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Pricing Installment Options with an Application

to ASX Installment Warrants

Abstract

Installment options are Bermudan-style options where the holder peri-

odically decides whether to exercise or not and then to keep the option alive

or not (by paying the installment). We develop a dynamic programming

procedure to price installment options. We derive the range of installments

within which the installment option is not redundant with the European

contract. Simulations analysis shows the method yields monotonically con-

verging prices, and satisfactory trade-offs between accuracy and computa-

tional time. In addition, we examine the flexibility in installment option

design that yields various hedging properties. Our approach is applied to

installment warrants, which are actively traded on the Australian Stock Ex-

change. Numerical investigation shows the various capital dilution effects

resulting from different installment warrant designs.

2



1 Introduction

Installment Options (IO) are akin to Bermudan options except that the

holder must regularly pay a premium (the “installment”) to keep the option

alive. The pre-specified dates (thereafter “decision dates”) at which the IO

may be striked correspond to the installment schedule. Therefore, at each

decision date, the holder of the IO must choose between the following

1. to exercise the option, which puts an end to the contract;

2. not to exercise the option and to pay the installment, which keeps the

option alive till the next decision date;

3. not to exercise the option and not to pay the installment, which puts

an end to the contract.

One of the most actively traded installment options throughout the world

are currently the installment warrants on Australian stocks listed on the

Australian Stock Exchange (ASX). Installment options are a recent finan-

cial innovation that introduces some flexibility in the liquidity management

of portfolio strategies. Instead of paying a lump sum for a derivative instru-

ment, the holder of the IO will pay the installments as long as the need for

being long in the option is present. In particular, this considerably reduces

the cost of entering into a hedging strategy.1 In addition, the non-payment

of an installment suffices to close the position at no transaction cost. This
1Risk managers may enter the IO contract at a low initial cost and adjust the install-

ment schedule with respect to their cash forecasts and liquidity constraints. This feature is

particularly attractive for corporations which massively hedge interest rate and currency

risks with forwards, futures or swaps because standard option contracts imply a cost at

entry that may be incompatible with a temporary cash shortage.
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reduces the liquidity risk typically associated with other over-the-counter

derivatives. Specifically for ASX installment warrants, another advantage is

that their holders are entitled to full dividends during the whole life of the

product. Also, investors may lodge their shares in return for installments,

thereby extracting cash to diversify their portfolios without losing exposure

to their shares.

The aim of this paper is threefold. First, we tackle the problem of

pricing IOs using Dynamic Programming (DP). Second, we investigate the

properties of IOs through theoretical and numerical analysis. Finally, we

provide an adaptation of our methodology for ASX installment warrants.

Literature on IOs is scarce. The only research paper we are aware of

is that of Davis, Schachermayer and Tompkins (2001). They derive no-

arbitrage bounds for the price of the IO and study static versus dynamic

hedging strategies within a Black-Scholes framework with stochastic volatil-

ity. Their analysis however is restricted to European-style IOs, which allows

for an analogy with compound options.

Algorithms based on finite differences have been widely used for pricing

options with no known closed-form solution (see e.g. Wilmott, Dewynne and

Howison (1993) for a survey). Recently, dynamic programming combined

with finite elements has emerged as an alternative for low dimensional option

pricing. By contrast to finite difference methods, DP does not require time

discretization. Ben Ameur, Breton and L’Écuyer (2002) show this method is

particularly well suited for options involving decisions at a limited number of

distant dates during the life of the contract. Examples include Bermudan-

style options, callables, and convertibles. By construction, IOs allow for

both early exercise and installment payment decisions periodically.
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The rest of the paper is organized as follows. In section 2, we develop

the model in the Black-Scholes setting. In section 3, we solve the Bellman

equation and show how to go back through the DP induction. Properties of

the value function are derived in section 4. We present simulations analysis

in section 5. Adaptation of the methodology to ASX installment warrants

is provided in section 6. Section 7 concludes.

