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1. MODEL’S INPUTS

Standard intensity-based approach (as, for instance, in Jarrow
and Turnbull (1995) or Jarrow, Lando and Turnbull (1997))
relies on the following assumptions:

• existence of the martingale measure Q∗ is postulated,

• the relationship between the statistical probability P and the
risk-neutral probability Q∗ derived via calibration,

• credit migrations process is modelled as a Markov chain,

• market and credit risk are separated (independent).

The HJM-type model of defaultable term structures with mul-
tiple ratings was proposed by Bielecki and Rutkowski (2000)
and Schönbucher (2000).

This approach:

• formulates sufficient consistency conditions that tie together
credit spreads and recovery rates in order to construct a risk-
neutral probability Q∗ and the corresponding risk-neutral in-
tensities of credit events,

• shows how the statistical probability P and the risk-neutral
probability Q∗ are connected via the market price of interest
rate risk and the market price of credit risk,

• combines market and credit risks.



1.1 Term Structure of Credit Spreads

We are given a filtered probability space (Ω, F, P) endowed with
a d-dimensional standard Brownian motion W.

Remark. We may assume that the filtration F = FW.

For any fixed maturity 0 < T ≤ T ∗ the price of a zero-coupon
Treasury bond equals

B(t, T ) = exp
(
− ∫ T

t f (t, u) du
)
,

where the default-free instantaneous forward rate f (t, T ) pro-
cess is subject to the standard HJM postulate.

(HJM) The dynamics of the instantaneous forward rate f (t, T )
are given by, for t ≤ T,

f (t, T ) = f (0, T ) +
∫ t
0 α(u, T ) du +

∫ t
0 σ(u, T ) dWu

for some deterministic function f (0, ·) : [0, T ∗] → R , and
some F-adapted stochastic processes

α : A× Ω → R, σ : A× Ω → Rd,

where A = {(u, t) | 0 ≤ u ≤ t ≤ T ∗}.



1.1.1 Credit Classes

Suppose there are K ≥ 2 credit rating classes, where the Kth

class corresponds to the default-free bond.

For any fixed maturity 0 < T ≤ T ∗, the defaultable instan-
taneous forward rate gi(t, T ) corresponds to the rating class
i = 1, . . . , K − 1. We assume that:

(HJMi) The dynamics of the instantaneous defaultable forward
rates gi(t, T ) are given by, for t ≤ T,

gi(t, T ) = gi(0, T ) +
∫ t
0 αi(u, T ) du +

∫ t
0 σi(u, T ) dWu

for some deterministic functions gi(0, ·) : [0, T ∗] → R , and
some F-adapted stochastic processes

αi : A× Ω → R, σi : A× Ω → Rd

1.1.2 Credit Spreads

We assume that

gK−1(t, T ) > gK−2(t, T ) > . . . > g1(t, T ) > f (t, T )

for every t ≤ T.

Definition 1 For every i = 1, 2, . . . , K−1, the credit spread
equals si(t, T ) = gi(·, T )− f (·, T ).



1.1.3 Spot Martingale Measure P∗

The following condition excludes arbitrage across default-free
bonds for all maturities T ≤ T ∗ and the savings account:

(M) There exists an F-adapted Rd-valued process γ such that

EP

{
exp

(∫ T ∗
0 γu dWu − 1

2

∫ T ∗
0 |γu|2 du

)}
= 1

and, for any maturity T ≤ T ∗, we have

α∗(t, T ) = 1
2|σ∗(t, T )|2 − σ∗(t, T )γt

where

α∗(t, T ) =
∫ T
t α(t, u) du

σ∗(t, T ) =
∫ T
t σ(t, u) du.

Let γ be some process satisfying Condition (M). Then the prob-
ability measure P∗, given by the formula

dP∗

dP
= exp

(∫ T ∗
0 γu dWu − 1

2

∫ T ∗
0 |γu|2 du

)
, P-a.s.,

is a spot martingale measure for the default-free term struc-
ture.



1.1.4 Zero-Coupon Bonds

The price of the T -maturity default-free zero-coupon bond
(ZCB) is given by the equality

B(t, T ) := exp
(
− ∫ T

t f (t, u) du
)
.

Formally, the Treasury bond corresponds to credit class K.

“Conditional” value of T -maturity defaultable ZCB belonging
at time t to the credit class i = 1, 2, . . . , K − 1, equals

Di(t, T ) := exp
(
− ∫ T

t gi(t, u) du
)
.

