process H i, that is, by the observations
of the default time τi.

In addition, we are given a reference filtration F on the
space (Ω,G, Q∗), which models, e.g., the interest rate risk.

We introduce the enlarged filtration G by setting

G = F ∨ H1 ∨ H2 ∨ . . . ∨ Hn.

The σ-field Gt models the information available at time t.

A general ith-to-default contingent claim which matures at
time T is specified by the following covenants:

• if τ(i) = τk ≤ T for some k = 1, . . . , n then the
claimholder gets at time τ(i) the recovery payoff Zk

τ(i)
,

• otherwise, that is, if τ(i) > T, the claimholder receives
at time T the promised payoff X.

Technical assumptions:

• Zk is an F-predictable process,

•X is an FT -measurable random variable.



1.2 Case of Two Entities

For the sake of notational simplicity, we shall frequently
consider the case of two reference credit risks.

Cash flows of the first-to-default contract (FDC)

• if τ(1) = min {τ1, τ2} = τi ≤ T for i = 1, 2, the claim
pays at time τi the amount Z i

τi
,

• if min {τ1, τ2} > T, it pays at time T the amount X.

Cash flows of the last-to-default contract (LDC)

• if τ(2) = max {τ1, τ2} = τi ≤ T for i = 1, 2, the claim
pays at time τi the amount Z i

τi
,

• if max {τ1, τ2} > T, it pays at time T the amount X.

The savings account B equals

Bt = exp
(∫ t

0 ru du
)
,

and Q∗ stands for the spot martingale measure for our
model of the financial market (including defaultable secu-
rities, such as: corporate bonds and credit derivatives).



Values of FDC and LDC

In general, the value at time t of a defaultable claim (X,Z, τ )
is given by the risk-neutral valuation formula

St = Bt EQ∗
(∫

]t,T ] B
−1
u dDu | Gt

)

where D is the dividend process, which describes all the
cash flows of the claim.

The value at time t of the FDC equals:

S
(1)
t = Bt EQ∗

(
B−1

τ1
Z1

τ1
11{τ1<τ2, t<τ1≤T} | Gt

)

+Bt EQ∗
(
B−1

τ2
Z2

τ2
11{τ2<τ1, t<τ2≤T} | Gt

)

+Bt EQ∗
(
B−1

T X 11{T<τ(1)} | Gt

)
.

The value at time t of the LDC equals:

S
(2)
t = Bt EQ∗

(
B−1

τ1
Z1

τ1
11{τ2<τ1, t<τ1≤T} | Gt

)

+Bt EQ∗
(
B−1

τ2
Z2

τ2
11{τ1<τ2, t<τ2≤T} | Gt

)

+Bt EQ∗
(
B−1

T X 11{T<τ(2)} | Gt

)
.

Both expressions above are special cases of the general
formula. The goal is to derive more explicit representations
under various assumptions about τ1 and τ2.



Hazard Process of a Default Time

Let τ be a non-negative random variable on (Ω,G, Q∗),
referred to as the default time, and let F be a reference
filtration. We set

Ft = Q∗{τ ≤ t | Ft},
so that

Gt := 1− Ft = Q∗{τ > t | Ft}
is the conditional survival probability. It is easily seen
that F is a bounded, non-negative, F-submartingale. We
assume that Ft < 1 for every t ∈ R+.

Definition 1 The F-hazard process Γ of τ equals: Γt =
− ln Gt. If Γt =

∫ t
0 γu du then γ is called the F-intensity

of default (in this case, F is an increasing process).

Lemma 1 Let Gt = Ht ∨ Ft. Then for any s > t and
any Fs-measurable, integrable, random variable Y we have

EQ∗( 11{τ>s}Y | Gt) = 11{τ>t} EQ∗(e
Γt−ΓsY | Ft).

In particular,

Q∗{τ > s | Gt} = 11{τ>t} EQ∗(e
Γt−Γs | Ft).