2 The model

We consider a Black-Scholes economy. Agents may lend or borrow freely at

the constant riskless rate r. The price of the underlying asset {S} satisfies

the following Stochastic Differential Equation (SDE) under the risk-neutral

probability measure

dSt = (r − δ)Stdt+ σStdBt, for 0 ≤ t ≤ T ,

where δ is the dividend rate, σ the volatility of the return on the underlying

asset, and {B} a standard Brownian motion. The solution to this SDE is

the well-known geometric Brownian motion

St′′ = St′ exp
((
r− δ − σ

2/2
)
∆t+ σ

√
∆tZ

)
, for 0 ≤ t′ ≤ t′′ ≤ T , (1)

where ∆t = t′′− t′ and Z is a standard normal random variable independent

of the past of {S} up to time t′.

Let t0 = 0 be the installment option (IO) inception date and t1, t2, ..., tn =

T a collection of decision dates scheduled in the contract. For simplicity,

assume that these dates are equally spaced. An installment design is char-

acterized by the vector of premia π = (π1, ..., πn−1) that are to be paid by
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the holder at dates t1, ..., tn−1 to keep the IO alive.2 The price of the IO is

the upfront payment v0 required at t0 to enter the contract.

The exercise value of the IO at the decision date tm, for m = 1, . . . , n,

is explicit in the contract and given by

vem (s) =




max (0, s−K) , for an installment call option

max (0,K − s) , for an installment put option
, (2)

where s = Stm is the price of the underlying asset at tm. By the risk-neutral

principle, the holding value of the option at tm is

vhm(s) = E[e−r∆tvm+1(Stm+1) | Stm = s], for m = 0, . . . , n− 1, (3)

where

vm (s) =




vh0 (s) for m = 0

max
(
vem (s) , vhm (s)− πm

)
for m = 1, . . . , n− 1

ve0 (s) for m = n

(4)

The function of vhm (s)−πm is called thereafter the net holding value at tm,

for m = 1, . . . , n− 1.

One way of pricing this IO is via backward iteration: from the known

function vn = ven and using (2)-(4), compute vn−1, then from vn−1 compute

vn−2, and so on, down to v0. However, the value function vm, for m =

0, . . . , n − 1, is not known and must be approximated in some way. We

propose an approximation method in Section 3 which allows to solve the

DP equation (3) in a closed-form for all s and m.
2Note that the design π = 0 corresponds to the case of a Bermudan option.
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3 Solving the DP equation

In this section, we compute the expectation in (3). The idea is to partition

the positive real axis into a collection of intervals and then to approximate

the option value by a piecewise linear interpolation. This yields a closed-

form solution to the DP equation (3).

Let a0 = 0 < a1 < . . . < ap < ap+1 = +∞ be a set of points and

R0, . . . , Rp be a partition of R into (p+ 1) intervals

Ri = (ai, ai+1] for i = 0, . . . , p.

Given an approximation ṽm of the option value vm at the points ai and step

m, this function is interpolated piecewise linearly, which yields

v̂m (s) =

p∑
i=0

(αmi + βmi s) I (ai < s ≤ ai+1) , (5)

where I is an indicator function. The local coefficients of this interpolation

at step m, that is the αmi ’s and the βmi ’s, are obtained by solving the linear

equations

ṽm (ai) = v̂m (ai) , for i = 0, . . . , p− 1.

For i = p, we take

αmp = αmp−1 and βmp = βmp−1.

Assume now that v̂m+1 is known. Given (1), the expectation in (3) at

step m becomes

ṽhm (ak) (6)

= E
[
e−r∆tv̂m+1

(
Stm+1

) | Stm = ak
]

= e−r∆t
p∑

i=0

αm+1i E

[
I

(
ai
ak

< eµ∆t+σ
√
∆tZ ≤ ai+1

ak

)]
+

βm+1i akE

[
eµ∆t+σ

√
∆tZI

(
ai
ak

< eµ∆t+σ
√
∆tZ ≤ ai+1

ak

)]
,
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where µ = r − δ − σ2/2, and ṽhm denotes the approximate holding value of

the IO.

