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e Conditional expectations and linear parabolic PDE's

e Standard formulation of stochastic control problems

e Dynamic programming principle and HJB equation

e Viscosity solutions



CONDITIONAL EXPECTATIONS AND LINEAR PARABOLIC
PDE'’s
Consider the function :

V() = Bue| [ FX)BC udu+ B0, TIg(X)

where
dX; = p(Xp)dt + o(X)dWe,  B(tu) = e Ji X0
and

v R" — R", o : R" — Sp,

f, 9,k : R* — R



Second order PDE :
8’0 2
(E)  (ta)+F (t,x,v(t,x),Dv(t,x),D v(t,a:)) =0, t<T, z€OCRH
e (E) is parabolic if F(x,r,p, A) is non-increasing in A
e (E) is linear if F'(x,r,p,A) is linear in (r,p, A)

e v is a classical super-solution (resp. subsolution) of (E) is v € C1:2 and

%—|—F(t,a:,v(t,a:),Dv(t,:c),Dzv(t,w)> > 0 (resp. < 0) on [0,7) x R

Maximum Principle. Let O bounded and F(t,x,r,p, A) parabolic strictly
increasing in r. Let u (resp. v) be a classical subsolution (resp. super-

solution) of (E), with u < v on 8{(0,T) x O}. Then u < v on [0,T] x O.



Dynkin operator
1
LV (tx) = Vi(t,x) + p(z) - DV (t,x) + S Tr [aa*(az)DQV(t,x)}
— Tower property : for any h >0

B0,V (tz) = Eig [ [ B0, u) F(Xudu + B0+ WV (L + b, Xt+h>]

— if V is smooth, then it follows from Itd's lemma

0 = Moo | [T Bt 0V — £V - 1) . X)du+ [ DV X - o (Xu)an
! t t
S % L /tt_l_hﬁ(t, w) {E(X)V (u, Xu) — LV (u, Xu) — f(Xu)} du] !

send h to zero — V solves the parabolic linear PDE

—LV(t,z) + k(x)V(t,z) — f(x) = O



Feynman-Kac representation formula

Cauchy problem

—Lv(t,x) + k(x)v(t,z) — f(x) = 0 and v(T,z) = g(x)

Theorem Let v be a classical solution of the above Cauchy problem

with |v(t,z)| < C(1 + |z|P). Then

o(ba) = V(ha) = B [ [ FOR)B(E wdu + G TYg(Xr)

e Uniqueness

e Important implication for numerical approximation

Cauchy problem can be solved

by means of Monte Carlo method



STANDARD FORMULATION OF STOCHASTIC CONTROL
PROBLEMS
e Control process v € Up

vt V.a. Fy — measurable with values in U C R*
e Controlled process For v € Ug, define X by
EDS(v) dX{ = b(X/,v)dt+ o(X{,vp)dWy and X given
where
b : R"xU — R", o : R"xU — j\/l%’d Lip in  unif. in u
e Admissible control process v € U if

EDS(v) has a unique solution in L2 for every initial data Xg = «



REWARD CHARACTERISTICS

f,k : R"xU — R and g : R — R

with

k>0 and |f(t,z,u)|+ |g(z)| < C+ [z]?)

e f . cont. reward rate
e g . terminal reward

e k . discount rate



STOCHASTIC CONTROL PROBLEM

V(t,x) = sup J(t,z,v)
veld

where

T
J(@z,v) = Eig !/t B, ) f (Xs,vs)ds + B87(¢, T)g (X7)

with the discount factor
BY(t,s) = e Ji KXy wr)dr

Goal : caracterize the local behavior of V by means of

the Hamilton-Jacobi-Bellman equation



SOME VOCABULARY

e U iS an optimal control if
vel and V(t,xz) = J(t,x, Ut y)
e clU is a feedback control

v is adapted to FX

e v IS a Markov control if

vs = u(s, Xs) for some measurable function wu

e  iS an open-loop control if

v IS deterministic



DYNAMIC PROGRAMMING PRINCIPLE

Theorem For any stopping time T with values in [¢t,T] :

-

V() = sup By | [78(t,5)f (s, XY v) ds + B7(6, 1)V (7, X7)
velu t

e Basic tool of stochastic control / compare with tower property

e Main ingredient . concatenation of control processes

e In finite discrete time

V(te) = sup Erg FXY )+ eV (41, X7 )

— Reduction to a (backward) sequence of finite-dimensional optimi-

zation problems



REDUCTION TO MAYER FORM (f =k =0)

Consider new controlled processes (Y, Z7) :

dY"s = Zs f(Xs,vs)ds and dZY = —Zs k(Xs,vs)ds

— Augmented controlled process

X = (X,Y,2)

