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1. MODEL'S INPUTS

Standard intensity-based approach (as, for instance, in Jarrow
and Turnbull (1995) or Jarrow, Lando and Turnbull (1997))

relies on the following assumptions:
e existence of the martingale measure Q* is postulated,

e the relationship between the statistical probability P and the
risk-neutral probability Q* derived via calibration,

e credit migrations process is modelled as a Markov chain,

e market and credit risk are separated (independent).
The HJM-type model of defaultable term structures with mul-
tiple ratings was proposed by Bielecki and Rutkowski (2000)
and Schonbucher (2000).
This approach:

e formulates sufficient consistency conditions that tie together
credit spreads and recovery rates in order to construct a risk-
neutral probability Q* and the corresponding risk-neutral in-
tensities of credit events,

e shows how the statistical probability P and the risk-neutral
probability Q* are connected via the market price of interest
rate risk and the market price of credit risk,

e combines market and credit risks.



1.1 Term Structure of Credit Spreads

We are given a filtered probability space (2, F, P) endowed with
a d-dimensional standard Brownian motion .

Remark. We may assume that the filtration F = FW.

For any fixed maturity 0 < 1" < T™ the price of a zero-coupon
Treasury bond equals

B(t,T) —eXp< /t f(t,u) du)

where the default-free instantaneous forward rate f(t,T') pro-
cess is subject to the standard HJM postulate.

(HJM) The dynamics of the instantaneous forward rate f(t,T)
are given by, for t < T,

F,T) = £0,T)+ [} a(u,T)du+ J; o(u,T)dW,

for some deterministic function f(0,-) : [0,7*] — R, and
some F-adapted stochastic processes

a: AxQ—R, o:AxQ—RY

where A = {(u, 1) |0 <u <t <T*}.



1.1.1 Credit Classes

Suppose there are K > 2 credit rating classes, where the K
class corresponds to the default-free bond.

For any fixed maturity 0 < T" < T, the defaultable instan-
taneous forward rate g;(¢,T") corresponds to the rating class
1=1,..., K —1. We assume that:

(HJM?) The dynamics of the instantaneous defaultable forward
rates g;(t,T") are given by, for t < T,

gi(ta T) - gl(oa T) + /ot O‘i(“a T) du + /()t Oi(“a T) qu

for some deterministic functions ¢;(0,-) : [0,7%] — R, and
some F-adapted stochastic processes

a c AxQ—R, o, AxQ—R?

1.1.2 Credit Spreads
We assume that

gK—1<t7T> > gK—2<t7T> > > g1<t7T> > f(th)
for every t < T.

Definition 1 Foreveryi =1,2,..., K—1, the credit spread
equals s;(t,T) = g;(-,T) — f(-,T).



1.1.3 Spot Martingale Measure P*

The following condition excludes arbitrage across default-free
bonds for all maturities 7" < T™ and the savings account:

(M) There exists an F-adapted R%-valued process v such that

T* T*
Ep{exp (/0 Vu AW, — %/o \%\Qdu>} —1
and, for any maturity T < T™, we have
a(t,T) = 3lo*(t, T)]" — o™ (t, T)y
where

a(t,T) = /tToz(t, u) du
o (t,T) = [ o(t,u)du.

Let v be some process satisfying Condition (M). Then the prob-
ability measure P*, given by the formula

dP*
dP

is a spot martingale measure for the default-free term struc-
ture.

— exp (/OT* Yoo AW, — %/bT* Yl du) , P-as,



1.1.4 Zero-Coupon Bonds

The price of the T-maturity default-free zero-coupon bond
(ZCB) is given by the equality

B(t,T) —exp< /t tudu)

Formally, the Treasury bond corresponds to credit class K.

“Conditional” value of T-maturity defaultable ZCB belonging
at time ¢ to the credit class . = 1,2,..., K — 1, equals

D;(t,T) := exp (— /tT gi(t,u) du) .
We consider discounted price processes
Z(t,T)= B 'B(t,T), Zjt,T)= B;'D;(t,T),
where B; is the usual discount factor (savings account)
B, = exp (/0 u, U du)
Let us define a Brownian motion W* under P* by setting

Wi =Wi— [[yudu, Vtel0,T.



1.1.5 Conditional Dynamics of Bonds Prices

Lemma 1 Under the spot martingale measure P*, for any
fixed maturity T' < T, the discounted price processes Z (t,T)
and Z;(t,T) satisfy

dZ(t,T) = Z(t,T)b(t, T)dW;,
where b(t,T) = —o*(t,T), and
dZ;(t, T) = Z;(t, T)(N(t) dt + b;(t, T) dW})
where
Ai(t) = ai(6,T) — f(E, 1) + bi(t, T)w
and

a;(t,T) = gi(t,t) — af(t,T) + Lo} (¢, T)|?

bz<t, T) = —O'Z*<t, T)

Remark 1 Observe that usually the process Z;(t,T') does not
follow a martingale under the spot martingale measure P*. This
feature is related to the fact that it does not represent the
(discounted) price of a tradable security.



