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Abstract

It is well known that financial markets exhibit periods of high
activity and low activity. In the present paper high frequency data
of the S&P 500 futures stock index from January, 1988 until August
2001 is used to analyze this phenomenon. The aim is to describe the
activity in terms of piecewise linear functions, and to relate news items
to transition epochs.
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1 Introduction

High frequency data for financial processes, in the setting of diffusion models,
allow one to obtain a good estimate of the quadratic variation of the process
and hence of the volatility as a function of time. In the classical Black
and Scholes set-up the squared volatility is the derivative of the quadratic
variation of the log price process. This relation remains valid for general
diffusion models.
For the S&P 500 futures index, over the period 1988-2001, using 650 000 ob-
servations, one obtains for the quadratic variation the continuous, increasing
function q̂ in figure 1. In this graph one may distinguish regimes during
which the slope is approximately constant. At certain points, marked b for
breakpoint in the graph, we see abrupt changes in the slope of the function.
At other points on the graph there is a change in the slope which is less
abrupt. Occasionally there is a short period of very high activity, marked by
bb.
The graph of q̂ in figure 1 was obtained in Peters and de Vilder (2002a). It
raises two questions.
1) Is it possible to use statistics in order to quantify the visual information
present in the graph of q̂? There is a large literature on estimating the
location of a single breakpoint, but for an indefinite number of breakpoints
less is known. The method used in this paper is inspired by Bai and Perron
(2001) and based on Fisher (1958). Very little is known about the volatility
process. Indeed it is only with the advent of high frequency data that one
can observe this process. Our statistical analysis is based on the assumption
that the observed sample function in figure 1 is the sum of a piecewise linear
function and a noise process δB where B is a standard Brownian motion and
δ a positive constant. There are indications that δ may vary from regime
to regime but in this paper we have opted for a simple model, and taken δ
constant.
2) If the statistical analysis supports the visual impression of a piecewise
linear function then one should be able to give confidence intervals for the
breakpoints, thus creating the possibility of linking these points to real world
events.
It remains unclear how one should interpret a piecewise constant volatility
in terms of economic theory. An analogy which comes to mind is quantum
physics where the state of the system is a discrete variable and the system
may jump from one state to a higher or lower state by absorbing or emitting
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a photon. A look at figure 13 will help to clarify this analogy.
We shall discuss the relevant literature briefly now. Hamilton (1989) focuses
on estimating regime switching models with a finite number of states. See
also Franses and van Dijk (2000) and their references on regime switching
models and their application to volatility. Several authors have commented
on the presence of breakpoints (also called change points) in financial data.
Timmerman (2001) discusses the existence of breakpoints in the dividend
process of U.S. stocks. Mikosh and Starica (1999) use a GARCH model to
detect structural changes in financial data. Diebold and Inou (1999) show an-
alytically that long memory in processes (for instance the volatility process)
may be due to the presence of structural breaks. Jackwerth and Rubinstein
(1996) analyze option prices on the S&P 500 index and observe different prob-
ability distributions for implied binomial trees before and after the crash of
1987. Davies (2003) estimates piecewise constant volatility models. There
the piecewise constant volatility function is selected because of its simplic-
ity. Davies analyzes a similar data set as we do using an entirely different
method for estimating the number and location of breakpoints. He finds 64
breakpoints over a 30 year period for the S&P 500 index. Bai and Perron
(1998, 2001) investigate breakpoints in a multiple linear regressions model
which is applied to interest rates over a 25 year period.
The effect of news on financial processes has been studied extensively. Berry
and Howe (1994) show that the number of news items released by the Reuters
News Service is significantly related to the volume but insignificantly related
to the volatility of the S&P 500. See also the work of Cutler, Poterba and
Summers (1989) where both political and economic news items are linked to
price fluctuations. Contrary to the two above cited papers Ederington and
Lee (1993) find that large fluctuations in financial markets may be coupled
to significant economic news events. Andersen and Bollerslev (1998) use high
frequency data to investigate the effect of economic news on foreign exchange
rates, US$ vs DM. Macro-economic news can clearly be linked to time-points
of high volatility. However, they find little evidence of lasting effects. The
main impact has disappeared after ten to twenty minutes.
We mention a possible application of our research. Duan, Popova and
Ritchken (2002) derive option pricing formulae in a framework where volatil-
ity switches from regime to regime. In their setup the number of states is
finite. See also the work of Buffington and Elliott (2002) for the application
of option pricing under regime switching models. Our empirical analysis may
provide some information on the parameters of such a model. Since we ob-
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serve regimes which last for several months or even years, such a model may
be useful for pricing long term options.
The present paper is organized as follows. Section 2 describes our data set.
In section 3 we construct optimal piecewise linear approximations to the
graph of q̂ with a prescribed number of breakpoints. In section 4 a simple
probabilistic model is introduced. This allows us to estimate the number of
breakpoints and to construct confidence intervals for the breakpoints. We
find 26 breakpoints. In section 5 we try to link these breakpoints to news
items indicating severe financial or economic shocks. The paper closes with
a short discussion and a comparison with the breakpoints found in the inte-
grated squared volatility of a small European stock index, the Dutch AEX.

2 Data

In this section we give a brief description of the data. Our data set consists
of intraday future prices on the S&P 500, traded at the Chicago Mercantile
Exchange over the period January 2, 1998 - August 31, 2001. We always use
the future contract with the shortest time horizon. There are four expiration
months: March, June, September, and December. We use future prices
rather than the cash index in order to avoid the effects of non-synchronous
trading, see Dacorogna et al. (2001). The bid-ask effect disappears for two
minutes intervals. This determines the choice of the length of our interval.
The selection from our data set consists of approximately 650,000 observa-
tions. In total we have 3430 trading days. The daily quadratic variation qd
is obtained by summing the squared log increments, corrected for a linear
drift. (The drift term is so small that it could have been omitted without
affecting our results.) The time-change q̂, plotted in figure 1, is given by

q̂(d) =
d
∑

i=1

qi, d = 1, ..., 3430.

In Peters and de Vilder (2002a) it is shown that the hypothesis that the
time-changed S&P 500 is a Brownian motion can not be rejected. In the
latter paper one may find more details on our data set, and the basic model.
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feasible. Even if one imposes the condition that the distance between suc-
cessive breakpoints equals at least 50 there still are far too many cases to
consider.
It has been suggested to use a dynamic approach, the sample splitting method,
see Chong (2001). This simple method yields a piecewise linear approxima-
tion in O(mD) steps. In this method one first determines the best approxi-
mation with one breakpoint. Now proceed inductively. If the approximation
lk has been found, then for each of the intervals J0, ..., Jk, find the best ap-
proximation with one breakpoint. Finally, pick that interval which yields
the largest decrease in the error, where the error is defined as the distance
between the original function and its piecewise linear approximation.
Unfortunately, this method does not always give the best piecewise linear
approximation. This flaw is demonstrated in the next example.

Example 1 Consider the piecewise linear function in figure 2. Distance
being measured in the L2 norm, the first optimal point and hence the first
breakpoint is 50. The second division points are 40 and 60. So for m = 2
one obtains either the partition {40, 50} or {50, 60}, but not {40, 60}.

XXXXXXXXXXXX¡
¡
¡
¡
¡
¡
XXXXXXXXXXXX

5040 600 100

Figure 2: An example of a piecewise linear function with two breakpoints.

