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Overview

• Brief intro to the smile problem

• Brief intro to general no-arbitrage mixture diffusions for single

smile

• The no-arbitrage lognormal-mixture dynamics and variants

• Analytical tractability and calibration

• Decorrelation between average volatility and underlying asset,

and brief comparison with stochastic volatility

• Examples of calibration to market data

• Example: Good nested structure of the parameterization

• Consistent generalization to multi-asset, basket smile

• Basket of two smiley assets: numerical results

• Conclusions and references to present/future work
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Short intro to the smile

Sketchy version of the smile problem.

Financial (risky) asset (Black& Scholes, stock, FX rate, etc.)

dSt = r(t)Stdt + σ(t)St dWt, s0, t ∈ [0, T ],

R(t) :=

Z t

0

r(s)ds, V (t)
2
:=

Z t

0

σ(s)
2
ds

European call option with maturity T and strike K pays

(ST −K)+ at time T .

E
Q
0 [(ST −K)

+
/B(T )] = BSCall(S0, K, T, R(T ), V (T )).

V (T )/
√

T is the (average) volatility of the option and does not

depend on K.

In this formulation, volatility is a characteristic of stock S

underlying the contract, and has nothing to do with the nature of

the contract itself. In particular, it has nothing to do with K.
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Short intro to the smile (cont’d)

Now take two different strikes K1 and K2. Suppose that

the market provides us with the prices MKTCall(S0, K1, T ) and

MKTCall(S0, K2, T ). Does there exist a single volatility V (T )

such that

MKTCall(S0, K1, T ) = BSCall(S0, K1, T, R(T ), V (T )),

MKTCall(S0, K2, T ) = BSCall(S0, K2, T, R(T ), V (T ))?

The answer is a resounding “NO!!!”

Market option prices do not behave like this. Instead two

different implied volatilities V (T, K1) and V (T, K2) are

required to match the observed market prices if one is to use

Black & Scholes (BS) formula:

MKTCall(S0, K1, T ) = BSCall(S0, K1, T, R(T ), V (T, K1)),

MKTCall(S0, K2, T ) = BSCall(S0, K2, T, R(T ), V (T, K2)).

In other terms, each market option price requires its own Black

and Scholes implied volatility V MKT(T, K)/
√

T depending on

the option strike K.
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Short intro to the smile (cont’d)

The market therefore uses BS formula simply as a metric to

express option prices as volatilities. The curve

K 7→ V MKT(T, K)/
√

T is the so called volatility smile of the

T -maturity option. If BS’s model were consistent along different

strikes, this curve would be flat, since volatility should not depend

on K. Instead, this curve exhibits “smiley” or “skewed” shapes.

BS Geometric Brownian Motion (GBM) assumption for dS

is no longer sufficient, need richer dynamics to account for the

smile. Alternative diffusion dynamics is just one possible means

to model the smile (local volatility models, here). There are

many other possibilities (stochastic vol models, jump diffusions,

lattices... not here). Example of tractable diffusions: CEV and

Shifted GBM (one can also combine the two)

dSt = r Stdt + σS
γ
t dWt, S0 = s0.

St = αe
R t
0 r(u)du

+ Xt, dXt = r(t)Xtdt + σ(t)Xt dWt.

CEV or Shifted-GBM: Just one additional parameter γ or α,

not flexible enough. Shifted CEV has two additional parameters

but still largely insufficient. Local vol models are too poor or not

tractable. Our proposal: tractable and flexible loc vol model.
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Smile modeling through alternative diffusions

Alternative dSt can model a non-flat smile:

1. Set K to a starting value;

2. Compute the model option price

Π(T, K) = e
− R T

0 r(s)ds
E

Q
0 [(ST −K)

+
]

with S modeled through an alternative dynamics

dSt = r(t)Stdt + σ(t, St) St dWt, S0 = s0

(Harrison and Pliska’s Risk Neutral valuation theory still

stands)

3. Invert BS formula for this strike, i.e. solve

Π(K) = BSCall(S0, K1, T, R(T ), V (T, K))

in V (T, K), thus obtaining the model implied volatility

V (T, K).