1.2 Recovery Schemes

Let Y denote the cash flow at maturity 7" and let Z be the
recovery process (an F-adapted process). We take K = 2.

FRTV: Fractional Recovery of Treasury Value
Fixed recovery at maturity scheme. We set Z; = 6 B(t,T") and
thus

Y = ]1{7>T} +0 ﬂ{TST}'

FRPV: Fractional Recovery of Par Value

Fixed recovery at time of default. We set Z;, = 9, where ¢ is a
constant. Thus

Y = ]1{T>T} + 53_1(7', T) ]I{TgT}-

FRMV: Fractional Recovery of Market Value

The owner of a defaultable ZCB receives at time of default a
fraction of the bond’s market value just prior to default. We
set Z; = 0D(t,T), where D(t,T) is the pre-default value of
the bond. Thus

Y = 1oy + 6D(1, T)B™ (7, T) Liz<1y-



2 CREDIT MIGRATION PROCESS

We assume that the set of rating classes is £ = {1,..., K},
where the class K corresponds to default. The migration
process C will be constructed as a (nonhomogeneous) condi-
tionally Markov process on K. Moreover, the state K will be
the unique absorbing state for this process.

Let us denote by FC the o-field generated by C' up to time
t. A process C' is conditionally Markov with respect to the
reference filtration F if for arbitrary s > ¢ and 7, j € K we have

Q*<Ct+s:i‘ft\/]:tc):Q*<Ct+8:i|~¢tv{ct:j}>'

The probability measure Q* is the extended spot martingale
measure.

The formula above will provide the risk-neutral conditional pro-
bability that the defaultable bond is in class ¢ at time ¢ + s,
given that it was in the credit class C; at time .

We introduce the default time 7 by setting
r=inf{teR, : C; = K}.

For any date ¢, we denote by C the previous bond'’s rating.



3 DEFAULTABLE TERM STRUCTURE
3.1 Single Rating Class (K = 2)

We assume the FRTV scheme (other recovery schemes can also
be covered, though).

Our first goal is to derive the equation that is satisfied by the
risk-neutral intensity of default time.

Intensity of Default Time

We introduce the risk-neutral default intensity A1 2 as a so-
lution to the no-arbitrage equation

(Zy(t,T) — 6Z(t, T))Aialt) = Zu(t, )\ ().

It is interesting to notice that for § = 0 (zero recovery) we
have simply

)\172<t> = )\1(?5), Vi e [O, T]

On the other hand, if we take 0 > 0 then the process A7 is
strictly positive provided that

D(t,T)>é6B(t,T), Vte|0,T].
Recall that we have assumed that D(t,T) < B(t,T).



3.1.1 Credit Migrations

Since K = 2, the migration process C' lives on two states.
The state 1 is the pre-default state, and the state 2 is the
absorbing default state. We may and do assume that Cjy = 1.

We postulate that the conditional intensity matrix for the pro-
cess (' is given by the formula

~Ara(t) Am(t)) |

Af:( 0 0

For 0 = 0, the matrix A takes the following simple form

I

The default time 7 now equals
r=inf{teR; : Cy =2}.
It is defined on an enlarged probability space
(Q, Fre, Q) = (Ax Q, Fr- @ F,P*® Q)

where the probability space (Q, F. Q) is large enough to support
a unit exponential random variable, 1 say. Then

T=inf{t € R, : /Ot >\1,2(U> du >mn}.



Hypotheses (H)

All processes and filtrations may always be extended past the
horizon date 1™ “by constancy.”

We set H; = l{;<; and we denote by H the filtration gener-
ated by the process H:

Hi=o0(H, :u<t).

In other words, H is the filtration associated with the observa-
tions of the default time.

It is clear that in the present setup

G=FVH.

It is not difficult to check that the hypotheses (H.1)-(H.3) hold
in the present context.

In the general case of a model with multiple ratings, the filtra-
tion H will be generated by the migrations process C, that is,
we shall set

Ht:O'<CuI’LL§t).

Due to the judicious construction of the migration process C,
the hypotheses (H.1)-(H.2) remain valid in the case of multiple
ratings.



3.1.2 Martingale Dynamics of a Defaultable ZCB

Thanks to the consistency equation, the process

My o(t) = Hy — [y Mo(u)(1 — H,) du
is a martingale under Q* relative to the enlarged filtration G.

Recall that for any ¢ € [0, T] we have
D(t,T) —exp< /t (t,u) du)

and that D(t,T) is interpreted as the pre-default value of a T-
maturity defaultable ZCB that is subject to the FRTV scheme.

