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Overview

• Solvency II

• Market consistent valuation

• Swiss Solvency Test (SST)
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An International Structure and a Variety of Associations

Each level has its associations of supervisors, actuaries and in-

surers

• International: IAIS (International Association of Insurance Supervisors),

IAA (International Actuarial Association) with sections ASTIN (Actuarial Studies

In Non-life insurance) and AFIR (Actuarial Approach for FInancial Risks)

• Europe: The EC (European Commission = executive body of the EU) recently

established the EIOPC (European Insurance and Occupational Pension Committee),

supporting the IC (Insurance Committee), and CEIOPS (Committee of European

Insurance and Occupational Pensions Supervisors). The Groupe Consultatif

represents the actuarial profession in discussion with EU legislation. CEA stands for

Comité Européen des assurances.
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Risk-based Supervision

• Worldwide project: new system for assessing the overall solvency of in-
surance undertakings.

• Who is looking for it? → Supervisors and risk officers

• New system should be risk-based. → Encouragement for risk measure-
ment and management.

• Traditional systems and rating agencies failed in early warning: Equitable

Life Assurance Society UK (2000), HIH Insurance Group Australia (2001), ...

– IAIS → IAA Insurer Solvency Assessment Working Party

– EC (Solvency II)→ CEIOPS, Groupe Consultatif, IAA, London Work-
ing Group (Sharma Report)

– BPV (Swiss Solvency Test) → working parties in cooperation with
insurers
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Solvency in Europe

Documentation on http://europa.eu.int/comm/internal market/insurance/solvency en.htm

1970s: first EU non-life and life directives on solvency margins
(= extra capital as a buffer against unforeseen events such as higher than expected

claims levels or unfavourable investment results)

1997: Müller Report “Solvency of insurance undertakings”: review of solvency rules
→ Solvency I project initiated, completed 2002, in force 2004

2001: Solvency II project initiated (Sharma Report, IAA WP), 2003
end of phase 1 (design of the system)

2004: Calls of advice from CEIOPS (3 waves)

2006: Draft guidelines

2008: Inforcement by European jurisdictions
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Solvency II: organisation/compatibility

Basel II

US, Canada, Australia
Switzerland

IAA

IAIS

IASB

EU States

CEIOPSICEC

Consultatif

Groupe
CEA

Solvency II

(Lamfalussy)
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Purpose of Capital

• Economic capital: minimum amount of equity to ensure on-

going operations of the firm

• Solvency capital requirement (SCR) = “target capital”: ap-

propriate amount of capital to protect policyholders from

(the consequences of) insolvency

• Minimum capital requirement (MCR): final threshold requir-

ing maximum supervisory measures (“insolvency”)
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IAA WP: key principles

• 3 pillar approach (target capital requirements necessary for solvency as-
sessment but not sufficient by itself)

• all types of risks relevant for insurer to be included (insurance, credit, market

and operational risk(. . . ))

• principles- vs. rules-based approach

• total balance sheet approach (one risk measure on “assets minus liabilities”.

Avoids different levels of conservatism inherent in accouting systems.)

• appropriate risk measure (expected shortfall)

• dependencies/diversification taken into account

• standardized approaches proposed (internal models based on a set of uniform

methods)

• advanced approaches (internal models based on company-specific measures of risk.

Need approval)
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Formal Setup

• (Ω,F , (Ft),P), P = real-world measure, final time horizon T ∈ N

• Financial instruments S(t) = (S1(t), . . . , Sm(t)), yielding divi-

dends D(t) = (D1(t), . . . , Dm(t)) (e.g. coupons)

• Insurance policies P (t) = (P1(t), . . . , Pn(t)) = market-consistent

values, receiving cashflows Z(t) = (Z1(t), . . . , Zn(t))

(no new bussines after t = 1)

• G(t) := S(t) +
∑
0<s≤tD(s) and V (t) := P (t) +

∑
0<s≤tZ(s)

= gain processes

• All future cash values are discounted with numeraire S̃0(t):

e.g. nominal value S̃i(t) = S̃0(t)×Si(t), Z̃j(t) = S̃0(t)×Zj(t),

etc.
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A simple arbitrage result

Assumptions:

• can reinsure any fraction 1− bj(t) ∈ [0,1] of risk Pj at t− 1

• predictable trading strategy ai(t) in instrument Si

• market value W (t) = a(t+1) · S(t)− b(t+1) · P (t)

• (a, b) is self-financing

Final result for insurer

W (T )−W (0) =
∑

0<t≤T

(a(t) ·∆G(t)− b(t) ·∆V (t))

10



Definition: (a, b) is (negative) arbitrage if

W (T )−W (0)
(≤)

≥
0 and P

[
W (T )−W (0)

(<)

>
0

]
> 0.