For k = 1, . . . , p and i = 0, . . . , p, the first integrals

Ak,i = E

[
I

(
ai
ak

< eµ∆t+σ
√
∆tZ ≤ ai+1

ak

)]

can be expressed as


Φ(xk,1) for i = 0

Φ (xk,i+1)−Φ(xk,i) for 1 ≤ i ≤ p− 1

1−Φ(xk,p) for i = p

and the second ones

Bk,i = E

[
ake

µ∆t+σ
√
∆tZI

(
ai
ak

< eµ∆t+σ
√
∆tZ ≤ ai+1

ak

)]

as


akΦ
(
xk,1 − σ

√
∆t
)
er∆t for i = 0

ak
[
Φ
(
xk,i+1 − σ

√
∆t
)
−Φ

(
xk,i − σ

√
∆t
)]

er∆t for 1 ≤ i ≤ p− 1

ak

[
1−Φ

(
xk,p − σ

√
∆t
)]

er∆t for i = p

,

where xk,i = [ln (ai/ak)− µ∆t] /
(
σ
√
∆t
)
, and Φ stands for the cumulative

density function of Z.

We generate the ak’s as the quantiles of ST , the distribution of the

underlying asset price at maturity. The transition parameters, the Ak,i’s

and Bk,i’s, are then precomputed before doing the first iteration.

The algorithm may be summarized as follows:

1. Compute v̂n (s) for all s using (5);

2. Compute ṽhn−1 (ak) for all k in a closed-form using (6);
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3. Compute ṽn−1 (ak) for all k using (4);

4. Compute v̂n−1 (s) for all s > 0 using (5);

5. Repeat backward from step n− 1 to step 0.

Notice that the optimal decisions (exercise and exit strategies) are de-

rived at steps 2 and 3.

4 Theoretical properties

In this section, we derive some theoretical properties related to the design of

installment call options. Symmetric results hold for installment put options.

Proposition 1 The net holding value of the IO call at tm, vhm (s) − πm,

as a function of s > 0, is continuous, differentiable, convex, and monotone

with a positive rate less than 1. The value function is null on the exit region

(0, am), equal to the net holding value on the holding region [am, bm], and

equal to the exercise value on the exercise region (bm,∞) where am and bm

are two thresholds that depend on the IO parameters.

Proof. The proof proceeds by induction on m = n− 1, . . . , 0. At tn−1,

the holding value at s > 0 is

vhn−1 (s) = E
[
e−r∆tvn (Stn) | Stn−1 = s

]
=

∫ +∞

−∞
e−r∆t

(
seµ∆t+σ

√
∆tz

−K
)+

φ (z)dz,

where φ is the density function of the standard normal distribution. Obvi-

ously, this function is always strictly positive. By the Lebesgue’s dominated
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convergence theorem (Billingsley, 1995), the holding value appears to be

continuous, differentiable for all s > 0, and

lim
s−→0

vhn−1 (s) = 0.

This function is a convex function of s > 0 as a convex combination of

convex (piecewise linear) functions of s > 0. It is monotone as an integral

of an increasing function indexed by s > 0. For s2 > s1 > 0, one has

vhn−1 (s2)− vhn−1 (s1)

= e−r∆t
∫ +∞

−∞

((
s2e

µ∆t+σ
√
∆tz
−K

)+
−

(
s1e

µ∆t+σ
√
∆tz

−K
)+)

φ (z)dz

≤ (s2 − s1) e
−σ2∆t/2

∫ +∞

−∞
eσ
√
∆tzφ (z) dz

= s2 − s1.

The increasing rate of the holding value at tn−1 is thus less than 1. Con-

sequently, the net holding value reaches 0 at a unique threshold an−1, and

below the exercise value at a unique threshold bn−1, where an−1 and bn−1

depend on the IO parameters. Properties of the net holding value and the

value functions follow (see figure 1). Now, if one assumes that these proper-

ties hold at step m+1, the same arguments may be used to proof that they

hold at step m (we omit the details). This ends the proof.

Figure 1 plots the curve representing the net holding value of the install-

ment call option vhm (s)− πm for any decision date m. This curve intersects

the x-axis at am which separates the exit region from the holding region.

Since its slope is less than 1, it necessarily intersects the curve of the call

intrinsic value at bm, which separates the holding region from the exercise
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region.

