Chapter 7

The Pricing of Second Generation Exotics

by Jiirgen Hakala, Ghislain Perissé and Tino Senge

After vanilla options and the first generation exotics some more exotic options are
of special interest for some clients. Here we present a formula catalogue for
computing the Theoretical Value (TV) of such options in the Black—Scholes model.

7.1 Introduction

The pricing and hedging of the second generation exotic options in the Black—
Scholes model works the same way as in the case of first generation exotics.
One takes a geometric Brownian motion with a risk-neutral drift and computes
the discounted expected value of the respective option payoffs. Computing the
expectation results in the TV of the option. Trading at the TV is subject to
some model risk. However, for second generation exotics, the bid-ask spreads
are usually wider. Here we outline the valuation of some exotics such as
forward-start options in Section 7.2, ratchet options in Section 7.3, power
options in Section 7.4, instalment options in Section 7.5, stairs options in
Section 7.6, compound options on a forward-start strategy in Section 7.7,
options on the minimum/maximum in Section 7.8 and their generalisation in
Section 7.9.

All options are valued in the model for the exchange rate

ds, = S,[(r! — ¥)dt + cdW}) (7.1)

7.2 Forward-start options

A forward-start plain vanilla option is an option where the strike of the option
is derived at some date in the future relative to the spot at that date. It can be
seen as an option where it is paid for now but will start at some time in the
future. Let us consider two dates Ty and T,, Tr < T,, where

Ty is the forward-start date,
T, is the expiry date.

The holder of the option receives at time 7 an option with expiration date T7,.
The strike of this option will be fixed at Ty to aS7,, where « is a constant which
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is specified at inception ¢ = 0 of the trade. The payoff of a forward-start option
is defined as

(o(Sr. —a57))" (7.2)
7.2.1 Pricing

In order to price forward-start options we have to distinguish between the time
intervals [0, Tr] and [T, T,].

First we consider the value of the option during interval [T, T,]. The price of a
call option (¢p = 1) is given by

v(1) = vps(Si, oSty T — t,612,15,7,), 1 € [T, T (7.3)

where vpg(-) is the value of an European call option with spot S,, strike a.S,,
and time to maturity equal to 7, — .

We now go on pricing the option within interval [0, 7r]. We start considering
the value of the option at time 7 At this time the value is equal to an
ordinary European option. In case of a call option (¢ = 1) we get

v(Tr) = vps(Sty, 087y, Te — Tp 012,74 5,71 5) (7.4)
= TS N () — & T TS N (d) (7.5)
= S7, vas(l,a, T, — TF, o‘l‘z,rf‘z,r/;_z) (7.6)
where
dy = 1 In >, +(Vf2_’*{lA2)(Te—TF) ilﬂl,zm (7.7)
oioVT. —Tr | oSt ’ ' 2

Using risk-neutral valuation the value of a forward-start call option at time
t =0 is given by

V(O) = EQI |:€7"§IT1 STFVBS(la o, Te — TF, 012, }’72, }’{2):| (78)

where Q; is the probability measure such that (e_("‘ll_’jl)’S,> o is a martingale.
t€l0,TF

Since vps(l,a, Te—Tp,aliz,r‘ll‘yz,rfl'vz) is deterministic, we use the martingale
property and obtain

7T d
Vo = € " IS()VBs(l,O(, Te — TF,O'1‘27}"1727}"'/;72) (79)

More generally, for 7 € [0, 7], we have

v = e TS, vy, Ty — Try 012,745, 7)) (7.10)
= e_'jl(TF_’) Vgs(St, OCS” Te — TF, 0'172, Viz, }"'{72) (71 1)
The same calculation can be done for a forward-start put option (¢ = —1).

REMARK 7.1 The rates r¢ and r{ are the instantaneous interest rates. These
rates are used for discounting the option value within interval [0, Tr).

REMARK 7.2 The rates rfﬁz and r-’;z are forward rates for interval [Tr,T,].

These rates will be used in the option pricing formula. In the same way ¢, is the
Sforward volatility for time period [Tr, T,).
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7.2.2 Greeks

As in pricing we have to distinguish between two time intervals [0, 7] and
[TF7 Te]

During the interval [T, T,] the sensitivity parameters are the same as in the case
of a plain vanilla option.

Let us focus on interval [0,7F. Within this period of time the sensitivity
parameters delta, gamma and theta for call options are

At = eir/l(TF?t) VBS(I, a, Te — TF, 012, 1’12, ”'{,2) (712)
r,=0 (7.13)
0, = —e_"/l(T”_’)r‘{S, vps(l,o, T, — TF,0172,rf_2,r"1’72) (7.14)

In order to calculate vega (V) and rho we have to consider dependencies in the
forward rates and forward volatility.

