
Interacting Defaults and Counterparty Risk:

a Markovian Approach
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Abstract

We consider intensity-based dynamic models for dependent defaults. We generalize
the standard reduced-form models and assume that the default intensity of a firm is
directly affected by the default of other firms in the portfolio. This interaction between
defaults, which is termed counterparty risk in the literature, could be due to direct
business relations between firms or due to the impact of defaults on the overall credit
climate. We construct and study the model using Markov process techniques. We study
in detail a model where the interaction between firms is of mean-field type.
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1 Introduction

A major cause of concern in the pricing and management of credit risk of a given loan or bond
portfolio is the occurrence of disproportionately many defaults of different counterparties in
the portfolio, a risk which is directly linked to the dependence between default events.
Dependence between defaults stems from at least two sources. First, the profitability and
hence the financial health of a firm varies with stochastically fluctuating macroeconomic
factors such changes in economic growth. Since different firms are affected by common
macroeconomic factors, we have dependence between their defaults. Moreover, dependence
between default is caused by direct links between firms such as business relations or a
borrower-lender-relationship. For instance, the default probability of a commercial bank is
likely to increase if one of its major borrowers or counterparties defaults. Following Jarrow
and Yu (2001), in our paper the latter type of interaction between default events is termed
counterparty risk.

The dependence between defaults caused by common factors has received a lot of atten-
tion in the credit risk literature, as it can and has been modelled in the standard reduced
form credit risk models such as Lando (1998) or Duffie and Singleton (1999); for empirical
work on the specification of an appropriate factor structure see for instance Duffee (1999)
or Driessen (2002). In contrast, researchers became only recently interested in counterparty
risk. This interest stems from at least two reasons: first, there is substantial empirical evi-
dence for counterparty risk; for instance Lang and Stulz (1992) have shown that bankruptcy
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filings do impact stock returns (and most likely also default probabilities) of non-defaulted
companies. Moreover, as has been pointed out by Hull and White (2001) or Schönbucher
and Schubert (2001), the correlation between defaults obtainable in reduced form models
are often quite low, so that these models may not be able to mimic the clustering of de-
faults around economic recessions observed in real data (see for instance Keenan (2000)).1

Obviously, this calls for an incorporation of other sources of default dependence such as
counterparty risk into the model.

At least to our knowledge Jarrow and Yu (2001) are the first to propose an intensity-
based model, which allows for counterparty risk. In their framework the impact of defaults
on the default intensities of surviving firms is explicitly modelled, which is a very intuitive
parametrization of counterparty risk; see also Davis and Lo (2001) for a related approach.
Unfortunately, the construction of default processes in Jarrow and Yu (2001) works only
for a very special type of interaction between defaults, the so-called primary secondary
framework, which excludes many interesting examples of cyclical default dependency. This
and other mathematical aspects of the Jarrow-Yu model are discussed in Kusuoka (1999),
Bielecki and Rutkowski (2002), and Collin-Dufresne, Goldstein, and Hugonnier (2002). Yu
(2002) has carried out an interesting simulation study. He analyzes the default correlations
which can be obtained for different parametrizations of the standard reduced form models
and of the Jarrow-Yu model. Moreover, he improves upon the original Jarrow-Yu paper
and provides a rigorous construction of the model using the general hazard construction
from survival analysis. Finally, Gieseke and Weber (2002) use the voter model, which is
well-known in the literature on interacting particle systems (see for instance Liggett (1985))
to model interaction between defaults. They come up with a model for the loss distribution
of a given portfolio, which is constructed as a mixture of the equilibrium distributions of
the voter model. Their model contains an interesting link between credit risk modelling and
statistical mechanics. However, the focus on the equilibrium distribution makes their analysis
essentially static and hence unsuitable for questions related to the pricing of derivatives.

Counterparty risk is also present in the popular copula model (see for instance Li (2001)
or Schönbucher and Schubert (2001)). As shown in the latter paper, in the copula framework
the default intensity of the surviving firms typically jumps at the default time of one obligor
in the portfolio. However, direction and size of this jump depend on higher order derivatives
of the copula, which makes the copula parametrization of counterparty risk quite unintuitive.
Moreover, while the calibration of copula models to prices of defaultable bonds is relatively
easy, the specification of an appropriate copula is difficult and subject to substantial model
risk; see for instance Frey, McNeil, and Nyfeler (2001) for related findings in the context of
static models for portfolio credit risk.

In the present paper we propose several extensions to the literature on the Jarrow-Yu
type reduced form models for counterparty risk. First, we model the default indicator process
of the firms in our portfolio as conditional finite-state Markov chain; the states of this chain
are given by the default state of all obligors in the portfolio at a given point in time and the
transition rates correspond to the default intensities. This yields a natural and at the same
time completely rigorous construction of the Jarrow-Yu model. Moreover, our approach
allows us to employ Markov process techniques such as the Kolmogorov equations or special
simulation techniques in the analysis of the model.

Our second contribution concerns the modelling of the interaction between the defaults
of different firms in the portfolio. This is a major challenge in the Jarrow-Yu framework, in

1However, as shown by Yu (2002) this may be related more to an unsatisfactory modelling of state variables

driving the reduced form models than to a problem of the reduced form approach per se.
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particular if the portfolio is large: the model should capture essential features of counter-
party risk, and should at the same time be relatively simple and parsimonious to ensure ease
of calibration and simulation. To achieve these goals we split our portfolio in several ho-
mogeneous groups and propose a model where the default intensity of a given firm depends
essentially on the distribution of defaulted firms in these groups – in the simplest case of a
one-group model just the proportion of companies which have defaulted so far. This type
of interaction, which is called mean-field interaction in the literature on interacting particle
systems,2 makes immediate sense in the context of portfolio credit risk. For instance, if a
financial institution has incurred unusually many losses in its loan portfolio, it is less likely to
extend credit lines, if another obligor experiences financial distress. Obviously, this raises the
default probability of the remaining obligors. Moreover, unusually many defaults might have
a negative impact on the business climate in general, which in turn favors future defaults.
From a mathematical viewpoint we are automatically lead to models based on mean-field
interaction, if we assume that our portfolio consists of several homogeneous groups within
which default times are exchangeable. We will show that homogeneous group models with
mean-field interaction are relatively easy to treat, as the size of the state space of the Markov
chain can be reduced substantially, making the application of analytical methods such as the
Kolmogorov equations feasible even for large portfolios. Using results on the convergence in
distribution of Markov processes we study the asymptotic behavior of our mean-field model
as the portfolio size becomes large.

Finally we study several practical applications. We provide first results on the pricing of
credit risky securities such as corporate bonds or other vulnerable securities. In particular,
we show how Markov process techniques can be fruitfully employed to deal with pricing
problems in the context of the Jarrow-Yu model. Moreover, in order to quantify the impact
of counterparty risk on default correlations and credit loss distribution in the context of our
mean-field model we carry out a simulation study. It will turn out that default correlations
and in particular quantiles of the loss distributions increase substantially, if we increase the
amount of interaction in the portfolio. This shows that our model provides a possible way to
overcome the weakness of standard reduced form models and to generate realistic patterns
of default correlation.