4. Change K and restart from point 2.
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Smile problem: summary

• Traders use the BS “metric” to price plain-vanilla options;

• Options are priced (quoted) with a (implied) volatility that

varies with the option strike;

• The term structure of implied volatilities is “skewed” or

“smiley”

• The BS model cannot consistently price all options quoted in

a market (the real risk-neutral distribution is not lognormal);

• Need for an alternative asset price dynamics (not just terminal

distribution) to price exotics or non quoted plain-vanilla

options;

• This model should feature, among other qualities:

– explicit dynamics with known marginal distrib.;

– analytical formulas for European options (“analytic” and

rapid calibration to plain vanilla);

– good fitting of market data (reasonable number of

parameters in the dynamics).
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The no-arbitrage mixture diffusion dynamics

dSt = µStdt + σ(t, St) St dWt, S0 = s0 (1)

(assume r(t) = µ with no loss of generality).

σ is no longer a determinisitic function of time, but depends

now on the underlying S itself.

We propose a class of analytically tractable models for an

asset-price dynamics that are flexible enough to reproduce a large

variety of market volatility structures.

The asset under consideration underlies a given option market

(not necessarily a tradeable asset). We can think of an FX rate,

a stock index, or a forward LIBOR rate.

The asset dynamics follows from assuming that

• The risk-neutral measure Q exists;

• The dynamics of the asset price S under Q is (1).

• The marginal density of S under Q is a weighted average of

the known densities of some given diffusion processes.

More specifically:
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The no-arbitrage mixture diffusion dynamics

Let us then consider N instrumental diffusions

dS
i
t = µS

i
tdt + vi(t, S

i
t) S

i
tdWt, s0, i = 1, . . . , N,

We denote by pi
t(·) the density function of Si

t

Problem. Derive the local volatility σ(t, St) in

dSt = µStdt + σ(t, St) St dWt, s0

such that the Q-density of S satisfies

pt(y) =

NX
i=1

λip
i
t(y), λi > 0,

NX
i=1

λi = 1.

Solution. Back out σ from the Fokker-Planck equation for S.

We end up with the following SDE under Q:

dSt = µStdt +

vuutPN
i=1 λiv

2
i (t, St)p

i
t(St)PN

i=1 λipi
t(St)

StdWt
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Option pricing with the mixture dynamics.

Let us give for granted that the previous SDE has a unique

strong solution and consider a European Call option with maturity

T , strike K. The option value at t = 0 is :

Call = P (0, T )E
T
n

(ST −K)
+
o

= P (0, T )

Z +∞

0

(y −K)
+

NX
i=1

λip
i
T (y)dy

=

NX
i=1

λiP (0, T )

Z
(y −K)

+
p

i
T (y)dy =

NX
i=1

λiCalli.

Remark [Mixtures without dynamics.] Earlier authors used to

postulate a lognormal mixture for the risk neutral density, but did

not provide any consistent arbitrage-free dynamics.

Remark [Greeks]. Due to linearity of differentiation, the same

convex combination applies to all option Greeks (sensitivities).

Remark [Complete market, Hedging]. As for all local volatility

models, the mixture diffusion dynamics yields a complete market

(contrary to stochastic vol) and a delta-hedging strategy.
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The no-arbitrage lognormal mixture dynamics

vi(t, y) = σi(t)y, dS
i
t = µS

i
tdt + σi(t) S

i
tdWt, s0,

where σi’s are det. bounded from above and below, continuous

and ∃ an ε such that we have a common initial value σi(t) = σ0

for each t in [0, ε]. Set νmix(t, y)2 =
PN

i=1 Λi(t, y)σi(t)
2

Λi(t, y) =
λi pN (ln s0+µt−Vi(t)

2/2, Vi(t)
2)(ln y)PN

j=1 λj pN (ln s0+µt−Vj(t)2/2, Vj(t)2)(ln y)
,

for (t, y) > (0, 0); νmix(t, y) = σ0 for (t, y) = (0, s0).

Then the SDE dSt = µStdt + νmix(t, St)StdWt , has a

unique strong solution whose marginal density is the mixture of

the lognormal Si’s densities

pSt(y) =

NX
j=1

λjpN (ln s0+µt−Vj(t)2/2, Vj(t)2)(ln y)
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Why a mixture of lognormals?

• analytically tractable (calibration!) and linked to BS model;

• log-returns ln(St/S0) are leptokurtic;

• Mixtures of lognormals work well in many practical situations:

Ritchey (1990), Melick and Thomas (1997), Bhupinder (1998)

and Guo (1998) found a good fitting quality to market options

data.