2 Conditionally Independent Default Times

Relatively simple representations for prices of basket credit
derivatives can be obtained under the assumption of con-
ditional independence of default times.

Definition 2 The random times τi, i = 1, . . . , n are said
to be conditionally independent with respect to F under
Q∗ if and only if for any T > 0 and any t1, . . . , tn ∈ [0, T ]
we have:

Q∗{τ1 > t1, . . . , τn > tn | FT} =
n∏

i=1
Q∗{τi > ti | FT}.

Notice that:

• Intuitive meaning of conditional independence: the ref-
erence credits (credit names) are subject to common
risk factors that may trigger credit (default) events. In
addition, each credit name is subject to idiosyncratic
risks that are specific for this name.

• Conditional independence of default times means that
once the common risk factors are fixed then the idiosyn-
cratic risk factors are independent of each other.

• Conditional independence is not invariant with respect
to an equivalent change of a probability measure.



2.1 Canonical Construction

Let Γi, i = 1, . . . , n be a given family of F-adapted, in-
creasing, continuous processes, defined on a probability
space (Ω̂, F, P∗). We assume that Γi

0 = 0 and Γi
∞ = ∞.

If Γi
t =

∫ t
0 γi

u du then γi is the F-intensity of τi. Intuitively

Q∗{τi ∈ [t, t + dt] | Ft ∨Hi
t} ≈ 11{τi>t}γi

t dt.

Let (Ω̃, F̃ , P̃) be an auxiliary probability space with a se-
quence ξi, i = 1, . . . , n of mutually independent random
variables uniformly distributed on [0, 1]. We set

τi = inf { t ∈ R+ : Γi
t(ω̂) ≥ − ln ξi(ω̃) }

on (Ω,G, Q∗) = (Ω̂× Ω̃,F∞⊗F̃ , P∗⊗ P̃). We endow the
space (Ω,G, Q∗) with the filtration G = F∨H1∨ · · ·∨Hn.

Proposition 1 Default times τ1, . . . , τn are conditionally
independent with respect to F under Q∗. The process Γi is
the F-hazard process of τi:

Q∗{τi > s | Ft ∨Hi
t} = 11{τi>t} EQ∗(e

Γi
t−Γi

s | Ft).

We have Q∗{τi = τj} = 0 for every i 6= j.



3 Copula-Based Approach

The concept of a copula function allows to produce vari-
ous multidimensional probability distributions with the same
univariate marginal laws.

Definition 3 C : [0, 1]n → [0, 1] is a copula function if:
C(1, . . . , 1, vi, 1, . . . , 1) = vi for any i and any vi ∈ [0, 1],
C is an n-dimensional cumulative distribution function.

Examples of copulas:

• product copula: Π(v1, . . . , vn) = Πn
i=1vi,

• Gumbel copula: for θ ∈ [1,∞) we set

C(v1, . . . , vn) = exp


−




n∑

i=1
(− ln vi)

θ


1/θ


 .

Proposition 2 For any cumulative distribution function
F on Rn there exists a copula function C such that

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn))

where Fi is the marginal cumulative distribution function.
If, in addition, F is continuous then C is unique.



3.1 Extension of the Canonical Construction

Assume that the c.d.f. of (ξ1, . . . , ξn) is an n-dimensional
copula C. Then the univariate marginal laws are uniform
on [0, 1], but the random variables ξ1, . . . , ξn are not nec-
essarily mutually independent. We still postulate that they
are independent of F, and we set:

τi = inf { t ∈ R+ : Γi
t(ω̂) ≥ − ln ξi(ω̃) }.