2 A General Markovian Model

2.1 The Model: Description and General Properties

We consider a portfolio of m firms, indexed by i ∈ {1, . . . ,m}. The default-state of the
portfolio is summarized by a default indicator process Y =

(
Yt(1), . . . , Yt(m)

)′
t≥0

with val-
ues in {0, 1}m; here Yt(i) = 1 if firm i has defaulted by time t and Yt(i) = 0 else. The
corresponding default times are given by τi = inf{t ≥ 0 : Yt(i) = 1}. In order to model
the dependence of defaults caused by fluctuations in the macroeconomic environment we
introduce a d-dimensional state variable process Ψ = (Ψt)t∈[0,∞), representing the evolution
of macroeconomic variables such as interest rates, broad share price indices or measures of
economic activity. In keeping with most of the literature on reduced-form credit risk models
we assume that the dynamics of Ψ are not affected by the evolution of the default indicator
process Y. This allows us to construct our model by a two step procedure: first we model
the evolution of Ψ and consecutively the conditional distribution of the default indicator

2 For an inspiring discussion of the relevance of concepts from the literature interacting particle systems

for financial modelling we refer to (Föllmer 1994).
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process Y for a given realization of the economic factor process.
The default intensity of a non-defaulted firm i at time t is modelled as a function

λi(Ψt,Yt) of economic factors and of the default state of the other obligors in the port-
folio. Intuitively, given the current default state Yt and the trajectory (Ψs)s≥0, the defaults
of the firms, which have survived until time t, are independent time-inhomogeneous Pois-
son events with intensity equal to λi(Ψs,Yt) for s ≥ t; at the first default-time τ > t the
default indicator vector changes and the default intensities of the surviving firms are up-
dated accordingly. This description of the dynamics of Y is formalized in Assumption 2.1
below, where we postulate that Y follows a conditional Markov chain with transition rates
depending on the realization (Ψs)s≥0 of the factor process.

Notation. S = {0, 1}m will be the state space of the default indicator process; elements
of S are vectors y = (y(1), . . . , y(m))′. Note that the cardinality of S is

∣∣S∣∣ = 2m. For y ∈ S
we define yi ∈ S by flipping the i-th coordinate, i.e.

yi(i) = 1− y(i) and yi(j) = y(j), for j ∈ {1, . . . ,m} − {i} . (1)

S = Rd × S denotes the state space of the pair (Ψ,Y); elements of S are denoted by
γ = (ψ,y). Finally, D([0,∞)), E) stands for the Skorohod space of all RCLL functions
from [0,∞) into some Polish space E.

The mathematical model. Define Ω1 := D([0,∞),Rd) and Ω2 := D ([0,∞), S), and
denote by F i the natural σ-field on Ωi. Our underlying measurable space is given by
(Ω,F) := (Ω1 × Ω2,F1 × F2); elements in Ω will be written as ω = (ω1, ω2). The coor-
dinate process on Ω1 will be denoted by Ψ, i.e. Ψt(ω1) = ω1(t) for t ≥ 0; it represents the
economic factor process; the coordinate process on Ω2, denoted by Y, models the default
indicator process. By Γt(ω) we denote the pair (Ψt(ω1),Yt(ω2)). For t ∈ [0,∞) we define
F1

t := σ(Ψs : s ≤ t) , F2
t := σ(Ys : s ≤ t) and Ft := F1

t × F2
t ; moreover, we define the

filtration {Gt} by Gt := F1
∞ ∨ F2

t . We assume that investors have access to {Ft}, whereas
the larger filtration {Gt}, which contains information about the default indicator process up
to time t and about the whole path (Ψs(ω1))s≥0), serves mainly theoretical purposes.

In this paper we consider a family of probability measures Pγ , γ ∈ S on (Ω,F) having
the structure Pγ = µψ×Ky(ω1, dω2) for some measure µψ on Ω1 and some stochastic kernel
Ky : Ω1 × F2 7→ [0, 1]. The kernel Ky(ω1, dω2) models the conditional distribution of the
default indicator process Y for a given realization of ω1, or equivalently of the trajectory
(Ψt(ω1))t≥0. Depending on the context Pγ will represent the historical probability measure
(for instance in applications to credit risk management) or an equivalent martingale measure.
The appropriate interpretation of P will become clear when we study a particular application.

Assumption 2.1.

(i) Under µψ the process Ψ is a non-exploding process with Ψ0 = ψ µψ a.s. Moreover,
Ψ is autonomous in the following sense. For every bounded, F1

∞-measurable rv ξ and
every t ≥ 0 we have E(ξ | Ft) = E(ξ | F1

t ), i.e. observation of the path (Ys(ω2))0≤s≤t

does not convey any additional observation on the future evolution of the state variable
process.

(ii) Under Ky(ω1, dω2) the process Y is a time-inhomogeneous Markov chain with state
space S; moreover Ky(ω1,Y0 = y) = 1. The infinitesimal generator of the chain Y
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is as follows. Recall the definition of xi in (1). Let λi : S → (0,∞) be continuous
functions and define for ψ ∈ Rd and any function f : S → R the operator

G[ψ]f(x) =
m∑

i=1

(1− x(i))λi (ψ,x))
(
f(xi)− f(x)

)
. (2)

The infinitesimal generator of Y under Ky(ω1, dω2) at time t is then given by G[Ψt(ω1)].

When there is no ambiguity we will simply write P , µ, and K and drop the reference to the
initial values to ease the notation.

Assumption 2.1 (ii) determines the dynamics of Y under K(ω1, dω2). In particular,
the form of G[ψ] implies that default is an absorbing state and that the chain Y has only
transitions from a state y ∈ S to neighboring states yi, which excludes simultaneous defaults.
Obviously, these restrictions could easily be removed by considering more general generators.
For an explicit construction of a conditional Markov chain or equivalently of a family of
kernels Ky(ω1, dω2) satisfying Assumption 2.1 (ii) we refer to the literature on Markov
chains such as Chapter 11.3 of Bielecki and Rutkowski (2002) or Chapter 2 of Davis (1993).
A construction via a change of measure using the Girsanov theorem for point processes
is given in Kusuoka (1999) or Bielecki and Rutkowski (2002). Yu (2002) uses the general
hazard rate construction from survival analysis as developed for instance in Norros (1986)
and Shaked and Shanthikumar (1987).

Markov property and default intensities. We now discuss the (conditional) Markov
property for the processes Y and Γ. We have for every bounded random variable F (Ψ,Y) :
Ω1 × Ω2 → R

E(F (Ψ,Y) | Gt)(ω1, ω2) = EK(ω1,·)(F (Ψ(ω1),Y) | F2
t )(ω2) . (3)

Relation (3) is easily shown for F (Ψ,Y) = F1(Ψ)F2(Y) using the definition of Gt and the
fact that P = µ×K; the extension to general F is done via a monotone class argument. Now
define for t ∈ [0,∞) and an arbitrary Polish space E the shift operator θt : D ([0,∞), E) →
D ([0,∞), E) by θtω(s) := ω(t + s). Since Y is a time-inhomogenous Markov chain under
K(ω1, dω2), relation (3) yields the following conditional Markov property of Y. For all
bounded, measurable F : Ω1 × Ω2 → R and all t ∈ [0,∞)

E
(
F (Ψ,Y ◦ θt) | Gt

)
(ω1, ω2) = EK(ω1,·) (

F (Ψ(ω1),Y ◦ θt) | F2
t

)
(ω2)

= EKYt(ω2)(θtω1,·) (F (Ψ(ω1),Y)) .
(4)

Relation (4) immediately yields that Y forms an time-inhomogeneous Markov chain wrt
{Gt} under P . The process Yt(i)−

∫ t∧τi

0 λi(Ψs,Ys) ds is therefore a {Gt}-martingale by the
Dynkin formula, and hence an {Ft}-martingale, as it is {Ft}-adapted. This shows that the
process (λi(Ψt,Yt))t≥0 is in fact the martingale default intensity3of company i.

