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Abstract
Three processes re°ecting persistence of volatility are formulated by evaluating three

L¶evy processes at a time change given by the integral of a square root process. A positive
stock price process is then obtained by exponentiating and mean correcting these pro-
cesses, or alternatively by stochastically exponentiating the processes. The characteristic
functions for the log price can be used to yield option prices via the fast Fourier trans-
form. Our empirical results on index options and single name options suggest advantages
to employing higher dimensional L¶evy systems for index options and lower dimensional
structures for single names. In general, mean corrected exponentiation performs better
than employing the stochastic exponential. Martingale laws for the mean corrected ex-
ponential are also studied and two new concepts termed L¶evy and martingale marginals
are introduced.

1 Introduction

It has been clear that the standard option pricing model of Black-Scholes [8] and Merton
[30] has been inconsistent with options data for at least a decade. Despite this result,
no other model comes close to the popularity of the Black Merton Scholes (BMS) model
in both theory and practice A partial explanation lies in the simplicity of the BMS
model. Models which produce superior empirical performance almost always require more
parameters, and consequently are usually signi¯cantly slower in terms of both calibration
and computation.
The empirical performance of a potential successor to BMS is usually measured in

terms of hedging and/or pricing performance. This performance can be analyzed in
terms of at least four ubiquitous inputs, which are calendar time, the underlying's price,
the option's term, and the options's strike. While capturing the e®ect of variation in these
four inputs should improve the overall performance, capturing the e®ect of variation in
the ¯rst pair is particularly important for reducing risk, while capturing the variation
with respect to the latter pair is critical for reducing pricing error.
To improve on the pricing and hedging performance of the BMS model, the majority of

the research has been directed towards modifying the continuous time stochastic process
followed by the underlying asset. In particular, asset returns have been modeled as
di®usions with stochastic volatility (eg. Hull and White[23] or Heston [22]), as jump-
di®usions (eg. Merton [31] or Kou[25] ), or both (eg. Bates [6] [7] or Du±e, Pan, and
Singleton [14]). Empirical work on these models has generally supported the need for both
stochastic volatility and jumps. Stochastic volatility appears to be needed to explain the
variation in strike at longer terms, while jumps are needed to explain the variation in
strike at shorter terms. Furthermore, jumps and the inability to trade continuously are
usually the favored explanations for the existence of substantial hedging errors, whose
persistence has been documented repeatedly.
On the theoretical side, arguments have been proposed by Geman, Madan, and Yor

[20] which suggest that price processes for ¯nancial assets must have a jump component,
while they need not have a di®usion component. Their argument rests on recognizing
that all price processes of interest may be regarded as Brownian motion subordinated
to a random clock. This clock may be regarded as a cumulative measure of economic
activity, as conjectured by Clark [12], and as estimated by An¶e and Geman [1]. As time
must be increasing, the random clock can be modelled as a pure jump increasing pro-
cess, or alternatively as a time integral of a positive di®usion process, and thus devoid
of a continuous martingale component. If jumps are suppressed, then the clock is locally
deterministic, which they rule out a priori. Thus, the required jumps in the clock in-
duce jumps in the price process, while no argument similarly requires that prices have a
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di®usion component.
The explanation usually given for the use of jump di®usion models is that jumps are

needed to capture the large moves that occasionally occur, while di®usions are needed to
capture the small moves which occur much more frequently. However, since at least the
pioneering work of Mandelbrot [26] on stable processes, it has been recognized that many
pure jump models are able to capture both rare large moves and frequent small moves.
Motivated by the possibility that price processes could be pure jump, several authors have
focussed attention on pure jump models in the L¶evy class. Technically, these processes
can capture frequent small moves through the use of a L¶evy density whose spatial integral
is in¯nite
There are at least three examples of such pure jump in¯nite activity L¶evy processes.

First, we have the normal inverse Gaussian (NIG) model of Barndor®-Nielsen [4], and its
generalization to the generalized hyperbolic class by Eberlein, Keller, and Prause [15].
Second, we have the symmetric variance gamma (VG) model studied by Madan and
Seneta [29] and its asymmetric extension studied by Madan and Milne [28], Madan, Carr,
and Chang [27]. Finally, we have the model developed by Carr, Geman, Madan, and
Yor (CGMY) [10], which further generalizes the VG model. CGMY study the empirical
adequacy of the VG and CGMYmodels in explaining equity option prices across the strike
range. They ¯nd that these models can explain the so-called volatility smile, and that
the empirical performance of these models is typically not improved by adding a di®usion
component for returns. These results raise the disturbing question as to whether di®usion
components are needed at all when modeling asset returns.
The empirical success of pure jump L¶evy processes is not maintained when one con-

siders the variation of option prices across maturity. It has been observed in Konikov and
Madan [24] that these homogeneous L¶evy processes impose strict conditions on the term
structure of the risk-neutral variance, skewness, and kurtosis. Speci¯cally, the variance
rate is constant over the term, skewness is inversely proportional to the square root of
the term, while kurtosis is inversely proportional to the term. In contrast, the data sug-
gests that these risk-neutral moments are often rising with term. Economically, the usual
supposition that investor uncertainty is increasing with the term suggests that return
distributions should spread out as the holding period is increased. On the other hand,
risk premia in markets are likely to display mean reversion, which would impact the term
structure of skewness and kurtosis implicit in the risk-neutral distribution. Collectively,
these considerations suggest that it may be desirable to incorporate a richer behavior
across maturity than is implied by homogeneous L¶evy processes.
In a parallel development in the literature, it has been observed by several authors

such as Engle [16], Bates [6], [7], Heston [22], Duan [13], and Barndor®-Nielsen and
Shephard [5], that volatilities estimated from the time series are usually clustered, which
is commonly referred to as volatility persistence. This persistence is inconsistent with
homogeneous L¶evy processes, and possibly explains the failure of such processes to explain
option prices across the maturity dimension.
For these reasons, the objective of this paper is to extend the otherwise fairly successful

L¶evy process models cited above by incorporating stochastic and mean-reverting volatil-
ities. We take three homogeneous L¶evy processes, viz the NIG; V G; and the CGMY
models, and generate the desired volatility properties by subordinating them to the time
integral of a Cox, Ingersoll, and Ross [11] (CIR) process. The randomness of the CIR
process induces stochastic volatility, while the mean reversion in this process induces
volatility clustering. We term the resulting processes NIGSV; V GSV; and CGMY SV
in recognition of their synthesis with stochastic volatility. These processes are tractable
in that analytical expressions can be derived for their characteristic functions. On em-
ploying their exponentials to describe stock prices, European options can be priced via
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Fourier methods as described in Bakshi and Madan [3] and Du±e, Pan and Singleton
[14]. In particular, the current paper applies the fast Fourier transform (FFT) method,
which is developed in Carr and Madan [9].
The three new processes collectively provide us with a °exible family of option pricing

models, capable of being calibrated to market option prices varying across both the strike
and maturity dimensions. The calibrated process may then be used for pricing standard
options not included in the calibration or for pricing exotic options. These processes
can also be used in a simulation to evaluate the quality of hedging strategies, by for
example pricing claims whose payo®s are functions (eg. squares) of the cumulative hedging
error. These new stochastic processes can thereby be used to enhance our structural
understanding of risk management issues. With the resulting models, one may assess the
impact on market values of changes in reasonably intuitive parameters such as the speed
of adjustment, the level of long run volatility, and the variance of volatility. Thus, the
parameters of the models synthesize the information content of option prices in a concise
manner, and open the door to interesting investigations into the economic determinants
of asset pricing as inferred from an analysis of derivative markets.
In constructing risk-neutral price processes from the NIGSV; V GSV; and CGMY SV

processes, two approaches are followed. The approaches di®er in terms of the ¯ltration in
which the martingale condition is based on. The ¯rst approach assumes that investors can
only condition trades on the level of the stock price, while the second approach assumes
that trades can also be conditioned on the level of the L¶evy process and the time on the
new clock. Thus, the ¯rst approach prohibits arbitrages based only on the stock price,
while the second approach further precludes arbitrages based on the level of the driving
L¶evy process and the new clock. The reason that the two approaches were tried is that
one can argue that the stock price is far more observable in practice than either of the
variables used to model the stock price process.
To operationalize the ¯rst approach, we construct the risk-neutral distribution for the

stock price at each future time as the exponential of NIGSV; V GSV; and CGMY SV pro-
cesses, normalized to re°ect the initial term structure of forward prices. This procedure
ensures that spot-forward arbitrage is not possible. We also exclude arbitrages involving
calendar spreads of options as these also require knowledge of just the stock price (at
the earlier maturity) The class of models generated by excluding price-based arbitrages
are termed NIGSA; V GSA; and CGMY SA respectively. The second approach is opera-
tionalized by compensating the pure jump processes NIGSV; V GSV; and CGYMSV to
form martingales. These martingales are then stochastically exponentiated to yield mar-
tingale candidates (in the enlarged ¯ltration of the L¶evy process and the integrated CIR
time change) for forward prices. This class of models is termed NIGSAM;V GSAM;
and CGMY SAM respectively. Characteristic functions for the log of the stock price are
formulated analytically in all 6 cases. These characteristic functions are used to generate
model option prices numerically, which are then compared with the data.
We note that theNIGSAM; V GSAM;and CGMY SAM models are martingales with

respect to the enlarged ¯ltration, which includes knowledge of the driving L¶evy process
and knowldege of the subordinator given by the time-integrated CIR process. To the
extent that these two processes can not be separately ascertained from a time series
of prices, serious issues arise as to the practical relevance of the associated martingale
condition. Working with purely discontinuous price processes, Geman, Madan, and Yor
[21] provide a precise formulation of conditions under which the two processes can be
determined from the time series of underlying asset prices. Even if the two processes can
be determined from a time series, it is unlikely that the rich dynamics of the option price
matrix can be adequately captured by a martingale which re°ects movements in only two
processes. Hence, if the market is precluding arbitrage based on a richer ¯ltration than the
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one generated by the two processes, one is again forced to confront the practical relevance
of martingale conditions which are based on ¯ltrations that are essentially unobservable.
The models NIGSA; V GSA; and CGMY SA take a more conservative approach than