Then:

• the case of default times conditionally independent with
respect to F corresponds to the choice of the product
copula Π. In this case, for t1, . . . , tn ≤ T we have

Q∗{τ1 > t1, . . . , τn > tn | FT} = Π(Z1
t1
, . . . , Zn

tn
)

where we set Z i
t = e−Γi

t,

• in general, for t1, . . . , tn ≤ T we obtain

Q∗{τ1 > t1, . . . , τn > tn | FT} = C(Z1
t1
, . . . , Zn

tn
)

where C is the copula function that was used in the
construction of τ1, . . . , τn.



3.2 Survival Intensities

Schönbucher and Schubert (2001) show that for arbitrary
s ≤ t on the set {τ1 > s, . . . , τn > s} we have

Q∗{τi > t | Gs} = EQ∗



C(Z1

s , . . . , Z
i
t , . . . , Z

n
tn

)

C(Z1
s , . . . , Z

n
s )

| Fs


 .

Consequently, the ith intensity of survival equals, on the
set {τ1 > t, . . . , τn > t}

λi
t = γi

t Z i
t

∂

∂vi
ln C(Z1

t , . . . , Z
n
t ).

Here λi
t is understood as the limit:

λi
t = lim

h↓0 h−1 Q∗{t < τi ≤ t + h | Ft, τ1 > t, . . . , τn > t}.

Schönbucher and Schubert (2001) examine the intensities
of survival after the default times of some entities. It ap-
pears that, in general, the ith intensity of survival jumps at
time t if the jth entity defaults at time t for some j 6= i.

Remark: Jumps of intensities cannot be efficiently con-
trolled, except for the choice of C.



4 Jarrow and Yu Approach

For a given finite family of reference credit names, Jarrow
and Yu (2001) propose to make a distinction between:

• the primary firms,

• the secondary firms.

At the intuitive level:

• the class of primary firms encompasses these entities
whose probabilities of default are influenced by macro-
economic conditions, but not by the credit risk of coun-
terparties. The pricing of bonds issued by primary firms
can be done through the standard intensity-based metho-
dology,

• it thus suffices to focus on securities issued by secondary
firms, that is, these firms for which the intensity of
default depends on the status of some other firms.

Formally, the construction is based on the assumption of
asymmetric information. Unilateral dependence is not pos-
sible in the case of complete (i.e., symmetric) information.



4.1 Model’s Construction

Let {1, . . . , n} represent the set of all firms, and let F be
the reference filtration. We postulate that:

• for any firm from the set {1, . . . , k} of primary firms,
the ‘default intensity’ depends only on F,

• the ‘default intensity’ of each firm belonging to the set
{k +1, . . . , n} of secondary firms may depend not only
on the filtration F, but also on the status (default or
no-default) of the primary firms.

Construction of default times τ1, . . . , τn

First step: defaults of primary firms

We assume that we are given a family of F-adapted ‘in-
tensity processes’ λ1, . . . , λk and we produce a collection
τ1, . . . , τk of F-conditionally independent random times
through the canonical method:

τi = inf { t ∈ R+ :
∫ t
0 λi

u du ≥ − ln ξi }
where ξi, i = 1, . . . , k are mutually independent identically
distributed random variables with uniform law on [0, 1] un-
der the spot martingale measure Q∗.



Second step: defaults of secondary firms

We assume that:

• the probability space (Ω,G, Q∗) is large enough to sup-
port a family ξi, i = k + 1, . . . , n of mutually indepen-
dent random variables, with uniform law on [0, 1],

• these random variables are independent not only of the
filtration F, but also of the already constructed in the
first step default times τ1, . . . , τk of primary firms.

The default times τi, i = k + 1, . . . , n are also defined by
means of the standard formula:

τi = inf { t ∈ R+ :
∫ t
0 λi

u du ≥ − ln ξi }.

However, the ‘intensity processes’ λi for i = k + 1, . . . , n
are now given by the following expression:

λi
t = µi

t +
k∑

l=1
νi,l

t 11{τl≤t}

where µi and νi,l are F-adapted stochastic processes.

If the default of the jth primary firm does not affect the
default intensity of the ith secondary firm, we set νi,j ≡ 0.