Suppose now that Assumtion 2.1 holds and that Ψ is moreover a homogeneous Markov
process. In that case it is easily seen from (4) that the process Γ is Markov wrt {Ft}: Define
the random variable

H : Ω1 × S → R , H(ω1,x) = EKx(ω1,·) (F (Ψ(ω1),Y)) .
3There are various notions of intensities for random times; see for instance Chapter 6 of Bielecki and

Rutkowski (2002)
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Using the law of iterated expectations, (4) and the F2
t -measurability of Yt we obtain

E (F (Ψ ◦ θt,Y ◦ θt) | Ft) (ω1, ω2) = E (H(Ψ ◦ θt,Yt) | Ft) (ω1, ω2)

= E
(
H(Ψ ◦ θt,Yt(ω2)) | F1

t

)
(ω2) .

As as Ψ is Markov under P this equals
∫
Ω1
H(ω1,Yt(ω2))µΨt(dω1) = EΓt(ω)

(
F (Ψ,Y)

)
by

definition of H.
Note that the first component of a pair of processes which is jointly Markov is in general

neither autonomous nor Markov wrt its own filtration. Under Assumption 2.1 we may
evaluate expectations using a two-step procedure, which can be easier than applying Markov
process techniques directly to the process Γ. This is useful in computing default correlations
and risk measures and in the pricing of credit derivatives; see Sections 4 and 5 below.

Conditional transition functions and the Kolmogorov equations. Next we intro-
duce the conditional transition probabilities of the chain Y under K(ω1, dω2). Define for
0 6 t 6 s <∞ and x,y ∈ S

p(t, s,x,y | ω1) := EK(ω1,dω2)(Ys = y | Yt = x). (5)

It is well-known that for ω1 fixed the function p(t, s,x,y | ω1) satisfies the Kolmogorov
forward and backward equations. These equations will be very useful numerical tools in
our analysis of the model. The backward equation is a system of ODE’s for the function
(t,x) → p(t, s,x,y | ω1), 0 6 t 6 s; s and y are considered as parameters. In its general
form the equation is

∂p(t, s,x,y | ω1)
∂t

+G[Ψt(ω1)]p(t, s,x,y) = 0 , p(s, s,x,y) = 1{y}(x) . (6)

In our model this leads to the following system of ODE’s

∂p(t, s,x,y | ω1)
∂t

+
m∑

k=1

(1− x(k))λk(Ψt(ω1),x)(p(t, s,xk,y | ω1)− p(t, s,x,y | ω1)) = 0.

(7)

The forward-equation is an ODE-System for the function (s,y) → p(t, s,x,y | ω1), s > t.

Denote by G∗
[ψ] the adjoint operator to G[ψ], operating again on functions from S to R. In

its general form the forward equation reads

∂p(t, s,x,y | ω1)
∂s

= G∗
[Ψt(ω1)]p(t, s,x,y | ω1), p(t, t,x,y | ω1) = 1{x}(y). (8)

An explicit form is given in the following lemma.

Lemma 2.2. Under Assumption 2.1 (ii) the forward equation for the conditional transition
rates is

∂p(t, s,x,y | ω1)
∂s

=
m∑

k=1

y(k)λk(Ψs(ω1),yk)p(t, s,x,yk | ω1) (9)

−
m∑

k=1

λk(Ψs(ω1),y)(1− y(k))p(t, s,x,y | ω1).

The proof is given in Appendix A.2. For smallm (7) and (9) are easily solved numerically;
however, for large m this becomes infeasible as

∣∣S∣∣ grows exponentially in m.
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Remark 2.3 (Simulation). We will see in the sequel that many questions related to
the computation of risk measures and the pricing of credit risky securities can be dealt
with very efficiently using the Kolmogorov equations. Nonetheless, for working with large
inhomogeneous portfolios or for pricing sophisticated credit derivatives one typically has
to resort to a simulation approach. Fortunately, the model introduced in Assumption 2.1
is quite easy to simulate from using the standard simulation approach for continuous-time
Markov chains; in particular, simulation is no more costly (in terms of computing time) than
simulating a standard reduced form model with conditionally independent defaults. We give
a detailed description of the simulation algorithm in Appendix A.1.

2.2 Examples for default intensities

Example 2.4 (The primary-secondary framework of Jarrow and Yu). Jarrow and
Yu (2001) study a model where default of one firm may influence the default-intensity of
other firms. However, in contrast to the present paper they focus on a very special type
of interaction, which they call primary-secondary framework. In this framework firms are
divided into two classes, primary and secondary firms. The default intensity of primary
firms depends only on the factor process Ψ; default intensities of secondary firms depend on
Ψ and on the default state of the primary firms. This simplifying assumption allows Jarrow
and Yu to deal with interacting defaults using Cox-process techniques. For concreteness we
now present a specific example from Jarrow and Yu (2001). We put m = 2 and d = 1;
Ψt is identified with the short rate of interest rt, which is assumed to follow an extended
Vasicek-model. We put

λ1(rt,Yt) = λ1,0 + λ1,1rt and λ2(rt,Yt) = λ2,0 + λ2,1rt + λ2,21{Yt(1)=1};

hence company one is a primary firm with default intensity depending only on rt and com-
pany two is a secondary firm.

Example 2.5 (Mean field interaction). The default intensities in Example 2.4 are typical
for a model with local interaction, i.e. a model, where for all i ∈ {1, . . . ,m} the default-
intensity of firm i depends on the default state of some typically small set N(i) of neighboring
firms such as business partners or direct competitors. Alternatively, one can introduce some
global or macroeconomic interaction in the sense that individual default intensities depend
on the empirical distribution ρ(Yt, ·) = 1

m

∑m
i=1 δYt(i)(·) of defaults at time t. Note that

ρ(Yt, {0}) respectively ρ(Yt, {1}) give the proportion of surviving respectively defaulted
firms in the portfolio at time t. This can be modelled using default intensities of the form

λi (Ψt,Yt) = hi

(
Ψt, ρ(Yt, {1})

)
for functions hi : Rd × [0, 1] → R; (10)

As discussed in the introduction this type of global interaction makes immediate sense in
the context of portfolio credit risk. Moreover, the points raised in the introduction suggest
that the functions hi in (10) will typically be increasing in their second argument.