We shall now present a method that takes O(D3) steps. This method is
based on the Suboptimization Principle in Fisher (1958), page 795, which
states: If lm is the optimal approximation to q̂ on [0, D] with m breakpoints
b1, ..., bm then the restriction of lm to [0, bm] is the optimal approximation to
q̂ on [0, bm] with m− 1 breakpoints.
In order to determine the best piecewise linear approximations we need a
measure ε for the error of the approximation. There are many candidates,
that strictly speaking need not be distance measures:

∫

|q − lm|dx,
∫

(q − lm)
2dx,

(
∫

(q − lm)
2dx

)
1
2

, sup(q − lm)
2.
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Given the piecewise linear approximation lm with breakpoints b1, ..., bm let
εi = ε[bi, bi+1] for i = 0, ...,m denote the error of the (linear) approximation
lm over the interval [bi, bi+1]. We shall take an axiomatic approach, intro-
ducing three reasonable conditions the error function has to satisfy. In the
next subsection we prove that it is possible to obtain the optimal partition
for any measure ε which satisfies our three conditions.
1) We assume that the error ε over the whole interval [0, D] is a function of
the m+ 1 error terms ε0, ..., εm over the intervals [bi, bi+1]:

ε = γ(ε0, ..., εm). (1)

2) In view of the suboptimization principle we shall assume:

γ(ε0, ..., εk+1) = γ(γ(ε0, ..., εk), εk+1), k ≥ 1. (2)

So it suffices to define γ(ε0, ε1) for two variables ε0, ε1 ≥ 0.
3) We restrict attention to error measures for which γ(ε0, ε1) is increasing in
ε0:

ε0 < ε′0 =⇒ γ(ε0, ε1) ≤ γ(ε′0, ε1). (3)

In the four examples above γ(ε0, ε1) has the form

ε0 + ε1, ε0 + ε1,
√

ε2
0 + ε2

1, ε0 ∨ ε1,

respectively.

3.1 The algorithm

In each of the four examples mentioned above one may use the following
procedure to obtain the optimal approximation with m breakpoints for all
m ≥ 1.
1) First compute the symmetric matrix E with entries

eij = ε[i, j].

This takes O(D3) steps. Note that the diagonal entries are zero, and so are
the entries eii+1.
2) Define the functions e1 and z1 on [0, D] by

e1(n) = min
0≤l≤n

γ(e0l, eln),

z1(n) = argmin
0≤l≤n

γ(e0l, eln)
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where γ is the function in (1). Then e1(n) is the error term for the best
continuous piecewise linear approximation to q̂ on the interval [0, n] with one
breakpoint, and the breakpoint is z1(n).
3) Similarly define the functions ek and zk for k = 2, ...,m by

ek(n) = min
0≤l≤n

γ(ek−1(l), eln), (4)

zk(n) = argmin
0≤l≤n

γ(ek−1(l), eln). (5)

Then ek(n) is the error term for the best continuous piecewise linear approx-
imation to q̂ on the interval [0, n] with k breakpoints. In total O(mD2) steps
are needed to define the function εk and zk for k = 1, ...,m.

Proposition 1 Suppose the error term satisfies (1) ,(2) and (3). Then
em(D) as defined in (4) is the minimal approximation error for a continuous
piecewise linear approximation with m breakpoints. The breakpoints b1, ..., bm
are obtained by the backward recursion

bm = zm(D), bk = zk(bk+1), k = m− 1, ..., 1,

with zk defined in (5).

Proof. The proof is by induction. Form = 1 all partitions with 1 breakpoint
are considered. The procedure returns the optimal approximation: break-
point z1(D) and error term e1(D). Now suppose the optimal approximations
on [0, d] have been obtained for m = n breakpoints and d = 1, ..., D. Since
the error measure satisfies (2) and (3) the minimal approximation error for
m = n+ 1 breakpoints can be found by

min
d

γ(en(d), ε(d,D))

with en(d) the approximation error of the optimal piecewise linear approxi-
mation on the interval [0, d]. Here we use Fisher’s suboptimization principle.
This defines en+1(D) and determines the n+1 breakpoints of the optimal lin-
ear approximation. In the same manner we find the optimal piecewise linear
approximation with n+ 1 breakpoints on [0, d] for d < D, and its error. ¤

Because of the stochastic background to our problem we shall use the error
measure

ε =
D
∑

d=0

(q̂(d)− lm(d))
2. (6)
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Figure 3: The approximation error ε on a logarithmic scale for different number
of breakpoints m = 1, ..., 50.

Figure 3 depicts the decrease of the error for m = 1, ..., 50. Figure 4 exhibits
the position of the breakpoints as the number of breakpoints increases from
one to fifty. After six breakpoints there is an abrupt change in the configu-
ration and after 21 breakpoints as well. The other changes are gradual. The
positions of some breakpoints tend to be more stable than others. On the
whole the stability of the breakpoints is striking.
From the figures 3 and 4 it is not clear which partition we should choose.
In the next section we introduce a stochastic model. This will allow us to
distinguish between spurious and true breakpoints.
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4 A probabilistic model

In the previous section we presented an algorithm for finding the optimal
piecewise linear approximation with m breakpoints. This section is con-
cerned with the problem of determining the number of breakpoints and find-
ing confidence intervals around their location. It is ultimately our aim to link
breakpoints to news items indicating changes in the economic climate. We
shall use the quadratic error measure (6) to quantify the difference between
the approximation and the actual function. The number of breakpoints can
not be estimated by minimizing the approximation error over all possible
partitions of breakpoints. This would yield m = 3430 breakpoints.
In order to determine the number of breakpoints a probabilistic model is
introduced. We shall assume that the sample function q̂ of the quadratic
variation, which we are trying to estimate, is the sum of a continuous piece-
wise linear function f and a sample function of Brownian motion. Very little
is known about the quadratic variation process. Our choice of Brownian mo-
tion to model the error term is motivated by the absence of good alternatives.
We do not assume that the increments are normally distributed nor that they
are independent. Under suitable mixing conditions many discrete time pro-
cesses can be modelled asymptotically by a Brownian motion. Therefore the
use of the Brownian motion model for the error process in our situation is
defendable. In this model the function q̂ is an estimate of the sample function
of the process Q

Q = f + δB (7)

where B is a standard Brownian motion restricted to the integers and f is
piecewise linear.
The Brownian motion δB contains the statistical error made in estimating
the quadratic variation on the basis of the 650 000 high frequency data points.
This statistical error is cumulative.
In addition to this statistical error there are random fluctuations in the
volatility itself. Daily volatility σd is known to vary considerably from day
to day. This variation yields random fluctuations in the daily increments σ2

d

of the quadratic variation. The random daily volatilities are correlated but
their overall effect on the quadratic variation, over extended periods of time,
may still be modelled by a Brownian motion.
Let G be the continuous piecewise linear process which agrees with the pro-
cess Q in the breakpoints of f in (7). Then the difference Q − G is a con-
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catenation of independent Brownian bridges. It is the sample function g of
the process G which we are trying try to estimate.
Define a regime as the interval between two successive breakpoints. The
slope of q̂ over this interval will be called the activity α. This is the average
of the squared volatility during the regime. The squared volatility fluctuates
around this average value α. The sum of the deviations is cumulative and
constitutes the second component of the Brownian motion δB.
In short, the process δB is the sum of two processes, one due to the fact that
our data set is finite, the other an inherent part of the quadratic variation
process. We emphasize that there is little hard evidence for our model. The
model is selected because of its simplicity and general applicability.
We shall first describe the error process. The subsection thereafter focusses
on the number of breakpoints by making distinction between spurious and
non-spurious breakpoints. Section 4.3 determines confidence intervals for the
breakpoints and for the activity.