Main Features

Let

G = F ∨ H1 ∨ . . . ∨ Hn

stand for the enlarged filtration and let

F̃ = F ∨ Hk+1 ∨ . . . ∨ Hn

be the filtration generated by the reference filtration F and
the observations of defaults of secondary firms.

Then:

• the default times τ1, . . . , τk of primary firms are condi-
tionally independent with respect to F,

• the default times τ1, . . . , τk of primary firms are no
longer conditionally independent when we replace the
filtration F by the filtration F̃,

• in general, the default intensity of a primary firm with
respect to the filtration F̃ differs from the intensity λi

with respect to the filtration F.

Conclusion: defaults of primary firms are also ‘dependent’
of defaults of secondary firms.



4.2 Case of Two Firms

We consider only two firms, A and B say, and we postulate
that A is a primary firm, and B is a secondary firm. Let
the constant process λ1

t ≡ λ1 represent the F-intensity of
default for firm A, so that

τ1 = inf { t ∈ R+ :
∫ t
0 λ1

u du = λ1t ≥ − ln ξ1 }
where ξ1 is a random variable independent of F, with the
uniform law on [0, 1].

For the second firm, the ‘intensity’ of default is assumed
to satisfy

λ2
t = λ2 11{τ1>t} + α2 11{τ1≤t}

for some positive constants λ2 and α2, and thus

τ2 = inf { t ∈ R+ :
∫ t
0 λ2

u du ≥ − ln ξ2 }
where ξ2 is a r.v. with the uniform law, independent of F,
and such that ξ1 and ξ2 are mutually independent.

The following properties hold:

• λ1 is the intensity of τ1 with respect to F,

• λ2 is the intensity of τ2 with respect to F ∨ H1.

• λ1 is not the intensity of τ1 with respect to F ∨ H2.



4.3 Bond Valuation

The following result was established in Jarrow and Yu
(2001), who assume the fractional recovery of Treasury
value scheme with the fixed recovery rates δ1 and δ2. Let
λ = λ1 + λ2. For λ− α2 6= 0 we denote

cλ1,λ2,α2(u) =
1

λ− α2

(
λ1e

−α2u + (λ2 − α2)e
−λu

)
.

For λ− α2 = 0 we set

cλ1,λ2,α2(u) = (1 + λ1u)e−λu.

Proposition 3 For the bond issued by the primary firm
we have

D1(t, T ) = B(t, T )(δ1 + (1− δ1)e
−λ1(T−t) 11{τ1>t}).

The value of a zero-coupon bond issued by the secondary
firm equals, on the set {τ1 > t}, that is, prior to default
of the primary firm:

D2(t, T ) = B(t, T )
(
δ2 + (1− δ2)cλ1,λ2,α2(T − t) 11{τ2>t}

)

and on the set {τ1 ≤ t}, that is, after default of the
primary firm:

D2(t, T ) = B(t, T )
(
δ2 + (1− δ2)e

−α2(T−t) 11{τ2>t}
)
.



Special Case: Zero Recovery

Assume that λ1 + λ2− α2 6= 0 and the bond is subject to
the zero recovery scheme. For the sake of brevity, we set
r = 0 so that B(t, T ) = 1 for t ≤ T.

Then we have the following result:

Corollary 1 If δ2 = 0 then D2(t, T ) = 0 on {τ2 ≤ t}.
On the set {τ2 > t} we have

D2(t, T ) = 11{τ1≤t} e−α2(T−t)

+ 11{τ1>t}
1

λ− α2

(
λ1e

−α2(T−t) + (λ2 − α2)e
−λ(T−t)

)

where we denote λ = λ1 + λ2.

Under the present assumptions:

D2(t, T ) = Q∗{τ2 > T |H1
t ∨H2

t}
and the general formula yields

D2(t, T ) = 11{τ2>t}
Q∗{τ2 > T |H1

t}
Q∗{τ2 > t |H1

t}
.