3 Models with mean-field interaction

We now analyze variants of the model with mean field interaction introduced in Example 2.5.
We begin by introducing a general homogeneous-group model with mean-field interaction.
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3.1 A mean-field model with homogeneous groups

Assume that we can divide our portfolio of m firms into k groups (typically k � m), within
which risks are exchangeable. These groups might for instance correspond to firms with
different credit rating or to firms from the same industries. Let κ(i) ∈ {1, . . . , k} give the
group membership of firm i, mκ =

∑m
i=1 1{κ(i)=κ} the number of firms in group κ, and

denote for a given y ∈ S by ρκ(y, ·) = 1
mκ

∑m
i=1 1{κ(i)=κ}δy(i)(·) the empirical distribution of

firms in group κ. Define for κ ∈ {1, . . . , k} the functions Mκ(y) := ρκ(y, {1}), put M(y) =(
M1(y), . . . ,Mk(y)

)′, and define the process Mt =
(
M t,1 . . . ,M t,k)′ by M t,κ = Mκ(Yt);

obviously, M t,κ gives the proportion of firms in group κ which have defaulted by time t. The
state space of Mt is given by SM :=

{
l =

(
l1
m1
, . . . , lk

mk

)
: lκ ∈ {0, . . . ,mκ}, 1 ≤ κ ≤ k

}
.

Assumption 3.1 (Mean-field model with homogeneous groups). The default inten-
sities of firms in our portfolio belonging to the same group are identical and of the form
λi (ψ,y) = hκ(i)

(
ψ,M(y)

)
for continuous functions hκ : Rd × SM → R+, 1 ≤ κ ≤ k.

Assumption 3.1 implies that for all κ the default indicator processes {Yt(i) : 1 ≤ i ≤
m, κ(i) = κ} of firms belonging to the same group are exchangeable, a fact which we will
exploit frequently below. Conversely, consider an arbitrary portfolio of m counterparties
with default indicators satisfying Assumtion 2.1, and suppose that the portfolio can be split
in k < m homogeneous groups. Homogeneity implies that a) the default intensities are
invariant under permutations π of {1, . . . ,m}, which leave the group structure invariant, i.e.
λi(ψ,y) = λi(ψ, π(y)) for all i and all permutations π with κ(π(j)) = κ(j) for all 1 ≤ j ≤ m,
and b) that default intensities of different firms from the same group are identical. Condition
a) immediately yields that λi(ψ,y) = hi(ψ,y) for some hi : Rd × SM → R+ and hence a
model of mean-field type; together with condition b) this implies that the default intensities
satisfy Assumption 3.1. Hence the mean-field model is the natural counterparty-risk model
for portfolios consisting of homogeneous groups.

Example 3.2 (An affine model with counterparty risk). Often we will assume that
the default intensities depend only on the overall proportion of defaulted companies given
by

∑k
κ=1

mκ
m M t,κ. A useful example is provided by the following (nearly) affine model with

counterparty risk. Given for every group κ nonnegative constants λκ,j , j = 0, . . . , d+ 1 and
an expected default intensity λ̄κ we put

hκ(t,ψ, l) =
[
λκ,0 +

d∑
j=1

λκ,jψj + λκ,d+1

k∑
j=1

mj

m

(
l̄j −

(
1− e−λjt

))]+
. (11)

These default intensities have the following intepretation: 1− e−λ̄jt measures the expected
proportion of defaulted firms in group j at time t, and for λκ,d+1 > 0 the default intensity of
non-defaulted companies is increased (decreased), if the proportion of defaulted companies
is higher (lower) than expected; in particular we have counterparty risk. If λκ,d+1 = 0 for
all κ we are in a standard Cox-process framework as studied by Lando (1998) or Duffie and
Singleton (1999). Following the latter paper we assume that the factor process follows a
square-root diffusion model, i.e.

dΨt,j = κ̄j(θj −Ψt,j)dt+ σj

√
Ψt,j dWt,j (12)

for a standard Brownian motion Wt = (Wt,1, . . . ,Wt,d)′ and positive constants κ̄j , θj , σj .
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Example 3.3 (Intra-industry spillover effects). The following example is proposed by
Yu (2002) as a model for similar firms in a concentrated industry. Yu splits the overall
portfolio in two groups; group one consists simply of the first firm, group two consists of
firms 2, . . . ,m.4 Define τ (1) := inf{τi : 1 6 i 6 m} to be the first-to-default time for the
firms in our portfolio. The default-intensities are now given by

λi
t =

{
b+ (b′ − b)1{τ (1)6t}, i = 1

a+ (a′ − a)1{τ (1)6t}, i = 2, . . . ,m,

for positive constants a, a′, b, b′. Note that τ (1) 6 t if and only if Mt 6= (0, 0), so that the
default intensities can be written as function of Mt. Simulation studies reported in Yu
(2002) suggest, that the model is able to explain certain features of credit spreads in the
market for European telecom bonds.

The next lemma shows that the process Mt is itself conditionally Markov and gives the
form of the generator.

Lemma 3.4. Assume that the default intensities satisfy Assumption 3.1. Then under
K(ω1, dω2) the process Mt follows a time-inhomogeneous Markov chain with state space
SM . The generator of this chain in t equals GM

[Ψt(ω1)], where the operator GM
[ψ] is given by

GM
[ψ]f (l) =

k∑
κ=1

mκ(1− lκ)hκ

(
ψ, l

) (
f
(
l+

1
mκ

eκ

)
− f

(
l
))
. (13)

Here l = (l1, . . . , lk) ∈ SM and eκ denotes the unit vector κ in Rk.

Proof. Suppose that Mt =
(

l1
m1
, . . . , lk

mk

)′
. Obviously, the component M t,κ can increase only

in steps of size (mκ)−1, so that the support of the jump-distribution equals {Mt + 1
mκ
eκ :

1 ≤ κ ≤ k, M t,κ < 1}. Now Mt jumps to Mt + 1
mκ

eκ if and only if the next defaulting firm
belongs to group κ. Hence the transition rate from Mt to Mt + 1

mκ
eκ equals

m∑
i=1

1{κ(i)=κ} (1− Yt(i)) λi(Ψt,Yt) = hκ(Ψt,Mt)
m∑

i=1

1{κ(i)=i} (1− Yt(i))

= hκ(Ψt,Mt)mκ

(
1−M t,κ)

)
.

The claim follows, as this transition-rate depends on Yt only via Mt, which shows that M is
Markov with respect to {Gt}. The form of GM

[Ψt(ω1)] is obvious from the transition rates.

Remark 3.5. 1) Note that the size of the state space of M is
∣∣SM

∣∣ := (m1 +1) · · · (mk +1).
For fixed k

∣∣SM
∣∣ grows at most at rate (k−1m)k in m, whereas

∣∣S∣∣ grows exponentially in m.
Hence the conditional distribution of MT can be inferred using the Kolmogorov equations
even for m relatively large.
2) The form of the ODE-system for the backward equation for M follows immediately
from the definition of the generator GM

[ψ]; the ODE-system for the forward equation can be
computed analogously to Lemma 2.2; see Lemma A.1 in the appendix.