the martingale models NIGSAM;V GSAM; and CGMY SAM . Relying only on the abil-
ity to observe stock prices, these models generate stock price processes whose risk-neutral
expectation is consistent with the initial term structure of forward prices, but which do
not require that these forward prices be martingales with respect to the ¯ltration gen-
erated by the Levy process and the subordinator. We ¯nd that these more conservative
models consistently provide substantially superior empirical performance over the models
which prohibit arbitrage based on the richer and perhaps unobservable ¯ltration. Given
these results, we take up a deeper study of the properties of these more conservative
models . In this regard, we introduce two important new concepts, which we term the
martingale marginal property and the L¶evy marginal property . We de¯ne a process as
having the martingale marginal property if it has the same marginal distributions as some
martingale process. We further de¯ne a process as having the L¶evy marginal property,
if it has the martingale marginal property and if the martingale is derived from normal-
izing the exponential of a time inhomogeneous L¶evy process. We show ¯rst that if the
CIR process is started at zero; then our conservative processes have this L¶evy marginal
property. When the starting value is not zero; we conjecture that these processes have
the martingale marginal properties.1 Although these questions may be investigated com-
putationally by constructing L¶evy densities associated with the characteristic functions
of the processes, we pursue a richer understanding of the possibilities by structurally
reconstructing the one dimensional distributions in alternative ways. This leads to an
attractive representation in the form of an inhomogeneous L¶evy process perturbed by a
process for conditional abnormal returns that are unconditionally absent and eventually
zero. Whether trading strategies may be formulated to exploit this information is an
open question.
We report the results of estimating all six models using S&P500 option closing prices

for the second Wednesday of each month of the year 2000. For other underliers, we report
on just the dominating three models NIGSA; V GSA; and CGMY SA: In the interests
of brevity, we provide here a sample of quarterly results. The models are observed to be
capable of adequately ¯tting a wide range of strikes and maturities consistently across
the year. A detailed study of the pricing errors shows that absolute errors are higher for
out-of-the-money options and for shorter maturities. These results suggest directions for
further model improvement, but they could at least partially be due to our experimental
design, which minimized absolute errors as opposed to relative errors. The optimal design
of a heteroskedasticity adjustment is an open question, to be pursued in future research.
Empirical work on options data suggests that there are very few models capable of

explaining option prices across both the strike and maturity dimensions. The pioneering
study of Bakshi, Cao, and Chen [2] implicitly demonstrates this point as the authors
were forced to partition the data by term and moneyness in order to get adequate pricing
quality. The only class of models with comparable e®ectiveness to the models discussed
here appear to be the jump-di®usion models studied by Bates [7], and by Du±e, Pan, and
Singleton [14]. These models also employ jump processes and stochastic volatility, but
di®er from the current paper in that the jump component has jumps occuring rarely (¯nite
activity), thus requiring the use of a di®usion component to capture the frequent small
moves of the underlying. This di®usion component must also have stochastic volatility
in order to capture the observed strike variation in price of options with longer terms.
By exploring the possibility that the frequent small moves can be captured by in¯nite

1At this writing, necessary conditions for this property in some parametric special cases have been
veri¯ed and we leave to future research the complete study of this issue.
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activity pure jump processes, the class of processes studied in the current paper o®ers
the possibility of reducing the number of parameters required to achieve adequate pricing
and hedging performance
In general, the discovery of empirically adequate and yet parametrically parsimonious

characterizations of economic data is especially instructive in understanding the underly-
ing economic structure. More speci¯cally, the development of processes which simultane-
ously explain both the statistical and risk-neutral dynamics is needed to understand the
change of measure density process. The latter is critical to developing an understanding
of how risks are priced in the ¯nancial markets. Knowledge of these mechanisms is crit-
ical to the successful development of new derivative markets, which expand the domain
of price discovery and extend the bene¯ts of risk allocation to other underlying assets.
Thus, given the relative paucity of models which adequately ¯t the options data, we view
the developments of this paper as a signi¯cant and important contribution.
The outline of the paper is as follows. In section 2, we brie°y summarize the three

homogeneous L¶evy processes, NIG; V G, and CGMY: Section 3 introduces the time
change using an integrated CIR process and presents the characteristic functions for
the processes NIGSV; V GSV; and CGMY SV . In section 4, we develop the char-
acteristic functions for the log of the stock price for the six models NIGSA; V GSA;
CGMY SA;NIGSAM;VGSAM; and CGMY SAM: Section 5 studies the martingale
properties of the models NIGSA; V GSA; and CGMY SA: Section 6 describes the data
and brie°y reviews the estimation methodology. The results for our class of models are
presented in section 7, while a comparison with other models with stochastic volatility and
jumps is presented in section 8. Section 9 summarizes the paper and provides suggestions
for further research.

2 The L¶evy Processes

The three homogeneous L¶evy processes investigated are NIG; V G; and CGMY: All 3
processes are pure jump with in¯nite activity. The NIG process arises by subordinating
an arithmetic Brownian motion (ABM) to an inverse Gaussian process, while the V G
process arises by alternatively subordinating the ABM to a gamma process. The CGMY
process generalizes the VG process in order to parametrically investigate whether log
price processes display ¯nite activity (eg. a Poisson process) or in¯nite activity (eg. a VG
process). The CGMY model was also developed to investigate whether log price processes
display in¯nite variation (eg any di®usion) or ¯nite variation (eg. VG again). CGMY [10]
conclude that price processes (in the class considered) generally display in¯nite activity
and ¯nite variation, both statistically and risk-neutrally. In the interests of notational
parsimony, the reader is forewarned that \notational overloading" is employed in the
discussion of the 3 models. Confusion is easily avoided by simply noting the context in
which the notation is used.
Just as the speci¯cation of the instantaneous volatility di®erentiates models within

the di®usion class, the speci¯cation of the L¶evy density di®erentiates models within the
pure jump class. Just as the instantaneous volatility describes the local uncertainty of a
di®usion, the L¶evy density describes the local uncertainty of a pure jump process. The
L¶evy density has the same mathematical requirements as a probability density, except
that it need not be integrable and must have zero mass on the origin. Integration of the
L¶evy density over a particular spatial domain yields the arrival rates of jump sizes in this
domain. If the L¶evy density is risk-neutral, this arrival rate is interpreted as the (forward)
price of a claim which has a positive payout if and only if a jump of the speci¯ed size
occurs. An economic study of the determinants of the risk-neutral L¶evy density would
considerably enhance our understanding of market pricing. Needless to say, a robust
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estimation of the risk-neutral L¶evy density is the important precursor accomplished here.
As the class of L¶evy densities is quite large, the ¯rst step in selecting a statistical or

risk-neutral L¶evy density is to impose economic and tractability considerations which cut
the size of the class down. Economically, the 3 pure jump L¶evy processes explored in this
paper all re°ect a particular structural presumption concerning the arrival rate of price
movements in the market. Fixing the size of a move, down moves are presumed to have
an arrival rate and a risk-neutral price which is independent and usually higher than
those of the corresponding up move. Similarly, ¯xing the direction of the move, large
moves are reasonably assumed to have a lower frequency and price than those of any
smaller move. The independence of down and up moves contained in the ¯rst restriction
can be accomodated by the use of two non-negative functions, each of which has a single
argument which is a positive real. One such function is used to determine the arrival rates
associated with the absolute size of down moves, while a second such function is used to
determine the arrival rates of up moves. If this second function has a lower mean than the
¯rst, then the negative directional premium mentioned in the ¯rst economic restriction is
accomodated. The negative size premium implicit in the second structural restriction can
be accomodated though the use of a pair of monotonically decreasing functions. Functions
satisfying both restrictions arise in an analytically attractive way through the use of any
non-negative linear combination of negative exponential functions, whose arguments are
again restricted to be positive. This class is called the completely monotone class (see
CGMY [10] for details) since it has the property that all derivatives are monotone and
that successive derivatives alternate in sign.
Since the L¶evy density is a function, it is an in¯nite dimensional object in general.

However, by focusing attention on a parametric model of the L¶evy density, a parsimonious
synthesis of the local uncertainty can be obtained in much the same way as the instanta-
nous volatility can be parametrically speci¯ed to be for example, a CEV process. Ideally,
the L¶evy density should be parametrized so that the resulting parameters describe the
average level and the rate of decay of the L¶evy density in both directions. Parametric
speci¯cations generally yield extremely smooth functions of the dimensions upon which
an extrapolation is intended (eg option term or strike). In general, extrapolations based
on a smooth and low dimensional parametric speci¯cation which ¯ts the data reasonably
well are more likely to succeed than a less smooth and high-dimensional speci¯cation,
even if the latter ¯ts the data perfectly (eg. splines)

2.1 The Normal Inverse Gaussian Model

TheNIG process has a characteristic function de¯ned by three parameters (see Barndor®-
Nielsen [4])

ÁNIG(u;®; ¯; t±) = exp

µ
¡t±

µp
®2 ¡ (¯ + iu)2 ¡

q
®2 ¡ ¯2

¶¶
(1)

From the linearity of the log characteristic function in the time variable, we observe that
this is an in¯nitely divisible process with stationary independent increments. We can
relate the NIG process to time-changed Brownian motion by introducing an independent
inverse Gaussian process. Let T ºt be the ¯rst time that a Brownian motion with drift º
reaches the positive level t: It is well known that the Laplace transform of this random
time is

E [exp (¡¸T ºt )] = exp
³
¡t
³p

2¸+ º2 ¡ º
´´

(2)

Now consider evaluating Brownian motion with drift µ and volatility ¾ at the inverse
Gaussian process to de¯ne the new process

XNIG(t;¾; º; µ) = µT
º
t + ¾W (T

º
t ) (3)
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Suppressing the dependence of the process on its parameters, the characteristic function
is

E
h
eiuXNIG(t)

i
= E

·
exp

µ
iuµT ºt ¡

¾2u2

2
T ºt

¶¸
= E

·
exp

µ
iuµ ¡ ¾

2u2

2

¶
T ºt

¸
= exp

³
¡t
³p

º2 ¡ 2iuµ+ ¾2u2 ¡ º
´´

= exp

Ã
¡t¾

Ãr
º2

¾2
¡ 2iu µ

¾2
+ u2 ¡ º

¾

!!