First we recall the definition of the forward volatility. Let o, be the volatility
for the interval [0, Ty] and let g, be the volatility within [0, 7,]. The forward
volatility o, within [T, T,] is given by

O'%Tz — U%Tl

Olp = 4| —————— 7.15
o= P (7.15)
if the term under the square root is non-negative. Using
8(71’2 _ _ 1 01T1 (716)
60'1 \/TefTF \/O'%TQ—O'%Tl
0
o12 _ 1 0,71, (7.17)
60'2 \/Te—TF\/O'%Tz—O'%T]
we can calculate the vegas
VO’] = —ef'{(TF*”S[ 1 O-I(TF — l)
VT, =Tp\/o3(T, —t) — a>(Tr — 1)
X Vam BS(L e, To—Tro120¢ 507 ,) (7.18)
Vrrz = ef’{(TF*f)Sl 1 O-z(T" — l)
\/Te_ TF \/G%(TE,— Z) —0%(TF—[)
X VD‘]_Z BS(1Va,THfTF.,zr]_z,r‘I[‘z,r/I‘2) (719)

Next we recall the definition of the forward rate. Let rf/f be the rates for
interval [0, 7| and let rg/f be the rates for interval [0, 7,]. The forward rates r‘ll/{
are given by

oy AT — ATy

l’17'2 = TT’F (720)
Recalling
d
U (7.21)
oril T,—Tr
or'l
e (7.22)
8}’2' Te - TF
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we get as derivatives with respect to the rates rf/f '
(T Tp—t
_ (Tp—1) F
I'hO,.tlI, = —e rUFE S[ (TF _ TF> rhO"‘l{.Z BS(17avT‘@7TF~,D‘l,2yr£l[~2,r{'2) (723)

Tr—1t

—r(Tp—1)
tho; = —e "I 0g ( ZE£—") tho , /
rf] t 4 ]'V() _ TF P BS(],OC,TC—T[J?O‘]Q,I‘(I[‘Z,)’ 1,2)

— er/lv(TF_l)(TF — Z)Sl PBS(17 a, Te — TF, 01127 V(11727 }"'/;2) (724)

As derivatives with respect to the rates ,,;W ‘we can derive
_ rimeng [ Te—t .
I'hOr;/t =e 1\ F SI <ﬁ I‘hOr(llyz BS(1,a,T(»*TFJl,z-l‘lll.z-,"/1_2) (7.25)
(T T, -t .
rho,,g ,=e S, .1, rhorf].2 BS(LaToTronard ol ) (7.26)

REMARK 7.3 From Equation (7.12) it can be seen that in the case of a forward-
start option the deltas of calls and puts are always positive on time interval [0, Tr|.

7.3 Ratchet options

A ratchet option consists of a series of forward-start options. The strike for the
next exercise date is set relative to the spot at the previous exercise date.
Ratchet options can be presented as a sum of forward-start options. The
exercise date of the first component will be the forward-start date of the second,
the exercise date of the second component will be the forward-start date of the
third, ... . Sometimes this type of option is called moving strike option or
cliquet option.

Ratchet options can be priced as the a sum of forward-start options. The price
of an n-period Ratchet option is given by

VRatchet(d)a t) = Z VFPV<¢) [a TF,-a Te,-a OCi) (727)
i=1

where

TF] = [, TFiH = Tve.7 1 < i <n-— 1 (728)

i

and vgpy is the price of a forward-start plain vanilla as presented in Section 7.2.

7.4 Power options

A power option pays off the square of a plain vanilla with strike K. Since this
would in general make the power option very expensive, it is capped at a level
Kc. The power call pays

2
Iig<sy <kc) (S7, — Ks) 4+l k. < sp.} (Ke — Ks)® (7.29)

the power put has payoff

2
Hike<sy,<ksy (Ks — S1,) +1s,, < ke (Ks — Kc)’ (7.30)
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The Pricing of Second Generation Exotics 61

with expiration date 7, and delivery date T, > T,. We denote by ¢ the valuation
date (horizon) and assume that the premium is paid at the premium value date
T,

-
We model the exchange rate by

ds, = w,r,S;dt +o,7,S, dW (7.31)
or equivalently by

St, = S,e(ﬂm 3ot )(Tem )t oWy (7.32)