Then V(t,z) = V(t,z,0,1), where

V(t,z) = iléz/p{ Et 2 [§ ()_(élx)] and g(xz,y,z) = y+ g(x)z



HAMILTON-JACOBI-BELLMAN EQUATION

Denote

LY (t,z) = blx,u) Dv(t,z) + %Tr [O‘O'*(QU, w)D?v(t, az)}

H(x,r,p,A) = sup {—k(:c, w)r + b(z,u) -p+ 1_I_I’[cfcf*(:zz, u)A] + f(x, u)}
uelU 2

Proposition IfV € c12([0,T7),R") :

_%_Z(t,x) — H (az,V(t,w),DV(t,x),DQV(t,fE)) > 0

i.e. V is a super-solution of the associated HJB equation



Proof of super-solution property. (t,z) € [0,T) x R", u € U fixed,

constant control vs = w, controlled process X%, and

7, = (+h)AiInf{s>t : | X —x|>1}

Dynamic programming and Itd's lemma :
1 Th
0 < 3 Eua [B0,0V(6,2) = BO, 1)V (i X)) — [ B(0,1) (1, X, vr)dr

= B[ [T BONRY Vit £V + 1 X, wr]

h
]_ T
T Et 2 [/t " B(0,r)DV (r, Xy) o (Xr, u)dW"“]
— _% Et 2 U " B(0,7)(—kV + Vi + LYV + ) (r, X, u)dr]
t

Finally, send h to zero, and use the dominated convergence theorem



Proposition Ir V ¢ ¢12([0,T),R"), and H is continuous, then :

—%—‘;(t,az)—H(a:-,V(t,x),DV(t,x),DQV(t,x)) =0

— Proof... more technical

In order to complete the characterization of V :
(i) Terminal condition

(ii) Uniqueness result



VERIFICATION RESULT

Theorem v € CL2([0,T),RM)NC([0,T] xR™) with |v(t,z)| < C(1+4+|z|?)
() If o(T,) > g and —uv(t,z) — H(t,a:,fu(t,x),Dv(t,:c),DQU(t,x)) > 0.
Thenv >V

(ii) Assume further that

e v(T,.) =g and 0 = v, (t,z) + LEED)y(t, 2) + F(¢, z,u)

e there is a unique solution for the SDE

dXS — b(Xs,a(S,X3)> dS _I_ o (Xs,a(S,X3)> dWS fOI’ any Xo — X

e c U, where s .= u(s, Xs)

Thenv =V, etv is a (Markov) optimal control



Sketch of the proof

(i) Letv e, X = XY, Xy =2 = Itd’'s lemma :

v(t, )

B(t, T)v (T, XT)
[ 8 ko vt £Ou) 6 XD
— /tT BY(t,r)Dv(r, X\) - o(r, X}, vr)dWy

Since —vy + kv — L% — (-, u) > —v; — H(-,v, Dv, D?v) > 0 :

[ T
v(ta) = Eye|8(6T)0 (T, X0 + [ ﬁ”(m)f(Xﬁ,w)dr]

I T
> Eia |86 T)g (X5) + [ 5”<t,r>f<Xﬁ,w>dr]

(ii) inequalities are in fact equalities with the control v



ON THE REGULARITY OF THE VALUE FUNCTION

f =k =0 (Mayer's formulation)

Proposition (i) g Lipschitz, then V(t,-) is Lipschitz-continuous

(i) U bounded, then V(-,x) is (1/2)—H?&lder-continuous

Example. Let U = R, U/ := {bounded predictable processes valued inU},

dX;{ = X{ v dW; and V(t,z) = sup Ez[g(X7)]
vel

where g is |.s.c. and bounded from below. Then

V(t,z) = g“°"(x) ¢ is the concave envelope of g

V not continuous at t =T and not Cl in z, in general.



VISCOSITY SOLUTIONS

Consider the elliptic PDE

O for z € O open subset of R

(E) F <z,v(z),Dv(z),D2v(z))
(F(z,r,p, A) non-increasing in A)
ev : O — R Ils.c.is a viscosity super-solution of (E) if, for every
(z0,¢) € O x C?(O) :

(v = )(20) = minp (v = @) == F (20,v(20), De(20), D?¢(20)) >0
ev : O — R u.s.c. is a viscosity sub-solution of (E) if, for every

(z0,0) € O x C2(O) :

(v = ¢)(20) = maxp (v = @) == F (20,v(20), Dp(20), D*¢(20)) <0



Semi-continuous envelopes :

vx(2) = liminf v(2’) and ov«(z) = limsup v(z")
2l —z Zl—z

finite for locally bounded v : R4 — R

Proposition (i) IfV is locally bounded, then

OV
ot

i.e. Vi is a super-solution of the associated HJB equation

(t,:c)—H(:1:,V*(t,:c),DV*(t,:I:),DQV*(t,w)> > 0

(ii) If in addition H is continuous, then

oV
ot

i.e. V* is a sub-solution of the associated HJB equation

(t,) — H (z,V*(t,z), DV*(t,2), D*V*(t,z)) < O



UNIQUE CHARACTERIZATION AND CONTINUITY

e Boundary condition :