Net holding value

v
m
h(s) - π

m

S
m

K
0

- π
m

a
m b

m

Exit

region

Holding

region

Exercise

region

Figure 1

Lemma 2 Let s and σ be the price and the volatility of the underlying

asset, r the interest rate, K, T = tn = n∆t, and tn∗ = t1 = ∆t the strike,

the maturity, and the first exercise date of the installment call option with

an installment vector π = (π1, . . . , πn−1) to be paid at t1, . . . , tn−1. For

k = 1, . . . , n − 1, assume that πm ≥ c (K,σ,K,∆t, r), for all m ≥ k. One

has

vk (s) = vek (s) , for all s > 0,

where c (s, σ,K,∆t, r) is the Black-Scholes price of the European call option

with parameters s, σ, K, ∆t, and r.
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Proof. The proof is established by induction on m = n − 1, . . . , 1. At

time tn−1, one has

vhn−1 (K) = E
[
e−r∆tvn (Stn) | Stn−1

= K
]

= E
[
e−r∆tven (Stn) | Stn−1 = K

]

= c (K,σ,K,∆t, r) .

Recall that the holding value is a monotone function of s > 0 with a positive

rate less than 1 for the call (see Proposition 1). For πn−1 ≥ c (K,σ,K,∆t, r),

the net holding value at tn−1, v
h
n−1 (s) − πn−1, is always lower than the

exercise value, ve
n−1 (s), as shown in Figure 2.

At step k + 1, assume that πm ≥ c (K,σ,K,∆t, r) and vm (s) = vem (s), for

all s > 0 and m ≥ k + 1. One has

vhk (K) = E
[
e−r∆tvk+1

(
Stk+1

)
| Stk = s

]

= E
[
e−r∆tvek+1

(
Stk+1

)
| Stk = s

]

= c (K,σ,K,∆t, r) .

The same argument used at step n− 1 may be used again at step k to show

that

vk (s) = vek (s) , for all s > 0,

if πk ≥ c (K,σ,K,∆t, r).
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Holding value

and net holding value

below intrinsic value

v
n-1

h(s) – π
n-1

S
n-1

K
0

c(K,σ,K,∆t,r)

v
n-1

h(s)

Figure 2

Figure 2 plots the case where the installment is equal to c (K,σ,K,∆t, r),

which places the net holding value below the intrinsic value. Thus, for all

installments greater than c (K,σ,K,∆t, r), the holding region vanishes, and

the remaining possibilities are exit or exercise at the next decision date.

Proposition 3 Let s and σ be the price and the volatility of the underlying

asset, r the risk-free rate, K, T = tn = n∆t, and tn∗ = t1 = ∆t the strike,

the maturity, and the first exercise date of the installment call option with

an installment vector π = (π1, . . . , πn−1) to be paid at t1, . . . , tn−1. If the

πm’s are all greater than c (K,σ,K,∆t, r), one has

v0 (s) = c (s, σ,K,∆t, r) , for all s > 0.
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Proof. By Lemma 2, we get

v0 (s) = vh0 (s)

= E
[
e−r∆tv1 (St1) | S0 = s

]

= E
[
e−r∆tve1 (St1) | S0 = s

]

= c (s, σ,K,∆t, r) .

This ends the proof.

5 Simulation analysis

5.1 Convergence speed and accuracy

Table 1 displays the main pricing properties of our approach. First, conver-

gence to the “true” price is rather fast. A fairly good approximation of the

IO price can be obtained almost instantaneously with a 125-point grid. A

two-digit accuracy is achieved with a 250-point grid, which involves a com-

putational time of a tenth of a second (CPU times are reported with a 933

MHzWindows PC). A four-digit accuracy can be obtained with a 1000-point

grid, which implies a computational time that does not exceed two seconds.

Second, note that the number of installments in the contract increase com-

putational time only slightly. For a given grid size, computational time is

divided in two components, a fixed cost to pre-compute the transition ma-

trices, and a variable cost roughly linear in the number of installments. In

particular, computational time increases by around 20% as the number of

installments goes from 0 to 4. Thus, complex IOs can still be priced with a

satisfactory trade-off between accuracy and computational time. Third and

most importantly, convergence to the “true” price is monotonic. This al-
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lows for extrapolation methods that can significantly reduce computational

time for a desired accuracy. In addition, note that our approach, like any

other numerical method, may be implemented in conjunction with variance-

reducing techniques, such as control variate methods for example.