. A d f
with Ker, =V, = Vo,

Risk-neutral valuation leads to the price of the power call

y(t) = e"ii.,r,,(Trf)
x IE' [E_r(;”’T"(T‘]_T") (”{K5<ST‘,<KC} (S7, — KS)2+”{KC <55} (Ke — Ks)z)}
— iy (T 0=, 1, (Ti=T))
X ([Et [H{KS<ST(,<KC}S2TJ — 2KIE [H{ks<s,, <kc) ST, ]
+ KéE’ [”{K5<STL,<KC}} + (K¢ — Ks)zmt [H{KC < ST(,}}> (7.33)
Defining
R — <1nf + <um —~ 103@) (T, — z)) (7.34)
oV, —t Ky 2
d, 2 ﬁm (mKi’C + (u,j(, = %o—fm) (T, — z)) (7.35)

A
dy, =dy +o.r\/T. — 1

7.36)

dy. 2 d% +o,0\/T. — 1 7.37)

(
(
A2 = d +20,0/T, — 1 (7.38)
dy, = d% +20,0,\/T, 1 (7.39)

we can compute the expected values and obtain for the price of the power
option

v(1) = oty =074, 7, (Ti=T))
x {Sge(zu,,n,win)(rm) ( N<¢d§(§) _ N(d)d;%))
= 2KsSen T (N (g, ) = N (dy. ) )
=R (o)~ (0 ))
+ (Kc— Ks)’'N (d)d%(‘)} (7.40)

where the binary variable ¢ takes the values +1 in case of a call and —1 in case
of a put.
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7.5 Instalment options

An instalment option is an iterative compound option with
® N working dates Ty, T», ..., Ty (Ty = t is the horizon date),
o N Strikes, Kla Kz, RN 7KN (Kl = KT[)a

® N put—call indicators, ¢, ¢,, ..., taking the values +1 in case of a call
and —1 in case of a put.

On each period [T}, Ti11], the spot S; = Sy, is modelled by
dS,‘ = ,Lli_]ﬁ[S,‘ dt + O',',l’,'S,‘ dW (741)
i

where the numbers p; | ; 2 Fiot —r,»_l‘,-f are the forward drifts and o,,; the
forward volatilities of the asset, which we take to be

2
T — o T;
Oi-1, = = (7-42)
' T — Ti—l
= il —ria Ty (7.43)
' T, — T

The quantities r?,r/ and ; denote the usual forward rates and volatilities.

For N =2, this option is a regular compound option as discussed in Chapter 9.
The valuation of instalment options can be carried out using finite differences.
We describe this in detail in Section 7.3 of Chapter 22. Here we show how to
determine the value of an instalment option by iterative integration.

We introduce the notation

i S; 1
dl (x) O'H_l \/T (ln; + (luH-l + 50[+12> (TH'] - Tl)) (744)
dy(x ) d\(x) = aiy1/ Tivt — (7.45)

||l>

and denote by

Vn(Sy-1,Ky) = IE™! [(Pn(Sy — KN))+]
= ¢NSN716#’\""“”(TN7T”"1>N(¢Nd]1V(KN)) - ¢NKNN(¢Nd§v(KN))

the value of an undiscounted vanilla option at time Ty_; with strike Ky and
maturity 7x when the spot is at Sy_;.

Introducing the two functionals

IOy 1 (F)(Si1) £ E[(F(S;) — K)T[Si1]

[ Fsn e ay (7.46)
IOy (F)(Si-1) £ E[(K — F(S))"|S1]

= rl f(Si(Yf))\/;—nngdJ’i (7.47)
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with
Si(v) = SHe(u,'_l,,-f%a?,l,,»)(T,-fT,-,l)Jra,;].,-\/'Tf—;TiT,,» (7.48)
Xy = inf{yi| F(Si(») = Ki} (7.49)
XLy = sup{yil F(Si(v) = K} (7.50)
we can write down the price of an instalment option in the form
v(1) =204 (... 204, (Vy)...) (7.51)

7.6 Stairs options

A stairs option is an option which is working on N periods [¢, 7]
[Ty, T5],...,[Tn_1, Ty], with one, two or no knock-out barrier(s) on each period
and final time payoff

(¢(Sry — K))" (7.52)
with a strike K.
On each period [T, i, T;] we define a lower barrier L; and a higher barrier H,.
The asset spot is modelled by Equations (7.41), (7.42) and (7.43). Let S; denote
S, with Ty = ¢. In the sequel we recall the formulae for values of vanilla and

barrier options as used in the setup of this section. For a derivation see
Chapters 1 and 6.