= exp

0@¡t¾
0@sº2

¾2
+
µ2

¾4
¡
µ
µ

¾2
+ iu

¶2
¡ º

¾2

1A1A
Hence we may de¯ne

¯ =
µ

¾2

®2 =
º2

¾2
+
µ2

¾4

± = ¾

and observe that the NIG process is

XNIG(t;®; ¯; ±) = ¯±
2T

±
p
®2¡¯2

t + ±W

µ
T
±
p
®2¡¯2

t

¶
(4)

To obtain the NIG L¶evy density, note that conditioning on a jump of g in the time
change, the move is Gaussian with mean ¯±2g and variance ±2g: The arrival rate for the
jumps is given by the L¶evy density for inverse Gaussian time

k(g) =
exp

³
¡ ±2(®2¡¯2)

2 g
´

g3=2

It follows that the L¶evy density for NIG isZ 1

0

1

±
p
2¼g

exp

µ
¡(x¡ ¯±

2g)2

2±2g

¶
1

g3=2
exp

µ
¡±

2(®2 ¡ ¯2)
2

g

¶
dg

=
1

±

Z 1

0

1p
2¼
g¡2 exp

µ
¡ x2

2±2g
¡ ±

2(®2 ¡ ¯2)
2

g + ¯x¡ ¯
2±2

2
g

¶
dg

=
e¯x

±

Z 1

0

1p
2¼
t¡2 exp

µ
¡±

2®2

2
t¡ x2

2±2t

¶
dt

=
e¯x

±

Z 1

0

1p
2¼
exp

µ
¡s¡ x

2®2

4s

¶
s¡2

±2®2

2
ds

We now de¯ne

Ka(x) =
1

2

³x
2

´a Z 1

0

exp

µ
¡
µ
t+

x2

4t

¶¶
t¡a¡1dt

so we may write Z 1

0

exp

µ
¡
µ
t+

x2

4t

¶¶
t¡a¡1dt = 2Ka(x)

µ
2

x

¶a
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Hence, the NIG L¶evy density is

kNIG(x) =

r
2

¼
±®2

e¯xK1(jxj)
jxj : (5)

We see from the structure of this density that direction premia are controlled via the
parameter ¯; while the size premia are determined by the shape of the function K1:
For later use, we record here the unit time log characteristic function expressed in

terms of the parameters of the time-changed Brownian motion

ÃNIG(u;¾; º; µ) = ¾

Ã
º

µ
¡
r
º2

µ2
¡ 2µiu

¾2
+ u2

!

2.2 The Variance Gamma Model

The variance gamma process is de¯ned by evaluating Brownian motion with drift µ and
volatility ¾ at a gamma time. Speci¯cally, we have

XV G(t;¾; º; µ) = µG
º
t + ¾W (Gºt )

where Gºt is a gamma process with mean rate t and variance rate ºt: The probability
density of the gamma distributed random time g at time t is

f(g) =
g(t=º)¡1e¡g=º

ºt=º¡( tº )
(6)

and its Laplace transform is

E [exp (¡¸Gºt )] = (1 + ¸º)¡
t
º (7)

The characteristic function of the V G process is easily evaluated as

E
h
eiuXVG(t)

i
=
¡
1¡ iuµº + ¾2ºu2=2¢¡ t

º ;

by conditioning on the time change and then employing (7) for ¸ = ¾2u2

2 ¡ iµu: Madan,
Carr, and Chang [27] show that the variance gamma process may also be expressed as
the di®erence of two independent gamma processes, with one describing the up moves
and the other describing the down moves. This characterization allows the L¶evy density
to be determined, as shown in CGMY [10]:

kVG(x) =

(
C exp(Gx)

jxj x < 0
C exp(¡Mx)

x x > 0

where

C =
1

º
(8)

G =

0@sµ2º2
4

+
¾2º

2
¡ µº
2

1A¡1

(9)

M =

0@sµ2º2
4

+
¾2º

2
+
µº

2

1A¡1

: (10)
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The parameter C controls the overall activity rate of the process, while the parame-
ters G and M govern the rate at which arrival rates decline with the size of the move.
Thus, the average of the parameters G and M can be regarded as a measure of the size
premium, while their di®erence can be regarded as a directional premium. Alternatively,
the parameter µ measures the directional premium since it primarily a®ects the skewness
of the process. When µ = 0 then G = M and the distribution is symmetric. Negative
values of µ lead to lower values for G resulting in negatively skewed processes, with the
opposite holding for µ > 0: Similarly, the parameter º primarily controls the kurtosis of
the process, since excess kurtosis arises whenever the time change is stochastic. It may
shown that for µ = 0; the kurtosis is 3(1 + º); so that º is the percentage excess kurtosis
over that of a standard normal.
For later use, we will need the following unit time log characteristic function in the

L¶evy measure parametrization:

ÃV G(u;C;G;M) = C log

µ
GM

GM + (M ¡G)iu+ u2
¶

(11)

2.3 The CGMY model

A compound Poisson process has ¯nite activity and ¯nite variation of the sample paths.
The V G process also has ¯nite variation, but it has in¯nite activity. The NIG process has
both in¯nite activity and in¯nite variation. To capture all of these possibilities, CGMY[10]
introduced the CGMY process. They generalize the V G process by introducing a fourth
parameter Y: Setting this parameter to a particular value results in the V G process.
However, for lower values of Y , the L¶evy density integrates to a ¯nite value yielding a
process of ¯nite activity. At such levels, the integral of jxj times the L¶evy density is
also ¯nite, and thus the process has ¯nite variation, as in a compound Poisson process.
For higher values of Y , the process has in¯nite activity but ¯nite variation, as in the
V Gprocess. For yet higher values of Y , the process has in¯nite activity and in¯nite
variation as in the NIG process. The speci¯c form for the CGMY L¶evy density is

kCGMY (x) =

(
C exp(Gx)
(¡x)1+Y x < 0

C exp(¡Mx)
x1+Y x > 0

The characteristic function is

E [exp (iuXCGMY (t))]

= exp
¡
tC¡(¡Y ) £(M ¡ iu)Y + (G+ iu)Y ¡MY ¡GY ¤¢ : (12)

In what follows, the C and Y parameters will be allowed to take di®erent values for
positive and negative outcomes in x: Letting Cp; Yp denote the parameters for x > 0 and
Cn; Yn denote the parameters for x < 0;the generalized characteristic function is

E [exp(iuXCGMY (t)]

= exp
¡
tCp¡(¡Yp)((M ¡ iu)Yp ¡MYp

¢
+Cn¡(¡Yn)((G+ iu)Yn ¡GYn)):

For later use, we record here the unit time log characteristic function

ÃCGMY (u;Cp;G;M;Yp; Yn; ³)

= Cp
¡
¡(¡Yp)((M ¡ iu)Yp ¡MYp

¢
+ ³¡(¡Yn)((G+ iu)Yn ¡GYn)

with ³ de¯ned as the ratio of Cn to Cp:

10



The six parameter L¶evy process is considerably richer than its predecessors as one
may now independently calibrate the level, slope, and curvature of the arrival rate as
a function of the size and sign of the move. In contrast, the continuity requirement
of di®usion models forces the arrival rates of all jump sizes to zero, and thus forces
the local variation of uncertainty in the price dimension to be explained with a single
instantaneous volatility parameter. The many parameters governing the arrival rates
and the single parameter governing the instantaneous volatility can all be generalized to
depend on time, price or other random processes. However, this does not alter the fact
that di®usion processes are severely restricted in terms of their ability to describe local
behavior.

3 Clustering Time or Activity Persistence

The basic intuition underlying our approach to stochastic volatility arises from the Brow-
nian scaling property This property relates changes in scale to changes in time and thus
random changes in volatility can alternatively be captured by random changes in time.
The instantaneous rate of time change must be positive if the new clock is to be increas-
ing. Furthermore, this rate of time change must be mean-reverting if the random time
changes are to persist. The classic example of a mean-reverting positive process is the
\so-called" square root process of Cox, Ingersoll, and Ross (CIR). Hence, we de¯ne the
process y(t) as the solution to the stochastic di®erential equation

dy = ·(´ ¡ y)dt+ ¸pydW (13)

where W (t) is a standard Brownian motion independent of any processes encountered
thus far. The parameter ´ has the usual interpretation as the long run rate of time
change, · is the rate of mean reversion, and ¸ governs the volatility of the time change.
The process y(t) is the instantaneous rate of time change and so the new clock is given

by its integral

Y (t) =

Z t

0

y(u)du: (14)

The characteristic function for Y (t) is well known from the work of CIR [11] and from
the literature on Brownian motion, since it is closely associated with L¶evy's stochastic
area formula (see e.g. [33], [36]). The characteristic function for Y (t) is explicitly given
by

E [exp (iuY (t))] = Á(u; t; y(0);·; ´; ¸)

= A(t; u) exp (B(t; u)y(0))

A(t; u) =
exp

³
·2´t
¸2

´
³
cosh(°t2 ) +

·
° sinh(

°t
2 )
´ 2·´

¸2

B(t; u) =
2iu

·+ ° coth(°t2 )

° =
p
·2 ¡ 2¸2iu

3.1 The Generic Stochastic Volatility L¶evy Process

Let X(t) be a L¶evy process, so that it has stationary independent increments. Its char-
acteristic function is thus of the form

E [exp (iuX(t))] = exp (tÃX(u)) (15)

11



For simplicity, we assume a L¶evy density exists and denote it by k(x). When X(t) is a
process of ¯nite variation, the log characteristic function at unit time ÃX(u) is related to
k(x) by

ÃX(u) =

Z 1

¡1
(eiux ¡ 1)k(x)dx (16)

Explicit forms for ÃX(u) in the case of the NIG, the V G, and the CGMY models were
exhibited in section 2.
The class of stochastic volatility L¶evy processes (SV LP ) is de¯ned by

Z(t) = X(Y (t)): (17)

where Y is independent of X. Thus, Z is obtained by Bochner's procedure of subordi-
nating X to Y: The characteristic functions for these processes are obtained simply as
follows

E [exp (iuZ(t))] = E [exp (Y (t)ÃX(u))]

= Á(¡iÃX(u); t; y(0);·; ´; ¸) (18)

The speci¯c parametrizations for the three L¶evy processes are developed next.