If we set Λ2
t =

∫ t
0 λ2

u du then

D2(t, T ) = 11{τ2>t} EQ∗(e
Λ2

t−Λ2
T |H1

t ).



5 Extension of Jarrow and Yu Results

We shall now argue that the assumption that some firms
are primary while other firms are secondary is not relevant.
For the sake of simplicity, we assume that:

• n = 2; i.e., we consider two firms only,

• the interest rate r is zero: B(t, T ) = 1 for every t ≤ T,

• the filtration F is trivial,

• both bonds are subject to the zero-recovery scheme.

Since the situation is symmetric, it suffices to analyze a
bond issued by the first firm.

By definition, the price of this bond equals

D1(t, T ) = Q∗{τ1 > T |H1
t ∨H2

t}.
We shall also evaluate the following values based on partial
observations:

D̃1(t, T ) = Q∗{τ1 > T |H2
t}

and

D̂1(t, T ) = Q∗{τ1 > T |H1
t}.



5.1 Kusuoka’s Construction

Under the original probability measure Q the random times
τi, i = 1, 2 are mutually independent random variables
with exponential laws with parameters λ1 and λ2, resp.

Girsanov’s Theorem

For a fixed T > 0, we define Q∗ ∼ Q on (Ω,G)

dQ∗

dQ
= ηT , Q-a.s.

where ηt, t ∈ [0, T ], satisfies

ηt = 1 +
2∑

i=1

∫

]0,t] ηu−κi
u dM̃ i

u

where

M̃ i
t = H i

t −
∫ t∧τi
0 λi du

H i
t = 11{τi≤t} and processes κ1 and κ2 satisfy:

κ1
t = 11{τ2<t}



α1

λ1
− 1


 , κ2

t = 11{τ1<t}


α2

λ2
− 1


 .

It can be checked that the ‘martingale intensities’ under
Q∗ are:

λ1
t = λ1 11{τ2>t} + α1 11{τ2≤t},

λ2
t = λ2 11{τ1>t} + α2 11{τ1≤t}.



Let us focus on τ1. Let Λ1
t =

∫ t
0 λ1

u du. Then:

• λ1 is an H2-predictable process and the process

M 1
t = H1

t −
∫ t∧τ1
0 λ1

u du = H1
t − Λ1

t∧τ1

follows a G-martingale under Q∗.

• λ1 is not the intensity of the default time τ1 with respect
to H2 under Q∗. In general

Q∗{τ1 > s |H1
t ∨H2

t} 6= 11{τ1>t} EQ∗(e
Λ1

t−Λ1
s |H2

t ).

• λ1 is the intensity of the default time τ1 with respect
to H2 under Q1 ∼ Q, where

dQ1

dQ
= η̃T , Q-a.s.

and η̃t, t ∈ [0, T ], satisfies

η̃t = 1 +
∫

]0,t] η̃u−κ2
u dM̃ 2

u .

For s > t we have

Q1{τ1 > s |H1
t ∨H2

t} = 11{τ1>t} EQ1(eΛ1
t−Λ1

s | Ft)

but also

Q∗{τ1 > s |H1
t ∨H2

t} = Q1{τ1 > s |H1
t ∨H2

t}.



5.2 Interpretation of Intensities

Recall that the processes λ1 and λ2 have jumps if αi 6= λi,
namely:

λ1
t = λ1 11{τ2>t} + α1 11{τ2≤t}

and

λ2
t = λ2 11{τ1>t} + α2 11{τ1≤t}.

The following result shows that the intensities λ1 and λ2

are ‘local intensities’ of default with respect to the infor-
mation available at time t.

Proposition 4 For i = 1, 2 and every t ∈ R+ we have

λi = lim
h↓0 h−1 Q∗{t < τi ≤ t + h | τ1 > t, τ2 > t}.