7.6.1 Last period functionals

Let us introduce

i 1 Y, 1

A E) | — 1n—’+(,- +=0; 2) T; —Tl-> 7.53
1( ) i Ti+I_Ti< X Hit1 20'+1 ( +1 ) ( )
d;(x) = d’i (x) =0/ T — T; (7.54)
i 1 X 1

dix)a— - ln—+< e 2) T; —T,-) 7.55
3(x) it Ti+l_Ti< S, Hip 2U+1 (Tina ) ( )
di(x) 2 di(x) = 61:1/Tio1 — T (7.56)

No barrier The value function of a non-discounted vanilla option is given by
Vi(Sy-1,K) = ™ [(¢(Sy — K))"]
= ¢Sy e VINTIVIN (paY (K)) — pRN (pdy (K))  (7.57)
One barrier The value function of a non-discounted up-and-out call is given by
UOC(Sy-1,K) = IE™ [(SN = K) Miwaxyy,, 1y SV<HJ\r}}

= Sy_ eI A (@Y (K)) — KN (dY (K))
_ SN7le#mul.N(TN*T.wl)N(dIIV(HN)) + [(/\/'(d]zv(HN))

Zﬂz,H.v 11
_ SN7leﬂN—l.,’MTN*TN—l) <SI;VIN1) N-1.N
5 E’QV"'M—I
(@) - v@wnf+ k(L) o
K N-1
H2
{N (dff(?N)) —N(dff(HN))} (7.58)
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The value function of a non-discounted down-and-out put is given by
DOPy(Sy-1,K) = IE™ [(K - SN)Jr”{inf[TNfl;rN] S.s>LN}:|
= 7SN7lelhvfl,/v(n'*TNfl)N(fd{\’([()) + KN(*dév(K))

+ SN_]eﬂN—l.N(f’V*t’V—l)N(_d{V(LN)) _ KN(—dév(LN))

2UN-1,N 11
_ SNle.“NI.N(TNTNI)< Ly >U€VLN
Sn-1
L2 I 2“71\/—1,[\/_]
{v(@ (%) - @+ r(Fe) e
K Sn-1
N L, N
{r(adn) v (7.59
Two barrier The value function of a non-discounted double-knock-out call is
given by
DKOC(Sr,)
= Sr,., f o Ot on—t IVIN=TN-1 (2nA iy )+ p(Tn—=Tv-1)

X {N(AHN — (v + O'Nfl,N)\/TNTT;; + 2nALHN)
N (Ag = G+ o i)V T — Ty 1+ 201w, ) b

+00
_ E NN N VTN =Ty QA+ 20 ALy )iy v (T =Tn-1)

n=—00

X {N<_(AHN + ZnALHN + ()VN + O-N—I,N)\/ TN — TN—]))

—N(AK — ((;LN + (TN,LN)\/ TN — TN,1 + 2AHN + QJZALHN))}

+00
- K Z e MVIN=Tva@ndiny) o {N (AHN — ANV Ty — Ty + 2nALHN)
+00
-N (AK — NV Ty —Tn_1 + 2nALHN)} — Z e VVIN=TN-1 Ay +2nALmy)

n=-00

X {N<_(AHN +2nAry, + iN\/ﬁ))
—N(AK — (wy/Ty — Ty + 244, + 2nALHN)> }1 (7.60)

and similarly for the non-discounted double-knock-out put
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DKOP(S7,)
—+00
— Kl Z e*iN\/Tm—'*m(Z”ALHN)
X {N(AK — ;vN\/ TN — TN—l + ZnALHN>
_N<ALN — /lN\/ TN — TN—l + 2nALHN>}
_ ix AT TN QA 42041y
X {N(AK — (2AHN + 2nALHN + )VN\/ TN — TN—I))
_N<ALN — ()VN\/ TN — TN,1 + ZAHN + ZI/IALHN)) }]
-5, +ZOC o~ N FoN L MVIN=Ty-1 2nApiy )iy 1y (Tv=Ty-1)
X {N(AK — (iN + GNfl,N)\/ TN — TN,1 + 2nALHN)
_N<ALN — (AN + O-Nfl,N)V TN — TN,1 + 2nALHN)}
_ f NN NIV TN =Tt (24 sy +2nA iy )+ (TN —=Ty-1)
X {N(AK — (2AHN + 2nALHN + (/1]\1 + GNfl,N)V TN — TNfl))
—J\/'(AL — (U + onas )Ty — Ty + 245, + znALH,V)) }] (7.61)
with
In- KX
A Sn_
AK == N1 (762)
ON-1,NV Ty — T
A In SLN
Ar, = ML (7.63)
Y onanVTy — Ty
A In SH“"
Ay, = Al (7.64)
Y onawnVTy — Ty
A ln%
A, = = (7.65)
Y onanVTy — Ty
7.6.2 Within period functionals
No barrier We define the functional
Q,(F)(Siz1) = IE"[F(S))]
+00 1 L12
= F S,' i e 2d i 7.66
| o s=eta (7.66)
One barrier We define for s € [T}, T;,4]
. 1 S;
Zi & In—= = Ji(s — Toy) 4+ Wiz, (7.67)
Gic1i Sic1
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FRE) L (7.68)
i1, Si1
= Beri _ lUi—l,i (7.69)
Oii 2 '
and use the joint density
1 (24— )