4This distinction is made by Yu to single out a specific firm for future analysis.
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Implications of exchangeability. We can infer individual default probabilities as well
as within-group and between-group default correlations from the distribution of the ran-
dom vector MT using the fact that within a given group the rv’s YT (i) are exchange-
able under K(ω1, dω2) and hence under P . Hence we get for firms with κ(i) = κ that
P

(
YT (i) = 1 |MT,κ

)
= MT,κ, and for firms i, j with i 6= j, κ(i) = κ(j) = κ

P

(
YT (i) = 1, YT (j) = 1 |MT,κ =

M

mκ

)
=

(
mκ−2
M−2

)(
mκ

M

) =
M(M − 1)
mκ(mκ − 1)

, (14)

provided that mκ and mκM ≥ 2; otherwise the lhs of (14) is obviously equal to zero. Finally,
we have for obligors i, j belonging to different groups κ1 and κ2

P
(
YT (i) = 1, YT (j) = 1 |MT,κ1 , MT,κ2

)
= MT,κ1 ·MT,κ2

Hence we get for oligors i, j in group κ

P (YT (i) = 1) = E
(
P (YT (i) = 1 |MT,κ)

)
= E(MT,κ), (15)

P (YT (i) = 1, YT (j) = 1) = E

(
MT,κ

mκMT,κ − 1
mκ − 1

)
, (16)

and finally for obligors i, j from different groups κ1 and κ2

P (YT (i) = 1, YT (j) = 1) = E
(
MT,κ1 MT,κ2

)
. (17)

Note that for mκ large the rhs of (16) is approximately equal to E
((
MT,κ

)2
)

for mκ

large. Of course, expressions similar to (16) can also be obtained for higher order default
probabilities. More generally, we can even express the probability P (YT = y) for some
y ∈ S in terms of the distribution of MT . As the distribution of YT is invariant under
permutations of {1, . . . ,m}, which respect the homogeneous group structure, we have with
l := M(y)

P (MT = l) = card{y ∈ S : M(y) = l}P (YT = y) =
(
m1

m1l1

)
· · ·

(
mk

mklk

)
P (YT = y). (18)

Of course, since the relations above depend only on the exchangeability of the default in-
dicator processes of firms belonging to the same group, they hold also under the kernel
K(ω1, dω2).

3.2 Limits for large portfolios

We now consider the limit (in the sense of convergence in distribution) of the model with k
homogeneous groups as the size m of the portfolio tends to infinity, assuming that k remains
fixed. It will turn out that in the limit the evolution of M becomes deterministic given the
evolution of the economic factor process Ψ.

Our setup is as follows. Denote by Ω(m) = D
(
[0,∞),Rd

)
×D([0,∞), S(m)) the proba-

bility space in model m and define the filtrations {Fm
t }, {F

i,m
t }, i = 1, 2, and {Gm

t } in the
obvious way. We assume that for each m the probability measure P (m) = µ×K(m) satisfies
Assumption 2.1; moreover, µ is assumed to be identical for all m. Denote by m(m)

κ the num-
ber of obligors in group κ of model m, define the process M(m)

t by M (m)
t,κ = Mκ

(
Y(m)

t

)
, and

assume that the transition rates have the group structure as in Assumption 3.1; in particular
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the default intensity of company i in model m equals λ(m)
i

(
ψ,y(m)

)
= h

(m)
κ(i)

(
ψ,M(y(m))

)
.

According to Lemma 3.4, for given ω1 the process M(m)
t is Markov under the measure

K(m)(ω1, dω2). Put Ω̃2 := D([0,∞), [0, 1]k), and denote by K̃(m)(ω1, dω̃2) the distribution
of M(m)

t on Ω̃2 under K(m)(ω1, dω2).
Next we describe the limiting distribution of M(m). Suppose that for all κ = 1, . . . , k

the function h(m)
κ converges uniformly on compacts to some locally Lipschitz function h(∞)

κ :
Rd × [0, 1]k → R+. Denote by M(∞)

t (ω1) =
(
M

(∞)
t,1 (ω1), . . . ,M

(∞)
t,k (ω1)

)′ the solution of the
following system of ODE’s with random coefficients

d

dt
M

(∞)
t,κ (ω1) =

(
1−M

(∞)
t,κ (ω1)

)
h(∞)

κ

(
Ψt(ω1),M

(∞)
t (ω1)

)
, (19)

with initial value M(∞)
0 = l̄ ∈ [0, 1]k. Note that for fixed ω1 ∈ Ω1 and T > 0 the rhs of (19)

is Lipschitz in the second argument, since [0, 1]k is compact and h
(∞)
κ is locally Lipschitz;

hence a solution of (19) exists. For every ω1 the trajectory
[
t 7→ M(∞)

t (ω1)
]

is an element

of Ω̃2. Denote by δ
(
M(∞)(ω1), dω̃2

)
the Dirac measure on Ω̃2 in the point

[
t 7→ M(∞)

t (ω1)
]
,

and define a transition kernel K̃(∞) from Ω1 to Ω̃2 by K̃(∞)(ω1, dω̃2) := δ
(
M(∞)(ω1), dω̃2

)
.

Now we have

Proposition 3.6. Given a sequence of models as above, suppose that limm→∞m
(m)
κ = ∞

for all κ = 1, . . . , k and that limm→∞M(m)
0 = l̄. Then for all ω1 the measure K̃(m)(ω1, dω̃2)

converges weakly to K̃(∞)

l
(ω1, dω̃2).

Proof. Denote by GM
(m)

[ψ] the generator of M(m), and define for f ∈ C1
(
[0, 1]k

)
an operator

GM
(∞)

[ψ] f (̄l) =
k∑

r=1

(
1− l̄κ

)
h(∞)

κ (ψ, l̄)
∂

∂l̄κ
f (̄l). (20)

Note that GM
(∞)

[ψ] is the generator of the process M(∞) defined in (19). It follows from the

Lipschitz continuity of h(∞)
κ and the form of GM

(m)

[ψ] (see (13)), that for all f ∈ C1
(
[0, 1]k

)
and every compact set K ⊂ Rd

lim
m→∞

sup
{∣∣GM

(m)

[ψ] f (̄l) − GM
(∞)

[ψ] f (̄l)
∣∣ : ψ ∈ K, l̄ ∈ [0, 1]k

}
= 0 .

This implies that µ almost all ω1 the transition semigroup of M(m) converges to the semi-
group of M(∞) by Ethier and Kurtz (1986), Theorem 1.6.1, so that the claim follows from
Ethier and Kurtz (1986), Theorem 4.2.5.

Note that the solution of (19) is deterministic given the trajectory (Ψt(ω1))t≥0. This
shows that for m → ∞ the proportion of defaulted companies is fully determined by the
evolution of the economic factors. A similar result has been obtained among others by
Frey and McNeil (2003) in the much simpler context of static Bernoulli mixture models for
portfolio credit risk.

Next we show that the pair of processes (Ψ,M(m)) converges in distribution to (Ψ,M(∞)).
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Corollary 3.7. Suppose that the hypothesises of Proposition 3.6 hold. Then the sequence
(Ψ,M(m)) converges in distribution to (Ψ,M(∞)), i.e. we have for every bounded and con-
tinuous function F : D

(
[0,∞),Rd

)
×D

(
[0,∞), [0, 1]k

)
→ R

lim
m→∞

E(m)
(
F

(
Ψ,M(m))) =

∫
Ω1

F
(
Ψ(ω1),M

(∞)(ω1)
)
µ(dω1) .

Proof. Denote by Ỹ the coordinate process on Ω̃2. We have

E(m)
(
F

(
Ψ,M(m))) =

∫
Ω1

∫
Ω̃2

F
(
Ψ(ω1), Ỹ(ω̃2)

)
K̃(m)(ω1, dω̃2)µ(dω1).