Moreover:

α1 = lim
h↓0 h−1 Q∗{t < τ1 ≤ t + h | τ1 > t, τ2 ≤ t}.

and

α2 = lim
h↓0 h−1 Q∗{t < τ2 ≤ t + h | τ2 > t, τ1 ≤ t}.

Conclusion: the model can be reformulated as a two-
dimensional Markov chain (cf. Lando (1998)).



5.3 Bond Valuation

Proposition 5 The price D1(t, T ) on {τ1 > t} equals

D1(t, T ) = 11{τ2≤t} e−α1(T−t)

+ 11{τ2>t}
1

λ− α1

(
λ2e

−α1(T−t) + (λ1 − α1)e
−λ(T−t)

)
.

Furthermore

D̃1(t, T ) = 11{τ2≤t}
(λ− α2)λ2e

−α1(T−τ2)

λ1α2e(λ−α2)τ2 + λ(λ2 − α2)

+ 11{τ2>t}
λ− α2

λ− α1

(λ1 − α1)e
−λ(T−t) + λ2e

−α1(T−t)

λ1e−(λ−α2)t + λ2 − α2

and

D̂1(t, T ) = 11{τ1>t}
λ2e

−α1T + (λ1 − α1)e
−λT

λ2e−α1t + (λ1 − α1)e−λt
.

Observe that:

• formula for D1(t, T ) coincides with the Jarrow and Yu
formula for the bond issued by a secondary firm,

•D1(t, T ) and D̂1(t, T ) represent ex-dividend values of
the bond, so that they vanish after default,

• the latter remark does not apply to D̃1(t, T ), however.



6 Dependent Intensities of Credit Migrations

The goal is to extend the previous analysis and some results
to the case of multiple credit ratings.

Assume that the current financial standing of the ith firm is
reflected through the credit ranking process C i with values
in a finite set of credit grades Ki = {1, . . . , ki}.
For the sake of simplicity, we assume that:

• the reference filtration F is trivial,

• there are two firms only.

Let Fi = FCi
, i = 1, 2, denote the filtration generated by

C i and let G = F1 ∨ F2. We examine the two following
Markovian properties under the martingale measure Q∗.

• the Markov property of C = (C1, C2):

Q∗{C1
s = c1, C

2
s = c2 | Gt} = Q∗{C1

s = c1, C
2
s = c2 |C1

t , C
2
t }.

• the Fj-conditional Markov property of C i for i 6= j:

Q∗{C1
s = c1 | Gt) = Q∗{C1

s = c1 |σ(C1
t ) ∨ F2

t },

Q∗{C2
s = c2 | Gt} = Q∗{C2

s = c2 |σ(C2
t ) ∨ F1

t }.



6.1 Extension of Kusuoka’s Construction

Assume that k1 = k2 = 3 (three rating grades). We
consider the two independent Markov chains C i, i = 1, 2
defined on (Ω,G, Q) and taking values in K = {1, 2, 3}
with generators:

Λi =




−λi
12 − λi

13 λi
12 λi

13

λi
21 −λi

21 − λi
23 λi

23

0 0 0



.

The state k = 3 is the only absorbing state for each chain.
We assume that (C1

0 , C
2
0) = (1, 1).

Next, we define a probability measure Q∗ equivalent to Q.
To this end, we introduce processes κi;kk′:

κi;kk′
t =

3∑

l=2
Hj;kl

t−



λi;l

kk′

λi
kk′
− 1




for i = 1, 2, j 6= i, k = 1, 2, k′ = 1, 2, 3, k 6= k′, where

Hj;k,l
t = Hj;k

t Hj;l
t

with Hj;k
t = 11{Cj

t =k} for i, j = 1, 2, j 6= i, and k =

1, 2, 3. We also define, for i = 1, 2 and k 6= k′, the

transition counting process H i;kk′
t = ∑

0<u≤t H
i;k
u−H i;k′

u .