4.1 The error process EA

For any finite subset A of [0, D] we shall define an error process EA. Suppose
A = {a1, ..., am} ⊂ (i, j) with i = a0 < a1 < · · · < am < am+1 = j. With
A we associate the piecewise linear process LA on [i, j] which agrees with Q
in the points a0, ..., am+1. The error process EA is the difference between LA

and Q. If A contains the breakpoints in (i, j) then EA is a concatenation
of Brownian bridges. In order to have an explicit description of the error
process EA we introduce independent standard Brownian bridges B0

0 , ..., B
0
m

on [0, 1]. (Recall that the standard Brownian bridge B0 may be obtained
from the standard Brownian motion B by setting B0(t) = B(t)− tB(1).) Set
∆k = ak+1 − ak for k = 0, ..,m. For d ∈ [i, j] write

Q(d) = LA(d) + δ
√

∆kB
0
k(u), d = ak + u∆k, k = 0, ...,m.

Here δ2 is the variance of the noise process in (7). The process EA = Q−LA

will be used to investigate the breakpoints of the function q̂.

4.2 The number of breakpoints

Our first task is to determine the number of breakpoints in the graph of q̂
in figure 1. In the previous section we presented an algorithm to find the
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location of the breakpoints given the number of breakpoints. For the error
measure in (6) an increase in the number of breakpoints will not always
decrease the approximation error. But in general more breakpoints should
give a better approximation, as it does for our dataset whenm increases from
1 to 50. See figure 3.
For largem it may happen that some of them breakpoints determined by our
algorithm in section 3 do not correspond to breakpoints of the piecewise linear
function f in our model (7) but are due to chance fluctuations in the noise
term δB. Such breakpoints will be called spurious. Spurious breakpoints
form the subject of the second subsection below. Subsequently we describe a
pruning operation which will be used to determine the final set of breakpoints.

4.2.1 The parameter δ

We start by determining a first estimate of the parameter δ. In our case we
do not assume that the increments of the error process are i.i.d. Gaussian
variables. Figure 5 shows that the time series of the daily increments of the
quadratic variation is not a realization of the sum of a piecewise constant
function and Gaussian noise. In fact, autocorrelation in the error process

0 1000 2000 3000
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00
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0.0
01

0
0.0
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02

0

Figure 5: The daily increase of the quadratic variation.

occurs at lags 1 and 2. To filter out the autocorrelation we define

δ2
k =

1

D

[D/k]
∑

d=1

(em((d− 1)k)− em(dk))
2,
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Suppose we are given a set of possible breakpoints {b1, ..., bn} that contains
the set of true breakpoints. Consider the point bk. The standardized reduc-
tion rk of the approximation error due to the breakpoint bk is given by

rk =

∫ bk+1
bk−1

(q(t)− lk(t))
2 dt− (εk−1 + εk)

δ2 (bk+1 − bk−1)
2 (8)

where lk(t) is the linear function through the two points (bk−1, q(bk−1)) and
(bk+1, q(bk+1)), for k = 1, ..., n. If bk is spurious then the error process on the
interval [bk−1, bk+1] is of the form

E(d) = δ
√

bk+1 − bk−1B
0

(

d− bk−1

bk+1 − bk−1

)

, d ∈ [bk−1, bk+1]. (9)

Define the random variable R by

R =

∫ 1

0

(B0(t))2dt−
∫ 1

0

(B0(t)− L1(t))
2dt,

where L1(t) is the piecewise linear approximation with one breakpoint T to
the Brownian bridge B0(t) on [0, 1].
If bk is spurious, rk may be viewed as a realization of R conditionally on
T = tk where tk denotes the standardized location of the breakpoint bk,

tk =
bk − bk−1

bk+1 − bk−1

.

Testing the null hypothesis that bk is spurious we may reject for large values
of R. Given rk the correspondig p-value is

Pk = P ((R|T = tk) > rk) . (10)

This is the probability, under the null hypothesis, to find a more extreme
value than rk for R given T = tk.
We have not been able to derive an explicit expression for the bivariate
distribution of (R, T ). Therefore this random vector has been simulated.
The reductions ri are compared to simulated realizations of the conditional
variables (R|T ∈ [ti−η, ti+η]), with η = 0.01. Figure 7 shows the estimate of
the marginal density of T based on one million simulations. Fortunately T is
approximately uniformly distributed on the interval [0, 1]. This simplifies the
task of finding realizations of the stochastic variable (R|T ∈ [ti− η, ti + η]).
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breakpoints are 80 and 90. If we estimate a piecewise linear approximation
with 2 breakpoints we find the partition (42,71). The probabilities are P1 =
0.17 and P2 = 0.07. The value of P1 = 0.17 indicates that there is a chance
of 1 in 6 that the first breakpoint is spurious. If we estimate a piecewise
linear approximation with 3 breakpoints we find (40,75,93) with corresponding
probabilities (0.30,0.00,0.063). These numbers suggest that 75 and 93 are real
breakpoints and 40 is spurious.

The example shows that a long regime may affect the finding of breakpoints
for regimes of smaller length. Therefore we shall perform a pruning operation
which removes spurious breakpoints from a given set of possible breakpoints.
Our strategy will be as follows. First the number of breakpoints N is set at a
large level, larger than the anticipated number m of real breakpoints. Given
this N , the breakpoints b1, ..., bN are determined and subsequently we try
to remove the spurious breakpoints by a cleaning operation. This pruning
operation is akin to the pruning procedure in Breiman et al. (1984). The
precise algorithm we use is described below.

Step 1. Choose a level β, say β = 0.05.
Step 2. Estimate the piecewise linear approximation lN . This gives us a
set AN of N breakpoints. At this point we assume that all the non-spurious
breakpoints are in the set AN . With each breakpoint bi, i = 1, ..., N , we
associate the probability Pi that bi is spurious. This probability is given by
equation (10).
The pruning is done recursively by deleting the breakpoint with the highest
P -value and recalculating the two nearest breakpoints. Suppose bk is deleted.
Then bk−1 and bk+1 are recalculated. Since Pk−2 and Pk−1 depend on bk−1,
and Pk+1 and Pk+2 depend on bk+1 we may have to recalculate in total four
probabilities. Formally, given the pruning level β and the N breakpoints with
associated probabilities P1, ..., PN we prune as follows. If max(P1, ..., PN ) ≤ β
then we are done. Otherwise, we perform three steps:
Step 3. Set k = argmaxi{Pi}. If Pk exceeds the level β then the breakpoint
bk is regarded as spurious and is removed from the set AN of breakpoints.
Step 4. The breakpoint(s) bk−1, bk+1 (b2 if k = 1, bN−1 if k = N) are re-
estimated by approximating the function on the interval [bk−2, bk+2] ([0, b2],
[bN−2, D]) by a piecewise linear approximation with 2 (1) breakpoints. (The
correction is performed on those two (one) breakpoints since their location
is most strongly influenced by the removal of bk.)
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Step 5. The four (or three or two) probabilities Pj associated with the two
(or one) points on either side of bk are re-calculated.
Each cycle decreases the number of breakpoints by one. The cycle is repeated
until all Pi lie below the level β.