Now the inner integral on the rhs converges for µ almost all ω1 to∫
Ω̃2

F
(
Ψ(ω1), Ỹ(ω̃2)

)
K̃(∞)(ω1, dω̃2) = F

(
Ψ(ω1),M

(∞)(ω1)
)

by Proposition 3.6. Hence the claim follows from the dominated convergence theorem.

Corollary 3.7 applies in particular to individual and joint default probabilities as given
in (15), (16) or (17) or to prices of credit derivatives as discussed in Section 4.

Example 3.8. We now take up the affine model with counterparty risk introduced in
Example 3.2. In order to apply Proposition 3.6, we assume that for all κ the propor-
tion m

(m)
κ
m of firms in group κ converges to some γκ ∈ [0, 1] as m → ∞. This yields

h
(∞)
κ (ψ, l) =

[
λκ,0 +

∑d
j=1 λκ,jψj + λκ,d+1

∑k
r=1 γr

(
l̄r − (1 − e−λrt)

)]+
, and M(∞) solves

the ODE

d

dt
M

(∞)
t,κ =

(
1−M

(∞)
t,κ

) [
λκ,0 +

d∑
j=1

λκ,jΨt,j + λκ,d+1

k∑
r=1

γr

(
M

(∞)
t,r − (1− e−λrt)

)]+
. (21)

Note that counterparty risk (a positive λκ,d+1) implies that deviations of
∑k

r=1 γrM
(∞)
t,r

from the expected level
∑k

r=1 γr(1 − e−λrt) will have a positive feedback effect on default
intensities. Hence the fluctuations in the number of defaults caused by the random evolution
of the economic factors are intensified by counterparty risk, so that we should expect heavier
tails of the distribution of M (∞)

t,κ . This is further illustrated in simulations in Section 5.

4 Pricing of credit derivatives

In this section we provide first results on the pricing of credit risky securities such as corporate
bonds or other vulnerable securities in the context of our counterparty risk model. The main
purpose is to show how Markov process techniques can be fruitfully employed to deal with
pricing problems; a thorough study of pricing credit derivatives in the context of our model
is deferred to further research.

Generalities. Following standard practice in the literature on reduced form credit risk
models such as Lando (1998), we take as given a process (rt)t∈[0,∞) for the risk-free spot-
rate of interest, a money market account Bt with Bt = exp(

∫ t
0 rudu) and an equivalent

martingale measure Q, which is used for pricing. We assume that the spot-interest rate is
a function of the economic factors, i.e. rt = r(Ψt) for some function r : Rd → R, that Q

12



satisfies Assumption 2.1, and that Ψ is a Markov process with generator LΨ, so that the
pair Γ = (Ψ,Y) is Markov. In this setting default-free zero coupon bond prices are given
by

p0(t, T ) = EQ

(
exp

(
−

∫ T

t
r(Ψs)ds

)
| Ft

)
,

and the price in t of any FT -measurable claim H is Ht := EQ
(
exp(−

∫ T
t r(Ψs)ds) H | Ft

)
.

Pricing of vulnerable claims. Consider the pricing of a vulnerable claim of the form
H = f(ΨT )g(YT ) for suitable functions f : Rd → R and g : S → R. A prime example
is a defaultable zero coupon bond issued by firm i with zero recovery or more generally
with recovery of treasury (RT) in the sense of Jarrow and Turnbull (1995) and deterministic
recovery rate δ. For this claim we have f(ψ) = 1 and g(y) = 1{y(i)=0} + δ1{y(i)=1}.

Using the Markov-property of Γt = (Ψt,Yt) we get for the price of our vulnerable claim
in t < T

Ht = EQ
Γt

(
exp

(
−

∫ T−t

0
r(Ψs)ds

)
f(ΨT−t)g(YT−t)

)
=: H(t,Ψt,Yt).

Now we have two possibilities for computing the function H(t,ψ,y). First we can try to
solve directly the backward PDE for the Markov process Γ given by

∂

∂t
H(t,ψ,y) + LΨH(t,ψ,y) + G[ψ]H(t,ψ,y) = r(ψ)H(t,ψ,y), H(T,ψ,y) = f(ψ)g(y).

In case that Ψ follows a diffusion this leads to a linear reaction-diffusion equation; existence
results suitable for financial applications are for instance given in Becherer (2003). Alterna-
tively, we may use a two-step approach, which uses only the Kolmogorov equations for the
conditional transition probability. Here we get

H(t,ψ,y) = Eψ

(
f (ΨT−t) exp

(
−

∫ T−t

0
r(Ψs)ds

)
EKy(ω1,dω2) (g(YT−t))

)
.

The inner expectation can be computed using the backward equation for Ψ or in certain
cases for M; the integral over Ω1 is then computed using Monte Carlo simulation. This
approach can be advantageous, if the direct numerical solution of the backward equation for
Γ is infeasible, for instance because the dimension of the problem is too high.

Simplifications. Further simplifications are possible in the context of the mean-field
model of Assumption 3.1. For example, if the payment is contingent on the survival of
a particular firm i0 from group κ0, i.e. if g(y) = 1{y(i0)=0}, we obtain from (15)

EKy(ω1,dω2)
(
1{YT−t(i0)=0}

)
= EKy(ω1,dω2)

(
MT−t,κ0

)
,

and the expectation on the right hand side can be computed using the backward equation
for Mt, which leads to a substantial reduction of the size of the state space. In case that we
are interested in the simultaneous computation of the prices of several claims with payoff
H = 1{YTn (i0)=0}, 1 6 n 6 N at times t < T1 < · · · < TN , such as in the calibration of the
model to a given term structure of defaultable zero coupon bonds, it may be advantageous
to evaluate the expectations EKy(ω1,dω2)

(
MTn,i0

)
using the Kolmogorov forward equation

for MT (see Lemma 2.2), as this allows us to complete the different expectations “in one
run”.
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Remark 4.1. In certain special cases it is possible to obtain analytical expressions for prices
of zero coupon bonds in Jarrow-Yu type models for counterparty risk using an ingenious
change of measure; see Collin-Dufresne, Goldstein, and Hugonnier (2002). However, the
approach works only for small portfolios and a deterministic factor process.

5 Case studies

We now present a number of simulations, which illustrate the impact of counterparty risk
on default correlations and quantiles of M (the proportion of defaulted companies at some
horizon date T ) in the mean field model proposed in Section 3. For concreteness we work
in the affine model with counterparty risk specified in Example 3.2. In all simulations we
consider a homogeneous portfolio with only one group. The economic factor process is
modelled as one-dimensional square-root process

dΨt = 0.03(0.005−Ψt)dt+ 0.016
√

ΨtdWt , Ψ0 = 0.005 , (22)

and the default intensity equals h(t, ψ, l) =
[
α(0.004 + 5.707ψ) + λ2(l − (1 − e−λ̄t))

]+;
λ̄ = 0.03251 has been chosen so that 1− e−λ̄ corresponds to the one-year default probability
without interaction. For λ2 = 0 and α = 1 our parameters are the same as in Section C.3 of
Yu (2002); they have been taken from the empirical study by Driessen (2002).

