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1. Introduction

Applications of Credit Risk Models:

a) Credit Risk Management

• computation of loss distribution and associated risk measures (such

as VaR) for portfolios of defaultable bonds and loans

• determination of risk capital (economic capital or regulatory capital)

b) Pricing of credit risky securities such as

• corporate bonds, swaps and vulnerable securities (eg. options whose

writer may default)

• single name credit derivatives such as credit default swaps

• portfolio related products such as collaterized bond obligations

(CDO’s) or basket credit derivatives (eg. i-th-to-default swap)
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Modelling dependent defaults

Modelling of dependence between defaults critical for performance of

credit risk models in both areas

Sources for dependence between defaults

• Dependence between defaults is caused by common factors (eg.

interest rates and changes in economic growth) affecting all obligors

• Direct interaction: default of company A may affect the default

probability of company B and vice versa because of direct business

relations. This type of interaction between defaults is termed

counterparty risk

• Default of one firm may contain information about financial

health/default probability of other firms
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Impact of dependence on loss distribution
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Number of annual defaults (Source: Moodys)
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2. Existing Models: Overview

For pricing credit risky securities we need dynamic (continuous time)

models. Basically there exist two classes.

• Firm value models: Default occurs if the asset value of the firm

(typically modelled as a diffusion) falls below some default threshold

(interpreted as liability).

• Reduced form models: default occurs at the first jump of some

point process, typically with stochastic intensity.

This distinction is closely related to information available to

investors. As shown eg. by [Duffie and Lando, 2001], from the

viewpoint of investors who have incomplete information about firm

value or default thresholds a firm value model may become a

reduced form model.
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Reduced-form Models: Overview

Existing reduced form portfolio models can be divided in following

model classes

• Standard models with conditionally independent defaults such as

[Duffie and Singleton, 1999] [Lando, 1998] . . .

• Copula models such as [Li, 2001], [Schönbucher and Schubert, 2001],

[Laurent and Gregory, 2003]

• Explicit models for counterparty risk (focus of part 3 and 4).

In this class default intensity of one firm is modelled as function of

default state of other firms.
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General Model Structure and Notation:

• Portfolio of m counterparties. Default-indicator process

Yt =
(
Yt(1), . . . , Yt(m)

)′ ∈ {0, 1}m. Yt(i) = 1 if firm i

default in t, Yt(i) = 0 else.

• Default time: τi = inf{t ≥ 0 : Yt(i) = 1} ⇔ Yt(i) = 1{τi≤t}.

• S := {0, 1}m state space of Y; note cardS = 2m;

• d-dimensional state variable process Ψ = (Ψt)t∈[0,∞) modelling

the evolution of macroeconomic variables; typically Ψ is modelled

as autonomous Markov process.

• Filtrations: Define F1
t := σ(Ψs : s ≤ t) , F2

t := σ(Ys : s ≤ t),
Ft := F1

t ×F2
t ; Investors have access to {Ft}.
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Models with conditionally independent defaults

Definition: Given functions λi : Rd → R+, 1 ≤ i ≤ m with∫ t

0
λi(Ψs)ds <∞ a.s. for all t. Y resp. the random times (τi)1≤i≤m

follow a model with conditionally independent defaults and default

intensities λi(Ψs) if

• P (τi > t | F1
∞) = P (τi > t | F1

t ) = exp
(
−
∫ t

0
λi(Ψs)ds

)
• The rvs τ1, . . . , τm are conditionally independent given F1

∞,

i.e. given information about the economic factors

Construction: Given a vector Θ = (Θ1, . . . ,Θm)′ of independent

standard exponentially distributed rvs indep. of F1
∞. Then

τi := inf{t ≥ 0 :
∫ t

0
λi(Ψs)ds ≥ Θi} has the desired properties.

Relation to martingales: Yt(i)−
∫ t∧τi

0
λi(Ψs)ds is an

{Ft}-martingale.
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Models with conditionally independent defaults II

Advantage: Easy to treat; in particular, the models lead to

valuation formulae for credit derivatives with similar form as in

default-free term-structure models.

Example: Consider vulnerable claim H = XT · 1{τi≥T} for X

F1
T -measurable. Assume that spot rate equals rt = r(Ψt) and that

Y follows model with cond. independent defaults under equivalent

martingale measure Q. Then price of H in t equals

Ht = EQ
(

exp(−
∫ T

t

r(Ψs)ds) H | Ft

)
(1)

= 1{τi>t}E
Q
(

exp(−
∫ T

t

r
(
Ψs) + λi(Ψs)ds

)
XT | F1

t

)
(2)

These expressions can be computed using techniques from

default-free term structure models; computations are particularly

easy in affine models
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Affine Models: CIR Square Root Diffusions

Suppose that Ψ follows a CIR square root diffusion model, i.e.

dΨt = κ(θ̄ −Ψt)dt+ σ
√

ΨtdWt for constants κ, θ̄, σ > 0, so that

drift and diffusion coefficients are affine functions of Ψt. Then we

get for any constant γ

E

(
exp(−

∫ T

t

γΨsds) | Ft

)
= exp(α(t, T ) + β(t, T )Ψt) (3)

where α and β are functions only of time, which solve the ODEs

α̇ = −κθ̄β β̇ = γ + κβ − 1
2σ

2β2 , α(T, T ) = β(T, T ) = 0.