We consider discounted price processes

Z(t, T ) = B−1
t B(t, T ), Zi(t, T ) = B−1

t Di(t, T ),

where Bt is the usual discount factor (savings account)

Bt = exp
(∫ t

0 f (u, u) du
)
.

Let us define a Brownian motion W ∗ under P∗ by setting

W ∗
t = Wt −

∫ t
0 γu du, ∀ t ∈ [0, T ∗].



1.1.5 Conditional Dynamics of Bonds Prices

Lemma 1 Under the spot martingale measure P∗, for any
fixed maturity T ≤ T ∗, the discounted price processes Z(t, T )
and Zi(t, T ) satisfy

dZ(t, T ) = Z(t, T )b(t, T ) dW ∗
t ,

where b(t, T ) = −σ∗(t, T ), and

dZi(t, T ) = Zi(t, T )(λi(t) dt + bi(t, T ) dW ∗
t )

where

λi(t) = ai(t, T )− f (t, t) + bi(t, T )γt

and

ai(t, T ) = gi(t, t)− α∗i (t, T ) + 1
2 |σ∗i (t, T )|2

bi(t, T ) = −σ∗i (t, T ).

Remark 1 Observe that usually the process Zi(t, T ) does not
follow a martingale under the spot martingale measure P∗. This
feature is related to the fact that it does not represent the
(discounted) price of a tradable security.



1.2 Recovery Schemes

Let Y denote the cash flow at maturity T and let Z be the
recovery process (an F-adapted process). We take K = 2.

FRTV: Fractional Recovery of Treasury Value

Fixed recovery at maturity scheme. We set Zt = δB(t, T ) and
thus

Y = 11{τ>T} + δ 11{τ≤T}.

FRPV: Fractional Recovery of Par Value

Fixed recovery at time of default. We set Zt = δ, where δ is a
constant. Thus

Y = 11{τ>T} + δB−1(τ, T ) 11{τ≤T}.

FRMV: Fractional Recovery of Market Value

The owner of a defaultable ZCB receives at time of default a
fraction of the bond’s market value just prior to default. We
set Zt = δD(t, T ), where D(t, T ) is the pre-default value of
the bond. Thus

Y = 11{τ>T} + δD(τ, T )B−1(τ, T ) 11{τ≤T}.



2 CREDIT MIGRATION PROCESS

We assume that the set of rating classes is K = {1, . . . , K},
where the class K corresponds to default. The migration
process C will be constructed as a (nonhomogeneous) condi-
tionally Markov process on K. Moreover, the state K will be
the unique absorbing state for this process.

Let us denote by FC
t the σ-field generated by C up to time

t. A process C is conditionally Markov with respect to the
reference filtration F if for arbitrary s > t and i, j ∈ K we have

Q∗ (
Ct+s = i | Ft ∨ FC

t

)
= Q∗ (Ct+s = i | Ft ∨ {Ct = j} ) .

The probability measure Q∗ is the extended spot martingale
measure.

The formula above will provide the risk-neutral conditional pro-
bability that the defaultable bond is in class i at time t + s,
given that it was in the credit class Ct at time t.

We introduce the default time τ by setting

τ = inf {t ∈ R+ : Ct = K }.

For any date t, we denote by Ĉt the previous bond’s rating.



3 DEFAULTABLE TERM STRUCTURE

3.1 Single Rating Class (K = 2)

We assume the FRTV scheme (other recovery schemes can also
be covered, though).

Our first goal is to derive the equation that is satisfied by the
risk-neutral intensity of default time.

Intensity of Default Time

We introduce the risk-neutral default intensity λ1,2 as a so-
lution to the no-arbitrage equation

(Z1(t, T )− δZ(t, T ))λ1,2(t) = Z1(t, T )λ1(t).

It is interesting to notice that for δ = 0 (zero recovery) we
have simply

λ1,2(t) = λ1(t), ∀ t ∈ [0, T ].

On the other hand, if we take δ > 0 then the process λ1,2 is
strictly positive provided that

D(t, T ) > δB(t, T ), ∀ t ∈ [0, T ].

Recall that we have assumed that D(t, T ) < B(t, T ).



3.1.1 Credit Migrations

Since K = 2, the migration process C lives on two states.
The state 1 is the pre-default state, and the state 2 is the
absorbing default state. We may and do assume that C0 = 1.

We postulate that the conditional intensity matrix for the pro-
cess C is given by the formula

Λt =


−λ1,2(t) λ1,2(t)

0 0


 .