Applying this procedure to the function in example 2 results in the break-
points (81,93) with corresponding probabilities (0.033,0.046).
For the graph of q̂ we choose N = 50 and β = 0.05. We end up with a set
A26 consisting of 26 breakpoints. The procedure seems to be quite stable.
The same set of breakpoints is obtained on starting with any value of N
between 45 and 52. Figure 9 depicts the partition of breakpoints that would
have been obtained when starting with N = 35, 40, ..., 100. For N ≥ 45 the
configuration hardly changes. The additional breakpoints that are obtained
between 50 < N < 100 lie very close (one day) to one of the elements of the
set of breakpoints that corresponds to N = 50. A pair of breakpoints which
lie close to each other is replaced by a triplet of breakpoints.

25 19
30 19
35 21
40 24
45 26
50 26
55 27
60 27
65 28
70 28
75 28
80 28
85 28
90 29
95 29
100 31

0 500 1000 1500 2000 2500 3000 3430

0 500 1000 1500 2000 2500 3000 3430

Figure 9: The location of the breakpoints after pruning. Left the number of
breakpoints at te beginning. Right the number of breakpoints after pruning.

Since our arguments for a Brownian error process are based on longer periods
than a day we stick to the set of 26 breakpoints which is obtained when
starting with N = 50. The location of these 26 breakpoints is also given at
the bottom of figure 4.
Note that the approximation error given by lA26 (7.48 · 10−4) is larger than
the minimal approximation error for 26 breakpoints (4.30·10−4). (A spurious
breakpoint in a long regime may decrease the error term more than a real
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breakpoint in a small interval.) The piecewise linear approximation to q̂
based on these 26 breakpoints is given in figure 10.

0 1000 2000 3000

0
.0

0
.0

5
0

.1
0

0
.1

5
0

.2
0

0
.2

5

Figure 10: The piecewise linear approximation to the time-change q̂ with 26
breakpoints.

The estimate of the parameter δ, 9.5 10−5, was obtained from the error func-
tion e30. If we estimate the parameter δ from the error function that follows
from the function lA26 , we find 9.7 10−5. We would have obtained the same
breakpoints if we had used δ = 9.7 10−5

We have also investigated an error function which depends on the length of
the regimes, replacing the terms εi =

∑bi+1
d=bi

(q(d)−lm(d))2 in ε = ε0+· · ·+εm
by εi/(bi+1 − bi), see equation 6. This alternative error function has an
unexpected side effect: long intervals are not sub-divided.

4.3 Confidence intervals

In this section we describe two procedures for defining confidence intervals
for the breakpoints b1, .., b26 which were found in the previous subsection. We
also give confidence intervals for the activity level.

19



4.3.1 Maxima on either side of the breakpoint

The local behaviour at a breakpoint may be modelled by the process

X(t) =
at+ δB1(t) t ≥ 0
bt+ δB2(−t) t < 0

(11)

with B1 and B2 independent Brownian motions and a 6= b.
Define the process Z(t)

Z(t) = B(t)− |t| t ∈ R (12)

where B(t) is a two-sided standard Brownian motion passing through the
origin. The processes on the positive and negative time axes are independent.
Note the scaling property:

cZ(t/a) = cB(t/a)− |ct/a| d
= (c/

√
a)B(t)− |ct/a|.

If we subtract the average slope (a+b)/2 t from X(t) then we may model the
local behaviour around a breakpoint in equation (11) by the process Z(t) by
a suitable scaling procedure.
Instead of the process Z we shall use a process Y on the interval [−100, 100]
of the form Y (t) = −|t|+ B∗(t) where B∗(t) consists of two properly scaled
independent Brownian bridges on the intervals [−100, 0] and [0, 100]. For
each realization Y (ω) we compute the optimal piecewise linear approximation
L1(ω) on [−100, 100] with one breakpoint T (ω). Let T1 denote the position
of the maximum of Y over the interval [−100, 100]. This variable may lie on
either side of T . Let T2 be the position of the maximum of Y on the other
side of T . So T lies between T1 and T2. In many cases the real breakpoint,
the origin, will also lie between T1 and T2. We shall compute the probability
P0 that the origin lies between T1 and T2. Ten thousand simulations give the
value

P0 = 0.49. (13)

So in half of the cases the confidence interval with end points T1 and T2

will contain the true breakpoint. Since the confidence interval [T1, T2] is
defined geometrically the points T i

1 and T i
2 can be read off from the graph

of q̂ around the point bi by constructing a line through (bi, q̂(bi)) whose
slope is the average of the slopes of lm on either side of the breakpoint and
determining the maxima of q̂ above this line. Figure 4.3.1 illustrates how the
points T1 and T2 are obtained.
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Figure 12: Simulated likelihood function of the 18th breakpoint.

4.3.3 Confidence intervals for the activity

It is not very hard to create confidence intervals for the activity in our model.
The estimator of the activity in regime i is given by:

αi = 106Q(bi)−Q(bi−1)

bi − bi−1

(14)

The activity is blown up by the factor 106 for convenience. In that case the
average activity over the entire period is 83.
Since the increment δB(bi)− δB(bi−1) of a Brownian motion is normally dis-
tributed with variance δ2(bi−bi−1), the variance of αi is given by 1012δ2/(bi−
bi−1). However, as was observed in section 4.2 the variance δ2 may not be con-
stant over the whole period. See figure 6. Therefore, the factor δ2 is replaced
by the variance of the error term within a regime, δ2

i , which is calculated
from two days intervals of the error function.
Figure 13 depicts the activity together with the borders of the confidence
intervals. The 95% confidence intervals are obtained by adding/subtracting
1.96 standard deviations of αi from the estimate of the activity in each regime.

5 Economic shocks

This section is concerned with linking breakpoints to news items.
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Figure 13: The activity plotted on a logarithmic scale.

We set out trying to find a good piecewise linear approximation to the graph
of q̂ in figure 1. Using Fisher’s suboptimization principle it is possible with
the current computers to obtain the optimal piecewise linear approximation
withm breakpoints, form = 1, ..., 100. The L2 norm was used to measure the
error. In order to find the final number of breakpoints we have used a pruning
technique. The resulting breakpoints form a very stable configuration. See
figure 9.
The pruning operation deletes all breakpoints which have a probability of
β = 0.05 or more of being spurious. So in our set of 26 breakpoints we may
expect one or two to be false. For each of the 26 breakpoints we have given a
confidence interval with confidence level 0.95. So we may expect one or two
of the breakpoints to lie outside its confidence interval.
These expected numbers hold if the underlying model in (7) is valid. This
model presumes the noise term to be a Brownian motion. For short intervals
this assumption is definitely not correct because of autocorrelations, and be-
cause we apply a continuous model to discrete data. The difficulty is well
illustrated by the graph of the daily increases in financial time in figure 5
which shows clusters of very high peaks rather than a piecewise constant func-
tion perturbed by Gaussian noise. That also is the reason why we have opted
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for 26 breakpoints above, rather than 27, 28, or 29; see figure 9. Moreover,
the assumption that the scale parameter δ of the noise process is constant
is disputable. In figure 6 we present the graph of the quadratic variation of
this noise process. A sizeable proportion of the increase is due to a few very
short time intervals.
In spite of the rough methods used in analyzing the graph of the quadratic
variation in figure 1 a visual inspection shows that the piecewise linear func-
tion in figure 10 yields a good fit. Figure 13 shows the 27 activity levels in
logarithmic scale with their confidence intervals. Recall that the activity is
the slope of the quadratic variation q̂ and hence the average of the squared
volatility over a regime.
It is our aim to connect news items to the breakpoints. These news items
should represent economic or political shocks which are so severe that they
have a long term effect on the volatility. We list ten such severe shocks dur-
ing the period under observation, January 1988 until August 2001. This list
by nature is subjective. The reader is invited to change it at choice. The
period of almost 14 years include four US-presidential elections, the first Gulf
War, the breakdown of the communist system, and the introduction of the
Euro. It is also the period of the ICT explosion. Here is our list of ten shocks:

1) October 13, 1989: October 1989 mini crash.
2) November 9, 1989: The Fall of the Berlin Wall.
3) August 2, 1990: Iraq invades Kuwait.
4) March 3, 1991: The First Gulf War ends.
5) December 6, 1996: Greenspan: ’Irrational exuberance’
6) July 2, 1997: Devaluation of the Thai Bath. Start of the Asia crisis.
7) July 28, 1998: Lewinsky agrees to testify. Impeachment becomes possible.
8) August 17, 1998: Devaluation of the Ruble. Russian default.
9) September 23, 1998: Collapse and rescue of the Long Term Capital Man-
agement (LTCM) Hedge Fund.
10) January 13, 1999: Devaluation Brazilian Real: Samba Crisis.

The fundamental question of what one means by news will not be treated
here. We have two main problems concerning the nature of news items. First,
one has to distinguish between positive and negative news and secondly, one
has the establish the importance or intensity of the news.
In economics in general it is difficult to define what one means by positive
or negative news. Events have no absolute meaning. The general state
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of the market plays a role in the interpretation. For example, a decrease
in the inflation rate may be interpreted both as positive and as negative
news. If inflation is decreasing from a high level the news will be interpreted
as positive. However, if there is a danger of deflation the news may be
interpreted as negative. The ’same’ news may have a different meaning in a
different context.
Expectations of market participants also play a role in the way the market
treats news events. News which is in line with leading expectations will not
have a large impact on market movements.
We have looked through the pages of the New York Times (NYT) and the
Wall Street Journal (WSJ) over the periods around the breakpoints suggested
by the confidence intervals and the two maxima, bearing in mind the points
made above. Sometimes the news is clear, but often it is hard to determine
the intensity of the impact and to evaluate the effect of a news item on
volatility. This holds in particular for political news. News is ambiguous. It
is difficult to decide to what extent news items confirm expectations. News
items on the same page of a newspaper may point in different directions.

5.1 Headlines of the Wall Street Journal and the New

York Times

Below we give a short description of the major news events that we found in
the NYT and WSJ.
The precise time of a news event may be important. A news shock on Monday
May 11, 8 a.m. will be reported in the morning paper of Tuesday May 12 and
will be reflected in a breakpoint on Friday May 9. The change in activity is
visible only after May 9.
Table 2 contains the headlines of WSJ and NYT. Breakpoints which are
clearly related to important news items are marked by an asterisk * both
in the table and below. The numbers between the news items indicate the
activity level during the corresponding regime. The initial regime has activity
level 228. The activity over a regime is the average variance of the log returns
over this period. This quantity has been multiplied by a million, see equation
(14), to obtain more palatable numbers, which vary between twenty and five-
hundred.

228
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1. Strong indications that the U.S. economy is entering a period of weak
growth. The Napm confidence index (01/31/1998) and leading economic
indicators (02/02/1998) have declined. Markets expect Fed to lower interest
rates (01/31/1998). This belief gets more widespread in the week prior to
this regime change.

92

2. A stronger Dollar as the exchange rate increases on August 17, 18, and
24, 1988. The CPI increases by 0.4% after two increases by 0.3%. Inflation
is accelerating, but not as fast as feared (0.5-0.6%).

45

The breakpoint 3 and 4 form a pair around the 1989 mini crash.

3*. Thursday October 5, 1989. The British interest rate moves up by one
point to 15% and the German Bundesbank increases its key money rates by
one point. On the domestic market on Friday October 13 the producer prices
of September leapt up 0.9% (where 0.7% had been feared). The S&P drops
by 9% but rebounds by 5% on Monday.

343

4. Thursday October 19, 1989 the consumer price increase over September
is only 0.2%. Fears of a repeat of the October 1987 crash appear to be
unfounded.

55

The breakpoints 5 and 6 also form a pair.

5*. On January 15 1990 the Wall Street Journal writes that producer prices
have increased by 0.7%. They also write ‘In the final quarter of 1989, eco-
nomic growth is believed to have nearly come to a halt as consumer spending
sagged, factories laid off workers and the nation’s industrial production stag-
nated.’

165
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6*. On Tuesday January 30, 1990 Greenspan describes the current economic
slowdown as ‘temporary hesitation’. On the international scene Gorbatchev
does not rule out German reunion (January 30) and De Klerk promises to
set Mandela free soon (February 2).

59

The breakpoints 7, 8, and 9 occur around the first Gulf War.

7*. On July 17, 1990 Iraq threatens to use force against Kuwait if it does not
curb excess oil production. (The Iraqi invasion takes place two weeks later
on August 2.) On the 18th the NYT reports that U.S. imports record 49.9%
on oil. Domestic economic news: Homebuilders see recession and blame the
saving crisis (07/19/1990 NYT). Inflation is higher than expected. On July
19 Greenspan announces that he does not cut the interest rate.

175

8. On October 18, 1990: Consumer prices rise 0.8% in September for the
second month. Sharp increase in oil prices accounts for more than half the
increase.

During the regime between breakpoint 8 and 9 there are two days of high
volatility. On Wednesday January 9, 2001 the quadratic variation increases
by 0.0016 (Baker-Aziz talks fail) and on Thursday January 17 by 0.0020
(start of the Gulf war). The factor 106 in equation (14) gives increases of
1600 and 2000 respectively for these days.

124

9*. The Gulf War ends on Sunday March 3, 1991. On March 12 the OPEC
agrees on output cuts to raise prices. On March 13 Greenspan hints that the
reduced threat of inflation might make it possible to give the economy an
additional boost by lowering the interest rates.

53

10. This is the beginning of a long regime of low activity lasting four years.
There are no clear news items, in the large confidence interval around break-
point 10, that can be linked to this breakpoint, dd. April 28, 1992. Two
periods start around this breakpoint. 1) Upcoming of the Democratic leader
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Bill Clinton as challenger of Bush Sr. On April 8, 1992 Clinton wins New
York. On April 29 Clinton and Bush win Pennsylvania. 2) This breakpoint
may be marked as the beginning of the expansion of the U.S. economy. On
April 17 Housing and Output figures give new sign to U.S. recovery. On May
6 the federal reserve reports that economic activity increases. On May 13 it
is announced that the retail sales rose 0.9% in April.

31

11. Here ends the long period of low activity. The economy grows slowly but
steadily. Unexpected rate cut in Europe on January 24, 1996. On January
18 U.S. blue chips show better earnings than expected. Activity increases on
earning reports.

56

The breakpoints 12 and 13 form a pair. Over the intervening two week period
the activity is high.