(the ODE for β is a Ricatti equation and can be solved explicitly).

From this and relations (3), (1) prices of defaultable bonds are easy

to compute. For extensions see the work of Duffie, Singleton and

coworkers summarized eg. in [Duffie and Singleton, 2003]
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Copula Model

Disadvantage of models with conditional independent defaults:

Default correlations often not sufficiently high, and ‘simultaneous

defaults too rare compared to data if Ψ is identified with smooth

macroeconomic factors, in particular in small portfolios. ⇒
development of extensions such as the copula model.

Idea of copula model: In models with cond. independent defaults

τi = inf{t ≥ 0 :
∫ t

0

λi(Ψs)ds ≥ Θi}

= inf{t ≥ 0 : 1− exp(
∫ t

0

λi(Ψs)ds) ≥ Ui := 1− exp(Θi)} ,

where the Ui are independent and U(0, 1) distributed. In copula

models we generate other dependence structure by assuming

U = (U1, . . . , Um) ∼ C, where C is some copula function, i.e. a

distribution function on [0, 1]m with uniform marginals (but

dependent components).
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Copula models: some examples

Gaussian Copula: an implicit copula. Let X be standard

multivariate normal with correlation matrix P .

CGa

P (u1, . . . , ud) = P (Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud)

= P
(
X1 ≤ Φ−1(u1), . . . , Xd ≤ Φ−1(ud)

)
where Φ is df of standard normal. P = I gives independence.

Similar construction with other distributions such as multivariate t.

Clayton Copula: a parametric copula. Here

CCl
β (u1, . . . , ud) =

(
u−β

1 + . . .+ u−β
d − 1

)−1/β

for β > 0. β → 0 gives independence ; β →∞ gives comonotonicity

(perfect positive dependence) .
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Copula models

Factor copulas. Often dependence between the Ui is generated by

assuming that all components depend on common unobservable

factor Z. For instance in Gaussian copula we may assume that

Ui = Φ(Xi) and Xi = ρZ +
√

1− ρ2εi for Z, εi independent

standard normal. Z models unobservable shock which hits all firms.

Advantages of copula model. In copula models we may have

credit contagion,i.e. default of firm i affects conditional default

probability of firm j 6= i.

Moreover, copula models are easy to calibrate to given term structure

of credit spreads, as prices of corporate bonds can be computed as in

model with conditionally independent defaults, at least in t = 0.

Drawbacks. Results of model are very sensitive to copula choice;

Unintuitive parametrization of dependence.
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3. Explicit Models for Counterparty Risk

General idea: Include counterparty risk by modelling default

intensity as function λi(Ψt,Yt) of the state variables Ψt and of the

state Yt of other obligors at time t;

Advantages: Intuitive parametrization of dependence; accounting

for counterparty risk; preserves ease of simulation

Disadvantages: Calibration potentially difficult; new techniques for

evaluation needed;

Our presentation is based on [Frey and Backhaus, 2003]. Our

contributions

• We employ Markov process techniques such as Kolmogorov

equations

• We study models with mean-field interaction, leading to

parsimonious, plausible and relatively tractable models
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Related work

• [Davis and Lo, 2001]: Counterparty risk, uses Markov chains

• [Jarrow and Yu, 2001]: only very special types of interaction; model

is studied using Cox process techniques. Extensions by [Yu, 2002],

(proper model construction and study of default correlations.)

• [Kusuoka, 1999] and [Bielecki and Rutkowski, 2002]: mathematical

aspects

• [Collin-Dufresne et al., 2002]: analytical evaluation of certain

derivatives using a particular change of measure

• [Gieseke and Weber, 2002]: application of interacting particle

systems literature to default contagion
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4. The Model

Informal description: Evolution of macroeconomic variables

modelled by d-dimensional state variable process Ψ = (Ψt)t∈[0,∞);

For a given realization of the state variable process the default

indicators Yt are constructed (and simulated) as time

inhomogeneous Markov chain using Markov process techniques.

Transition rates of this chain correspond to default intensities.

Formally the Markov chain is constructed using transition kernels.

Formal description:

Denote by S := {0, 1}m state space of Y; note |S| = 2m.