3.1.1 The Process NIGSV

The stochastic volatility version of the NIG process is

ZNIG(t) = XNIG(Y (t);¾; º; µ)

We note that y(0) = ¾ and so we can write

E exp (iuZNIG(t)) = Á(¡iÃNIG(1; º; µ); t; ¾;·; ´; ¸)

This is a six parameter process with parameters

¾; º; µ; ·; ´; ¸

3.1.2 The Process VGSV

The stochastic volatility version of the VG process is

ZV G(t) = XV G(Y (t);¾; º; µ)

= XV G(Y (t);C;G;M)

where the second representation employs the parameters of the L¶evy density as de¯ned
in equations ((8,9,10)). It is clear on considering the role of Y (t)=t that the parameter C
is identi¯ed with y(0): Hence, we may write

E [exp (iuZVG(t))] = Á(¡iÃVG(u; 1; G;M); t; C;·; ´; ¸) (19)

This is a six parameter process with parameters

C;G;M; ·; ´; ¸

12



3.1.3 The Process CGMYSV

The stochastic volatility version of the CGMY process is

ZCGMY (t) = XCGMY (Y (t);Cp; G;M; Yp; Yn; ³)

where we have replaced Cn by its ratio to Cp: The identi¯cation in this case is between
Cp and y(0) and we continue to use the notation C: We thus obtain that

E [exp (iuZCGMY (t))] = Á (¡iÃCGMY (1; G;M; Yp; Yn; ³); t; C;·; ´; ¸)

This is a nine parameter process with parameters

C;G;M; Yp; Yn; ³; ·; ´; ¸

4 The Stock Price Processes

This section considers two approaches for obtaining a positive stock price process. The
¯rst approach uses the ordinary exponential function, while the second uses the stochas-
tic exponential. The second approach is a little more involved and has some desirable
and possibly undesirable features from an economic point of view . The most desirable
feature is that one easily obtains the martingale laws required by the exclusion of dy-
namic arbitrage. The most undesirable feature is that this representation increases the
dimension of the ¯ltration, which stresses the implicit assumption that the ¯ltration is
observable. The reason for the dimensional increase is that the price process is adapted
to the joint process given by the L¶evy process X(t) and the time change Y (t): As these
processes are usually not observable from the price path, it could be argued that it is
not observable at all. We next provide the details for the ordinary exponential and the
stochastic exponential approach in separate subsections.

4.1 Ordinary Exponentials of SVLP Processes

Under this approach, the risk-neutral stock price process is given by mean correcting
the exponential of a svlp process. Let S(t) denote the stock price at time t and let
r and q denote the constant continuously compounded interest rate and dividend yield
respectively: Let Z(t) be a generic svlp process as described in (17). We de¯ne the stock
price at time t by the random variable

S(t) = S(0)
exp ((r ¡ q)t+ Z(t))

E [exp(Z(t)]
: (20)

Noting that
E [exp(Z(t))] = Á(¡iÃX(¡i); t; y(0);·; ´; ¸)

we get that the characteristic function for the log of the stock price at time t is given by

E [exp (iu log(S(t)))] = exp (iu(log(S(0) + (r ¡ q)t)) (21)

£ Á (¡iÃX(u); t; y(0);·; ´; ¸)
Á(¡iÃX(¡i); t; y(0);·; ´; ¸)iu

The three speci¯c results for the NIGSA; V GSA; and CGMY SA models are presented
next.
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4.1.1 NIGSA Characteristic Function for Log Stock Price

This characteristic function for the NIGSA process at time t is explicitly given as

NIGSACF (u) = exp (iu(log(S(0) + (r ¡ q)t)) (22)

£ Á(¡iÃNIG(u; 1; º; µ); t; ¾;·; ´; ¸)
Á(¡iÃNIG(¡i; 1; º; µ); t; ¾;·; ´; ¸)iu

4.1.2 VGSA Characteristic Function for Log Stock Price

This characteristic function for the VGSA process at time t is explicitly given as

V GSACF (u) = exp (iu(log(S(0) + (r ¡ q)t)) (23)

£ Á(¡iÃV G(u; 1; G;M); t; C;·; ´; ¸)
Á(¡iÃV G(¡i; 1; G;M); t; C;·; ´; ¸)iu

4.1.3 CGMYSA Characteristic Function for Log Stock Price

This characteristic function for the CGMYSA process at time t is explicitly given as

CGMY SACF (u) = exp (iu(log(S(0) + (r ¡ q)t)) (24)

£ Á(¡iÃCGMY (u; 1; G;M;Yp; Yn; ³); t; C;·; ´; ¸)

Á(¡iÃCGMY (¡i; 1; G;M; Yp; Yn; ³); t; C;·; ´; ¸)iu

4.2 Stochastic Exponentials of SVLP Processes

Under this approach, martingale models for the discounted stock price are obtained by
stochastically exponentiating martingales. Let Z(t) be a generic SV LP process. The
process Z(t) is a pure jump process with a predictable compensator given by

½(dx; dt) = y(t)k(x)dxdt:

It follows that

n(t) = Z(t)¡
Z t

0

Z 1

¡1
x½(dx; dt)

is a martingale. Let ¹(dx; dt) be the integer valued random measure associated with the
jumps of the process Z(t); so that

Z(t) =

Z t

0

Z 1

¡1
x¹(dx; dt)

Then n(t) is the compensated jump martingale

n(t) = x ¤ (¹¡ ½):
Now de¯ne the compensated jump martingale m(t) by

m(t) = (ex ¡ 1) ¤ (¹¡ ½)
and consider the stochastic exponential of m(t) given by

M(t) = exp

µ
Z(t)¡

Z t

0

Z 1

¡1
(ex ¡ 1)k(x)y(s)dxds

¶
Employing (16), we have with Y (t) =

R t
0
y(s)ds that

M(t) = exp(Z(t)¡ Y (t)ÃX(¡i)) (25)
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We may also write M(t) as

M(t) = exp(X(Y (t))¡ Y (t)ÃX(¡i))
which is the martingale

exp(X(t)¡ tÃX(¡i))
evaluated at an independent random time change Y (t); and hence is also a martingale.
The development of (25) shows that the relationship to the stochastic volatility process
Z(t) is precisely one of stochastically exponentiating m(t):
This second approach to developing stock price processes adopts the formulation

S(t) = S(0) exp ((r ¡ q)t) exp (X(Y (t))¡ Y (t)ÃX(¡i)) (26)

In this case, the characteristic function for the log of the stock price is given by

E [exp (iu log(S(t)))] = exp (iu(log(S(0) + (r ¡ q)t)) (27)

£Á(¡iÃX(u)¡ uÃX(¡i); t; y(0);·; ´; ¸)

The three special cases of interest are formulated next.

4.2.1 The NIGSAM characteristic function for log stock price

For the NIG process at time t, the characteristic function is

NIGSAMCF (u) = exp (iu(log(S(0) + (r ¡ q)t))
£Á(¡iÃNIG(u; 1; º; µ)¡ uÃNIG(¡i; 1; º; µ); t; ¾;·; ´; ¸)

4.2.2 The VGSAM characteristic function for log stock price

For the VG process at time t, the characteristic function is

V GSAMCF (u) = exp (iu(log(S(0) + (r ¡ q)t))
£Á(¡iÃVG(u; 1;G;M)¡ uÃVG(¡i; 1; G;M); t;C;·; ´; ¸)

4.2.3 The CGMYSAM characteristic function for log stock price

For the CGMY process at time t, the characteristic function is

CGMY SAMCF (u)

= exp (iu(log(S(0) + (r ¡ q)t))
£Á(¡iÃCGMY (u; 1; G;M; Yp; Yn; ³)¡ uÃCGMY (¡i; 1; G;M; Yp; Yn; ³); t; C;·; ´; ¸)

5 The NIGSA, VGSA, and CGMYSA Martingale Laws

The NIGSA; V GSA; and CGMY SA models are formulated by writing the discounted
stock price relative as a process of unit unconditional expectation obtained on exponen-
tiating the NIGSV; V GSV; and CGMY SV processes and dividing the exponential by
its mean. This formulation leads to prices free of static arbitrage since expectations are
calculated with respect to a measure on the space of paths that respects spot forward
arbitrage. If the log price processes had independent increments, then forward price pro-
cesses would be (local) martingales since conditional expectations are now identi¯ed with
unconditional expectations. However, the lack of independence in the increments of the
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SA processes implies that forward price processes need not be martingales, and hence
these processes are subject to the possibility of dynamic arbitrage.
This section addresses the relatively deeper question of whether one dimensional distri-

butions obtained from possibly non-martingale models, like the SA processes, are nonethe-
less consistent with alternative martingale dynamics. This question could be investigated
from a computational perspective by constructing L¶evy densities associated with char-
acteristic functions for the processes, but a richer understanding of the possibilities is
provided by the more structural representation of the processes pursued here.
We ¯rst ask whether there exist processes of independent increments, possibly inho-

mogeneous, with the same one dimensional densities as the processes NIGSA; V GSA;or
CGMY SA: Since European option prices only determine the one dimensional density of
the stock price at each maturity, it is possible that two or more probability measures are
consistent with the same option prices. It is also possible that one of these measures is
a martingale measure, while the other arises from the NIGSA; V GSA; or CGMY SA
models. We show that there exists a very large class of martingale measures for which
this is indeed true. More generally we investigate the nature of the departures when such
a representation is not available.
To assist the discussion, we focus on the generic case where X(t) is a homogeneous

L¶evy process and Z(t) = X(Y (t)) with Y (t) de¯ned in accordance with (14) and (13).
Let V (t) be a generic representation of our constant unconditional expectation process

V (t) =
exp(Z(t))

E [exp(Z(t)]
:

It is clear that if one constructs a process of independent and possibly inhomogeneous
increments U(t) with the same one dimensional distributions as those of Y (t); then the
one-dimensional distributions of V (t) are those of

eV (t) = exp(X(U(t))

E [exp(X(U(t))]

where now eV (t) is a process of independent multiplicative increments and a martingale.
This leads us to focus our attention on representing the one dimensional distributions of
the process Y (t):
The process Y (t) has three parameters ·; ´; ¸ and it is useful to employ scaling changes

to relate the process to the case where ¸ = 2: In fact, if we let

h(t) =
4

¸2
y(t)

then H(t) =
R t
0
h(s)ds = 4

¸2
Y (t) and an application of Ito's lemma shows that h(t)

satis¯es the stochastic di®erential equation

dh =

µ
4·´

¸2
¡ ·h

¶
dt+ 2

p
hdW (t):

To simplify the notation and to better relate to the results in Pitman and Yor [33],
we introduce the stochastic di®erential equation

dh = (± + 2¯h) dt+ 2
p
hdW (t) (28)

where our case of interest is ± = 4·´
¸2

and ¯ = ¡·
2 : We denote by

¯Q±x the law of the
process h(t) satisfying (28) and starting at h(0) = x: It is well known that for ¯xed ¯;
this two parameter family enjoys the additivity property

¯Q±x ¤ ¯Q±
0
x0 =

¯Q±+±
0

x+x0 (29)
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Furthermore, as shown by Shiga-Watanabe [34], these di®usions are (up to a trivial homo-
thetic change of variable), the only family of R+ valued di®usions to have this additivity
property. Denoting the solution by (h(u); u ¸ 0); (29) implies that for every non-negative
measure ¹(ds) on R+ and every t ¸ 0; the random variable