12*. The increased volatility seems to be triggered by a profit warning by
Hewlett-Packard on Thursday July 11, 1996. Quote from WSJ July 12-13,
1996 (L. Bauman): ‘The recent weakness of the group [technology] was accel-
erated by Wednesday’s late-day announcement by computer maker Hewlett-
Packard that it has suffered a significant, widespread decline in the growth
of new orders during the current quarter. The outlook came on the heels of
Motorola late Tuesday posting unexpectedly weak second-quarter earnings,
which followed a string of disappointing earnings previews by a wide variety
of technology companies’. On Monday July 15 the Nasdaq drops 3.9%.

195

13*. On Tuesday July 23, 1996 Greenspan signals that the Fed will not
increase the interest rate. His words have a stabilizing influence on the
market. He notes: ’The recent volatility in the stock market is the norm
rather than the exception’, see WSJ July 24, 1996. On July 24 Compaq
publishes good second quarter results. So does IBM the next day.
As a result the market calms down and the activity drops back to its level
before July 11.

37
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14*. During a dinner speech December 6, 1996, Greenspan tries to curb U.S.
stock market’s euphoria uttering the words ‘Irrational exuberance’. The S&P
500 drops more than 2.7% in the first 30 minutes but it regains its previous
level the next trading day. The activity increases.

90

15. There is turmoil in south-east Asia leading to lower exchange rates
against the Dollar and higher interest rates. On August 13, 1997 Indonesia
defends its Rupiah by intervention and increasing interest rates. On August
14 Indonesia floats the Rupiah. It drops 6%. On August 28 Asian stocks
and currencies fall sharply. On October 8 Greenspan’s comments on the U.S.
economy chill the markets. He also raises the prospect of a rate rise. Activity
increases.

163

16. Greenspan’s words about the Asia crisis to the House banking committee
on November 12, 1997 calms the market, as does the (expected) decision of
the Fed not to raise the interest rates.

69

During the period August-October 1998 the activity is high. This may be
due to the political insecurity caused by the Clinton-Lewinsky affair. The
senate’s acquittal of Clinton on the impeachment trial is on February 12,
1999.

17*. On Wednesday July 22, 1998 Greenspan warns that the Asia Crisis
‘has shown no evidence of stabilization’, and ‘History tells us that there will
be a correction of some significant dimension’. On July 28 Monica Lewinsky
agrees to testify in turn for full immunity. Activity increases.

184

18*. On August 27, 1998 the S&P drops by 3.84%. The financial markets are
influenced by sharp declines on the Russian markets and fears that Yeltsin
may resign. (On August 25 the ruble drops by 9.2%.) Activity increases
further.

408
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19*. On Thursday October 15, 1998 the Fed cuts the federal fund rate from
5.25 to 5% citing unsettled markets. This is the first unscheduled cut since
1994. Stock markets rally world wide.

118

20. On March 6, 2000 stocks fall after Greenspan’s speech. He still regards
stocks as overpriced and warns that interest may rise. On March 21 the Fed
indeed raises the interest rates by a quarter in order to dampen the economy.

262

21*. Macro economic figures indicate that the growth of the U.S. economy is
slowing down. On Wednesday May 31 2000 the Napm index drops. On June
1 the U.S. manufactoring economy slowed considerably in May. On June 2
‘the rise in joblessness delight U.S. markets’.

79

22*. Major Indices fall after profit warning of Kodak on September 26, 2000.
Apple and UAL report on September 29 that earnings will not meet expec-
tations. On October 3 the Fed leaves interest rates, as expected, unchanged
despite concerns on inflation. Activity increases.

199

The breakpoints 23 and 24 form a pair. Over the intervening week the ac-
tivity is very high. On the one day, January 3, 2001, the quadratic variation
increases by 0.0018, approximately 0.7% of the total quadratic variation over
14 years. Visual inspection of the graph suggest that there is only one ex-
ceptional day between the 23rd regime (activity: 199) and the 25th regime
(activity 102). Our procedure finds two breakpoints which are six days apart
(rather than one day). This may be due to the particular form of the L2

metric which we are using

23. No news between December 27, 2001 and January 2, 2001 that seems to
be important. Yet the activity increases.

489
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24*. On January 3 2001 the Fed surprises by cutting the interest rate from
5.5 to 5 percent. This is the first cut after six increases during the previous
two years. The headline of WSJ the next day: ’Surprise Interest-Rate Cut
by the Fed Catches Traders Off Guard, Helps to Lower Volatility’.

102

25*. On February 21, 2001, the Nasdaq falls 4.4% as analysts and companies
cut their profit estimates. On February 22, 2001, the CPI increases by +0.6
percent. It is the largest increase in 10 months and twice as high as expected.
The activity increases.

240

26*. On April 18th 2001 the Fed unexpectedly cuts the federal fund rate
from 5 to 4.5 percent. Greenspan remarks that the economy is ‘unacceptably
weak’. The market interprets the rate cut as pro-active. This has a stabilizing
effect on the stock market. The action of the Fed makes clear that the Fed
is in control. This ends a high activity regime of average length.

96
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Table 1: Confidence intervals of b̂i
The third column contains the confidence intervals of the estimates b̂i based on

the likelihood (lh). The fourth column contains the date T i
1 and the fifth column

T i
2. If T

i
1 coincide with bi then T

i
2 is not calculated.

i Date bi LH T1 T2

1 Feb. 8, 1988 Feb. 3 – Feb. 11 Jan. 21 Feb. 9

2 Aug. 25, 1988 Aug. 12 – Sep. 9 Aug. 16 Aug. 26

3 Oct. 9, 1989 Oct. 3 – Oct. 12 Oct. 12 Oct. 6

4 Oct. 24, 1989 Oct. 23 – Oct. 25 Oct. 17 Oct. 25

5 Jan. 11, 1990 Jan. 8 – Jan. 16 Jan. 11 -

6 Feb. 2, 1990 Jan. 29 – Feb. 8 Jan. 30 Feb. 5

7 Jul. 18, 1990 Jul. 12 – Jul. 23 Jul. 20 Jul. 17

8 Oct. 26, 1990 Oct. 24 – Oct. 31 Jan. 17 Oct. 18

9 Mar. 19, 1991 Mar. 11 – Mar. 28 Jan. 18 Mar. 20

10 Apr. 28, 1992 Mar. 26 – Jun. 4 Feb. 26 Apr. 29

11 Jan. 15, 1996 Dec. 5 – Feb. 12 Jan. 3 Feb. 8

12 Jul. 15, 1996 Jul. 9 – Jul. 19 Jul. 10 Jul. 19

13 Jul. 24, 1996 Jul. 18 – Jul. 30 Jul. 24 -

14 Dec. 2, 1996 Nov. 15 – Dec. 13 Dec. 2 -

15 Aug. 7, 1997 Aug. 1 – Aug. 12 Oct. 22 Aug. 6

16 Nov. 14, 1997 Nov. 10 – Nov. 20 Nov. 14 -

17 Jul. 28, 1998 Jul. 22 – Aug. 4 Jul. 22 Jul. 30

18 Aug. 25, 1998 Aug. 24 – Aug. 26 Aug. 26 Aug. 24

19 Oct. 22, 1998 Oct. 20 – Oct. 27 Oct. 15 Oct. 23

20 Mar. 10, 2000 Mar. 6 – Mar. 15 Mar. 29 Mar. 6

21 May 31, 2000 May 26 – Jun. 2 May 26 Jun. 1

22 Sep. 29, 2000 Sep. 26 – Oct. 3 Oct. 3 Sep. 28

23 Dec. 28, 2000 Dec. 27 – Dec. 29 Jan. 2 Dec. 27

24 Jan. 8, 2001 Jan. 8 – Jan. 9 Jan. 3 Jan. 9

25 Feb. 21, 2001 Feb. 20 – Feb. 22 Feb. 20 Feb. 22

26 Apr. 20, 2001 Apr. 18 – Apr. 24 Apr. 18 Apr. 23
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Table 2: Headlines
Headlines of the WSJ and the NYT and the change in activity ∆α. The asterisk

indicates that we believe that the regime switch may be explained by news.