Number of Number of grid points

installments 125 250 500 1000 2000

0 13.34809 13.34664 13.34658 13.34650 13.34648

(0.02) (0.09) (0.39) (1.53) (6.14)

1 11.49561 11.49268 11.49236 11.49221 11.49218

(0.02) (0.11) (0.41) (1.61) (6.45)

2 9.86059 9.85653 9.85595 9.85575 9.85571

(0.03) (0.11) (0.42) (1.69) (6.78)

3 8.65862 8.65312 8.65243 8.65217 8.65211

(0.03) (0.11) (0.44) (1.77) (7.08)

4 7.80531 7.79948 7.79856 7.79828 7.79822

(0.03) (0.11) (0.47) (1.84) (7.39)

Table 1: IO prices and computational time

Table 1 reports IO upfront payments for various grid sizes with the correspond-

ing CPU time in seconds (in parentheses). The code line is written in C and com-

piled with GCC. CPU times are obtained with a 933 MHz Windows PC. The IO is

a call with equal installments (π = 2) and the following characteristics: S = 100,
K = 95, σ = 0.2, r = 0.05, δ = 0, and T = 1. The number of installments varies

from 0 to 4. In the case of zero installment, the call is European and its theoretical

price is 13.34647.

5.2 Non-redundant IO contracts

Table 2 reports prices of installment calls for various levels of constant in-

stallments. Clearly, these prices are decreasing with the level of installment.
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They reach the minimum c (s, σ,K,∆t, r) for installments greater than π =

c (K,σ,K,∆t, r), as shown in Proposition 3. For example, when K = 110,

we have c (100, 0.2, 110, 0.25, 0.05) = 1.191 and c (110, 0.2, 110, 0.25, 0.05) =

5.076. For any installment greater than 5.076, the holding region vanishes,

and the installment call is worth the European call expiring at the next

decision date.

Installment K = 90 K = 100 K = 110

0 16.699 10.451 6.040

0.5 15.262 9.072 4.785

1 13.857 7.787 3.738

1.5 12.779 6.660 2.886

2 12.206 5.840 2.266

2.5 11.910 5.286 1.833

3 11.763 4.943 1.547

3.5 11.695 4.748 1.368

4 11.671 4.650 1.264

4.5 11.670 4.616 1.210

5 11.670 4.615 1.191

5.5 11.670 4.615 1.191

Table 2: IO prices and installment level

Table 2 reports installment call upfront payments for various levels of install-

ment and strikes. Parameters are the following: S = 100, σ = 0.2, r = 0.05,
δ = 0, and T = 1. Exercise rights are quarterly and the IO has three installments.

A direct implication for IO design is that contracts with installments that

eliminate the holding region are simply redundant with European options.

Within the range of possible installment levels, various hedging properties

may be designed. We now investigate these properties.
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5.3 IO Greeks

In this subsection, we examine the hedging properties of the installment call

option with respect to the level of installments, the installment schedule,

and the option moneyness. Figures 3 and 4 report our findings. Unless

otherwise indicated, parameters are the following

S r δ σ T n

100 0.05 0 0.2 1 4

Figures 3a, 3b, and 3c respectively report the installment call delta, gamma

and vega as a function of the constant installment π1. For each figure,

out-of-the-money installment calls are plotted with triangles (K = 110), at-

the-money installment calls are plotted with squares, and in-the-money in-

stallment calls are plotted with crosses (K = 90).

Figure 3a reports that installment call delta decreases (increases) with

π1 for out-of-the-money (in-the-money) options. Indeed, if the constant in-

stallment increases, it gets more and more likely that the IO will be exercised

or forsaken at the first date. Thus, if the IO is currently in the money, its

price becomes even more sensitive to price variations of the underlying. By

contrast, a currently out-of-the-money IO with a high π1 has little chance of

future exercise, so its delta remains low. A direct implication of this prop-

erty is that the higher π1, the more volatile delta is with respect to S. In

other words, IOs with high installments are more difficult to hedge.

Figure 3b confirms this latter finding as IO gammas are increasing with

π1. Hedging IOs with high installments requires more frequent rebalancing

of the replicating portfolio. This effect is more pronounced for at-the-money

IOs. For these options indeed, moneyness is uncertain so that delta could

rapidly shift to very low or very high values. That is why Figure 3b in-
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dicates that, as π1 increases, gamma becomes a more humped function of

moneyness.