I¹;t(h) =

Z t

0

¹(ds)h(s)

is in¯nitely divisible under the law ¯Q±x , with parameters of in¯nite divisibility x and ±:
Its L¶evy Khintchine representation is studied in Pitman and Yor [33]. In fact, Pitman
and Yor [33] use classical Ray-Knight theorems on Brownian local times (among other
arguments) to show the existence, for given ¯; of two ¾-¯nite measures ¯M; and ¯N on
C(R+;R+) such that

¯Q±x (exp (¡°I¹;t)) = exp
µ
¡
Z ¡

x ¯M + ± ¯N
¢
(dh)(1¡ e¡°I¹;t)

¶
The L¶evy measure associated to I¹;t under

¯Q±x is

x ¯m¹;t + ±
¯n¹;t

where ¯m¹;t;
¯ n¹;t are the images of ¯M;¯N by the mapping h ¡! I¹;t(h): A number of

computations of these L¶evy measures are found in Pitman and Yor [33].
We are interested here in yet another possible in¯nite divisibility property. Speci¯cally,

for a given \reasonable" ¹;we wish to determine whether the marginals of the process
(I¹;t(h); t ¸ 0) are those of a process with inhomogeneous independent increments. For
simplicity, we take ¹(ds) = ds as the Lebesgue measure and we say that the process
H(t) =

R t
0 h(u)du has the L¶evy marginal (LM) property if there exists an inhomogeneous

L¶evy process (µ(t); t ¸ 0) such that for any given t

H(t)
(d)
= µ(t):

Our main result is the following.

Theorem 1 Let ¯ 2 R;and p; q be two reals
(i) The process

³
Yp;q(t) = py(t) + q

R t
0
y(s)ds; t ¸ 0

´
; under ¯Q±0 enjoys the (LM)

property

(ii) Let x 6= 0: The process
³
Y0;1(t) =

R t
0 y(s)ds; t ¸ 0

´
considered under ¯Q±x does not

enjoy the (LM) property.

We ¯rst deal with the case ± = 2 and for this case, the theorem is a consequence of
the following theorem.

Theorem 2 Let
¡
(¡¹)y(a); a ¸ 0¢ denote a process distributed as (¡¹)Q20: Then one has

a)Ã
¡(¹)y(b);

Z b

0

da(¡¹)y(a)

!
(d)
=

Ã
`0Tb ;

Z Tb(X
(¹))

0

ds1³
X
(¹)
s >0

´
!
; for every b ¸ 0; (30)

where
³
X
(¹)
t ; t ¸ 0

´
is the solution of

Xt = Bt + ¹

Z t

0

ds1(Xs>0): (31)
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and Tb(X
¹) = inf ft ¸ 0 : X¹

t = bg
b) There is the identity:ÃZ Tb(X

(¹))

0

ds1³
X
(¹)
s >0

´ ; b ¸ 0
!
(d)
=
³
Tb(
¯̄̄
Z(¹)

¯̄̄
); b ¸ 0

´
;

where
³
Z
(¹)
t ; t ¸ 0

´
is the solution to

Zt = °t + ¹

Z t

0

sgn(Zs)ds; (32)

with (°t; t ¸ 0) a Brownian motion.
c) The identity in law:³¯̄̄

Z
(¹)
t

¯̄̄
; t ¸ 0

´
(d)
=
³
St(¯

(¡¹))¡ ¯(¡¹)t ; t ¸ 0
´
;

holds, where on the right hand side ¯
(¡¹)
t = ¯t ¡ ¹t for a Brownian motion ¯t, and

St(µ) = sups·t µs

Proof. (of Theorem 2):
a) This is a consequence of a slight generalization of Theorem 3.1 in Yor [36]. Let P

denote the measure induced by the standard Wiener process and de¯ne X
(¹)
t by (31). By

Girsanov's theorem, the law of this process has density with respect to P given by

P¹;+j=t = exp

½
¹

Z t

0

1(Xs>0)dXs ¡
¹2

2

Z t

0

ds1(Xs>0)

¾
¢ Pj=t

= exp

½
¹

µ
X+
t ¡

1

2
`0t

¶
¡ ¹

2

2

Z t

0

ds1(Xs>0)

¾
¢ Pj=t

We denote simply by Tb : inf
n
t : X

(¹)
t = b

o
and consider a functional F of the local

time at b¡ a of X(¹) up to time Tb; (`
b¡a
Tb
(X(¹)); 0 · a · b): We have that

E¹;+
h
F (`b¡aTb

(X(¹)); 0 · a · b)
i

= E

"
F (`b¡aTb

(X); 0 · a · b) exp
Ã
¡¹
2

¡
`0Tb ¡ 2b

¢¡ ¹2
2

Z b

0

da`aTb

!#

= Q20

Ã
F (Za; 0 · a · b) exp

³
¡¹
2
(Zb ¡ 2b)

´
¡ ¹

2

2

Z b

0

daZa

!
= (¡¹)Q20 (F (Za; 0 · a · b))

In particular, we have that

L ¡Zb¡a; 0 · a · b;¡¹Q20¢ = L³`aTb(X(¹); 0 · a · b;P¹;+
´

where L(H;P ) denotes the law of H under P: As a consequence, there is the identity in
law between the pairs of 2 dimensional variables:

L
(
Zb;

Z b

0

Zada;
(¡¹)Q20

)
= L

(
`0Tb(X);

Z b

0

`b¡aTb
(X(¹))da;P¹;+

)

= L
(
`0Tb(X);

Z Tb

0

1(Xs>0)ds;P
¹;+

)
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so that (30) holds.
b) From the equation (32) and Tanaka's formula we deduce:

X+
t =

Z t

0

1(Xs>0) (dBs + ¹ds) +
1

2
`0t (X) (33)

= ¯
(¹)R t
0 ds1(Xs>0)

+ LR t
0
ds1(Xs>0)

where LR t
0
ds1(Xs>0)

is de¯ned by sups·t
³
¡¯(¹)R s

0
du1(Xu>0)

´
in accordance with Skorohod's

lemma:
On the other hand, we have from (32) and Tanaka's formula:

jZtj =
Z t

0

sgn(Zs)d°s + ¹t+ Lt(Z) (34)

Comparing (33) and (34), we note that

X+
t = jZujju=R t0 ds1(Xs>0) (35)

for some process (Zu; u ¸ 0):
Now the identity in law proposed in b) follows immediately from (35).
c) is an immediate consequence of (32) and Skorohod's lemma.
Proof. of Theorem 1 continued. We come next to the general case for ± > 0: Some

important references for this development are [17], [35] and [19]. Here we note that with
x = ±b=2

(¡¹)Q±0 (F (Za; 0 · a · b)

= Q±0

Ã
F (Za; 0 · a · b) exp

(
¡¹
2
(Zb ¡ ±b)¡ ¹

2

2

Z b

0

Zada

)!

= E

"
F
¡
`a¡b¿x

¡jBj ¡ 2
± `
¢
; a · b¢£

exp
³
¡¹
2

¡
`0¿x

¡jBj ¡ 2
± `
¢¡ ±b¢¡ ¹2

2

R ¿x
0 ds1(jBsj¡ 2

± `s·0)
´ #

where ¿x = inf
©
t ¸ 0 : `0t = x

ª
:

De¯ne
Hs = sgn(Bs)1(jBsj¡ 2

± `s·0)
so that by Tanaka's formula, we may write

(¡¹)Q±0 (F (Za; 0 · a · b)
= E

·
F

µ
`a¡b¿x

µ
jBj ¡ 2

±
`

¶
; a · b

¶
exp¡¹

Z ¿x

0

HsdBs ¡ ¹
2

2

Z ¿x

0

dsH2
s

¸
and it follows by Girsanov's theorem that this is

= E¹;±
·
F

µ
`a¡b¿x

µ
jXj ¡ 2

±
`

¶
; a · b

¶¸
where, under P¹;±; X solves

Xt = ¯t ¡ ¹
Z t

0

ds sgn(Xs)1(jXsj¡ 2
± `s·0) (36)
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It follows in particular that the law of
³R b
0 da

(¡¹)y±(a); b ¸ 0
´
2 has the same one

dimensional marginals as the inhomogeneous L¶evy processµZ ¿x

0

ds1(jXsj¡ 2
± `s·0); b ¸ 0

¶
; under P¹;±:

That this process is an inhomogeneous L¶evy process in b follows from the fact that,
when we apply the Markov property in ¿x we obtain that X¿x = 0 and `¿x = x; hence
the process (X¿x+u;u ¸ 0) is independent from (Xv; v · ¿x) :
For part (ii) of theorem 1 we note that by arguments similar to the ones used in the

proof of part (i) we may show that for x 6= 0 we have thatZ b

0

da(¡¹)y±x(a)
(d)
=

Z ¿bx(X)

0

ds1(0·Xs·b)

where X solves (36) but now ¿ bx(X) = inf
©
t ¸ 0 : `bt(X) > x

ª
: That the LM property

fails may be explained on account of ¿ bx(X) no longer being an increasing process in b: In
fact, it can be shown that the associated L¶evy measures are not increasing in b:
From these results, we may write the law

¯Q±x =
¯Q±0 ¤ ¯Q0x

and hence, one may write
¯y±x(t) =

¯y±0(t) +
¯y0x(t)

where the processes ¯y±0;
¯y0x are independent. On integrating, we obtain

¯Y ±0 (t) =

Z t

0

¯y±0(u)du

¯Y 0x (t) =

Z t

0

¯y0x(u)du

The marginals of the process X(Y (t)) now agree with the marginals of X(¯Y ±0 (t)) +
X(¯Y 0x (t)) and hence we may write

exp (X(Y (t))

E [exp(X(Y (t)))]

(d)
=

exp
¡
X(¯Y ±0 (t))

¢
E
£
exp

¡
X(¯Y ±0 (t))

¢¤ exp
¡
X(¯Y 0x (t))

¢
E [exp (X(¯Y 0x (t)))]

def
= M(t)U(t)

The process M(t) has the multiplicative LM property and there exists an inhomo-
geneous L¶evy process of independent multiplicative increments with unit unconditional
expectations and the same marginal distributions. In particular, this inhomogeneous
L¶evy process is also a martingale. On the other hand, the process U(t) does not have
the LM property. Hence, its one dimensional distributions may not be consistent with a
martingale process by such an argument.
Some properties of the process U(t) are worthy of note. First, we observe that ¯y0x(t)

starts at x; but is eventually absorbed at 0: The distribution of the ¯rst hitting time of 0
by the process y0x(t) is (see Yor [37], Getoor [18])

T 0
¡
y0x
¢ (d)
=
x

2e
2In accordance with Theorem 1, we ought to consider jointly (¡¹)y(b); but we do not write this down,

for the sake of simplicity.
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where e is a standard exponential random variable. More generally, for general ¯ we have
that

P
£
T 0 · s¤ = expµ¡ ·x=2

exp (·s)¡ 1
¶

It follows that the numerator in the expression for U(t) is eventually constant. The
process is a smooth di®erentiable process that may be viewed as a random drift com-
ponent that is unconditionally absent that is used to perturb the martingale M(t) by
adding a conditional unobservable drift term. We may interpret this conditional drift as
a conditional abnormal return that is unconditionally absent and eventually zero.
Leaving aside these considerations, we now introduce the property of martingale

marginals (MM). We say that a process H(t) of constant expectation has the prop-
erty of martingale marginals (MM) just if there exists a martingale N(t) with the same
marginal distributions as those forH(t) for each t: The process U(t) may possess the prop-
erty of martingale marginals and by such a decomposition, we could write martingale laws
for the class of SA processes de¯ned here.