No. ∆α Events

1 -136 02/01/1988, WSJ: Bonds analysts are bullish on sign of lower U.S. rates. 02/03/1988, WSJ: U.S.
prime rate, bond yields hit lowest levels in months.

2 -47 08/18/1988, WSJ: U.S. dollar jumps to DM1.91 despite central bank action. 08/24/1988, WSJ: prices
of U.S. bonds surge, rates ease on inflation data.

3* +298 10/06/1989, WSJ: Eight European central banks raise rates after bundesbank boost discount.
10/16/1989, WSJ: U.S. Producer prices leapt 0.9% as surging energy costs rekindled inflation.

4 -287 10/20/1989, WSJ: U.S. Consumer prices rise by surprisingly bmall 0.2%.

5* +110 01/13/1990, NYT: Producer prices up 4.8 percent in ’89, most in 8 years.

6* -106 01/31/1990, WSJ: Chance of U.S. recession has abated, Fed chief says. NYT: Wary gorbachev sees
momentum toward Germany’s reunification.

7* +116 07/18/1990, NYT Iraq threatens Emirates and Kuwait in oil glut. 07/19/1990, WSJ: Greenspan
signals rates to hold. NYT: Home builders see recession and blame the saving crisis.

8 -51 10/19/1990, NYT: Consumer prices rise 0.9 percent again.

9* -71 03/04/1991, NYT: U.S. says Iraqi generals agree to demands ‘On all matters’. 03/14/1991, NYT:
Greenspan hints at cut in interest rates.

10 -22 04/08/1992 NYT: Survey gives Clinton the edge in New York democratic vote. 04/29/1992, NYT:
Clinton and Bush capture primaries in Pennsylvania and look to a fall battle. 05/07/1996, NYT: Fed
finds more signs of upturn. 05/14/1996, NYT: Retail sales rose 0.9 percent in April.

11 +25 01/16/1996, WSJ: Stocks fall sharply as worries continue about earnings. Technology stocks tumble
ahead of Intel report. 01/18/1996, NYT: Fed survey sees ‘modest pace of growth. 01/25/1996, WSJ:
Industrials soar to record 5242.84 on earnings and merger. 01/26/1996, NYT: Disappointing earnings
push stocks lower.

12* +139 07/12/1996, WSJ: H-P earnings lead tech issues to losses on 7th-most-active day.

13* -158 07/24/1996, NYT: Bond prices rally on Greenspans comments and unexpected drop in retail sales
figures. 07/25/1996, WSJ: Compaqs numbers bolster tech stocks. 07/26-1996, NYT: I.B.M. soars as
it beats quarterly expectations.

14* +54 12/04/1996, WSJ: Fed chairman pops the big question: Is market too high? NYT: Greenspan asks a
question and global markets wobble.

15 +73 08/29/1997, WSJ: Southeast Asian stocks, currencies fall sharply. 10/09/1997, NYT: Greenspan
Cautions on inflation; change in tone a jolt to investors.

16 -94 11/14/1997, NYT: Crisis in Asia no big threat, Fed chief says. NYT: Iraq carries out threat to expel
U.S. inspectors.

17* +115 07/23/1998, NYT: Greenspan act II leaves little to cheer about on Wall St. 07/29/1998, WSJ: Lewin-
sky, granted immunity, will testify.

18* +225 08/25/1998, NYT: German banks lead world in nail-biting over Russia. 08/27/1998, WSJ: Russia
quits fight back to the ruble. NYT: Economic turmoil in Russia takes toll in Latin America.

19* -290 10/16/1998 WSJ: Fed chairman cuts rates quarter point in a surprise move to shore up markets.

20 +144 WSJ: Greenspan views stocks as a threat. NYT: Reminder from Greenspan: expect interest rate to
rise.

21* -183 06/02/2000, NYT: Data indicates further slowing of economy. 06/05/2000, WSJ: Job losses suggest
economy may be slowing.

22* +120 09/27/2000. NYT: Major share indices fall as Kodak issues warning. 09/30/2000, NYT: Apple and
UAL lead market downward as quarter ends.

23 +290 12/28/2002, WSJ: Dollar, Euro touch highs against Yen on more dismal numbers from Japan.
12/28/2000, NYT: Share prices move higher on hopes of easing by the Fed.

24* -387 01/04/2001 WSJ: Surprise interest-rate cut by the Fed catches traders off guard, helps to lower volatil-
ity

25* +138 02/22/2001, NYT: Inflation index jumps, thanks to energy costs

26* -144 04/19/2001, WSJ: World markets cheer surprise rate reduction by U.S. Fed, hoping it marks turning
point.
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6 Discussion

Of our list of the ten major news shocks in section 5 only three fall inside the
confidence interval of the breakpoint: October 1989 mini-crash, Greenspan’s
words ’Irrational exuberance’ and the Clinton-Lewinsky affair. This is a
disappointing score. The confidence intervals cover almost 10 percent of the
period under consideration. So on average we should find one link.
Sixteen breakpoints have been coupled, in a more or less convincing way,
to news events in the list above. These have been marked by an asterisk.
The news events are unexpected rate cuts, remarks by Greenspan, inflation
figures, profit warnings, and occasionally political events. These news events
can not be regarded as the great economic shocks during this period. We
conclude that the jumps in the activity level at the breakpoints are not caused
by intense economic shocks. All we can say is that sometimes news items
seem to precipitate such jumps.
Statements made in this section are by no means conclusive. We warn the
reader that we do not understand what we see. It is our hope that this
paper will inspire theorists to develop an economic theory which explains the
phenomenon of a piecewise linear approximation.

6.1 Bird’s eye view

We now take a bird’s eye view of the behaviour of the activity of the S&P
500 futures stock index. Referring to figure 13 we find that the most striking
feature is the long minimum in the center of the graph of the activity extend-
ing over more than one quarter of the total period. The graph also shows
a certain degree of self similarity with the central part reflected to the left
and right on a different level. The middle period corresponds to a sustain-
able growing economy. In the period on the left the economy is functioning
below capacity. In the period on the right the economy is functioning above
capacity and there is a danger of overheating.
Another striking feature of the figure are the four sharp peaks, each lasting
only a few days. Each of the four peaks can unambiguously be linked to an
unexpected high intensity news event. The first peak (b3 and b4) is initiated
by unexpected high producer prices (inflation rate) and denotes the mini-
crash of 1989. The second peak (b5 and b6) is also related to an unexpected
increase in the producer prices. The third peak (b12 and b13) coincides with
very disappointing quarterly results of a number of leading technology stocks.
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The fourth peak (b23 and b24) is induced by an unexpected, and substantial,
federal fund rate cut.
So much for the peaks. On the whole, regimes with high activity tend to be
shorter with the exception of the central plateau around day 3000.
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Figure 14: The activity in financial time plotted on a logarithmic scale.