Theorem: There is no (negative) arbitrage iff ∃ Qu ∼ P (Ql ∼ P)
such that

1. G is a Qu-martingale (Ql-martingale)

2. V is a Qu-submartingale (Ql-supermartingale)

Remark: P (T ) = 0

=⇒ EQl




∑

t<s≤T

Z(s) | Ft


 ≤ P (t) ≤ EQu




∑

t<s≤T

Z(s) | Ft




Problem: P (t) not known, no linear pricing rule
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Towards market-consistent valuation

• (Gt) and (Ht) P-independent filtrations with Ft = Gt ∨Ht.

• S, D are (Gt)-adapted (“financial risk”)

• Ht=“insurance risk”, but Z(t) = S0(t)× Z̃(t) is Gt ∨Ht-measurable in general

• pricing measure Q ∼ P with

dQ
dP
|Ft
=

dQ
dP
|Gt
×

dQ
dP
|Ht

such that

– G is a Q-martingale

– Q|Ht
= P|Ht

: no risk premium in Q for insurance risk (LLN)

⇒ (Gt) and (Ht) also Q-independent
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• Market-consistent = risk-neutral valuation of cashflows:

S(t) = EQ


S(T ) +

∑

t<s≤T

D(s) | Ft




• Define expected liability Lj(t) (=“best estimate”) by

Lj(t) : = EQ



∑

t<u≤T

Zj(u) | Ft




=
∑

t<u≤T

P (t, u)E[Z̃j(u) | Ht] if Z̃j and (Gt) are independent

with P (t, u) := EQ

[
1

S0(u)
| Ft

]
= discounted zero-coupon bond price

• Lj(t) is not a prudential provision (LLN, no safety loading yet)

• Idea: Pj(t) = Lj(t) +Mj(t), Mj(t) = risk/market value margin

• Convention: Z(t) ≡
∑

j Zj(t), L(t) ≡
∑

j Lj(t)
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Embedded options are taken into account: A simple example

• endowment insurance with term T = 2

• R̃(t) = statutory reserve = surrender value, R̃(2) = 1

• surrender option at t = 1

• τ = life time of insured (Ht-stopping time)

t=0 1 2

~P(t,2)

~R(2)=1

~P(1,2)

~P(0,2)

~R(0)

~R(1)
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Cashflow (discounted):

Z(1) = P (1)1{τ≤1}+ P (1)1{P (1)>P (1,2)}1{τ>1}

Z(2) = P (2)1{P (1)≤P (1,2)}1{τ>1}

Expected liability at t = 0:

L(0) = EQ[Z(1) + Z(2)] = EQ[Z(1) + EQ[Z(2) | F1]]

= EQ[P (1)]Q[τ ≤ 1] + EQ[P (1)1{P (1)>P (1,2)}]Q[τ > 1]

+ EQ[P (1,2)(1− 1{P (1)>P (1,2)})]Q[τ > 1]

= P (0,1)P̃ (1)P[τ ≤ 1] death by t = 1

+ EQ
[
(P (1)− P (1,2))+

]
P[τ > 1] caplet

+ P (0,2)P[τ > 1] terminal cashflow
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Capital structure

• Value of financial assets

at t− 1: A(t− 1) = a(t) · S(t− 1)

at t: A(t) = a(t) · (∆S(t) +D(t))− Z(t)

= a(t+1) · S(t) self-financing

⇒ ∆A(t) = a(t) ·∆S(t)︸ ︷︷ ︸
price change

+ a(t) ·D(t)− Z(t)︸ ︷︷ ︸
cashflow

• Risk-bearing capital C(t) := A(t)− L(t)

A

C

L

• Annual result

∆C(t) = ∆A(t)−∆L(t)

= a(t) · (∆S(t) +D(t))︸ ︷︷ ︸
financial result

+L(t− 1)− Z(t)− L(t)︸ ︷︷ ︸
insurance result
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⇒ Theorem: C is a Q-martingale (Hattendorf et al).

• L is a Q-supermartingale ⇔ A = C+L is a Q-supermartingale

• L(T ) = 0 ⇒ A(T ) = C(T )

⇒ C(t) = EQ [A(T ) | Ft] functional of A

⇒ L(t) = EQ [A(t)−A(T ) | Ft] functional of A
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How to define solvency?

• Cashflow solvency: A(t) ≥ 0 for all t.

• Balance sheet solvency: C(t) ≥ 0 for all t

⇒ in both cases: target capital

TC = C(0) + ρ(A(0), A(1), . . . , A(T ))

ρ: multi-period risk measure
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Coherent multiperiod risk measures (Artzner et al.)