The (LM) and (MM) properties introduced here are related in that if
³eLt´ satis¯es

the (LM) property, then
³fMt

´
= exp(eLt)

E[exp(eLt)] satis¯es the (MM) property. A priori, the
converse does not hold, i.e. if

³fMt

´
satis¯es the (MM) property, there does not necessarily

exist (eLt) satisfying the (LM) property.
6 The Data and Estimation Procedure

We obtained data on out-of-the-money S&P 500 closing option prices for maturities be-
tween a month and a year for each second Wednesday of each month for the year 2000:
This provides us with a monthly time series of option prices on a single but important un-
derlying asset. The dates employed were Jan:12; Feb:9; Mar:8; Apr:12; May10; Jun:14;
Jul:12; Aug:9; Sept:13; Oct:11; Nov:8; and Dec:13: Similar data was obtained for some
20 other underliers. By ticker symbol, they are BA, BKX, CSCO, DRG, GE, HWP,
IBM, INTC, JNJ, KO, MCD, MSFT, ORCL, PFE, RUT, SUNW, WMT, XAU, XOI,
and XOM.
For each model and each underlier, we follow a uniform procedure for constructing

the option price. In particular, we use the fast Fourier transform (FFT ) to invert the
generalized Fourier transform of the call price, as developed in Carr and Madan [9]. This
generalized Fourier transform is analytic whenever the characteristic function for the log
of the stock price is analytic. More precisely, let C(k; t) be the price of a call option with
strike exp(k) and maturity t: Let a be a positive constant such that the ath moment of
the stock price exists. Carr and Madan [9] show that

°(u; t) =

Z 1

¡1
eiuke®kC(k; t)dk

=
e¡rt³(u¡ i(®+ 1); t)

®2 + ®¡ u2 + i(2®+ 1)u
where ³(u; t) denotes the characteristic function for the log of the stock price. The call
prices follow on performing the (FFT ) integration

C(k; t) =
1

2¼

Z 1

¡1
e¡iuk¡®k°(u; t)du

Put option prices are obtained using put-call parity.
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One advantage of this procedure is that all models may be handled with a single code
since a model change only involves changing the speci¯c characteristic function which
is called. Furthermore, as the FFT works equally well on matrix structures, all strikes
and maturities may be simultaneously computed in a very e±cient manner. This is a
very desirable property when we consider that parameters have to estimated within an
optimization algorithm.
The model parameters in each case are estimated by minimizing the root mean square

error between market close prices and model option prices. The root mean square error
is taken here over all strikes and maturities. We also compute the average absolute error
as a percentage of the mean price. For comparative purposes, we report this statistic as
an overall measure of the quality of the ¯t.

7 Results of Estimations for the Year 2000

The results are presented in two categories. First, we present monthly results on the
S&P 500 index for all six models. In the interests of brevity, we present a sample of
quarterly results on the other underliers for just the three dominating models of the
NIGSA; V GSA; and CGMY SA:

7.1 S&P 500 Estimations

Each of the six models was estimated on S&P 500 Index options using one day from
each of the twelve months for the year 2000: The estimation results for the six models
are presented in six tables, one for each model. We present the three tables associated
with the exponential methods NIGSA; V GSA; and CGMY SA: These are followed by
the stochastic exponential martingale models NIGSAM;VGSAM; and CGMY SAM:
A comparison of the average percentage pricing errors shows that the exponential

method dominates the stochastic exponential method in all cases. The average improve-
ment of the exponential over the stochastic exponential in the three cases of NIG; V G;
and CGMY is respectively 3:62%; 2:87%; and 2:70% respectively. We present in ¯gure
(1) a graph of the percentage absolute pricing errors for each of the six models over the
twelve months.
The domination of the mean corrected exponential over the martingale stochastic

exponential is markedly evident. From a practical standpoint, the use of the theoretically
superior stochastic exponential is associated with a high price in terms of the quality
of the model's ¯t. Thus, for the rest of this study, we restrict attention to the mean
corrected exponential models (which are still consistent with no spot forward arbitrage)
The strong negative skew is captured by all 3 SA models. This is re°ected by con-

sistently strong negative estimates of µ for NIGSA; with an average value of ¡9:84: For
the V GSA and CGMY SA models, this is re°ected by a consistently lower value for G
than for M: For the V GSA model, the average markup of M over G is 20:83; while for
the CGMY SA model, it is 68:03:
The rates of mean reversion in volatility or activity are comparable for NIGSA;

V GSA;and CGMY SA; averaging to 6:79; 4:27; and 3:34 respectively. These are associ-
ated with half lives of around 7:5 weeks.
All three models indicate a comparable long term level, relative to the initial value

of the time change process. For the NIGSA; V GSA; and CGMY SA models, this ratio
averages to :5076 :4681;and :5118 respectively. The models are quite consistent in this
regard.
The estimates for the volatility of the time change are consistent between NIGSA

and CGMY SA with mean values of 5:34 and 6:97 respectively. The values are somewhat
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Figure 1: Graphs of absolute percentage errors for the six models across the twelve months

higher for V GSA at 16:45:
The best performing model by far is the CGMY SA model, as it consistently has

the lowest pricing errors. The parameters of this model are also more stable across
time. The mean pricing errors for the models NIGSA; V GSA; and CGMY SA are
4:1346%; 4:4251%; and 3:3738% respectively. Among the six models studied here, the
tentatively best model is CGMY SA: The best overall ¯t was for December 13 2000 for
CGMY SA; and we present a graph (see ¯gure (2)) of the actual and predicted prices for
this day. However, it should be noted that lower dimensional calibrations are faster, and
the improvements in ¯t may not warrant the extra time required for some applications.

7.2 Absolute Percentage Errors for the Year

For the three exponential models estimated for each of the twelve days in the year 2000,
we stacked all of the absolute percentage pricing errors across strikes and maturities. The
pricing errors are themselves orthogonal to strike and maturity, but the absolute pricing
errors tend to be larger for shorter maturities and options which are further out-of-the-
money. This is con¯rmed by regression results of the absolute errors on moneyness and
maturity, where we employ moneyness and its square to capture the fact that we have
out-of-the-money options on both sides of the forward. Table 7 presents the results.
We note that the quadratic in moneyness is signi¯cant in both its linear and quadratic

terms. The shape is consistent with absolute errors rising as an option gets further
out-of-the-money. The coe±cient for maturity is also negative and signi¯cant, which is
indicative of higher absolute errors for shorter maturity options. The R2 coe±cients are
around 50% with values of 51:62; 49:07; and 47:12 for the models NIGSA; V GSA; and
CGMY SA respectively.
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Figure 2: The ¯t of the model CGMY SA to option price data for all atrikes and maturities
on December 13 2000

7.3 Estimation Results for Other Underliers

For other underliers, we present a sample of quarterly estimates on the three dominating
models NIGSA; V GSA; and CGMY SA: For each model, we present results on ¯ve
selected names. For NIGSA, results are presented for BKX, MCD, PFE, INTC and
MSFT. For VGSA, we present result from RUT, GE, JNJ, IBM, and SUNW. Finally,
from CGMYSA, results are given for DRG, HWP, BA, CSCO and ORCL. These results
are presented in tables 8 through 10, one for each model.
The presence of skewness is once again consistently observed in the form of consistently

negative values for µ in the case of NIGSA; and consistently lower values for G than M
for the V GSA and CGMY SA models. Generally, the long term activity levels are lower
than current activity levels, as re°ected in comparing the parameters C with the values
´: This is consistent with the view that volatilities over the year 2000 were on the high
side. The performance of NIGSA and V GSA is quite good for options on single names.
This may be a consequence of the fact that fewer options are available for calibration,
with the result that the lower dimensional models are su±cient to capture their variation.

8 Comparative Results on Jump-Di®usion Models

In this section we outline some recent jump-di®usion models proposed by Bates [7] and
Du±e, Pan, and Singleton [14](henceforth DPS). We also present some estimation results
for these models on our data set. Bates' model is similar to our SV models in that the
jump intensity is proportional to the level of a CIR process. In Bates' model, this process
is also the volatility of the di®usion component in the stock. In addition, DPS allow for
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jumps in the volatility with an exponential density for the jump magnitude in volatility.
Conditioning on a jump occurring, the Bates and DPS models both have a lognormally
distributed jump in the stock price. Thus the resulting jump process for the log of the
price has ¯nite activity and has a Levy density which is not completely monotone.
We focus on the following special case of the model by Bates, which is also studied by

Pan [32]:

dS(t) = (r ¡ q ¡ ¸y¹)Stdt+
p
VtStdWS(t) + JyStdqy(t)

dVt = (µv ¡ ·vVt)dt+ ¾v
p
VtdWV (t)

dWSdWV = ½dt

(1 + Jy) is lognormally distributed with mean ¹y and variance ¾
2
y

qy(t) is a Poisson process with arrival rate ¸yVt

¹ = (exp(¹y + ¾
2
y=2)¡ 1):

This model has eight parameters

V (0) ; ½; ¾v; ·v; µv; ¸y; ¹y; ¾y:

We also focus on the following subset of the class studied by DPS [14]:

dSt = (r ¡ q ¡ ¸y¹)Stdt+
p
VtStdWS(t) + JyStdqy(t)

dVt = ·v(µv ¡ Vt)dt+ ¾v
p
VtdWV (t) + JV dqv(t)

dWSdWV = ½dt

(1 + Jy) is lognormally distributed with mean ¹y and variance ¾
2
y

JV has an exponential distribution with mean ¹V
qy(t); qv(t) are independent Poisson processes with arrival rates ¸y; ¸v

The parameter ¹ in the stochastic di®erential equation for the stock is de¯ned as in Bates.
The model has ten parameters

V (0); ½; ¾v; ·v; µv; ¸y; ¹y; ¾y; ¹v; ¸v

Table 11 presents results on the Bates model estimated for every second Wednesday of
each month, of the year 2000: Table 12 provides the results for the DPS models. We
note that these models provide a competitive performance in summarizing the surface of
option prices at a point of time.