Proposition. Consider a Call option with maturity T , strike K

and written on the asset. The model yields

Call = P (0, T )
NX

i=1

λi

"
S0e

µT
Φ

 
ln

S0
K +

�
µ + 1

2η
2
i

�
T

ηi

√
T

!
−KΦ

 
ln

S0
K +

�
µ− 1

2η
2
i

�
T

ηi

√
T

!#
, ηi(T ) :=

Vi(T )√
T

This leads to smiles with a minimum at K = s0e
µT . Can shift

the dynamics to fit asymmetric smiles (skews) by adding a new

parameter α.

At = (A0 − S0)αe
µt

+ St,

where α is a real constant. By Ito’s formula,

dA = µAdt+ν(t, A−(A0−S0)αe
µt

)(A−(A0−S0)αe
µt

)dW

- Introduction to the mixture diffusion dynamics for the volatility smile 11
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No arbitrage lognormal-mix dyn: Drifts variants

Consider the instrumental processes

dS
i
t = µi S

i
tdt + σi(t)S

i
tdWt, s0

and look for a diffusion coefficient ν(t, y) such that

dSt = µStdt + νdmix(t, St)StdWt, s0

has marginal density pSt(y) =
Pm

i=1 λipSi
t
(y).

Call νmix(t, y)2 the solution of the analogous problem when

all instrumental processes share the same drift µ (found earlier).

It is possible to show that

(νdmix(t, y)y)
2
:= (νmix(t, y)y)

2
+

2
PN

i=1 λi(µi − µ)
R +∞

y
xp

Si
t
(x)dxPN

j=1 λjp
S

j
t
(y)

.

It is possible to find conditions under which this diffusion

coefficient has linear growth and does not explode in finite time

(Sartorelli, (2002)). The integral in the numerator is just the

Black and Scholes price of an asset or nothing option for the

instrumental process Si, which is readily available in terms of the

Gaussian cumulative distribution function.

- Introduction to the mixture diffusion dynamics for the volatility smile 12



Damiano Brigo Banca IMI

No arbitrage lognormal-mix dyn: Shifts Variants

Can also shift single basic distributions:

A
i
t = βi e

µt
+ S

i
t, dS

i
t = µS

i
tdt + σi(t)S

i
tdWt

that leads to instrumental processes

dA
i
t = µA

i
tdt + σi(t)(A

i
t − βi e

µt
)dWt,

and look for an SDE for S with pSt =
P

j λjp
A

j
t
, i.e.

pSt(y) =

NX
j=1

λjpN (ln(s0−βj)+µt−Vj(t)2/2, Vj(t)2)

�
ln
�

y − βje
µt
��

We find (but here no a-priori ∃ results available for the SDE)

dSt = µStdt+vsmix(t, St)dWt, vsmix(t, y)
2
=

NX
i=1

Λi(t, y)vi(t, y)
2

vi(t, y) = σi(t)(y − βie
µt

).

Λi(t, y) =
λi pN (ln(s0−βi)+µt−Vi(t)

2/2, Vi(t)
2)(ln(y − βie

µt))PN
j=1 λj pN (ln(s0−βj)+R(t)−Vj(t)2/2, Vj(t)2)(ln(y − βjeµt))

,
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Mixture model vs Stochastic volatility:
Correlation(average volatility,underlying)

dSt = r(t)Stdt + γ(t, St) St dWt, S0 = s0, (2)

in general γ can be either a deterministic or a stochastic function

of St. In the latter case we have a “stochastic-volatility model”

(SVM), for example γ(t, S) = ξ(t),

d(ξ(t)
2
) = b(t, ξ(t)

2
)dt + χ(t, ξ(t)

2
)dZt,

with the important specification dZtdWt = ρ dt.

It is usually said that SVM are better than local volatility

models (LVM), because the instantaneous correlation is:

Corr(dSt, dγ
2
(t, St)) = ρ < 1 (e.g. ρ = 0 in Hull-White SVM)

Corr(dSt, dν
2
mix(t, St)) = 1, and the same holds for all LVM’s

But what about terminal correlations?