1Py { max Z' > A and Z € [y,y + dy]} = e T T gy (7.70)

Z{se[t t+17] $ s ’ - \/271;—T

We now define the up-and-out functional by

UO{(F)(Si-1) 2 ET {f(Si)”{sup[TH,T[] S<Hi}]
= [E"™! {}_(Si)”{SKHf}ﬂ{supw]‘m S<H,-}:|
= E" [F(S)H1s,<11)]
—E"™ l[f(S)H{S<H}”{sup oS> H,}}
= E" [F(S)(s5,<m]

T;_ i .iZ;'i ; )
— EQZI |:.7:(S,',1€ : )”{Z’ A;(H, )}”{max T, IT]Z/i >Ai(Hi)}i|

i

_dlz ]( I) 1 i
| A

H' 2u; lll di; 1 Hl) 1 )"’2
— =) " F S,' i e 2d i 7.71
<Si—l> Jm (5i(7)) V2n 4 ( )
where in the first integral
Si(}’i) — SFIe(llffl.i*%‘fil,i)(Ti*Tifl)+0171.i\/Ti*TH Vi (772)
and in the second integral
H2
S(yl) — i e(//ﬁ 1,i— 7‘7, 1,)(T Ti ‘HTI lr\/T Ti1yi (773)
Si-1

Similarly we define the down-and-out functional by
DO(F)(Siy) = IE"™ {f(si)”{mf[r[fl_m S>L,-}:|
= [E"™ [f(Si)”{s,->L,-}”{mf[TH_m S>L,-}:|
= E" [F(S)Hs>r,] — EE™ [f(Si)”{SpL,-}”{inf[TH:Ti] s< L,»}]
= IE" [F(S))

T —0i- JZT)". ) ]
- EQZI [}-(Sl’*le 1 )H{Z;Ai<—A,»(L,-)}H{maX[TH77{.] zZ > 7A,~(L,-)}}

i ”{S[>Li}]

oo 1 7
_J f(Sl(yl))\/z—e 2dyi

—di (L) n
I3 2(;!‘21’71‘/71 o 1 P
— d o F S,‘ Vi ef%dy,- 7.74
(Si—l> szl(L,») (Si3i)) V2n ( )
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where in the first integral
Si(yi) _ S,*,le(“"’l"'_%a’g’”)(Ti_TH)+U"’]'N Ti—Ti-1yi (775)

and in the second integral

2
L; e(umr%ﬂil,f)(Tf*TH)+0H,\/T Ti1yi (7.76)

i—1

Si(yi) =

Two barriers The distribution of S7, conditioned on the event that the path
reached neither an upper limit H; nor a lower one L; on [T;_1, T;] is known to
be

(T T4 llln

e ST1><

2
1 St H;
exp| — In——+2nln—

Z \/271 P 20 | (T; — Tiy) ( St Li)

n=—00 i—1,i

2
1 H? H,
—exp| — In L 4+ 2nln— I, . 7.77
p 262 0%, 1(T T, 1) ( St Li) {Li<Sr;<H;} ( )

We define the double-knock-out functional by

DICO[(F)(S[—I) é lETH [F(Si)”{bdnf ]S<sup[T 1.7 S<H,-}} (778)
H, :
:J ]:(Sl)e JHT—T; 1)th7 1,1nSr -
L;
2
1 St, H;
2. In—=Ti 4 2 ln 2
n_Zoo 20’, lz(T T, 1) ( ST,,] L,)
1 H2 H 2
P~ In——~—+2nln-- I, _
p 202 T (T, —Tiy) ( Sr.St., Li> {Li<Sr,<H;}

Ay,
_J 'f‘(Si_letfffl,i\/Ti*THx)e*%/l%(Ti*Tifl)+)~i\/Ti*Ti71X

AL’.