Vi(T,z) and V*(T,z) might not be given by the natural BC g(x)

(Recall our example)

e If we can prove that Vi (T,x) > V*(T,x) and that Maximum principle

in the viscosity sense holds, then :

Vi = V* on [0,T] xR"

—= V is the unique continuous viscosity solution in a certain class.



SUPER-HEDGING UNDER PORTFOLIO CONSTRAINTS

Nizar TOUZI, CREST, Paris, touzi@ensae.fr

Lunteren, January 24-26, 2005

e Problem formulation

e Dual formulation

e Geometric dynamic programming and HJB equation

e Boundary condition : face-lifting

e EXxplicit solution in the Black-Scholes model



PROBLEM FORMULATION : the financial market
e 1 non-risky asset S° = 1 (r = 0, change of numéraire)
e d risky assets S :

dsi , d .. .
L= phdt + > o dW!, i=1,...,d

p, o and o~! bounded F—adapted with values respectively in R% and Sg

e Wealth process X*™, under self-financing condition, defined by

X, m x,m X, ,LdSZ
dXy" = z and dX| ZX e

u

e ¢ A : admissible portfollo |f

T 5
olmulfdu < oo



PROBLEM FORMULATION, portfolio constraints
Let K be a closed convex ( ! ) subset of R? containing 0

e K— admissible portfolio : # € Ay if

™€ A and 7y, € K Leb® P — a.s.

Example 1 No short-selling : K = {z € R? : x>0}

Example 2 Incomplete market : K = {a: c R4 : glo = O}

Example 3 No borrowing : K = {a: eRY : Yt < 1}

Example 4 Rectangular constraints : K = {x cR? : m<at< Mi}
Example 5 Finite capitalizations : change model expressing portfolios

in terms of number of shares...



PROBLEM FORMULATION, the super-replication problem

e Contingent claim G : Fp—measurable random variable, we will mainly

consider G = ¢g(Sp) with

g : [0,00) — R I.s.c. and bounded from below

e Super-replication problem

V(0,Sp) = inf {:c . X72" > G a.s. for some 7 € AK}

—= Stochastic control problem in non-standard form!
— Connection with backward stochastic differential equations
— Very difficult to reach any a-priori regularity result

—— 15t idea : reduce to the classical setting, i.e. standard formulation



DUAL FORMULATION : dual characterization of the

constraints

Support function of K :

0(y) := sup =z-y
reK
Effective domain of § :
K = {yERd : 5(y)<oo}

Lemma Let K be a closed convex subset of R™. Then

r € K < 6(y) —z-y > 0forallye K



DUAL FORMULATION : dual variables

Let D = {bounded F — adapted processes with values in R}

dPY
= exp
dP | 7.

By Girsanov’'s Theorem, the process

u
W) = Wu—/oa,ljl(l/u—uu)du O<u<T
is a Brownian motion under PY, and
t t
d (Xf’”e— Jo 5<’/u>d’“) = XPTe o0 [_ (§5(vy) — 7y - 1) dt + oud W]

t
—= The process {Xf’”e fo5(’/u)d“, 0<t< T}

is a PY—super-martingale for every m € Ax and v € D



DUAL FORMULATION :

reducing to a standard stochastic control problem

~ v T
Theorem  V(0,S9) = 7(0,Sp) := sup EF’ |G e Jo (u)du
veD

<ElIKaroui-Quenez 1995, Cvitani¢-Karatzas 1993, Follmer-Kramkov 1999 >

G = g (St) and S is a Markov diffusion = Girsanov’'s Theorem

¥ T
V(O, So) p— V(O, SO) = sup K g (S%) e fO d(vy)du
veD

where

S¥ =S8y and dSY = diag [SY] (ndt + o (SV) dWy)

Stochastic control problem in standard form



DUAL FORMULATION : the HJB equation

From general theory, if V is locally bounded, then

1 ~
— (Vi) = ST 55" (s)D?Vi| — diaglsly - DVi+ 3(y)Vs > 0 for all ue K

in the viscosity sense (super-solution property), where 5(s) := diag[s]o(s)

Since K is a cone, this is equivalent to

min {— (Vi) — %Tr [ﬁ*(s)DQV*} : yien[]; (6(y) Vi — diag|s]y - DV*)} > 0

where Kq = {y cK : |yl = 1}

We will see later that this is the HJB equation for our problem



FROM NOW ON : MARKOV MODEL

e Risky assets dynamics :

dS!