We take the horizon to be T = 1 year. In our simulations we increase the parameter
λ2 which controls the strength of the interaction from 0 to 3 and adjust α in order to
ensure that the one-year default probabilities P (Y1(i) = 1) remain unchanged as we vary
λ2. We consider portfolios of size m = 20, m = 100, m = 500 and, using the results from
Section 3.2, the case m = ∞. The distribution of M1 is evaluated in two steps: first we
simulate K = 5000 trajectories of the square root process (22); second we evaluate for each
trajectory the conditional distribution of M1 by solving numerically the Kolmogorov forward
equation using a Runge-Kutta method. The simulation results are presented in Tables 1, 2
and 3 below. Inspection of the tables shows the following observations.

• Quantiles and (except for m = ∞) default correlations ρY = corr(Y1(i), Y1(j), i 6= j

are increasing in λ2.

• The increase is more pronounced for smaller portfolios. For instance, for m = 100 the
99% quantile of M is increased by a factor of almost 4.75 as λ2 increases from 0 to 3;
for m = ∞ the factor is only about 1.64.

Both findings make perfect economic sense. In our counterparty risk model a higher (lower)
than usual number of defaults in the portfolio leads to an increase (decrease) of the default
intensity of the remaining firms in the portfolio and thus to a further increase (decrease)
in the ratio of realized versus expected defaults, so that the resulting distribution of MT

will have more mass in the tails. Now in our model there are two reasons why the number
of defaults should be higher than its theoretical value in the first place: a) we might have
a high realization of Ψ; b) for a given trajectory of Ψ we might have a realization of the
Markov chain with unusually many defaults. As the limit results from Section 3.2 show, for
m→∞ reason b) becomes less and less important, which explains, why the effect of mean-
field interaction is more pronounced for small portfolios. However, as observed for instance
by Schönbucher and Schubert (2001) and Yu (2002), the inability of the standard reduced
form approach to generate sufficient dependency between default is most pronounced for
small portfolios, so that our approach generates dependency where it is “most needed”.
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Note finally that for m = ∞ default correlations seem to vary only very little as λ2 increases
whereas quantiles change a lot, so that default probabilities and default correlations alone
do not determine high quantiles of the distribution of MT . This is interesting, as it contrasts
results of Frey and McNeil (2003) in the context of standard static credit risk models.

20 firms
quantiles

λ2 α P (Y1(i) = 1) ρY 80% 90% 95% 97.5% 99% 99.5%
0 1 0.031987 0.000416 0.05 0.1 0.1 0.15 0.15 0.15
0.5 1.0154 0.031979 0.033164 0.05 0.1 0.15 0.15 0.2 0.25
1 1.0365 0.031982 0.088386 0.05 0.1 0.15 0.2 0.3 0.35
1.5 1.0368 0.031979 0.16749 0.05 0.1 0.2 0.3 0.4 0.45
2 1.0063 0.031995 0.26113 0 0.1 0.25 0.35 0.5 0.55
2.5 0.9646 0.031994 0.36174 0 0.05 0.25 0.45 0.6 0.65
3 0.9249 0.031992 0.46202 0 0 0.3 0.5 0.65 0.75

Table 1: The case of 20 firms.

100 firms
quantiles

λ2 α P (Y1(i) = 1) ρY 80% 90% 95% 97.5% 99% 99.5%
0 1 0.031987 0.000416 0.05 0.06 0.06 0.07 0.08 0.09
0.5 1.003 0.031981 0.007453 0.05 0.06 0.08 0.09 0.1 0.11
1 1.007 0.031989 0.020918 0.05 0.07 0.09 0.11 0.13 0.15
1.5 0.9974 0.031995 0.044018 0.06 0.09 0.12 0.14 0.18 0.2
2 0.9612 0.031991 0.078737 0.06 0.1 0.15 0.18 0.23 0.26
2.5 0.9039 0.031996 0.1274 0.05 0.12 0.18 0.23 0.3 0.34
3 0.8353 0.031997 0.19118 0.02 0.12 0.21 0.29 0.38 0.43

Table 2: The case of 100 firms.

500 firms
quantiles

λ2 α P (Y1(i) = 1) ρY 80% 90% 95% 97.5% 99% 99.5%
0 1 0.031987 0.00041579 0.04 0.044 0.046 0.05 0.054 0.056
0.5 1.0004 0.031979 0.0019929 0.042 0.046 0.052 0.056 0.062 0.066
1 1.0014 0.03198 0.0050753 0.044 0.052 0.058 0.066 0.072 0.078
1.5 1.0003 0.031994 0.01093 0.048 0.06 0.07 0.078 0.09 0.098
2 0.9893 0.031992 0.020835 0.052 0.07 0.084 0.098 0.114 0.126
2.5 0.965 0.031993 0.036355 0.056 0.082 0.104 0.122 0.148 0.164
3 0.93 0.031992 0.058283 0.06 0.096 0.128 0.156 0.19 0.214

Table 3: The case of 500 firms.
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limit of firms
quantiles

λ2 α P (Y1(i) = 1) ρY 80% 90% 95% 97.5% 99% 99.5%
0 1 0.031987 0.000416 0.03499 0.03666 0.03803 0.03926 0.04076 0.04204
0.5 1 0.031989 0.000413 0.03562 0.03766 0.03926 0.04086 0.04274 0.04403
1 1 0.03199 0.00041 0.03642 0.03898 0.04091 0.04292 0.04516 0.04669
1.5 1 0.031992 0.000405 0.03753 0.04074 0.04312 0.04554 0.04857 0.0505
2 0.9996 0.031993 0.000404 0.03906 0.04319 0.04624 0.04928 0.05304 0.05535
2.5 0.9981 0.031985 0.000421 0.04083 0.0463 0.05022 0.05433 0.0592 0.06256
3 0.9953 0.031982 0.000427 0.04324 0.05031 0.05541 0.06107 0.06694 0.0711

Table 4: The limiting case, where m = ∞.
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Schönbucher, P., and D. Schubert (2001): “Copula-dependent default risk in intensity
models,” working paper, Universität Bonn.

Shaked, M., and G. Shanthikumar (1987): “The multivariate hazard construction,”
Stochastic Processes and Their Applications, 24, 241–258.

Yu, F. (2002): “Correlated defaults in reduced-form models,” working paper, University of
California, Irvine.

A Numerical Issues

A.1 Simulation

We now describe an approach how to simulate a trajectory of the process Γt with dynamics
as in Assumption 2.1 and initial values Γ0 = (ψ(0),y(0)) (where typically y(0) = (0, . . . , 0)′)
up to some finite horizon T . The approach follows the standard construction of (conditional)
continuous time Markov chains as described for instance in Bielecki and Rutkowski (2002).

First we simulate a trajectory (Ψt)06t6T of Ψ. Depending on the specific model for Ψ
various approaches can be used; see for instance Duffie and Singleton (1998) or, if Ψ follows
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a diffusion process, Kloeden and Platen (1992). In most cases a simple Euler approximation
will be sufficient.

Next we have to simulate our first default time τ (1) := inf{τi : 1 6 i 6 m}. It is well-
known that τ (1) has hazard-rate process λ(1)

t =
∑m

i=1

(
1 − y(0)(i)

)
λi(Ψt,y(0)). Hence we

simply simulate a unit exponential random variable θ1 independent of Ψ and put

τ (1) := inf
{
t > 0 :

∫ t

0
λ(1)

s ds > θ1

}
.