+00
1 1 2
exp| ——(x — 2n4
> o= o3 (e 20’

—exp (— % (—x +2A4y, + 2”ALH,-)2> } dx

+00
— E |:e;~l'\/ T[*T,‘,l <2I1A[‘H’.)

n=—o00
A, —(2iVTi=Ti1+2nALn;) H. 2n 1 ¥
J F Si <—l> E_Tdyl'
AL~ G To AL, L; v2n
2iVTi=Ti-1 QA +2nALm,)

—e

—(An;+2VTi=Tio1 +2nALn;) 1\ 2 N 2 22
[T ) e
AL —(iVTi=Ti 1 +2(Ap,+2nALy;)) Si-1 L 2n

where in the integrals

Si(yi) — Si_le(ﬂi—l.i‘%ﬂ'[{lv,')(Ti—Ti—l)+0‘i—1,i\/Ti—Ti—1 i (779)
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7.6.3 Price

We introduce ST, where o; is taken from the set «; = {L;, H;}, and consider
the following four cases

® If L, =0, ST =UO; (Moreover, if i = N, ST} = UOCy),
® If H, = 400, ST = DO, (Moreover, if i = N, ST} = DOPYy),
® If L, =0 and H; = +oo, ST} = Q; (Moreover, if i = N, ST} = Vy),

® If L, #0 and H; # +oo, ST = DKO; (Moreover, if i =N, ST\ = DKOPy
or DKOCy).

Consequently each stair product is described by {«;[i =1, ..., N} and its price is
p(f) = e INISTH (L. .STY) (7.80)

7.7 Compound on forward-start strategy

This product is a variant of the compound option on a strategy which will
include a strategy of forward-starting options all fixing at the maturity of the
root option.

A compound option’s intrinsic value is the difference of the strike and the
Market Value (MV) of the underlying option strategy

(p(MV — K))* (7.81)

This means that the holder of the options receives the underlying option
strategy for the price K at the maturity of the root option on exercise of the
root option. The relation is valid for both the option strategy being forward-
starting or a regular fixed strategy.

In order to price a compound option on a forward-starting option strategy we
model the exchange rate by

ds, = w,S,dt + o,S, dW (7.82)

Next we consider the horizon date Tj, the value date for the horizon T,, the
maturity of the root option T,,, and the delivery date for the strike 7,. The
fixing date for the forward-start strategy is the same as the maturity 7,,. For
each option of the strategy there can be a different maturity 7 and delivery Ti,.
The product has a price

w(T,) = IE" le”ﬂd(“ﬂ) <¢ (zN: P(Sp ) — K) ) 1 (7.83)

We assume that the forward-start strategy is fixed at maturity of the root option
and hence depends only on the spot at maturity. In particular, the price of a
forward-start option at the fixing date is homogeneous of order one in the spot
(see Section 7.2) and can be written as

v(S7,) = Sr,v(1) (7.84)
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In such a case the price of the compound is given by

K d :
V="V (ST/an 71771; Ta’; VT\,Tdy r‘/T"T,N UT/ZTH,> Vr (785)
A
N
- S
=D vo(L8 T T Ty T 1 Vfr,,r",’ or 1) (7.86)

i=0

where v, denotes the value function of a plain vanilla, v, the unity-price of the
forward-start strategy at fixing date and & a vector of fixing parameters relative
to the spot at maturity using the corresponding forward rates and volatilities.
This formula is valid for all strategies with a positive forward-start unity-price
bounded away from zero.

Examples of forward-start options which have a homogeneous price of order
one in the fixing spot are

® plain vanilla options with the strike fixed with K = .S,

® single barrier options with the strike fixed with K = oS and the barrier fixed
with B = S,

® double barrier options with the strike fixed with K =aS and the barriers
fixed with L = S and H = yS.

After maturity of the root option the product is either worthless (if expired) or
the sum of the fixed forward-start options (if exercised).

7.8 Options on the minimum/maximum

This section concerns the products whose underlying is the maximum or
minimum of a basket of spots or exotic products. In the first part, we introduce
the forward contracts on the maximum or the minimum of a basket of
currencies.