. d .
g = u'(t,St) dt + Z UZ](t,St)thj, i=1,....d
t

j=1

@ and o Lipschitz, linearly growing, and we will usually forget about

the dependence upon t.

e Contingent claim
G = g(ST)
for some

g : [0,00)% — R l.s.c. and bounded from below



GEOMETRIC DYNAMIC PROGRAMMING PRINCIPLE

e Trivial claim : Let (¢,s), =z, m € Ag be such that X;7" > g (S%s). Then

X" > V(r,Sr) for every stopping time 7 € [t,T] a.s.

In fact, we have the following geometric dynamic programming principle

(without dual formulation)

Theorem. For all (t,s) € [0,T) x Ry, and stopping time T € [t,T] a.s.

V(t,s) = inf{x : XZ" >V (r,S;) a.s. forsome 7 € Ag}
—— Super-solution property

OV 1

diag[s]DV;
_ 5Tr [ﬁ*DQV*] >0 and gls] DV: c

Vi

Proposition — K




Sketch of proof (super-solution property)

For simplicity, assume V is smooth and

V(t,s) = min {:c . X" > g (Sp) for some 7 € AK}
Then, starting from initial wealth z := V (¢, s) :

X%% > g(S%S) for some 7 € Ap
— Geometric dynamic programming

~ —~ T —~ ~
XBF = V(t,s) + /t X370 [uudu + oudWa] > V(1,557

—= [td’'s lemma

T t T 7,7~ : 0
0 < — / v (u, 85°) du + /t ou (XD — diag[Su]l DV (u, Su)) dW
t



Sketch of proof (super-solution property), continued

T ¢ T 75 - 0
- u, ’ u Oy Wty — Adlag oy U, Oy
0 < /t £V (u,S5°) d +/t (XE7 7y — diag[Sul DV (u, Su)) dW

1.Set 7, ;= (t+h)AiInf{u>t . |InS, —Ins| > 1}, and take expected

values =— — LV > 0

2. Lemma. (Loc. behavior of stoch. int.) Let b be a predictable

t
W —integrable process satisfying /o bs-dWs > —Ct, 0<t<rT, for some

1 t
C > 0 and positive stopping time . Then Iign\icr)\fzfo |bs|ds = 0 P—a.s.

> 0

dia DV dia . DV
9ls] € K, or equivalently inf (5(y) — glsly )
Vv yeKq



CHARACTERIZING THE TERMINAL CONDITION :

implications from the HJB equation

We have of course V(T,s) = g(s), by definition. Let

V(s) ;= liminf V(¢ = Vi(T,
(s) pmint (&) | (T, s)]

' DV
diag[s]DV. -

Lemma We haveV > g and

T he latter condition might not be satisfied by g. Then

V # g in general



Sketch of proof (implications from HJB)

eg>C and l.s.c. = V > g (Fatou’s lemma)

o Fort<T,

§(y)V(t,s) —y-diag[s]DV (t,s) > 0 forevery ye K

or equivalently,

a — InV (se*Y) — §(y)a  is non-decreasing

— sendt toT...



CHARACTERIZING THE TERMINAL CONDITION :

face-lifting

Lemma V(s) > g(s) := sup g(se¥) e—0(y)
yeK

Proof For every y € K : 0 <4§(y)V(s) —y-diag[s]DV
0 7 o
= 0 < 6(y) — —InV (se™)
oo
integrate between oo =0 and o =1, and recall V > g :

V(s) > V(se¥) e 0W) > g (se?) a2

y is arbitrary in K ...



CHARACTERIZING THE TERMINAL CONDITION :

properties of the face-lifting operator

eg > g (g majorant of g)

diag[s]Dg
. —~
g

€ K (satisfies the constraints)

g ("projection" property)

@)
|

dia Dh
e If h is such that h > g and gLS] € K, then h > g (minimality)

g Is the smallest majorant of g

which satisfies the constraints



CHARACTERIZING THE TERMINAL CONDITION :

Examples for d =1, K = [-4,u] 2 0

European call option ¢(s) = (s — k)T

o (5) (s — k) pour s > 5
g\s) = (u—1)s\4

ufl ( KU ) pour s < ulﬁil
European put option ¢(s) = (k—3s)T

R (k —s) pour s < g’fl_—a

g(s) — S Kkl ¢ < _Ku

7+1 ((E—I—l)s) pour s = -1



EXPLICIT RESULT IN THE BLACK-SCHOLES MODEL
<Broadie-Cvitanic-Soner 1998>

Theorem For constant o, we have V(t,s) = E%’ji

[g (ST)], and the
optimal hedging strategy is the classical Black-Scholes hedging strategy

of the face-lifted contingent claim g(St)
In the more general local volatility model o(t,s) :