- Introduction to the mixture diffusion dynamics for the volatility smile 14



Damiano Brigo Banca IMI

Mixture model vs Stochastic volatility:
Correlation(average volatility,underlying)

Corr(dSt, dγ
2
HW(t, St)) = 0, Corr(dSt, dν

2
mix(t, St)) = 1.

VHW(T ) :=

Z T

0

γ
2
HW(t, St)dt, Vmix(T ) :=

Z T

0

ν
2
mix(t, St)dt

the “average variances” of the process S in the Hull-White model

and in our mixture model, respectively. Then

Corr(ST , VHW(T )) = 0, Corr(ST , Vmix(T )) = 0 all T

Correlation (Volatility)2 ←→ Asset-Value:

Model Hull-White SVM lognormal mix dyn

Intantaneous correlation 0 1

Terminal correlation 0 0

Yet, correlation is not a satisfactory measure of dependence

outside the Gaussian world...

Finally, in variants of the basic lognormal mixture model (e.g.

mixtures with different drifts) one can impose correlation patterns

as part of the calibration procedure
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Example 1 of calibration to market data,
single smile

0.04 0.045 0.05 0.055 0.06 0.065
0.15

0.151

0.152

0.153

0.154

0.155

0.156

0.157

0.158

Market volatilities
Calibrated volatilities

.

Data: Two-year Euro caplet volatilities as of November 14th,

2000 (Libor resetting at 1.5 years). We set: N = 2, T = 1.5,

λ2 = 1 − λ1. We minimize the squared percentage difference

between model and market (mid) prices: λ1 = 0.241, λ2 =

0.759, η1(T ) = 0.125, η2(T ) = 0.194, α = 0.147.
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Example 2 of calibration to market data,
single smile

39000 41000 43000 45000 47000 48500
0.2 

0.225

0.25

0.275

0.3 

0.325

0.35

0.375

0.4 
bid volatilities
ask volatilities
calibrated volatilities

Data: Italian MIB30 equity index on March 29, 2000, at 3,21pm

(most liquid puts with the shortest maturity). We set N = 3,

T = 0.063014, λ3 = 1 −λ1 −λ2. We minimize the squared

percentage difference between model and market mid prices. We

get: λ1 = 0.201, λ2 = 0.757, η1(T ) = 0.019, η2(T ) =

0.095, η3(T ) = 0.229, α = −1.852.
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Example 3 of calibration to market data,
single smile

0.82 0.84 0.86 0.88 0.9 0.92 0.94
0.1115

0.112

0.1125

0.113

0.1135

0.114

0.1145

0.115

0.1155
market volatilities
calibrated volatilities

Data: USD/Euro two-month implied volatilities as of May 21,

2001.

We set N = 2, T = 0.167, λ2 = 1 −λ1. We minimize

the squared percentage difference between model and market mid

prices. We get: λ1 = 0.451, η1(T ) = 0.129, η2(T ) = 0.114,

α = 0.076.
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Example 4, calibration of a whole FX vol surface

EUR/USD market volatility surface May 17, 2001.

Vol surface function of (T − t) and δ. FX market: quote

volatilities in terms of ATM vol (σATM), risk–reversal (r),

strangle (s) (e.g. Malz (1997)). Common assumption for a

interpolating functional form

σ(δ, T ) = σATM(T )−2r(T )

�
δ − 1

2

�
+16s(T )

�
δ − 1

2

�2

,

δ(T ) = e
−rdT

Φ

24ln(St/X) + (rd − rf + σ2

2 )T

σ
√

T

35
being the delta of a call option.

T σATM r s Bid/ask spread

O/N 13.50% 0.60% 0.29 % 2%-2.5%
1W 10.50% 0.60% 0.29% 2%-2.5%
2W 10.40% 0.40% 0.29% 1%-1.5%
1M 11.00% 0.40% 0.30% 0.35%-0.85%
2M 11.15% -0.05% 0.30% 0.30%-0.80%
3M 11.50% -0.05% 0.30% 0.30%-0.80%
6M 11.85% -0.10% 0.30% 0.30%-0.68%
9M 12.00% -0.14% 0.30% 0.30%-0.55%
1Y 12.05% -0.15% 0.30% 0.25%-0.45%
2Y 12.05% -0.15% 0.30% 0.25%-0.45%

Table 1: Market data for ATM implied vols, risk–reversal and

strangle prices as of May 17, 2001.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time to maturity (Y) 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1
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0.11
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
T (Y) 0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1
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-0.005