Figure 14 records the activity levels in financial time. The change in the time
scale yields a graph which at first sight bears no relation to graph in figure 13.
If one leaves out the four peaks, then most of the remaining regimes have
a length of approximately 0.010. The two exceptionally long regimes have
lengths 0.029 and 0.041, which may be regarded as multiples of the basic
length.

6.2 AEX

Before discussing the underlying model for the observed changes in activity
we make a small detour to the Dutch stock exchange, the AEX. In Peters
and de Vilder (2002b) a high frequency data set at 15 second intervals for
the AEX index over the period May 1996–September 2000 is analyzed. Here
too, the quadratic variation exhibits a piecewise linear structure. Starting
with N=50 breakpoints we end up with a piecewise linear function with 19
breakpoints after pruning. For the S&P 500 we find 10 breakpoints in this
period. For the sake of completeness we give in figure 15 the evolution of the
location of the breakpoints as the number of breakpoints increases and the
location of the breakpoints after pruning.
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Figure 15: Above the location of the breakpoints of the AEX as the number of
breakpoints increases and below the location after pruning.
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The graph of the activity of the AEX together with the activity of the S&P
500 is plotted in figure 16.

2200 2400 2600 2800 3000 3200

50
10

0
50

0
10

00

2200 2400 2600 2800 3000 3200

50
10

0
50

0
10

00

Figure 16: The activity of the AEX plotted on a logarithmic scale. The dotted
line is the activity of the S&P 500.

Note that the scales of the activity of the S&P 500 and the AEX in figure 16
are equal. There are four peaks for the AEX while there is only one for
the S&P 500. Five of the breakpoints of the S&P 500, b14, b15, b17, b18, b19,
coincide with breakpoints of the AEX. At each of these five breakpoints the
activity jumps in the same direction.
The confidence intervals of the ten breakpoints of the S&P 500 in the period
May 1996–September 2000 cover 7.4 percent of the period. So one expects
only one or two of the 19 breakpoints to lie in the confidence intervals of the
S&P 500 due to chance.
Breakpoint 15 is not marked with an asterisk in section 5.1 while the other
four breakpoints are marked with an asterisk. Since the Dutch economy is
highly dependent on the U.S. economy it is understandable that the words
of Greenspan, changes in the federal fund rate, and the Clinton-Lewinsky
affair also influence the Dutch AEX. International events such as the Russian
default and Asia crisis clearly effect both economies.

37



6.3 Model

We now come to the basic question how these global findings are related
to the generating mechanism. Essentially there are two basic models. The
first model is a stochastic model of regime switching based on an underlying
Markov chain, the second model is a deterministic dynamic system with
several attracting equilibrium points.
There is a growing literature on regime switching in stock markets and in
volatility. See Fransen and van Dijk (2000) who treat these topics in their
recent book, pages 69-205. Regime switching in volatility is treated in terms
of GARCH models and an underlying finite state Markov process. In such
a model breakpoints occur at random, the regimes have exponentially dis-
tributed durations, where the parameter of the exponential distribution may
depend on the state.
Often the state space contains only two states. Our results do not support
such a two state model. Leaving out the four peaks in the activity level in
figure 13, one may try to link each level with a state of a Markov chain. A
finite state Markov chain does not seem to fit our data. Setting the state of
the middle regime between 1000 and 2000 days at zero, it is not clear what
the value of the other regimes should be. For instance, the high plateau
around day 3000 may be regarded as state 2 or as state 3.
Since we are looking at a rather long time period and since the ICT revolution
is within the time-span of the data, it is possible that the underlying process
is Markovian but with a non-stationary state space.
The second model is a deterministic model. Here dynamic laws determine
the volatility process. In this setting one can envision a deterministic dy-
namical system with an attracting fixed point. Unexpected news events with
a low intensity and expected news events induce shocks on the level of the
state variables. This implies that volatility fluctuates around a mean value.
Clearly this model is too simple to account for the bird’s eye view of fig-
ure 13, where there seem to be many different mean values around which
the volatility fluctuates. Indeed, one could extend this model to one with
a finite number of fixed points. In such a model unexpected news events
with a high intensity may push the volatility into the basin of attraction of
a different fixed point. However, this model would have the same flaw as the
finite state Markovian model. There is no evidence for a finite state space of
fixed points. Moreover, for ten transitions from one equilibrium to another
we were not able to find links to news shocks.
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A deterministic dynamical model will in general not be time reversible. The
system moves towards an equilibrium gradually but leaves the equilibrium by
a jump. We have checked for reversibility by applying the distribution free
Wilcoxon test. The null hypothesis that the distribution of the deviations
from the activity before and after a breakpoint at three and five days are
identical can not be rejected.
A sand pile model, see Bak, Tang and Wiesenfeld (1988) with grains of sand
replaced by news items might be more appropriate. Most grains that are
dropped on the sand pile only change the pile locally, but occasionally a
grain may initiate a landslide which changes the whole configuration of the
pile.

7 Conclusion

There is evidence of a piecewise linear structure for the quadratic variation
of the log returns of the S&P 500 futures index over the period January 1988
until August 2001. This is the period between the October 1987 stock market
crash and the September 2001 calamity. The visual evidence of the graph q̂
in figure 1 is substantiated by statistical analysis resulting in the piecewise
linear approximation in figure 10. Over the 14 year period under observation
we distinguish 27 regimes determined by 26 breakpoints.
There is strong evidence of volatility explosions. We see four very thin high
peaks in figure 13. As explained above, our procedure for finding breakpoints
is not very good for pinpointing such explosions. The four volatility explo-
sions may be linked to news events. Three of these news events do not occur
in our list of ten major shocks. So one might argue that the explosions are
triggered by news rather than being caused by them.
Our findings do not support a regime switching model for volatility with two
states, low volatility and high volatility. There is no clear evidence of a finite
state Markov chain in figure 13. As explained above one might argue for a
finite state model with changing levels due to non-stationarity.
Approximately sixteen jumps may be linked to news events. These events
are of the second order and may be said to precipitate the jumps rather than
causing them. Although such jumps are exogenous, the news events which
we have recorded may be regarded as a selection from a point process with
an intensity in the order of one point per two or three months.
In the alternative model, a smooth dynamical system with several equilibria,
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news events may push the system into a basin of attraction of some other
equilibrium. If so, there should be signs of time irreversibility, each new
regime starting with a gradual approach towards the new equilibrium. The
Wilcoxon test does not reject the hypothesis of time reversibility.
Figure 14 plots the activity level in financial time. If we leave out the four
volatility explosions, most of the remaining regimes have a length of 0.01
financial time units or a multiple of this base length. This suggest a thresh-
old model and not a Markovian model in which the length of regimes are
exponentially distributed.
The behaviour we have observed for the S&P 500 futures index, over the
period January 1988, August 2001, also occurs for the Dutch stock index,
the AEX, which was observed over the four year period May 1996, September
2000. There is evidence of coincidence of jumps in the two indices.
In this paper we have presented evidence that volatility fluctuates around a
fixed level, the activity, over periods of months or even years. Apart from
periods of constant activity, we see occasionally volatility explosions. We are
not aware of any economic theory which explains this behaviour.
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