1 2 3 4 5
π1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

∆c

Fig. 3a

1 2 3 4 5
π1

0.015

0.02

0.025

0.03

0.035

Γc

Fig. 3b

1 2 3 4 5
π1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Vc

Fig. 3c

Figure 3: IO Greeks, installment level, and moneyness

Figures 3a, 3b, and 3c respectively report the installment call delta, gamma

and vega as a function of the constant installment π1. Parameters are the following:

S = 100, r = 0.05, δ = 0, σ = 0.2, and T = 1. Exercise rights are quarterly and

the IO has three installments. For each figure, out-of-the-money installment calls

are plotted with triangles (K = 110), at-the-money installment calls are plotted

with squares, and in-the-money installment calls are plotted with crosses (K = 90).
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A similar effect applies for vega as illustrated by Figure 3c. Since a high

installment reduces the likelihood of future exercise and therefore lowers

the IO speculative value, vega decreases with π1. Interestingly, this cutoff

in speculative value is less pronounced for at-the-money installment calls.

Thus, as π1 increases, vega also becomes a more humped function of mon-

eyness.

Figures 4a, 4b, and 4c respectively report the installment call delta,

gamma and vega as a function of the first installment π1. In this case

however, the installment schedule may be increasing or decreasing. Specif-

ically, installment calls with installments decreasing at rate 0.8 are plotted

with triangles, installment calls with constant installments are plotted with

squares, and installment calls with installments increasing at rate 1.2 are

plotted with crosses. Simulations are reported for at-the-money calls.

As illustrated by Figures 4a to 4c, non-constant installments introduce

an additional degree of freedom in the IO design. Specifically, if installments

are increasing, then, all else being equal, call delta and vega are reduced. As

shown in Proposition 3, higher installments tighten up the holding region

and reduces the option speculative value. Therefore the installment call

value is less sensitive to underlying price or volatility variations (see Figures

4a and 4c). By contrast, since the net holding value tends to mimic the

intrinsic value, the installment call with high installments exhibits a high
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gamma and requires a more frequent hedging (see Figure 4b).

1 2 3 4
π1

0.57

0.58

0.59

0.6

0.61

0.62

0.63

∆c

Fig. 4a

1 2 3 4
π1

0.02

0.025

0.03

0.035

Γc

Fig. 4b

1 2 3 4
π1

0.2

0.225

0.25

0.275

0.3

0.325

0.35

0.375

Vc

Fig. 4c

Figure 4: IO Greeks, installment schedule, and moneyness

Figures 4a, 4b, and 4c respectively report the installment call delta, gamma

and vega as a function of the first installment π1. Parameters are the following:

S = 100, K = 100, r = 0.05, δ = 0, σ = 0.2, and T = 1. Exercise rights

are quarterly and the IO has three installments. For each figure, installment calls

with installments decreasing at rate 0.8 are plotted with triangles, installment calls

with constant installments are plotted with squares, and installment calls with

installments increasing at rate 1.2 are plotted with crosses.
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6 Application to ASX installment warrants

One of the most actively traded installment options throughout the world

are currently the installment warrants on Australian stocks. These warrants

were launched on the Australian Stock Exchange (ASX) in January 1997.

Since then, both the number of listed installment warrants and the trading

volume have grown exponentially, as documented by Figure 5 (obtained from

the ASX website).

Figure 5: Installment warrants listings and volume

Some of the ASX installment warrants (called rolling installment war-

rants) have several installments and their expiry date may be up to 10

years. However, most ASX warrants have only one installment with matu-

rities ranging from 1 to 3 years. The single installment is usually set equal

to the upfront payment. This clearly puts a restriction on the strike price

of the warrant.

In this section, we apply our model to the pricing of installment war-

rants. By contrast to call options, warrants have a dilution effect on the
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issuer’s stocks. Black and Scholes (1973) suggest to price warrants as an

option on the issuer’s equity (i.e. stocks plus warrants). For so doing, the

valuation formula must be adjusted for dilution.3 Specifically, let M , N ,

and γ respectively denote the number of outstanding warrants, the number

of outstanding shares, and the conversion ratio. Extending the approach by

Lauterbach and Schultz (1990), the installment warrant in this context is

interpreted as — a fraction of — an IO issued by the firm. Its payoff process

is

Yt =
Nγ

N +Mγ

(
Vt

N
−K

)+
, for t ∈ {t0 = 0, . . . , tm = T} ,

where {V } = {NS +MW} is the value of the firm’s equity, {V/N} =

{S +MW/N} is the asset underlying the warrant, {S} is the stock price

of the firm within the warrant life, and {W} is the value of the installment

warrant.