0

0.005

0.01

0.015

Figure 1: The market implied volatility surface (above) and

absolute difference in implied volatility after calibration of the

model with N = 3 (below) for the May 17, 2001 market data.
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Example 4 (cont’d)

Use Shifts variant of the lognormal mixture dynamics

explore the effect of varying the number of basis densities n

ηi(T ) =
q

1
T

R T

0
σ2

i (s)ds are taken as

η
i
(T ) = ai + bi

�
1− exp

�
−T

τi

��
τi

T
+ ci exp

�
−T

τi

�
,

(Nelson and Siegel (1987) for yield curves)

Model parameters to calibrate:

x = (λ1:N , β1:N , a1:N , b1:N , c1:N , τ1:N) has dimensionality

4N + N + (N − 1) = 6N − 1.

minimize the sum of the relative squared discrepancies The

resulting root–mean–square error is 3× 10−4 and 7× 10−5 for

calibrations with N = 2 and N = 4 respectively.

The maximum error for any maturity is well below the

corresponding bid–ask spread already with N = 3.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

(-0.0756, 0.57)

(-1.75, 0.43)

Figure 2: T 7→ ηi(T ; a, b, c, τ) after calibration of the model

with N = 2; We show (βi, λi) for each component.
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0.1
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0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1
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Figure 3: N = 3

0

0.1
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0.4

0.5
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0 0.2 0.4 0.6 0.8 1
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(-0.657, 0.568)

(0.134, 0.220)

Figure 4: N = 4. Notice the “nested” structure
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Baskets: Consistent multivariate extension

Single assets: S(t) = [S1(t), S2(t), . . . , Sα(t), . . . , Sn(t)]
′.

Mixture diffusion model for each asset Sα: Find να
mix with

dSα = Sα[µαdt + να
mix(t, Sα)dWα] ⇒ pSα(t) =

PN
k=1 λk

αp
Sk

α(t)

where S1
α, . . . , Sk

α, . . . , SN
α are instrumental procs for Sα:

dS
k
α(t) = µ

k
αS

k
αdt + σ

k
αS

k
αdWα, dWαdWβ = ρα,β dt

Multivariate extension: def n× n matrix C by C(t, x) ρ C′(t, x)

=

PN
k1,...,kn=1 λ

k1
1 · · ·λkn

n V k1,..,kn(t) p
[S

k1
1 (t),...,Skn

n (t)]′
(x)PN

k1,...,kn=1 λ
k1
1 · · ·λkn

n p
[S

k1
1 (t),...,Skn

n (t)]′
(x)

V
k1,..,kn(t) =

�
σ

kα
α (t) ρα,β σ

kβ
β

(t)

�
α,β=1,...,n

Our extension is (Rapisarda (2001), “Multi Variate Mixture Dynamics”)

dS(t) = diag(µ)S(t)dt + diag(S(t))C(t, S(t))d[W1, .., Wn]
′

and satisfies pS(t) =
PN

k1,...,kn=1 λ
k1
1 · · ·λkn

n p
[S

k1
1 (t),...,Skn

n (t)]′
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Multivariate Mixture Dynamics (MVMD)

dS(t) = diag(µ)S(t)dt + diag(S(t))C(t, S(t))d[W1, .., Wn]
′

(CρC
′
)(t, x) =

PN
k1,...,kn=1 λ

k1
1 · · ·λkn

n V k1,..,kn(t) p
[S

k1
1 ,...,Skn

n ]′
(x)PN

k1,...,kn=1 λ
k1
1 · · ·λkn

n p
[S

k1
1 (t),...,Skn

n (t)]′
(x)

V
k1,..,kn(t) =

�
σ

kα
α (t) ρα,β σ

kβ
β

(t)

�
α,β=1,...,n

dWidWj = ρi,jdt, pS(t) =

NX
k1,...,kn=1

λ
k1
1 · · ·λkn

n p
[S

k1
1 (t),...,Skn

n (t)]′

Can evaluate simple claims (e.g. call option) on basket

A(t) =
Pn

i=1 aiSi(t) = a′S “one shot”, since we know pS.