For δ = 0, the matrix Λ takes the following simple form

Λt =


−λ1(t) λ1(t)

0 0


 .

The default time τ now equals

τ = inf {t ∈ R+ : Ct = 2 }.
It is defined on an enlarged probability space

(Ω∗,FT ∗, Q
∗) := (Ω× Ω̂,FT ∗ ⊗ F̂ , P∗ ⊗ Q)

where the probability space (Ω̂, F̂ , Q) is large enough to support
a unit exponential random variable, η say. Then

τ = inf {t ∈ R+ :
∫ t
0 λ1,2(u) du ≥ η }.



Hypotheses (H)

All processes and filtrations may always be extended past the
horizon date T ∗ “by constancy.”

We set Ht = 11{τ≤t} and we denote by H the filtration gener-
ated by the process H:

Ht = σ(Hu : u ≤ t).

In other words, H is the filtration associated with the observa-
tions of the default time.

It is clear that in the present setup

G = F ∨ H.

It is not difficult to check that the hypotheses (H.1)-(H.3) hold
in the present context.

In the general case of a model with multiple ratings, the filtra-
tion H will be generated by the migrations process C, that is,
we shall set

Ht = σ(Cu : u ≤ t).

Due to the judicious construction of the migration process C,
the hypotheses (H.1)-(H.2) remain valid in the case of multiple
ratings.



3.1.2 Martingale Dynamics of a Defaultable ZCB

Thanks to the consistency equation, the process

M1,2(t) := Ht −
∫ t
0 λ1,2(u)(1−Hu) du

is a martingale under Q∗ relative to the enlarged filtration G.

Recall that for any t ∈ [0, T ] we have

D(t, T ) = exp
(
− ∫ T

t g(t, u) du
)

and that D(t, T ) is interpreted as the pre-default value of a T -
maturity defaultable ZCB that is subject to the FRTV scheme.

In other words, D(t, T ) is understood as the value of a T -
maturity defaultable ZCB conditioned on the event: the bond
has not defaulted by the time t.

Recall that

Z1(t, T ) = B−1
t D(t, T )

and

Z(t, T ) = B−1
t B(t, T ).



Auxiliary Process Ẑ(t, T )

We introduce an auxiliary process Ẑ(t, T ), t ∈ [0, T ],

Ẑ(t, T ) = 11{τ>t}Z1(t, T ) + δ 11{τ≤t}Z(t, T ).

It can be shown that Ẑ(t, T ) satisfies the SDE (A)

dẐ(t, T ) = Z1(t, T )b1(t, T ) 11{τ>t} dW ∗
t

+ δZ(t, T )b(t, T ) 11{τ≤t} dW ∗
t

+ (δZ(t, T )− Z1(t, T )) dM1,2(t).

Notice that Ẑ(t, T ) follows a G-martingale under Q∗.

This leads to construction of an arbitrage–free model of the
defaultable term structure and to risk-neutral representation
for the price of the defaultable bond.

We introduce the price process through the following definition.

Definition 2 The price process DC(t, T ) of a T -maturity
ZCB is given by

DC(t, T ) = BtẐ(t, T ).



3.1.3 Risk-Neutral Representations

Proposition 1 The price DC(t, T ) of a defaultable ZCB
satisfies

DC(t, T ) = 11{τ>t}D(t, T ) + δ 11{τ≤t}B(t, T ).

DC(t, T ) = 11{Ct=1} exp (− ∫ T
t g(t, u) du)

+δ 11{Ct=2} exp (− ∫ T
t f (t, u) du).

Moreover, the risk-neutral valuation formula holds

DC(t, T ) = Bt EQ∗(δB
−1
T 11{τ≤T} + B−1

T 11{τ>T} | Gt).

Furthermore

DC(t, T ) = B(t, T ) EQT
(δ 11{τ≤T} + 11{τ>T} | Gt)

where QT is the T -forward measure associated with Q∗.

Special cases:

• For δ = 0, we obtain DC(t, T ) = 11{τ>t}D(t, T ).

• For δ = 1, we have, as expected, DC(t, T ) = B(t, T ).



Default-Risk-Adjusted Discount Factor

The default-risk-adjusted discount factor equals

B̂t = exp (
∫ t
0 (ru + λ1,2(u)) du)

and we set

B̂(t, T ) = B̂t EP∗(B̂
−1
T | Ft).

We consider a bond with FRTV.