Theorem Under some conditions, V is the unique (in a certain class)

continuous viscosity solution of the associated HJB equation

min {—Vt ln [ﬁ*(s)DQV} . inf (8(y)V — diag[s]y - DV)} = 0
2 yeKq



Proof of Broadie-Cvitanic-Soner’s result

Denote w(t,s) := Ef, [§ (S7)]

() w(t,s) — V(t,s) < B}, [V(S7) — Valt,s)| = E};

S

i LVi(u, Su)| < 0

(iia) 6(y)w(t, s)—y-diag[s|]Dw(t, s) = E%Eji [6(y)g(ST) — y - diag[S7]Dg (S7)]

> 0 forallye K

__diag[s]Dw(u, Sy)

(iib) Lw = 0 = set my, = . and apply Ité’s lemma :
w(ua SU)

g(Sr) = w(T,Sr)
T T
w(t, s) +/t ﬁw(U,Su)du—I—/t w(u,Su)?ru-diag[Su]_ldSu

T _
— w(t78)+/ w(u,Su)%u-diag[Su]_ldSu = X%“(t’s)ﬂr
t

Since g > g, this implies that w(t,s) > V(t,s)



PROOF OF SUBSOLUTION PROPERTY
IN THE LOCAL VOLATILITY MODEL

Consider the simple case int(K) # (0, and show that

1
min {—Vt* — T [ﬁ*(s)DQV*} . inf (8(y)V* — diags]y - DV*)} <0
2 yeKq

in the viscosity sense. Let (tg,sg) € [0,T) x R%, o € C? be such that

0 = (V*—¢)(tg,s9) = max(strict) (V* — )

and assume to the contrary that

f(to,s0) = (-%-%Tr [W*D%D (to,s0) > O

diag[so] Dy (o, s0)
v (to,s0)

and @(tg,sg) = c int(K)



PROOF OF SUBSOLUTION PROPERTY, continued (2)

Define the open neighborhood of (tg, sg) :

N = {(t,s) : |(t,Ins) — (tg,Insg)| <1, f(t,s) >0 and n(t,s) € K}

Since (tg, sg) is a point of strict maximum of V* — o, we have

max (InV* — In =: —3n <0
na; ( ©) 7

Choose (t1,s1) € int(N) so that

INV(t1,s1) —Inp(t1,s1)| < 7

Take (t1,s1) as initial data for the process S, and define

7 = inf{u>t; : (u,Su) €N}



PROOF OF SUBSOLUTION PROPERTY, continued (3)

Consider the initial capital © := V (tq1,s1)e” ", and compute that
INX5T —InV(r,Sr) > InXET —InV*(r, Sr)
> InXZT —Ine(r,Sr) + 3n
> In Xf(tl’sl)’ﬁ —Inp(r,S7) +n

Next observe that

do(t, S Lo(t, S
©(t, St) _ p(t, St) dt + 7(t, S;) - diag[S,]~1ds,
o(t, St) ©(t, St)

- o(t, St) Xf(tlasl)ﬁ




PROOF OF SUBSOLUTION PROPERTY, continued (4)

Since Lo <0 fort e [t1,7], and Xfi(tl’sl)’% = o(t1,s1), this implies that

xS > v(r, 8y

Hence, starting from the initial capital z .= V(t1,s1)e”" ", we have
INX5T —InV(r,S7) > InXZT —InV*(r,S,)
> In Xfﬁ —Inp(r,Sr) + 3n
> InX£I T _inp(0,S:) + 0>

thus contradicting the geometric dynamic programming
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1. INTRODUCTION : THE BLACK-SCHOLES MODEL

1. The financial market : (2, F,F,P), W Brownian motion valued in R1

e 1 non-risky asset S° = 1 (change of numéraire)

e 1 risky asset S : dSt = S¢[udt + o dWy]

e Contingent claim : g(St), where g : Ry — R Ls.c. and bounded

from below (not necessarily continuous)

Main problem Valuation of the option g(St)



1. INTRODUCTION, Continued

2. Superhedging : under the self-financing condition, wealth process

t
x%0 = :c—|—/00u (udu + odW,)

0 € A : set of admissible strategies

T
/o |9u|2du < oo and X%Y bounded from below

e Super-replication problem

vg = inf {:13 ; Xé’i’e > g(S7) a.s. for some 0 € A}

—— Reduction : Change of measure — assume u = 0 wlog



1. INTRODUCTION, Continued

3. Explicit solution in complete market :

vy = V(t,St) = E[g(ST)|St]
PDE characterization

= 0 and V(T,s)

— 0'32‘/33 and VU(T,S)

g(s)



1. INTRODUCTION, Continued

4. Greeks
A%

LAV —(t St) : Hedging portfolio
0%V

o = 52 ——(t, Sy) : variation of the hedging portfolio

oV
o Vega; = 8—(t’st) : sensitivity to volatility
o)

e Classical connection between I and Vega

I o
Vegay = E / oS, udu
t

.