Associated Martingales

For i = 1, 2 the process M i;kk′ given by the expression

M i;kk′
t = H i;kk′

t − ∫ t
0 λi

kk′H
i;k
u du, k 6= k′,

is known to follow an Fi-martingale under Q, and thus also
a G-martingale under Q where G = F1 ∨ F2.

We define a strictly positive martingale under Q:

ηt = 1 +
2∑

i=1

∫

]0,t]

2∑

k=1

3∑

k′=1,k′ 6=k
ηu−κi;kk′

u dM i;kk′
u

and the probability measure Q∗ equivalent to Q:

dQ∗

dQ
= ηT , Q-a.s.

The following result generalizes Kusuoka’s construction.

Proposition 6 For each i 6= j the process C i follows an
Fj-conditional Markov chain under Q∗. The Fj-transition
intensities of C i under Q∗ are (for k 6= k′)

λi;∗
kk′(t) = (1 + κi;kk′

t )λi
kk′

or more explicitly

λi;∗
kk′(t) = λi

kk′H
j;1
t +

3∑

l=2
Hj;kl

t λi;l
kk′.



Conditional Markov Property

The conditional Markov property follows from:

• the fact that the density η only depends on C = (C1, C2),

• the abstract Bayes formula,

• the fact that the process C is Markovian under Q.

Properties of the model:

• for i = 1, 2, j 6= i, the process λi;∗
kk′ is the correspond-

ing Fj-martingale intensity. In other words, the process
M i;∗;kk′ defined as

M i;∗;kk′
t = H i;kk′

t − ∫ t
0 λi;∗

kk′(u)H i;k
u du, k 6= k′,

and the process

M i;∗;3
t = H1;3

t∧s −
2∑

m=1
H1;m

t∧s λ1;∗
m3(t ∧ s)

are G-martingales under Q∗.

• the intensities λi;∗
kk′ have the natural interpretation as

the ‘local intensities’ of credit migrations.



6.2 Interpretation of Intensities

The intuitive meaning of intensity parameters:

• for original intensities:

λ1
kk′ = lim

h↓0 h−1 Q{C1
t+h = k′ |C1

t = k, C2
t = 1},

but also for l = 2, 3

λ1
kk′ = lim

h↓0 h−1 Q∗{C1
t+h = k′ |C1

t = k, C2
t = l},

• for modified intensities: for l = 2, 3

λ1;l
kk′ = lim

h↓0 h−1 Q∗{C1
t+h = k′ |C1

t = k, C2
t = l}.

Model’s inputs: original generators Λ1 and Λ2, and the
modified matrices:

Λi;l =




−λi;l
12 − λi;l

13 λi;l
12 λi;l

13

λi;l
21 −λi;l

21 − λi;l
23 λi;l

23

0 0 0




for i = 1, 2 and l = 2, 3.



6.3 First-to-Default Swap

Let C = (C1, . . . , Cn). We assume that the payoff occurs
at the first change of the credit rating of the firm 1 or 2.
The payoff is digital, specifically, if τ = τ1 ∧ τ2 then

Zτ = K1 11{τ=τ1≤T} + K2 11{τ=τ2≤T}.

Basic steps of the valuation procedure:

• introduce an auxiliary probability measure Q1,2 equiva-
lent to Q∗,

• verify that any martingale under Q1,2 with respect to
G1,2 = F∨H3∨ . . .∨Hn is also a G = F∨H1∨ . . .∨Hn

martingale under Q1,2,

• use the standard formula to find the G1,2-conditional
laws of τ1 and τ2 under Q∗ through conditional expec-
tations with respect to Q1,2,

• use the fact that τ1 and τ2 are G1,2-conditionally inde-
pendent under Q∗ in order to value the swap.

Conclusion: We argue that in some cases a high-dimensional
(unconditional) expectation can be efficiently evaluated as
a low-dimensional conditional expectation under an equiv-
alent probability measure.