Proposition 2 We have

DC(t, T ) = δB(t, T ) + (1− δ) 11{τ>t}B̂(t, T )

and thus

DC(t, T ) = B(t, T )− (1− δ)
(
B(t, T )− 11{τ>t}B̂(t, T )

)
.

Interpretation:

• A decomposition of DC(t, T ) of the price of a defaultable
ZCB into its predicted post-default value δB(t, T ) and the
pre-default premium DC(t, T )− δB(t, T ).

• A decomposition DC(t, T ) as the difference between its
default-free value B(t, T ) and the expected loss in value
due to the credit risk. From the buyer’s perspective: the
price DC(t, T ) equals the price of the default-free bond mi-
nus a compensation for the credit risk.



3.2 Multiple Credit Ratings Case

We work under the FRTV scheme. To each credit rating i =
1, . . . , K − 1, we associate the recovery rate δi ∈ [0, 1), where
δi is the fraction of par paid at bond’s maturity, if a bond
belonging to the ith class defaults.

As we shall see shortly, the notation Ĉτ indicates the rating of
the bond just prior to default. Thus, the cash flow at maturity
is

X = 11{τ>T} + δĈτ
11{τ≤T}.

To simplify presentation we let K = 3 (two different credit
classes) and we let δi ∈ [0, 1) for i = 1, 2. The results carry
over to the general case of K ≥ 2.

3.2.1 Credit Migrations

Risk-neutral intensities of credit migrations λ1,2(t), λ1,3(t), λ2,1(t)
and λ2,3(t) are specified by the no-arbitrage condition:

λ1,2(t)(Z2(t, T ) − Z1(t, T )) + λ1,3(t)(δ1Z(t, T )− Z1(t, T ))

+ λ1(t)Z1(t, T ) = 0,

λ2,1(t)(Z1(t, T ) − Ẑ2(t, T )) + λ2,3(t)(δ2Z(t, T )− Z2(t, T ))

+ λ2(t)Z2(t, T ) = 0.



If the processes λ1,2(t), λ1,3(t), λ2,1(t) and λ2,3(t) are non-
negative, we construct a migration process C, on some enlarged
probability space (Ω∗, G, Q∗), with the conditional intensity ma-
trix

Λ(t) =




λ1,1(t) λ1,2(t) λ1,3(t)
λ2,1(t) λ2,2(t) λ2,3(t)

0 0 0




where λi,i(t) = − ∑
j 6=i λi,j(t) for i = 1, 2. Notice that the

transition intensities λi,j follow F-adapted stochastic processes.
The default time τ is given by the formula

τ = inf{ t ∈ R+ : Ct = 3 }.

3.2.2 Martingale Dynamics of a Defaultable ZCB

We set Hi(t) = 11{Ct=i} for i = 1, 2, and we let Hi,j(t) repre-
sent the number of transitions from i to j by C over the time
interval (0, t].

It can be shown that the process

Mi,j(t) := Hi,j(t)−
∫ t
0 λi,j(s)Hi(s) ds, ∀ t ∈ [0, T ],

for i = 1, 2 and j 6= i, is a martingale on the enlarged proba-
bility space (Ω∗, G, Q∗).



Auxiliary Process Ẑ(t, T )

We introduce the process Ẑ(t, T ) as a solution to the following

SDE (A)

dẐ(t, T ) = (Z2(t, T )− Z1(t, T )) dM1,2(t)
+ (Z1(t, T )− Z2(t, T )) dM2,1(t)
+ (δ1Z(t, T )− Z1(t, T )) dM1,3(t)
+ (δ2Z(t, T )− Z2(t, T )) dM2,3(t)
+ H1(t)Z1(t, T )b1(t, T ) dW ∗

t

+ H2(t)Z2(t, T )b2(t, T ) dW ∗
t

+ (δ1H1,3(t) + δ2H2,3(t))Z(t, T )b(t, T ) dW ∗
t ,

with the initial condition

Ẑ(0, T ) = H1(0)Z1(0, T ) + H2(0)Z2(0, T ).

The process Ẑ(t, T ) follows a martingale on (Ω∗, G, Q∗), and
thus Q∗ is called the extended spot martingale measure.

The proof of the next result employs the no-arbitrage condition.

Lemma 2 For any maturity T ≤ T ∗, we have

Ẑ(t, T ) = 11{Ct 6=3}ZCt(t, T ) + 11{Ct=3} δĈt
Z(t, T )

for every t ∈ [0, T ].