Now we have to determine the identity ξ(1) ∈ {1, . . . ,m} of the firm defaulting in τ (1). It is
shown for instance in Bielecki and Rutkowski (2002) that

P (ξ(1) = i | τ (1) = t) =

(
1− y(0)(i)

)
λi(Ψt,y(0))∑m

j=1

(
1− y(0)(j)

)
λj(Ψt,y(0))

=: p(1)
i ;

moreover, given the probabilities p(1)
i the rv ξ(1) is independent of Ψ and τ (1). Hence ξ(1)

can be simulated as realisation of a random variable ξ, independent of all other variables
simulated so far, with P (ξ = i) = p

(1)
i for 1 6 i 6 m.

In case that τ (1) > T we have accomplished our task and stop. Else we define the
vector y(1) := (y(0))ξ(1)

(recall the notational convention (1)) and for t > τ (1) the process
λ

(2)
t =

∑m
j=1(1− y(1)(j))λj(ψt,y

(1)). In analogy to the previous step we put τ (2) := inf{t >

τ (1) :
∫ t
τ (1) λ

(2)
s ds > θ2}, where θ2 is again a unit exponential rv, independent of all other

variables. ξ(2), the identity of the firm defaulting at time τ (2), is determined as before, using
the identity

P (ξ(2) = i | τ (2) = t) =

(
1− y(1)(i)

)
λi(Ψt,y(1))

λ
(2)
t

.

The algorithm proceeds this way until we have reached some j with τ (j) > T or until all
companies are default. For typical parameter values we will observe only a few defaults, so
that the algorithm to generate a trajectory of Y proceeds quite fast. Moreover, as pointed out
by Duffie and Singleton (1998), the algorithm described above is also an efficient procedure
for simulating reduced-form models with conditionally independent defaults.

A.2 Forward equations

Proof of Lemma 2.2. We identify G[ψ] with an
∣∣S∣∣ × ∣∣S∣∣ matrix (Λij(t | ω1))1≤i,j≤

∣∣S∣∣; G∗
[ψ]

corresponds then to the transpose matrix. For this we choose a bijection I : {1, . . . ,
∣∣S∣∣} → S,

i 7→ yi. By definition of the generator of Y we have for i 6= j

Λij(t | ω1) =

{
(1− yi(k))λk(Ψt(ω1),yi), if yj = yk

i for some k ∈ {1, . . . ,m},
0 else .

(23)

For i = j we put Λii(t | ω1) = −
∑

j≤
∣∣S∣∣,j 6=i

Λij(t | ω1), so that

Λii(t | ω1) = −
m∑

k=1

(1− yi(k))λk(Ψt(ω1),yi) . (24)

Now fix y = I(j0) ∈ S. Since G∗
[Ψt(ω1)] corresponds to multiplication with the transpose

matrix (Λ∗
ij(t | ω1))16i,j6

∣∣S∣∣, the forward equation becomes

∂p(t, s,x,y | ω1)
∂s

=

∣∣S∣∣∑
i=1

Λij0(s | ω1)p(t, s,x,yi | ω1) .
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Using the definition of Λij(s | ω1) in (23) and (24) and the relation (1 − yk(k)) = y(k) we
obtain the final version (9) of the forward equation.

Next we consider forward equations for Mt. We have

Lemma A.1. Assume that the default intensities satisfy Assumption 3.1. Then the adjoint
operator G∗M

[Ψt(ω1)] to the generator GM
[Ψt(ω1)] of Mt is given by

G∗M
[ψ] f (l) =

k∑
κ=1

1{lκ>0}
(
1 +mκ(1− lκ)

)
hκ

(
ψ, l− 1

mκ
eκ

)
f
(
l− 1

mκ
eκ

)
(25)

−
k∑

κ=1

mκ(1− lκ)hκ

(
ψ, l

)
f
(
l
)
.

Proof. As in the proof of Lemma 2.2 we define a
∣∣SM

∣∣× ∣∣SM
∣∣ matrix (Λij(t|ω1))i,j=1,...,

∣∣SM
∣∣

and identify the generator GM
[ψ] with the matrix through a bijection I : {1, 2, . . . ,

∣∣SM
∣∣} →

SM , I(i) = l
(i). By the definition of the generator of M (see Lemma 3.4) we have for i 6= j

Λij(t | ω1) = mκ(1− l
(i)
κ )hκ(Ψt, l

(i)), (26)

if there is a κ ∈ {1, · · · , k} with l(j)κ = l
(i)
κ + 1

mκ
and l(j)γ = l

(i)
γ for γ 6= κ, and Λij(t | ω1) = 0

else; for i = j we put Λii(t | ω1) = −
∑∣∣SM

∣∣
j=1
j 6=i

Λij(t | ω1) = −
∑k

κ=1mκ(1− l
(i)
κ )hκ(Ψt, l

(i)).

The generator GM
[ψ] corresponds to multiplication with the matrix (Λij(t|ω1))i,j=1,...,

∣∣SM
∣∣

and the operatorG∗M
[Ψt(ω1)] to multiplication with the transpose matrix (Λ∗

ij(t|ω1))i,j=1,...,
∣∣SM

∣∣.
For a fixed l(0) = I(j0) and a arbitrary l(1) ∈ SM we therefore have

G∗M
[Ψt(ω1)]f(l(0)) =

∣∣SM
∣∣∑

i=1

Λij0(s | ω1)f(l(0))

=
k∑

κ=1

1
{l(0)κ >0}

(
1 +mκ(1− l

(0)
κ )

)
hκ

(
Ψs, l

(0) − 1
mκ

eκ

)
f(l(0) − 1

mκ
eκ | ω1)

−
k∑

κ=1

mκ(1− l
(0)
κ )hκ

(
Ψs, l

(0))
f(l(0) | ω1) .

The precise form of the forward equation for the transition probabilities of Mt is now
immediate.

Usually the probability to have many defaults is very small, especially if we have a large
number of firms, i.e. P (MT ≥ α) ≈ 0 for α ∈ [0, 1] large enough. Therefore it is useful for
the numerical solution of the backward or forward Kolmogorov equation to stop the process
M at a level α.

In the following discussion we take k = 1; similar simplification can be obtained in the
case with more than one groups. The cardinality of the state space for the stopped process
is only dαme+1 instead m+1 of the original process; moreover, as the process Mt is strictly
increasing in t we have for l < α the equality P

(
Mt ≤ l

)
= P

(
Mα

t ≤ l
)
, where Mα

t is the
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stopped process. Moreover, we obtain the stopped process by replacing the default intensity
h̃(ψ, l) for individual firms with the new default intensity

h̃(ψ, l) = 1{l<α}h(ψ, l);

the equation for the forward and backward operator of the stopped process follows imme-
diately from this representation. Moreover, we have the following error estimate for the
expectation

EMt − EMα
t ≤ (1− dαme

m
)P (Mα

t =
dαme
m

), (27)

where dxe := min{n ∈ N, n ≥ x}. Relation (27) can be verified as follows. We have

EMt − EMα
t =

m∑
i=dαme

i

m
P (Mt =

i

m
)− dαme

m
P (Mt ≥

dαme
m

)

≤
m∑

i=dαme

P (Mt =
i

m
)− dαme

m
P (Mt ≥

dαme
m

)

= (1− dαme
m

)P (Mt ≥
dαme
m

).
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