2. SUPER-REPLICATION UNDER PORTFOLIO
CONSTRAINTS : Formulation

K = [¢,u] > 0 (K closed convex subset of R 35 0)

e Set of admissible portfolios
A = {0 A : 0 valued in K}
e Super-replication problem

V(t,s) := inf {a: : X%’e > g (S%S) for some 6 € AK}



2. PORTFOLIO CONSTRAINTS : Main result

Face-lifting : introduce Support function of K : 6(y) :(= sup z-y

reK

Face-lifting operator : g(s) := sup g (se¥) —d(y)
yeR”

1. Theorem <Broadie, Cvitani¢ and Soner 98> V (t,s) = E¢ s [g (ST)]
i.e. The problem of hedging g(St) under constraints is solved by the

classical Black-Scholes hedging of g(St)

2. Local volatility model o(t,s) = Free boundary problem

1
min{—‘/t_50(t78)282V8578V3_E7U_SVS} — O and V(T7) — -/g\



2. PORTFOLIO CONSTRAINTS : Duality

< Cvitani¢ and Karatzas 93, Follmer-Kramkov 95>

» T

Vits) = sup EE el 0ty (sy)
1%

where D = {predictable bounded processes valued in f{} and

t
PY ~ P, {Ste_ f05(”“)d“} is PY supermartingale

i.e. penalization of the drift of price processes

—— Standard stochastic control problem:...



3. HEDGING UNDER GAMMA CONSTRAINTS
Recall the Black-Scholes model, optimal wealth process Xg" = V(t,St)

By Ité’s lemma, twice

t t
X; = XE+ /O LV (u, Sy)du + /O AXdS,,

t
V (0, So) + /O A*dS,

and

t t
AF = vs(o,so)+/oz:v8(u,su)du+/o M dSy,



3. GAMMA CONSTRAINTS : Motivation
Goal : Hedge under constraints on the gamma of the portfolio '

—= Control on the portfolio re-balancement

Dyggr— D = Vs (t+dt, Sypq) — Vs (t,Sh)

.

— Controlling the Vega risk

I o
Vega; = E / oS, uwdu
t

e /arge investor problem

e transaction costs

e [ he digital option example



3. GAMMA CONSTRAINTS : Model formulation
e Non-risky asset S° normalized to 1
e Risky asset S : dS; = Sio dW}y

e European option g(St),

g : Ry — R [ls.c.and —C <g(s) <C(1+s)

t t
e Wealth process X; = x + /o Y.udS, = = + /o Yo SudWy,

t t
e Portfolio process Yy = y + /0 aydu + /o [ dSy



3. GAMMA CONSTRAINTS : Problem formulation

e Admissible portfolio : v = (y,a, ") € G if

y € R, a, v bounded predictable processes,

and - < I_US,LQL < T

e Super-replication problem

V(t,s) = inf {a: ; erp’x’” > g (S%S) for some v & Q}

where

t,x,v r t,v t,v “ ¢
xXhoY = :B—I—/ YidS, and YV = y—l—/ ozudu—l—/t MudSe
t t



3. GAMMA CONSTRAINTS : First intuitions

We formally expect that V solves the free boundary problem
1 _
F (Vi,5%Vss) = min {—\/;5 — 05 Ves, T = 5%Vss, [+ 52\/33} = 0

e Correct iIf [ = 400 <Soner-Touzi 2000>

e Can not be true ifI_ > 400 : F' is not elliptic

e Example : g(s) ;== sA1, T =0, =oco0. ThenV = g (is not convex!)
— Hedging by buy-and-hold strategies

— jf jumps are allowed in the Y process, then non-uniqueness of

hedging strategy...



3. GAMMA CONSTRAINTS : Warnings (1)

Lemma For all predictable W —integrable cadlag process ¢, and all

e>0:

t t
sup |/O qﬁrdWr—/quidWr < ¢

0<t<1

—— for some predictable step process ¢¢ <lLevental-Skorohod AAP95>

— for some absolutely continuous predictable process ¢; = ¢g +

t 1
/Oozrdr, /O lay|dr < oo a.s. <Bank-Baum 04>



3. GAMMA CONSTRAINTS : Warnings (2)

——= Usual control relaxation in stochastic control problems does not

hold here :

e Allow for arbitrary jumps in Y — V = BS price

t

e Allow for arbitrary absolutely continuous /o aydu — V. = BS price

(with v = 0 in both cases)