In other words, D(¢,T') is understood as the value of a T-
maturity defaultable ZCB conditioned on the event: the bond
has not defaulted by the time t.

Recall that
Z\(t,T) = B, ' D(t,T)
and

Z(t,T)= B 'B(t,T).



Auxiliary Process Z(t,T)

We introduce an auxiliary process Z(t,T),t € [0, T],

AN

Z(t,T) = ﬂ{7>t}Z1(t, T)+6 H{Tgt}Z(t, T).

It can be shown that Z(t, T) satisfies the SDE (A)

dZ(t,T) = Zy(t, T)by(t,T) Lir=py AW
+ 6Z(t, T)o(t, T) Liyapy AW}
+ (6Z(t,T) — Z\(t,T)) dM,5(t).

Notice that Z(t, T) follows a G-martingale under Q*.

This leads to construction of an arbitrage—free model of the
defaultable term structure and to risk-neutral representation
for the price of the defaultable bond.

We introduce the price process through the following definition.

Definition 2 The price process D¢(t,T) of a T-maturity
ZCB is given by

AN

Do(t,T) = BZ(t,T).



3.1.3 Risk-Neutral Representations

Proposition 1 The price Do(t,T) of a defaultable ZCB
satisfies

Do(t,T) = ]1{7>t}D<t, T)+6 ]l{TSt}B@, T).
De(t,T) = Lgc,m1yexp ( /t (t,u) du)

+0 H{CtZQ} exp ( /t f(t,u)du).
Moreover, the risk-neutral valuation formula holds
Dc(t,T) = B;Eq(6 By Li;<ry + By Liaqy | Gy).

Furthermore

DC@: T> — B<t7 T) EQT<6 ]I{TST} + ]1{7'>T} ‘ gt)
where Q7 is the T'-forward measure associated with Q*.
Special cases:

e For § = 0, we obtain D¢ (t,T) = Ly-nD(t,T).
e For = 1, we have, as expected, D¢ (t,T) = B(t,T).



Default-Risk-Adjusted Discount Factor

The default-risk-adjusted discount factor equals

By = exp () (ru + Ma(u)) du)
and we set
B(t,T) = B,Ep+(B7 | F).
We consider a bond with FRTV.
Proposition 2 We have
Dc(t,T) = 6B(t,T) + (1 — 6) 1oy B(t, T)
and thus

Dc(t,T) = B(t,T) = (1= 6) (B(t.T) = 1=y B(t,T)).

Interpretation:

e A decomposition of D¢ (t,T') of the price of a defaultable
ZCB into its predicted post-default value 0 B(t,T) and the
pre-default premium Do (t,T) — 0B(t,T).

e A decomposition D¢ (t,T) as the difference between its
default-free value B(t,T) and the expected loss in value
due to the credit risk. From the buyer's perspective: the
price Do (t,T) equals the price of the default-free bond mi-
nus a compensation for the credit risk.



3.2 Multiple Credit Ratings Case

We work under the FRTV scheme. To each credit rating 1 =
1,..., K —1, we associate the recovery rate §; € |0, 1), where
0; is the fraction of par paid at bond's maturity, if a bond
belonging to the i class defaults.

As we shall see shortly, the notation C, indicates the rating of
the bond just prior to default. Thus, the cash flow at maturity
IS

X = Lr>my + 06, Lirry

To simplify presentation we let K = 3 (two different credit
classes) and we let §; € [0,1) for i« = 1,2. The results carry
over to the general case of K > 2.

3.2.1 Credit Migrations

Risk-neutral intensities of credit migrations A\j o(%), A13(¢), A21(%)
and Ay 3(t) are specified by the no-arbitrage condition:

M2 228, T) — Z1(t,T)) + Ma(6)( 0 Z(t, T) — Z:(¢,T))
+ Mi(t)Zi(t, T) =0,

MO (ZUET) = Zolt,T)) + hos(t)(5:Z(5,T) — Zo(t, T))
+ Xo(t)Z5(t, T) = 0.



If the processes A1a(t), A13(t), Ao1(t) and A9 3(t) are non-
negative, we construct a migration process C', on some enlarged
probability space (2%, G, Q*), with the conditional intensity ma-
trix

AMa(t) Aia(t) Ais(?)
At) = 1| Ao1(t) Aoa(t) Ags(t)
0 0 0
where \;;(t) = —xjz A j(t) for i = 1,2. Notice that the

transition intensities \; ; follow F-adapted stochastic processes.
The default time 7 is given by the formula

r=inf{teR, : C; =3}.

3.2.2 Martingale Dynamics of a Defaultable ZCB

We set H;(t) = Lyc,—ip fori=1,2, and we let H; ;(t) repre-
sent the number of transitions from ¢ to 3 by C over the time
interval (0, t].