• G = {X bounded adapted processes} = L∞(Ω′,F ′,P′) with

– Ω′ = Ω× {0,1,2 . . . , T}

– F ′ = σ{Bt × {t} | Bt ∈ Ft}

– P′
[⋃

0≤t≤T Bt × {t}
]
=

∑
0≤t≤T µtP[Bt], µt ≥ 0,

∑
0≤t≤T µt = 1

• Representation result: ρ coherent and satisfies Fatou property

⇒ ρ(X) = sup
f∈P

∑

0≤t≤T

µtE[−f(t)X(t)]

for P ⊂ L1
+(P

′) closed convex with
∑

0≤t≤T µtE[f(t)] = 1 for all f ∈ P

• Example: multiperiod expected shortfall at level α

ESα[X] =
1

α

∑

0≤t≤T

µtE
[
(qα(X)−X(t))+

]
− qα(X)

where qα(X) is an α-quantile of X

P′[X < qα(X)] ≤ α ≤ P′[X ≤ qα(X)]
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Swiss Solvency Test: minimal amount

M(t) =
∑

j Mj(t)

:= minimal amount that allows a healthy insurer to take over

the portfolio at no additional cost

= segregated fund covering cost of future target capital (spread

sp > 0) given financial distress:

M(t) = sp
∑

t<s≤T

ES[C(s) | C(s− 1) = 0] ≈ sp
∑

t<s≤T

ES[∆C(s)]

Target capital

TC = C(0) + ES[C(1)] +M(1) = C(0) + ρ(C)

where

ρ(C) := ES[C(1)] + sp
∑

1<s≤T

ES[∆C(s)]
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Swiss Solvency Test: risk measure

ρ = ES[C(1)] + sp
∑
1<s≤T ES[∆C(s)] satisfies

• Translation invariance: ρ(C + a) = ρ(C)− a, a ∈ R

• Positive homogeneity: ρ(λC) = λρ(C), λ ≥ 0

• Sub-additivity: ρ(C1+ C2) ≤ ρ(C1) + ρ(C2)

But ρ is not monotone: ∃C ≥ 0 with ρ(C) > 0

In fact, ρ is too conservative:

ρ(C) ≥ (1− sp) · ES[C(1)] + sp · ES[C(T )]︸ ︷︷ ︸
coherent risk measure
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Swiss Solvency Test: computation

Computational approximation:

ES[∆C(t)] ≈ ES[C(t) | C(t− 1) = 0] ≈ c(t− 1)EQ[L(t− 1)]

where

c(0) =
ES[∆C(1)]

L(0)

and

c(t) = w(t)
ES[∆C(1)]

L(0)
+ (1− w(t))

ES[∆L(1)− Z(1)]

L(0)

linear interpolation (w(t) ↓ 0) between total risk ES[∆C(1)] and stand alone
insurance risk ES[∆L(1)− Z(1)] (optimal portfolio)

→ Computational formula:

TC ≈ ES[∆C(1)] + sp
∑

1<t≤T

c(t− 1)EQ[L(t− 1)]︸ ︷︷ ︸
run-off pattern
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Swiss Solvency Test: scenarios

Modelling of ∆C(1): under two hypotheses (Θ = θi, i = 0,1)

• normal year (Θ = θ0): empirical distribution

• extremal year (Θ = θ1): scenarios S1∪̇ . . . ∪̇Sd = {Θ = θ1}

⇒ ES[∆C(1)] =
1

α

(
(1− p)Eθ0

[−∆C(1)1A] + pEθ1
[−∆C(1)1A]

)

where

A := {∆C(1) < qα}, P[∆C(1) = qα] = 0, p := P[Θ = θ1]

Hence

Eθ1
[−∆C(1)1A] =

d∑

i=1

E[−∆C(1)1A | Si]
P[Si]
p
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Kinder Gesunde
Erwachs.

(15-49)

Gesunde
Erwachs.

(50-65)

Ältere Erwachs. mit
hohem

Risiko (15-
65)

Erwachs.
mit hohem

Risiko
(>66)

Personen
im

Gesundheit
swesen

Total

Bevölkerung 7'164'000

Anzahl Kranke 4'465'059

Arztvisiten 2'082'958

Hospitalisierung 33'221

Betttage 222'704

Tote 42'000

verlorene Arbeitstage 12'127'117
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Hail

Hail scenario: 4 hail tracks with given loss severities for ZIP 
codes (footprints)

Neuchâtel - Biel - Grenchen - Solothurn - Olten - Aarau

Aarau - Zürich - Winterthur - St. Gallen Bern - Luzern - Zug Genève - Lausanne - Fribourg

26



28

Burst of a Dam

Grande Dixence,
400E6m3,2200 müMMoiry, 78E6 m3 27
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Burst of a Dam

Map of large dams in Switzerland

Sum insured: 200 M CHF for each large dam, 

Probability of occurance per year 0.3%

Carried by insurers according to their market share
(�Talsperrenpool�)
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Swiss Solvency Test: scenario evaluation

Evaluation of scenarios E[−∆C(1)1A | Si]

Simple ansatz:

∆C(1) | Si ∼ −ci + di · Y

where

• ci = expected additional loss amount

• di = scaling factor (change of volatility)

• Y ∼∆C(1) | {Θ = θ0}: normal year distribution

Example hailstorm: footprints for loss severities, ci according to

market share
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