Price of a Defaultable ZCB

We introduce the price process of a T -maturity defaultable ZCB
by setting DC(t, T ) = BtẐ(t, T ) for any t ∈ [0, T ].

In view of Lemma 2, the price of a defaultable ZCB equals

DC(t, T ) = 11{Ct 6=3}DCt(t, T ) + 11{Ct=3} δĈt
B(t, T )

with some initial condition C0 ∈ {1, 2}. An analogous formula
can be established for an arbitrary number K of rating classes,
namely,

DC(t, T ) = 11{Ct 6=K}DCt(t, T ) + 11{Ct=K} δĈt
B(t, T ).

Properties of DC(t, T ):

•DC(t, T ) follows a (Q∗, G)-martingale, when discounted by
the savings account.

• In contrast to the “conditional” price processes Di(t, T ),
the process DC(t, T ) admits discontinuities, associated with
changes in credit quality.

• It represents the price process of a tradable security: the
defaultable ZCB of maturity T.



3.2.3 Risk-Neutral Representations

Recall that δi ∈ [0, 1) is the recovery rate for a bond which is

in the ith rating class prior to default.

The price process DC(t, T ) of a T -maturity defaultable ZCB

equals

DC(t, T ) = 11{Ct 6=3}B(t, T ) exp (− ∫ T
t sCt(t, u) du)

+ 11{Ct=3} δĈt
B(t, T )

where si(t, u) = gi(t, u)− f (t, u) is the ith credit spread.

Proposition 3 The price process DC(t, T ) satisfies the risk-

neutral valuation formula

DC(t, T ) = Bt EQ∗(δĈT
B−1

T 11{τ≤T} + B−1
T 11{τ>T} | Gt).

It is also clear that

DC(t, T ) = B(t, T ) EQT
(δĈT

11{τ≤T} + 11{τ>T} | Gt)

where QT stands for the T -forward measure associated with

the extended spot martingale measure Q∗.



3.3 Statistical Probability

We shall now change, using a suitable generalization of Gir-
sanov’s theorem, the measure Q∗ to the equivalent probability
measure Q.

In the financial interpretation, the probability measure Q will
play the role of the statistical probability.

It is thus natural to postulate that the restriction of Q to the
original probability space Ω necessarily coincide with the statis-
tical probability P for the default-free market.

Condition (L): We set

dQ

dQ∗ = LT ∗, Q∗-a.s.,

where the Q∗-local positive martingale L is given by the formula

dLt = −Ltγt dW ∗
t + Lt− dMt, L0 = 1,

and the Q∗-local martingale M equals

dMt =
∑

i 6=j
κi,j(t) dMi,j(t)

=
∑

i 6=j
κi,j(t) (dHi,j(t)− λi,j(t)Hi(t) dt)

for some processes κi,j > −1.



3.3.1 Prices for Market and Credit Risks

For any i 6= j we denote by κi,j > 1 an arbitrary nonnegative
F-predictable process such that

∫ T ∗
0 (κi,j(t) + 1)λi,j(t) dt < ∞, Q∗-a.s.

We assume that EQ∗(LT ∗) = 1, so that the probability measure
Q is well defined on (Ω∗,GT ∗).

Financial interpretations:

• The process γ corresponds to the market price of interest
rate risk.

• Processes κi,j represent the market prices of credit risk.

Let us define processes λQ
i,j by setting for i 6= j

λQ
i,j(t) = (κi,j(t) + 1)λi,j(t)

and

λQ
i,i(t) = − ∑

j 6=i
λQ

i,j(t).



3.3.2 Statistical Default Intensities

Proposition 4 Under an equivalent probability Q, given by
Condition (L), the process C is a conditionally Markov process.
The matrix of conditional intensities of C under Q equals

ΛQ
t =




λQ
1,1(t) . . . λQ

1,K(t)
. . . . .

λQ
K−1,1(t) . . . λQ

K−1,K(t)
0 . . . 0




.

If the market price for the credit risk depends only on the cur-
rent rating i (and not on the rating j after jump), so that

κi,j = κi,i =: κi for every j 6= i

then ΛQ
t = ΦtΛt, where Φt = diag [φi(t)] with φi(t) = κi(t)+1

is the diagonal matrix (see, e.g., Jarrow, Lando and Turnbull
(1997).

Important issues:

• Valuation of defaultable coupon-bonds.

•Modelling of correlated defaults (dependent migrations).

• Valuation and hedging of credit derivatives.

• Calibration to liquid instruments.