Compare with naive numerical Euler or Milstein scheme for

Monte Carlo, consisting of a time-discretization of the

“Simply-Correlated Mixture Dynamics”, obtained by single

mixture sde’s by instantaneously correlated Brownian motions

dS = diag(µ)Sdt + diag((ν
α
mix(t, Sα))α)diag(S)d[W1, .., Wn]

′

pS(t) =?!? Both are consistent with single mixture smiles

dSα = Sα[µαdt + να
mix(t, Sα)dWα] ⇒ pSα =

PN
k=1 λk

αp
Sk

α
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MVMD vs SCMD

dS(t) = diag(µ)S(t)dt + diag(S(t))C(t, S(t))d[W1, .., Wn]
′

pS(t) =

NX
k1,...,kn=1

λ
k1
1 · · ·λkn

n p
[S

k1
1 (t),...,Skn

n (t)]′
VS

dS = diag(µ)Sdt + diag((ν
α
mix(t, Sα))α)diag(S)d[W1, .., Wn]

′

dWidWj = ρi,jdt, pS(t) =?!?,

Pro’s MVMD: 1) Terminal distribution of ST (and of basket AT =
a′ST ) can be simulated one-shot, no time discretization. 2) Explicit
multivariate distribution that is the most natural non-trivial generalization
of the scalar case, i.e. a multivariate mixture

Con’s MVMD: 1) “Combinatorial explosion”: A possibly large number of
densities to mix in the multivariate mixture (typically Nn, e.g. 310 = 59049).
BUT... Typically N = 2, 3, and there is a hierarchy in the base densities:
λ1

α > λ2
α >> λ3

α, so that with weights given by λ1
αλ2

βλ3
γ · · · only few

multivariate densities have appreciable weights, thus easing the simulations.

2) No immediate statistical interpretation of ρ if not as cross-sectional
fitting parameters...

Pro’s SCMD: 1) A clear interpretation for ρ as instantaneous correlation
among the single names. 2) Number of densities to mix does not increase with
n but remains equal to N .

Con’s SCMD: 1) Need time discretization to price simple claims on

AT = a′ST . As T increases, we need more time steps.
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Defining the basket smile

B(t) =

bX
i=1

wiSi(t); dSi(t) = (r(t)−qi)Si(t)dt+(...)dWi

Moment-matching paradigm. Call qi the continuous dividends of

Si, so that its risk-neutral drift is µi = r − qi. Find q in

dB̄t = (r(t)− q)B̄tdt + (....)dWt, B̄0 = B(0)

such that

EB̄T = B(0)e
R(T )−qT

=

bX
i=1

Si(0)e
R(T )−qiT = EB(T ).

Now that we have q, we may decide to quote basket implied
volatilities by inverting BS’s formula, by solving the following
equation in V (T, K):

BSCall(Basket0, K, T, R(T ), q, V (T, K)) = Model-Basket-Call(Basket0, T, K).

From the multivariate model prices of basket European options

on the right hand side, back out the “basket implied volatilities”

V (K, T )/
√

T such that Black–Scholes formulas with the

synthetic dividend q reproduce such prices.
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Basket of 2 smiley assets,
each modeled with a 2-mixture

We now give some examples with a basket of 2 assets.

Asset S1, mixture with (λ1
1, σ1

1(t)), (λ
2
1, σ2

1(t))

Asset S2, mixture with (λ1
2, σ1

2(t)), (λ
2
2, σ2

2(t))

Define

V
j
α(t) :=

�
1

t

Z t

0
σ

j
α(u)

2
du

�1/2

V
j
α(t) = A

j
α + B

j
α

0B@1− exp

0B@ −tq
D

j
α

1CA1CAqD
j
α

t
+ C

j
α exp

0B@ −tq
D

j
α

1CA
In all examples we will take:

First Asset S1 : S1(0) = 1, µ1 = 5%

A1
1 = 0.3, B1

1 = 0.01, C1
1 = 0.01, D1

1 = 5, λ1
1 = 0.6

A2
1 = .2, B2

1 = .001, C2
1 = −.001, D2

1 = 3, λ2
1 = 0.4

Second Asset S2 : S2(0) = 1, µ2 = 3%

A1
2 = 0.25, B1

2 = 0.008, C1
2 = 0.008, D1

2 = 4.8, λ1
2 = 0.7

A2
2 = 0.35, B2

2 = 0.0008, C2
2 = −0.008, D2

2 = 2.8, λ2
2 = 0.3
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Average volatilities in the mixtures components