9 Conclusion

Six stochastic volatility models were formulated by time changing three homogeneous
L¶evy processes. The L¶evy processes employed were the normal inverse Gaussian model
of Barndor®-Nielsen [4], the variance gamma of Madan, Carr, and Chang [27], and the
CGMY model of Carr, Geman, Madan, and Yor [10]. The time change used to induce
stochastic volatility was the integral of the CIR (Cox, Ingersoll and Ross [11]) process.
This resulted in three process respectively termed NIGSV; V GSV; and CGMY SV:Mod-
els for the stock price were built by exponentiating these processes and correcting the mean
in accordance with spot forward arbitrage considerations, leading to the NIGSA; V GSA;
and CGMY SA models. A second class of discounted stock price models was obtained
using stochastic exponentials, resulting in the NIGSAM; V GSAM;and CGMY SAM
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models. These models imply that forward prices are martingales in the expanded ¯ltra-
tion, which includes a knowledge of the integrated CIR time change process.
The paper also introduces two properties of stochastic processes, termed respec-

tively the property of L¶evy marginals and the property of martingale marginals. The
NIGSV; V GSV; and CGMY SV processes satisfy the L¶evy marginal property when the
underlying CIR is started at zero. In this case, the resulting NIGSA; V GSA;and
CGMY SA processes have the property of martingale marginals. More generally, however,
one may have the martingale marginal property for the SA processes, without having the
L¶evy marginal property for the SV processes. We hope to devote some future research on
these notions. In our view, the property of the existence of martingale marginal processes
is fundamental at each time point for the risk neutral dynamics. Its application delivers
a parametric model consistent with observed prices at each date, with parameters that
will vary from day to day. The arbitrage-free risk-neutral dynamics is to be sought in
the higher dimensional ¯ltration of the asset price and the parameters of the synthesizing
martingale marginal processes.
The six models were estimated for every second Wednesday of the month for each

month of the year 2000 on data for S&P 500 options and 20 other underlying assets.
For the S&P 500 options, the exponential models were signi¯cantly better than their
stochastic exponential counterparts in all 3 cases, suggesting that this may be the general
preferred direction. The results for the S&P 500 index options consistently re°ected
market skews, and stochastic volatility, with mean reversion rates of around seven weeks.
Similar patterns were observed for other underliers.
The best model by far was the CGMY SA model, with percentage errors across all

strikes and maturities reaching as low as 2% for the S&P 500 index options. For options
on single names, the performance of the lower dimensional NIGSA and V GSA models
was adequate. The class of models proposed here is for the ¯rst time providing us with a
relatively parsimonious representation of the surface of option prices, with some stability
over time in the parameter estimates. Results on competing models in the jump-di®usion
class are also provided. These structures lead to interesting applications on pricing exotic
products and analysing risk management strategies in empirically realistic, yet tractable
contexts. We expect continuing research to shed further light on these interesting ques-
tions. Of particular interest is the study of the statistical dynamics in the same parametric
class, which would lead to explicit representations of the measure change process and its
representation of risk pricing in ¯nancial markets.
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TABLE 1

NIGSA on S&P 500 for the year 2000
Month ¾ º µ · ´ ¸ ape
Jan 1.68 31.06 -6.24 12.46 1.014 11.27 .0647
Feb .9345 22.70 -9.23 3.997 .5127 2.92 .0443
Mar 1.14 24.24 -8.18 4.23 .6925 3.51 .0551
Apr 2.64 38.94 -8.15 9.28 1.27 7.73 .0402
May 5.19 70.21 -7.54 9.85 2.47 12.17 .0543
Jun 2.50 63.52 -11.28 8.71 1.63 6.53 .0412
July .7256 21.71 -9.51 2.62 .5187 1.57 .0328
Aug .9455 33.59 -18.56 2.47 .4826 1.20 .0327
Sept .6038 20.62 -10.65 .9225 .1734 .92 .0303
Oct 1.58 24.15 -8.73 13.61 .7238 7.06 .0439
Nov 2.66 43.43 -9.34 11.38 1.117 8.11 .0327
Dec .7878 18.93 -10.63 1.91 .2246 1.124 .0238

TABLE 2

VGSA on S&P 500 for the year 2000
Month C G M · ´ ¸ ape
Jan 14.96 19.38 34.45 3.09 7.90 10.23 .0405
Feb 25.18 27.47 44.21 5.22 16.92 19.01 .0537
Mar 26.23 26.34 42.47 4.08 15.99 16.52 .0545
Apr 13.04 14.50 33.34 1.55 0 4.80 .0492
May 86.92 42.40 57.21 8.40 42.05 43.57 .0544
Jun 48.98 40.62 62.14 7.24 32.15 24.81 .0394
July 25.86 28.26 60.32 2.53 10.47 7.59 .0431
Aug 31.50 32.97 66.83 2.67 18.18 7.63 .0328
Sept 12.19 21.26 42.95 .25 0 3.76 .0536
Oct 10.74 14.15 33.46 1.09 3.35 2.90 .0410
Nov 102.67 48.78 69.20 13.00 44.39 50.52 .0445
Dec 15.75 19.14 38.69 2.18 5.71 5.67 .0242

TABLE 3
CGMYSA on S&P 500 for the year 2000

Month C G M Yp Yn ³ · ´ ¸ ape
Jan 5.50 15.34 54.36 .4026 .3084 .9138 2.24 3.59 6.04 .0378
Feb 6.61 17.14 66.59 .3990 .2909 .9197 2.45 4.54 7.01 .0411
Mar 3.99 13.75 52.97 .5323 .5764 .5280 2.67 2.93 5.72 .0523
Apr 13.82 20.50 86.83 .4503 .4572 .5208 5.54 7.88 13.64 .0373
May 5.76 17.25 38.57 .5266 .6086 .5527 6.67 2.94 9.67 .0548
Jun 5.48 21.87 66.41 .6423 .8376 .1827 7.64 3.57 8.47 .0392
July 2.18 14.20 48.88 .6459 .7522 .4051 2.77 1.69 2.97 .0326
Aug 22.81 22.17 43.93 .1270 .3109 .2748 1.89 4.47 4.54 .0339
Sept 1.69 12.24 48.72 .6359 .7152 .4707 .4675 .6772 1.60 .0287
Oct 2.44 4.68 64.07 .7804 .9441 .1165 1.06 .0058 1.44 .0415
Nov 13.75 20.32 252.02 .5729 .6084 .3143 5.06 7.12 11.77 .0285
Dec 37.66 19.78 192.20 .2893 .3291 .2022 1.63 22.89 10.83 .0206
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TABLE 4

NIGSAM on S&P 500 for the year 2000
Month ¾ º µ · ´ ¸ ape
Jan .2983 13.2215 -17.71 0 6.17 .3417 .0829
Feb .3041 10.62 -11.52 0 5.49 .2231 .0854
Mar .3214 9.28 -9.50 0 2.61 .1044 .0816
Apr .3786 24.76 -47.58 0 .0106 .6091 .0716
May .4577 12.33 -12.59 0 7.55 .5795 .0922
Jun .4009 12.72 -9.98 0 11.52 .0006 .0641
July .3261 11.61 -9.55 .0267 2.46 .0007 .0714
Aug .4141 17.48 -14.71 .0092 15.67 0 .0701
Sept .3566 14.56 -11.58 .0043 11.74 .0005 .0744
Oct .4129 13.81 -13.98 0 7.27 .2729 .0828
Nov .4263 31.11 -53.81 .0007 0 .6566 .0944
Dec .4399 31.34 -51.35 0 19.43 .3861 .0602

TABLE 5

VGSAM on S&P 500 for the year 2000
Month C G M · ´ ¸ ape
Jan 4.12 7.45 47.99 7.60 3.11 6.10 .0847
Feb 4.85 6.92 24.71 33.15 2.53 10.76 .0869
Mar 3.71 7.33 32.40 12.66 3.38 7.35 .0839
Apr 8.17 8.09 36.90 21.36 3.99 11.33 .0623
May 10.89 7.21 24.86 38.17 3.19 16.66 .0712
Jun 5.30 11.02 30.11 0 4.15 1.14 .0678
July 3.56 9.48 25.75 .0289 29.56 .2564 .0763
Aug 7.06 14.18 44.61 .4404 14.31 .0016 .0747
Sept 5.17 12.35 33.61 .0762 16.94 .6939 .0794
Oct 9.92 8.54 33.28 26.96 3.74 14.09 .0645
Nov 12.19 10.49 80.13 23.17 5.28 18.70 .0703
Dec 16.43 11.72 42.67 58.51 6.17 24.00 .0529

TABLE 6

CGMYSAM on S&P 500 for the year 2000
Month C G M Yp Yn ³ · ´ ¸ ape
Jan .3509 .8878 20.81 -3.10 1.41 .1577 5.46 .2748 1.65e-5 .0720
Feb .2733 .6692 21.51 -3.57 1.46 .1609 6.44 .2244 3.96e-6 .0738
Mar .1635 .6965 21.97 -3.65 1.45 .2883 8.51 .1497 .00022 .0785
Apr .1448 .6548 25.83 -2.86 1.52 .4005 9.59 .0895 .00164 .0583
May .7414 .1839 44.38 .1789 1.58 .1002 30.73 .2795 .0008 .0597
Jun .3587 .4231 24.64 -4.51 1.67 .0526 6.65 .3469 .0006 .0612
July .6423 2.96 21.18 -1.27 1.28 .1256 .2331 1.31 .0115 .0694
Aug .5258 2.12 16.17 -1.62 1.53 .0607 .9059 .7831 .0133 .0661
Sept .4041 1.64 16.91 -2.90 1.54 .0676 4.85 .4474 2.78e-5 .0685
Oct 1.36 1.71 13.05 -2.31 1.34 .0869 13.13 .7234 .5735 .0577
Nov .8461 .6404 12.88 -2.71 1.57 .0496 6.47 .4668 .001 .0588
Dec 2.044 3.68 52.86 -2.12 1.22 .0855 15.91 1.37 1.70 .0489
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TABLE 7
Model Constant Moneyness Moneyness2 Maturity R2