It can be shown that the process
M;;(t) == Hyj(t) — [y Nij(s)Hi(s)ds, VYt e[0,T),

for = 1,2 and 5 # 7, is a martingale on the enlarged proba-
bility space (Q0*, G, Q*).



Auxiliary Process Z(t,T)

We introduce the process Z(t, T') as a solution to the following
SDE (A)

d2<t7 T) — <ZQ(t7 T) o Zl<t7 T)) dMl,Z(t>

with the initial condition

Z(0,T) = Hi(0)Z:(0,T) + H(0)Z5(0,T).

The process Z(t,T) follows a martingale on (Q*, G, Q*), and
thus Q* is called the extended spot martingale measure.

The proof of the next result employs the no-arbitrage condition.
Lemma 2 For any maturity T' < T™, we have
Z(t,T) = ey Zo,(t,T) + Lycpmsy 0, Z(t,T)

for every t € [0, T].



Price of a Defaultable ZCB

We introduce the price process of a T-maturity defaultable ZCB

AN

by setting D¢ (t,T) = By Z(t,T) for any t € [0, T].

In view of Lemma 2, the price of a defaultable ZCB equals

Dc(t,T) = Loz Doy(t, T) + Lyci=3y 0¢, B(t,T)

with some initial condition Cjy € {1,2}. An analogous formula
can be established for an arbitrary number K of rating classes,
namely,

Do(t,T) = Lyc, £k D0t<t, T) + Lic,—iy (Sét B(t,T).

Properties of D¢ (t,T):

e Do(t, T) follows a (Q*, G)-martingale, when discounted by
the savings account.

e In contrast to the “conditional” price processes D;(t,T),
the process D¢ (t,T") admits discontinuities, associated with
changes in credit quality.

e |t represents the price process of a tradable security: the
defaultable ZCB of maturity 7'



3.2.3 Risk-Neutral Representations

Recall that §; € [0, 1) is the recovery rate for a bond which is

in the 7t rating class prior to default.

The price process D¢ (t,T) of a T-maturity defaultable ZCB

equals

De(t, T) = lygus Bt,T) exp(— | sc,(t, u) du)
+ H{Ct:?)} 5@ B(t, T)

where s;(t,u) = g;(t,u) — f(t,u) is the i*" credit spread.

Proposition 3 The price process D¢ (t,T) satisfies the risk-

neutral valuation formula
De(t,T) = BiEq-(d¢, B Lir<ry + By Loy | G).
It is also clear that
De(t,T) = B(t, T) Eq,(d¢, Lir<ry + Lirory | G)

where Q7 stands for the T'-forward measure associated with

the extended spot martingale measure Q*.



3.3 Statistical Probability

We shall now change, using a suitable generalization of Gir-
sanov's theorem, the measure Q* to the equivalent probability
measure Q.

In the financial interpretation, the probability measure Q will
play the role of the statistical probability.

It is thus natural to postulate that the restriction of Q to the
original probability space () necessarily coincide with the statis-
tical probability P for the default-free market.

Condition (L): We set

dQ
dQ*

where the Q*-local positive martingale L is given by the formula

= LT*, Q*—a.s.,

st — —Lt% th* + Lt— th, LO = 1,

and the Q*-local martingale M equals

dM; = § Kij(t) dM; ;(t)
i#]

for some processes x; ; > —1.



3.3.1 Prices for Market and Credit Risks

For any ¢ # j we denote by x; ; > 1 an arbitrary nonnegative
F-predictable process such that

W (ki () + DA (1) dt < 00, Q*-as.

We assume that Eq«(Lp+) = 1, so that the probability measure
Q is well defined on (2%, Gp+).

Financial interpretations:

e The process 7y corresponds to the market price of interest
rate risk.

e Processes k; ; represent the market prices of credit risk.

Let us define processes )‘Sj by setting for i # j

A () = (ki j(8) + 1) ()
and

Agi(t) - _%22- ASj (t).



3.3.2 Statistical Default Intensities

Proposition 4 Under an equivalent probability Q. given by
Condition (L), the process C' is a conditionally Markov process.
The matrix of conditional intensities of C' under Q equals

AN AR
AR ARk
0 0

If the market price for the credit risk depends only on the cur-
rent rating ¢ (and not on the rating j after jump), so that

Kij = Kij = k; forevery j#1

then AR = &, \;, where ®; = diag [¢;(t)] with ¢;(t) = K;(t) +1
is the diagonal matrix (see, e.g., Jarrow, Lando and Turnbull

(1997).
Important issues:

e Valuation of defaultable coupon-bonds.

e Modelling of correlated defaults (dependent migrations).
e Valuation and hedging of credit derivatives.

e Calibration to liquid instruments.