7.8.1 Best-of and worst-of currencies forwards

Best-of forward Let us consider n exchange rates with the same base currency
and n different foreign currencies with their normalisers N;. The payoff of this

product is
max(ﬂ, ,i> -1 (7.87)
Nl Nn
We model the spots by
ds; = wS; dt + ,S; dW'! (7.88)

where the Brownian increments dW! are correlated (ie <dW,T,dW; >

= (QQT)UdZ = p;0,0;dr). After a Cholesky decomposition, we can rewrite this as

N
dS; = p,Sedt + > QdW; (7.89)

J=1

FOREIGN EXCHANGE RISK



70 Chapter 7

where the Brownian increments dW; are independent. This implies

N
Si(T) = Si(1) exp<<,u,- - %O’?) (T—1)+ Z Q,]dW]> (7.90)
=1
In the following calculations we use the replacement W; = (T — t)x;. The price is
given by
(1) = IE' {e"f"’(T‘lTﬁ) (max <—S1(T) ,..,—S"(T)> - l)}
N] Nn
— e*}'[)d(T([*TI)) (Et [Sl (T)”{Sl(T)>S2(T)W,S”(T)}} + L
+ ' [Sy (D) Hs,(n>s1(7)..5,1 ()] — 1) (7.91)

For the first expectation we get
E[S{(T)Hs,(1)>5.(7)...5,(1)} ]

= Si(2) JJFOC - exp((,u] - %a?) (T—1)+ olx/ﬁm)

XYoo X =

We solve this integral by first working on the region where S; > S, and hence
d(x;) > x, with
In 340+ (11 — 12 =% (07 = o)) (T = 1) + VT = 1(Q11 — Q1))

dy(xy) & —21 S (7.93)
22 -

Moreover, S| > S; gives d;(xl,xz) > x3 with

N In ?iﬁii + (= p3 =3 (07 = D)) (T — 1) + VT = 1((Q1 — Q31)x1) — Q3x2
QpvT —t

d;(,’C],Xz) (794)

Again, S| > Sy gives d}(x),xs,x3) > x4 with

1
In 38; + (Hl — iy = 5(0'% - 0221)) (T— 1)+ VT — (@ — Qa)x1) — Qaaxz — Qu3x3
QuvT —t

A
d4(X17X27X3) =

(7.95)

Continuing this way, we get the price of the forward contract
+00

V(l) _ e—rpd(Td_Tﬁ) <i Si(l) J e(ui—%alg)(T—l)-%zf;\/T_—tx;J
i=1

Xj=—00 X|=—00

d(x7) Jdé(»n,---,xnz)

Xp—1=—00

N(d}y(xy,. .. ,xn_l))ﬁexp(—% (xf +... +xﬁ_1)>dx1 coodx,oy — 1> (7.96)

Worst-of forward In the case of a worst-of forward, the value is

V(1) = e T Th) I {1 — min (i, e ,iﬂ
Nl Nn

n +o0 s —d5(x) —d5 (X1 X 2)
— e_rpc/<T(/_7—})) 1 _ Sl(l) J e(,u,-—%o’;)(T—t)«Hr,v T—ix; J J
; Xj=—00 X|=—00 Xp_1=—00
i 1 Lo 2
N(—d4(x1,...,xn,1))Fexp —E(xl +...+xn71) dxl... dxn,l (797)
T
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7.8.2 Best-of call and worst-of put

Best-of call The value is given by

—rpd(Ta=T)y) 717t S Si ’
V(l) =e PR | max| —, .., -1 (798)
N, N,

Defining fori=1,...,n

d 7.99
| s, (7.99)
we obtain for the value
n +00 5 di(' [) d’z( seeesXpn— )
V(t) — e—h],d(Ta’_Tp) Z SI(Z)J (e(u[—%a?)(T—rHan/ﬁx,- _ ]) J 2 (X B J X] Xn—2
i—1 xi=d| X|=—00 Xp_]=—00

N(dy(x1,. .., x01)) _1 (x% +... —|—xi1))dx1 dx,,1> (7.100)

1
—ex
V2n p( 2
We list a numerical example in Table 7.1.

Table 7.1 Values of a one-year best-of call with spot US$/DM =1.6573, 6 = 10.7%,
r' =3.1953%, ' =5.0223% and £/DM = 2.754173, ¢ = 8.5%,
r' =3.1953%, ¥ = 5.4923% for different numbers of steps using Gauss-—
Legendre integration. The normalisers are the spot values, the strike is 1. The
Monte-Carlo simulation used 10 000 000 paths.