VGSA 7.7628 -15.6155 7.8784 -.1220 49.07
(43.62) (-42.01) (40.40) (-4.93)

NIGSA 8.6899 -17.3529 8.7147 -.1813 51.62
(45.99) (-43.98) (42.10) (-6.89)

CGMYSA 8.043 -16.2076 8.2097 -.1307 47.12
(42.20) (-40.72) (39.31) (-4.93)
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(43.62) (-42.01) (40.40) (-4.93)

CGMYSA 8.043 -16.2076 8.2097 -.1307 47.12
(42.20) (-40.72) (39.31) (-4.93)

TABLE 8
NIGSA on BKX quarterly for the year 2000

Month ¾ º µ · ´ ¸ ape
Mar 1.16 7.01 -3.41 2.46 .636 1.10 .0196
Jun 2.53 14.94 -2.76 7.64 1.77 6.17 .0146
Sep 2.64 38.31 -22.81 11.22 1.11 3.81 .0239
Dec 1.86 14.68 -6.41 14.57 1.07 2.65 .0132

NIGSA on MCD quarterly for the year 2000
Mar 19.47 108.1 -19.33 6.00 11.03 1.70 .0251
Jun 1.39 8.89 -2.92 1.02 .351 .065 .0248
Sep 34.46 171.91 -37.21 43.58 13.52 9.19 .0119
Dec 29.06 165.37 -1.21 12.41 22.35 42.54 .0080

NIGSA on PFE quarterly for the year 2000
Mar 3.80 22.27 -1.89 5.59 3.48 4.64 .0229
Jun 2.09 18.95 -7.52 .0058 2.03 .4205 .0098
Sep 2.64 24.79 -12.58 .0103 2.47 .2957 .0125
Dec 1.90 16.45 -11.10 6.14 1.47 .6101 .0211

NIGSA on INTC quarterly for the year 2000
Mar 7.67 23.82 -4.37 8.21 3.51 6.32 .0177
Jun 2.59 10.69 -5.61 2.55 1.32 1.12 .0171
Sep 7.61 23.87 -9.23 9.99 2.90 4.12 .0128
Dec 3.35 6.27 -2.61 1.59 .0584 .8037 .0191

NIGSA on MSFT quarterly for the year 2000
Mar 5.07 9.37 -1.21 10.69 1.59 .0005 .0189
Jun 1.11 5.74 -.9985 2.09 .7534 .1159 .0179
Sep 1.67 11.27 -1.74 1.26 1.42 1.44 .0123
Dec 1.97 3.31 -1.96 4.34 .2491 2.15 .0130
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TABLE 9
VGSA on RUT quarterly for the year 2000

Month C G M · ´ ¸ ape
Mar 4.15 7.54 10.34 .5327 .8934 4.79 .0264
Jun 9.19 8.07 16.65 3.00 .0368 3.75 .0221
Sep 23.19 20.51 50.21 .4040 63.03 3.42 .0253
Dec 260.9 26.71 454.6 121.55 54.03 13.37 .0826

VGSA on GE quarterly for the year 2000
Mar 98.43 27.44 46.75 1.07 6.92 5.03 .0236
Jun 21.92 12.82 28.21 1.94 9.88 2.48 .0217
Sep 21.56 18.67 27.90 .3856 5.54 5.91 .0367
Dec 19.75 9.09 18.14 12.27 6.85 18.04 .0391

VGSA on JNJ quarterly for the year 2000
Mar 134.0 33.96 42.71 2.50 43.01 12.07 .0199
Jun 19.29 16.37 24.28 .1951 8.67 4.39 .0254
Sep 11.45 11.82 23.39 2.30 9.28 1.25 .0392
Dec 13.55 11.45 23.28 3.44 8.23 .1042 .0395

VGSA on IBM quarterly for the year 2000
Mar 25.61 10.70 14.81 9.37 11.27 9.41 .0138
Jun 66.88 24.87 35.05 11.05 60.17 22.14 .0216
Sep 45.27 19.29 31.40 22.85 31.78 32.35 .0295
Dec 17.42 5.54 10.82 10.98 3.96 6.68 .0161

VGSA on SUNW quarterly for the year 2000
Mar 73.66 14.69 21.96 6.18 35.76 9.97 .0187
Jun 20.79 8.21 15.42 .5104 8.69 1.99 .0309
Sep 20.94 7.51 11.69 2.46 3.29 2.87 .1707
Dec 41.24 5.45 10.77 6.39 6.31 10.91 .0299
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TABLE 10

CGMYSA on DRG quarterly for the year 2000
Month C G M Yp Yn ³ · ´ ¸ ape
Mar 36.52 29.08 47.77 .1861 .0929 1.83 13.50 18.50 11.91 .0147
Jun 37.91 24.56 42.60 -.1548 .4957 .2021 2.99 .0005 3.15 .0146
Sep 33.43 25.57 42.96 .071 .3656 .3578 5.41 15.51 4.35 .0061
Dec 33.52 19.75 42.84 .1214 -.1962 1.87 5.59 17.08 15.26 .0188

CGMYSA on HWP quarterly for the year 2000
Mar 6.91 9.86 24.91 .7334 .6002 1.07 1.65 2.13 .009 .0401
Jun 6.62 11.15 24.21 .7432 .3263 2.20 4.26 5.30 .0025 .0174
Sep 6.31 9.83 24.89 .7785 .5428 .9529 3.87 5.77 3e-6 .0218
Dec 17.69 18.16 23.40 .5293 .7693 .7905 13.33 3.24 2.86 .0186

CGMYSA on BA quarterly for the year 2000
Mar 24.27 14.75 18.23 .3552 -.5478 3.59 8.07 7.58 .0004 .0240
Jun 10.98 11.32 20.86 .2024 .5589 .3315 1.40 1.76 1.87 .0192
Sep 11.59 12.67 21.23 .1431 .6869 .2505 2.45 2e-5 1.34 .0242
Dec 12.19 12.91 19.76 .3055 .5124 .6895 3.60 .3216 2.49 .0159

CGMYSA on CSCO quarterly for the year 2000
Mar 8.02 8.05 13.73 .6386 .8214 .3391 11.28 2.76 9.89 .0214
Jun 5.27 6.03 18.06 .4163 .1313 1.56 4.67 6.27 9.24 .0180
Sep 7.55 7.76 19.97 .4882 .3761 1.28 6.68 4.07 7.47 .0136
Dec 8.37 6.33 6.50 -.4403 -.4323 5.51 7.45 2.53 6.65 .0165

CGMYSA on ORCL quarterly for the year 2000
Mar 9.68 5.99 17.01 .6804 -.0542 2.17 4.73 4.56 .004 .0315
Jun 5.53 5.42 21.41 .6800 .6164 1.08 5.01 3.56 2.90 .0229
Sep 13.22 6.78 19.98 .6087 -.5269 5.10 13.19 3.56 .1504 .0178
Dec 8.71 5.05 18.77 .6902 .5689 1.38 4.83 2.99 4.77 .0195

TABLE 11
Bates submodel for S&P 500 options for the year 2000

Month V (0) ½ ¾v ·v µv ¸y ¹y ¾y ape

Jan .0426 -.7216 .5654 1.572 .1108 .2789 -.7295 .00063 .0418
Feb .0403 -.7401 .5691 1.879 .1268 .3033 -.7514 .00042 .0458
Mar .0451 -.6972 .5909 1.257 .1178 .2716 -.7217 1.17e-5 .0545
Apr .0684 -.6994 .9558 6.052 .3544 .2034 -.9164 1.98e-5 .0430
May .0659 -.8292 .5843 6.834 .3379 .7631 -.6698 9.68e-6 .0496
Jun .0357 -.9998 .3152 5.798 .2445 .2117 -1.4729 .0994 .0472
July .0315 -.7812 .2617 1.683 .0876 .5468 -.6040 1.98e-5 .0349
Aug .0291 -1.0 .1821 1.849 .0954 .4906 -.5709 5.19e-5 .0341
Sept .0281 -.7799 .2596 1.678 .0784 .4574 -.6581 5.26e-4 .0376
Oct .0609 -.7712 .7767 9.827 .4177 1.159 -.4742 2.57e-5 .0414
Nov .0608 -.7053 .8947 5.927 .2840 .0581 -1.6741 .7609 .0301
Dec .0458 -.6641 .5909 2.886 .1591 .0673 -1.148 .0703 .0240
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TABLE 12
Du±e, Pan and Singleton submodel on S&P 500 for the year 2000

Month V (0) ½ ¾v ·v µv ¸y ¹y ¾y ¹v ¸v ape
Jan .0408 -.7037 .5246 1.614 .0599 .0303 -.8451 .5735 .0036 .0707 .0413
Feb .0395 -.7174 .5477 1.710 .0650 .0165 -1.357 .1299 .66e-3 .0334 .0459
Mar .0438 -.9288 .5632 1.116 .0904 .0206 -1.082 .0181 .0552 4.25e-6 .0552
Apr .0710 -.7035 .9859 7.575 .0531 .0143 -2.904 .6764 5.12e-4 .4141 .0427
May .0681 -.9974 .4208 8.413 .0335 .0549 -1.037 .1644 .0086 6.603 .0489
Jun .0352 -1 .2806 4.919 .0402 .0150 -5.485 2.482 .0244 .0015 .0471
July .0303 -.9948 .1174 .1274 .0129 .0343 -.8005 8.09e{5 .0104 .0104 .0361
Aug .0285 -.9976 .1204 .4169 .0858 .0292 -.7381 8.43e-5 1.06e-4 .0015 .0346
Sept .0276 -.9871 .1800 1.206 .0293 .0154 -1.1789 .0559 .0204 1.231 .0373
Oct .0634 -1 .3573 15.393 .0240 .2001 -.4025 .1786 .0085 2.678 .0385
Nov .0620 -.7089 .8819 7.256 .0429 .0106 -2.212 .6922 6.4e-4 .8725 .0296
Dec .0449 -.6785 .5431 2.956 .0506 .0141 -.8147 .6445 .5763 .0036 .0240
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