The DP algorithm described in Section 3 may be easily modified to the

pricing of warrants in the context of IOs. The exercise value in (2) is now

the payoff of the warrant if exercised optimally

ve
t
(x) =

Nγ

N +Mγ
(x−K)+ .

To compute W0, one should solve

v0 (S0 +MW0/N) =W0.

3Another possibility, first explored by Galai and Schneller (1978), is to price warrants as

an option on the issuer’s underlying stock. Handley (2002) points out that if the warrant

is priced after its announcement date, then the efficient market hypothesis implies that

the dilution effect is already reflected in the stock price. Consequently, no adjustment

for dilution is required. However, to be consistent with the assumption of a geometric

Brownian motion for the firm’s equity, this approach requires a time-varying volatility for

the underlying stock returns.
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This is easy to implement as the procedure gives4

v0 (x) , for all x > 0.

Table 3 reports installment warrant prices for degrees of dilution and

numbers of installments.

Number of Number of outstanding warrants

installments M = 0 M = 10 M = 50 M = 100 M = 200

0 13.346 13.006 11.988 11.184 10.322

(13.346) (13.006) (11.989) (11.185) (10.324)

1 11.492 11.011 9.567 8.557 7.726

2 9.855 9.364 8.054 7.289 6.790

3 8.652 8.215 7.177 6.658 6.315

4 7.798 7.445 6.666 6.296 6.030

Table 3: Installment warrant prices and the dilution effect

Table 3 reports installment warrant upfront payments for various degrees of

dilution. The installment warrant has equal installments (π = 2) and the following

characteristics: S = 100, K = 95, σ = 0.2, r = 0.05, δ = 0, N = 100,
γ = 1, and T = 1. Grid size is 500 points. The number of outstanding warrants

varies from 0 to 200, and the number of installments varies from 0 to 4. In the

case of zero installment, the warrant is European and its theoretical price (below

in parentheses) is given by Lauterbach and Schultz (1990). In the case of M = 0,

the installment warrant is fully diluted and its price equals that of the installment

call option (see Table 1).

4As a special case, we get the procedure by Lauterbach and Schultz (1990) for pricing

European warrants, namely the price w of the European warrant is obtained using the

Black-Scholes formula where: (1) The underlying S is replaced with S+M
N
w, (2) Volatility

σ is that of equity returns, and (3) The whole formula is multiplied by the dilution factor

Nγ

N+Mγ
. These adjustments result in an equation of the type w = f (w) which must be

solved numerically.

23



As can be seen from Table 3, installment warrants prices decrease with

the installment and are therefore lower than prices of otherwise identical

European warrants. Thus, installment warrants have a weaker dilution ef-

fect than European warrants, i.e. the wealth transfer from stockholders to

warrantholders is less pronounced. The reason for this is that the presence

of installments implies that warrants may be abandoned and simply not ex-

ercised. As a consequence, the design of installment warrants gives the firm

some flexibility in controlling capital dilution when raising funds.

7 Conclusion

In this paper, we have developed a pricing methodology for installment op-

tions using dynamic programming. This numerical procedure is particularly

well suited for IOs because these options are Bermudan-style and involve a

limited number of distant exercise dates. Simulations indicate that prices

converge monotonically and quickly reach good levels of accuracy. In addi-

tion, we have shown that IOs installment schedule may be designed with a

great flexibility. Various hedging properties can thus be tailored.

We have adapted our model to the pricing of installment warrants that

are actively traded on the Australian Stock Exchange. Numerical inves-

tigation shows the various capital dilution effects resulting from different

installment warrant designs.

Our approach is flexible enough to be extended to many other pricing

issues. For instance, levered equity may be seen as a compound call on

asset value when debt bears discrete coupons (see Geske (1977)). Consider

now the coupon-bearing debt is callable. At each coupon date, shareholders

decide whether or not to call the debt. If they do not call, they decide
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whether or not to pay the coupon to keep their claim on firm asset value.

Consequently, levered equity may be priced as an installment call on firm

asset value.
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