0 2 4 6 8 10 12 14 16 18 20
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Figure 5: Average vols V 1
1 (below) and V 2

1 (above) for the mixture

concurring to S1

0 2 4 6 8 10 12 14 16 18 20
0.24

0.26

0.28

0.3

0.32

0.34

0.36

Figure 6: Average vols V 1
2 (below) and V 2

2 (above) for the mixture

concurring to S2
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Example: 2× 2 basket. Single smiles

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =1Y.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Maturity (y) 0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Strike

0.26

0.265

0.27

0.275

0.28

0.285

Implied vol. for asset no. 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Maturity (y) 0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Strike

0.28
0.285
0.29

0.295
0.3

0.305
0.31

0.315
0.32

Implied vol. for asset no. 2
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2× 2 MVMD vs SCMD basket densit, ρ = −0.9

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =1Y.

ρ = −90%; the basket density pA(T )(·; ρ) under the SCMD-EMCscheme, continuous line;

pA(T )(·; ρ) under the MVMD scheme, dashed line.

0

0.01

0.02

0.03

0.04

0.05

0.06

40 60 80 100 120 140 160 180

rho=-0.9

Euler dynamics
Fast dynamics
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2× 2 MVMD vs SCMD basket densities, ρ = 0

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =1Y.

ρ = 0; the basket density pA(T )(·; ρ) under the SCMD-EMCscheme, continuous line;

pA(T )(·; ρ) under the MVMD scheme, dashed line.

0

0.005

0.01

0.015

0.02

0.025

40 60 80 100 120 140 160 180

rho=0

Euler dynamics
Fast dynamics
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2× 2 MVMD vs SCMD basket densities, ρ = 0.9

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =1Y.

ρ = 90%; the basket density pA(T )(·; ρ) under the SCMD-EMCscheme, continuous line;

pA(T )(·; ρ) under the MVMD scheme, dashed line.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

40 60 80 100 120 140 160 180

rho=0.9

Euler dynamics
Fast dynamics

- Introduction to the mixture diffusion dynamics for the volatility smile 33



Damiano Brigo Banca IMI

2× 2 calibrated MVMD basket smile, ρ = 0.3

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =1Y.

The basket smile for ρ = 30%.

Alternative dynamics, rho=0.3

Alternative dynamics

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Maturity (y) 0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Strike/Spot

0.215
0.22

0.225
0.23

0.235
0.24

0.245
0.25

0.255
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2× 2 calibrated MVMD basket smile, ρ = 0.9

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =1Y.

The basket smile for ρ = 90%.

Alternative dynamics, rho=0.9

Alternative dynamics

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Maturity (y) 0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

Strike/Spot

0.26

0.265

0.27

0.275

0.28

0.285
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2× 2 MVMD basket smile at T = 6m against ρ

S1(0) = 1, µ1 = 5%, σ1
1(t), σ2

1(t), λ1
1 = 0.6, λ2

1 = 1− λ1
1

S2(0) = 1, µ2 = 3%, σ1
2(t), σ2

2(t), λ1
2 = 0.7, λ2

2 = 1− λ1
2

AT = w1S
(1)
T

+ w2S
(2)
T

, w1 = w2 = 0.5, T =6m.

The basket smile for T=6m for different ρ’s.

0.1

0.15

0.2

0.25

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

Strike/Spot

rho=-90%
rho=-60%
rho=-30%

rho=0
rho=30%
rho=60%
rho=90%
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Conclusions and perspectives

Mixture diffusion local volatility model: lognormal mixture and variants

• Good and analytic calibration to market data

• Explicit dynamics, ∃ results, complete market, delta hedging

• Known marginal densities, unknown transitions

• Possible Monte Carlo (Euler scheme)

• Decorrelation between average volatility and underlying asset

• Nested structure for parameterization;

• Extension to multivariate diffusion

• A model to coherently link a basket smile to the smiles of its single names

Current/Future work:

• Stochastic volatility versions of the mixture dynamics lose market
completeness but have known transition densities, more tractable for
exotic options and diagnostics

• Develop analytical approximations for exotic options with smile (e.g.
barrier);

• Diagnostic tests on future volatility structures following calibration;

• More tests on baskets and the role of correlation;
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