Define Ω1 := D([0,∞),Rd), Ω2 := D ([0,∞), S), with standard

filtration {F i
t}; put (Ω,F) := (Ω1 × Ω2,F1

∞ ×F2
∞), Ft = F1

t ×F2
t .

Let Ψ be coordinate process on Ω1, Y coordinate process on Ω2.
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The Model ctd

Probability measure. Consider measures of the form

P = µ⊗Ky(ω1, dω2) for some measure µ on Ω1 (the law of the

factors) and a stochastic kernel Ky : Ω1 ×F2 → [0, 1].

The next assumption determines dynamics of Yt for given ω1.

Assumption. Under Ky(ω1, dω2) Y is a time-inhomogeneous

Markov chain with initial value y and infinitesimal generator

G[Ψt(ω1)]f(y) =
m∑

i=1

(1− y(i))λi (Ψt(ω1),y))
(
f(yi)− f(y)

)
,

where f : S → R, and yi is obtained from y by flipping the ith

coordinate.
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Comments

Under previous assumption we have

• λi(Ψt,Yt) is the martingale default intensity of firm i, i.e. Yt(i)−∫ t∧τi

0
λi(Ψs,Ys)ds is a martingale. (τi default time of obligor i).

• The form of G[Ψt(ω1)] excludes joint defaults

• If Ψ is Markov, the pair Γt = (Ψt,Yt) is jointly Markov

• The model is as easy to simulate from as the model with conditional

independent defaults, using the standard approach for simulating

Markov chains.
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Examples for default intensity λi
Primary secondary framework. Type of interaction considered in

[Jarrow and Yu, 2001]. Two types of firms

• primary firms: their default intensity depends only on Ψ

• secondary firms: their default intensity depends on Ψ and on

default-state of primary firms

Note that here a firm cannot simultaneously affect other firms and

be affected by them.

Typical interpretation: primary firms big corporations, secondary

firms commercial banks with credit exposure to primary firms.

Example: m = 2 and d = 1; Ψt is identified with short rate rt; firm

1 is primary, firm 2 secondary. Put

λ1(r,Y) = λ1,0 + λ1,1r , λ2(r,Y) = λ2,0 + λ2,1r + λ2,21{Y (1)=1}
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Models with mean-field interaction

Primary secondary framework typical example of local interaction,

where default intensity is affected by state of a few “neighbours”.

Alternatively consider global or mean-field interaction. Here default

intensities depend on the overall proportion of defaulted firms at t.

Formally. Define empirical distribution ρ(Yt, ·) = 1
m

∑m
i=1 δYt(i)(·)

of defaults at t and note that ρ(Yt, {1}) gives proportion of

defaulted companies. Put λi (Ψt,Yt) = h
(
Ψt, ρ(Yt, {1})

)
for some

continuous function h : Rd × [0, 1] → R;

Remarks. 1) Typically h will be increasing in its second argument.

2) Our results extend to models with different homogeneous groups.

3) Mean field interaction makes immediate economic sense;

moreover, it is natural type of interaction for a portfolio consisting of

different homogenous goups.
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Kolmogorov equations
Kolmogorov equations are useful tools for analyzing the model.

Define for 0 ≤ t ≤ s <∞ conditional transition function of Y by

p(t, s,x,y | ω1) := EK(ω1,·) (Ys = y | Yt = x) , x,y ∈ S .

Backward equation. for (t,x) → p̃(t,x) = p(t, s,x,y | ω1)

∂

∂t
p̃(t,x) +

m∑
i=1

(1− x(i))λi (Ψt(ω1),x)
(
p̃(t,xi)− p̃(t,x)

)
= 0

Forward equation. for (s,y) → p̄(s,y) = p(t, s,x,y | ω1)
∂

∂s
p̄(s,y) =

m∑
k=1

(y(k))λk

(
Ψs(ω1),yk

)
p̄(s,yk)

−
m∑

k=1

(1− y(k))λk (Ψs(ω1),y) p̄(s,y)

Note that both equations are ODE-systems of size S = 2m.
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Pricing credit risky bonds and vulnerable claims

Assumptions: Model structure satisfied under equivalent martingale

measure Q; Ψ is Markov under Q; default free short-rate equals

rt = r(Ψt).
Consider vulnerable claim H = f(ΨT )g(YT ). An example is a

defaultable zero coupon bond with zero recovery where f ≡ 1,

g(YT ) = 1{YT (i)=0}. Price of H in t < T :

Ht = EQ
(
exp
(
−
∫ T

t

r(Ψs)ds
)
H | Ft

)
= EQ

(Ψt,Yt)

(
exp
(
−
∫ T−t

0

r(Ψs)ds
)
f(ΨT−t)g(YT−t)

)
= EΨt

(
exp
(
−
∫ T−t

0

r(Ψs)ds
)
f(ΨT−t)EKYt

(ω1,dω2) (g(YT−t))
)

and the inner expectation can be computed via Kolmogorov.
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5. Models with mean field interaction

For large portfolios general types of interaction too complex due to

exponential growth of state space. Model with homogeneous groups

and mean field interaction economically reasonable way to reduce

size of state space.