Number of Steps Value

49 417.7713

99 416.7085

149 416.7879

199 416.8573

249 416.6880

299 416.8171

349 416.7681

399 416.7847
Monte Carlo 416.8990

Worst-of put Similarly, we obtain for the value of a worst-of put

+
v(t) = e rdTa=Ty) [t Kl — min <Sl, ,S”)> }
Nl Nn

n d’i S
= 6_"]’!/<T(J_TI)) Z S,(t) J (1 — e(,u,-—%ff;)(T—f)#—a,-ﬁx;) J
i=1

Xj=—00 X|=—00

—d(x)) J_dé(xl s Xn—2)

Xp—1=—00

N(=d(x1,... ,xnl))ﬁexp (—% (xi+...+ x,zll))dxl . dx,_; (7.101)

We list a numerical example in Table 7.2.
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Table 7.2 Values of a one-year worst-of put with spot US$/DM =1.6573, 6 = 10.7%,
r=3.1953%, r=5.0223%, spot £/DM =2.754173, 0 = 8.5%,
r{=3.1953%, ¥ =5.4923% and spot Sfr/DM =1.211774, ¢ = 5%,

r' =3.1953%, r/ = 1.6588 for different numbers of steps using Gauss-
Legendre integration. The normalisers are the spot values, the strike is 1. The
Monte-Carlo simulation used 25000 000 paths.

Number of Steps Value

9 605.7585

19 696.4858

29 699.7040

39 699.8150

49 699.5770

59 699.3771

69 699.0469

99 699.0175
Monte Carlo 699.0960

7.9 Generalised options on the minimum/maximum

We discuss the pricing of generalised options on the minimum/maximum.
Generalised means in this context an arbitrary set of spots with a possibly
different overall payoff currency.

The instruments S; with a base B; and underlying currency U,;, which have
possibly no common base currency, enter a Foreign Exchange product with
payoff in a pay-out currency B, ie, the payoff is

= P +
Q(max(slsl ﬁ) —K) (7.102)
N, N,

where the numbers N; are normalisers and S; stands for the conversion into a
common denominator currency and Q for conversion to the global base currency B.

Under the corresponding risk-neutral measure with respect to their domestic
measure B; all the spots follow

dSU,-B,» = ,LLU,-B[SU,-det+0U,-B,>SU,~B,-dW}L (7103)
There are three distinct cases

® The base currency B; is the global base currency B. In this case the pricing
formulae need not be altered.

® The underlying currency U, is the global base currency B. In this case the
drift is adjusted.

® Neither base nor underlying currency is the same as the global base currency.

In order to derive expressions for the general case we will expand the number of
spots for these contracts with the corresponding set of U;B and B;B spots. For
these spots all of them share the same base currency and hence their dynamics
are described in the base currency measure. The differential equations are
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dSU,-B = .uU,-BSU,-Bdt + GU,-BSU,-BdW:‘L (7104)
dSB,-B = .uB,-BSBinl + GB,‘BSB,‘BdW;f (7105)

With the cross volatilities oy,p,00,0,,085 the correlation matrix of the
expanded system can be calculated. From there the Cholesky decomposition
leads to equations using orthogonal Brownian motions

dSy.p = wy,gSudt + ousSu,s Z Qud W (7.106)
X
dSpp = gpSssdl + 055Spp Z Qs adWy (7.107)
%
Su

Hence the dynamics of the spots Sy =
domestic measure

5> have correlation and drift in the

1
Wy,g, = My, — Upp — B (G%J,B - G%J;B,» - 0’%,-3) (7.108)
OuU;BOUB,PUB,/UB; = Z UU[BGU,BQiijk + Z O'BiBO'B,-BQiijk (7.109)
k k

- E 0B,BO U,-BQiijk - E Oy,B0 B,BQiijk
k k

Using this information one can derive a correlation matrix that gives rise again
to a Cholesky decomposition and the pricing formula with these changed
coefficients and drifts can be used.

7.9.1 Example

We consider the case that all the involved currencies have a common underlying
currency which is the global base currency. The equation for the drift terms is

Ky, = —Hpu; T (‘7%/,-3,) (7.110)
The correlations are determined as

Pu.ju; = —PBU/UB (7.111)

PusjuB;, = PBU;/BU; (7.112)
and are the same as in the non-quanto case.

For pricing the existing undiscounted formula is used with adapted risk-neutral
drift for each currency

—rgT . . ;
Qe PrlceGenemlisedBW(Sia IpyTu;, Wi = Tp; — I'y;, OU;B;» pU,-B,-/U,B_/-)

—1r3Tp; . _ 2
= Qe """ Pricegy (Si, rp; Fus i = I, — T'u, + 0,5, U8 Puis, U 5;) (7.113)
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