o V >BS price, in general, for bounded o« and bounded number of jumps



3. GAMMA CONSTRAINTS : The dynamic programming PDE

Theorem 3 V js the unique viscosity solution of

AN

(DPE) F(V;,5°Vss) = 0 and V(T—,) =3

with |V — §leo < oo, where F(p, A) := sup F(p, A+ B) is the elliptic
B3>0

envelope of F', and

g(s) 1= h°"(s) = TlIns, h(s) :=;9(s)+TlIns

o If T = +00 == No Face-lifting!!
e For [ = 400 : F = F (Agree with intuition)

e Example : g(s) ;= sA1, T =0, T =00, we findV =g



Sketch of proof of the super-solution property

For simplicity, assume V. smooth and
V(t,s) := min {az : Xéf””” > g <S§LS) for some v € Q}

Then, withz ;= V(t,s) = Xl}’i”7 > g (Sé:s) for somev € G

e Geometric Dynamic programming (trivial inequality) :
t,xr,U t,s
g, =V (eh’ S9h>
e Apply Ité’s lemma twice :
0 _
t,s h t,
0 < V(t,s)—V (64 55°) +/t v#9ds,

0y, 0y, U U
= — [ "LV (u,SH%) du + c+ | apdv4 [ bydSy) dSy
/ b / / /

where ¢ = y— Vs(t,s), ay = ay — LVs(u,Sy), by := yu — Vss(u, Sy)



Sketch of proof of the super-solution property, continued

e Compare orders of the different terms

0y, ; 0, u u
0 < — /t v (u, 85°) du + /t (c—l— /t aydv + /t bvd&)) Sy

— ¢ = y—Vi(t,s) = 0, and forget the term / / dtdW,

e Analysis of the term //buqudWU requires fine results on the local
path behavior of double stochastic integrals

— Intuition : if by, = 8 constant, then

0 < — /teh LV (u, S&S) du + g ((Sgh — 3>2 B /teh GQSgd,u>

Divide by h and send h to zero :

1
imsup == B3>0 and liminf = 0 < —LV(t,s)—EﬁJQSQ



3. GAMMA CONSTRAINTS : Main result

Theorem The function v has the stochastic representation

1
V(t,s) = sup Eig4|g(Sg) — =L o2(T —0)
QE,Z;T 2

where 7;T is the collection of all F—stopping times with values in [t,T].
— Upper bound on gamma —— Face-lifting
— Lower bound on gamma —— American option/optimal stopping

e For general local volatility models o(t,s) :

Treatment of both bounds does not separate, in general



3. GAMMA CONSTRAINTS : Hedging strategy

e Pass from g to g, and forget about upper bound I

e For simplicity, consider the case =0

e smoothfit holds, i.e. V is C1

e Buy-and-hold = “keep going along the tangent"

— Hedge by succession of

Standard Black-Scholes and buy-and-hold strategy



3. GAMMA CONSTRAINTS : Duality

~ 1 T _
_ T,y 2
V(t,s) = supyxy Eislg (ST ) ~5 o /t ([ xr + T yr> dr]
where
ds\',,:?’y — gg’yg\/l_ﬁr_l_yr der’

and

X = {predictable processes with values in [0, 1]}

Y = {predictable processes with values in R}

—= Dual problem by penalizing the volatility !



4. BACKWARD SDE’s AND SEMI-LINEAR PDE's

Consider the Backward Stochastic Differential Equation :

T T
Yi = g(xXp)+ [ 0o, Zo)dr = [ Ze o)W,

where X is defined by the (forward) SDE

dX; = o(Xp)dW;

Then Y; = V(t,X:), and V satisfies the semi-linear PDE

—%—‘;—%Tr 00T (2)D2V (4, )] — f (2,V (t,2), DV (,2)) = O

(Easy application of Ité's lemma)



4. BSDE’'s AND SEMI-LINEAR PDE'’s :

Stochastic representation
e Any semi-linear PDE has a representation in terms of a BSDE

e Consider a stochastic control problem with no control on volatility.