Model: Put M t := ρ(Yt, {1}) (proportion of defaulted firms), and

assume λi (Ψt,Yt) = h
(
Ψt,M t

)
. (only one group for simplicity)

Dynamics of M t: Under our assumptions M t follows a conditional

Markov chain with generator GM
[Ψt(ω1)]

given by

GM
[Ψt(ω1)]

f (l) = m(1− l)h
(
Ψt(ω1), l

) (
f
(
l +

1
m

)
− f

(
l
))

and state space SM = {0, 1
m, . . . , 1}. Note that |SM | = m+ 1.
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Models with mean field interaction ctd

Default probabilities and correlations. These quantities can be

computed from distribution of M t using exchangeability. We have

P (YT (i) = 1) = E(MT ) and P (YT (i) = 1, YT (j) = 1) ≈ E
((
MT

)2)
Limits for large portfolios. Suppose that m→∞, and consider

sequence of models as above with distribution of factors Ψ identical

for all m and with hm → h∞ uniformly on compacts. Define

M
(∞)

t (ω1) as solution of the following system of ODE’s with random

coefficients

d

dt
M

(∞)

t (ω1) =
(
1−M

(∞)

t

)
(ω1)h(∞)

(
Ψt(ω1),M

(∞)

t (ω1)
)
. (4)
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Limits for large portfolios

Proposition. As m→∞ the sequence (Ψ,M
(m)

) converges in

distribution to (Ψ,M
(∞)

).

Comments

• Note that
[
t 7→ M

(∞)

t (ω1)
]

is deterministic given ω1. Hence for

m→∞ the proportion of defaulted companies is fully determined

by the evolution of the economic factors. Similar result in

static Bernoulli mixture models; see [Frey and McNeil, 2003] or

[Gordy, 2001].

• Impact of fluctuations of Ψt on proportion of defaulted firms is

increased by mean-field interaction.
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An affine reference model

Given constants λj ≥ 0, j = 0, . . . , d+ 1 and “average default

intensity” λ̄ we put

h(t,ψ, l) =
[
λ0 +

d∑
j=1

λjψj + λd+1(l − (1− e−λ̄t))
]+
.

We assume that factor processes follow square-root diffusions.

Interpretation. λd+1 > 0 ⇒ default intensity is increased

(decreased) if proportion of defaulted companies higher (lower) than

expected. λd+1 = 0 ⇒ standard framework.

Form of limit model:

d

dt
M

(∞)

t =
(
1−M (∞)

t

)[
λ0+

d∑
j=1

λjΨt,j+λd+1

(
M

(∞)

t −(1−e−λ̄t)
)]+

.
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Default correlations in affine model

We now study default correlation and quantiles of MT in our

reference model (joint work with J. Backhaus, Leipzig).

Fix horizon T > 0. Default correlation of two firms i, j then given by

corr(YT (i), YT (j)); we have (as YT (i), YT (j) are exchangeable)

corr(YT (i), YT (j)) = ρY (T ) :=
E(YT (i)YT (j))− π2

π − π2
, where

π = E(MT ) is default probability of individual firm.

We carried out a simulation study in our affine model with one

factor, varying the strength of mean-field interaction as given by λ2.

Parameters for factor model were taken from Yu (2002) and adjusted

so that default probabilities remain unaltered as λ2 increases.
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Some results from a simulation study

100 firms

λ2 P (Y1(i) = 1) ρY Quantile

90% 95% 97.5% 99%

0 0.031987 0.000416 0.06 0.06 0.07 0.08

1 0.031989 0.020918 0.07 0.09 0.11 0.13

3 0.031997 0.19118 0.12 0.21 0.29 0.38

The case m = ∞
λ2 P (Y1(i) = 1) ρY Quantile

90% 95% 97.5% 99%

0 0.03199 0.00042 0.0367 0.0380 0.0393 0.0408

1 0.03199 0.00041 0.0390 0.0409 0.0429 0.0452

3 0.031982 0.00043 0.0503 0.0554 0.0611 0.0669
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Conclusion and Outlook

• High quantiles and (to a lesser extent) default correlation are

increased by mean-field interaction. Effect of varying λ2 more

pronounced for smaller portfolios

(Default dependency where it is most needed).

• Mean-field interaction might be possible way to generate clustering

of defaults observed in real data. More generally: some concepts

from statistical physics could be useful for modelling interactive

phenomena in finance and economics.

• Next steps: consider pricing of basket credit derivatives.
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