T hen, the associated HJB equation is semi-linear :

—Vi(t,z) — lTr [00*(:13)D2V(t,a:)} —sup b(x,u) -DV(t,z) = O
2 uelU

So any stochastic control problem with no control on volatility has a

representation in terms of a Backward SDE



4. BSDE’'s AND SEMI-LINEAR PDE’s : Numerical issue

Numerical solution of a semi-linear PDE by simulating the associated
backward sde by means of Monte Carlo methods

Start from Euler discretization :Y," = g (Xg; ) is given, and

Yt?-H - YZT = —f (XZZ, Yt?’ ZZZ) At + ZZZ i (XZD AWtz‘—H

—= Discrete-time approximation :

v = g(X7)



4. BSDE’'s AND SEMI-LINEAR PDE’s : Numerical issue

Numerical solution of a semi-linear PDE by simulating the associated
backward sde by means of Monte Carlo methods

Start from Euler discretization :Y," = g (Xg; ) is given, and

E7| Vg = Vil = —f (XL 20) At 21 0 (XT) AWy,

—= Discrete-time approximation :

v o= g(X7)

YT = EF YT |+ F(XE YT, ZT) At 0<i<n—1,



4. BSDE’'s AND SEMI-LINEAR PDE’s : Numerical issue

Numerical solution of a semi-linear PDE by simulating the associated
backward sde by means of Monte Carlo methods

Start from Euler discretization : Y, = g (Xg;) is given, and

B [AW:,, Yi,, =Y = —f(X5Y[, 20) Aty + 2] - o (XT) AWy,

—= Discrete-time approximation :

v = g(X7)

Yo o= EF YT, |+ F(XE YT, ZT) At 0<i<n—1

1
ZT = EF |V AW,

a(Xg;) N7 i J



4. BSDE’'s AND SEMI-LINEAR PDE’s : Numerical issue

Numerical solution of a semi-linear PDE by simulating the associated
backward sde by means of Monte Carlo methods

Start from Euler discretization : YZTTL =g (XZ;) IS given, and
B (AW, Y7, —Y0 = —f (X5 Y0, 20) Aty + 2] - o (XT) AW,

—= Discrete-time approximation :

o= 9(x7)
Y7 = BT YT, |+ F(XE YT, Z20) At 0<i<n-—1
7 = BT [y, AW,

o | XT) At
(XT) Aty

= Pricing of Bermudan options [Bally-Pagés 01, Bouchard-Touzi 04]



5. SECOND ORDER BSDE'’s and FULLY NONLINEAR PDE'’s

1
Let f(z,y,2,7v) + ETr[aaT(a:)y] non-decreasing in ~

Consider the 2nd order BSDE :

dX; = o(Xp)dW;

(2BSDE) dYy = —f(Xy, Y4, Zy, T)dt + Z; - o(X)dWe, Yr = g(X7)

dZy adt + [ dWy

A solution of (2BSDE) is
a process (Y, Z,a, ) with values in R x R™ x R" x 8"

Question : existence ? uniqueness ?



5. 2nd ORDER BSDE’s : Main result
(9’0 1 T 2
Set Lu(t,x) 1= _ (t,x) + S Tr [aa (z)D v(t,x)]

T heorem Assume that there is a unique smooth solution v of the

fully-nonlinear PDE

—Lv(t,x) — f (x,v(t,:c),Dv(t,a:), Dzv(t,x)> =0, v(T,z)=g(x).

T hen

Y = o(t, X¢), Z¢:= Do(t, Xy), oy = LDvu(t,Xy), Ty:= D?v(t, Xy)

is the unique solution of (2BSDE)

<Cheridito, Soner, Touzi and Victoir 05>



5. 2nd ORDER BSDE’s : Numerical implication

e Any fully nonlinear PDE has a representation in terms of a 2BSDE
e In particular, any stochastic control problem has a representation
in terms of a Backward SDE (the associated HJB equation is a fully
nonlinear PDE)

—= Numerical solution by Monte Carlo methods (future project)

Yo o= g(XZ),

Yion = Bl [Ytﬂ +/ <XZ§—1’ Yo 102t 1 r@-l) Aty, 1sism,
1 _
5 = EF , [y7aw,
T o e A
1 _
7= Ef_y |ZEAW]

T o)A



Sketch of the proof :
Existence of solution for (2BSDE)
1. (Easy part) Let v be the unique solution of

—Lv(t,x) — f (az,v(t,m),Dv(t,x), DQU(t,:E)> =0, v(T,z)=g(x).

T hen

}/;f — U(taXt)7 Zt — D’U(t,Xt)

z = Dv(t,z), o0 = LDv(t, X)), I} = D2v(t,Xt)

is a solution of (2BSDE)



Sketch of the proof :

Uniqueness of solution for (2BSDE)

2. Given a control v .= (z,a, "), define the controlled process

dYy’ —f (X, Y, Zy, Ty) dt + Zy - 0 (Xy) AWy

dZ;

ardt + T -0 (Xy) dWy
together with the “super-hedging" problems (Seller / Buyer)

V(t,x)

inf{y : Yp >g(X7) a.s. for some v € G}

U(t,z) —inf{y : Y7 > —g(Xyp) a.s. for some v € G}

e Any solution of (2BSDE) satisfies V(t,X:) < Y; < U(t, X3)

eV and U are both solution of the fully nonlinear PDE — U =V



