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Introduction

These notes are mainly based on the papers of Bielecki, Jeanblanc and Rutkowski:

T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Hedging of defaultable claims, Lecture Notes in
Mathematics, 1847, pages 1-132, Paris-Princeton, Springer-Verlag, 2004, R.A. Carmona, E.
Cinlar, 1. Ekeland, E. Jouini, J.E. Scheinkman, N. Touzi, eds.

T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Stochastic Methods In Credit Risk Modelling,
Valuation And Hedging, Lecture Notes in Mathematics, Frittelli, M. edt, CIME-EMS Summer
School on Stochastic Methods in Finance, Bressanone, Springer, 2004.

T.R. Bielecki, M. Jeanblanc and M. Rutkowski, Hedging of credit derivatives in models with totally
unezpected default, Proceeding of the Ritsumeikan Conference,2005.

and on the book of T.R. Bielecki and M. Rutkowski: Credit risk : Modelling valuation and Hedging,
Springer Verlag, 2001.

The reader can find other interesting information on the web sites quoted at the end of the
bibliography of this document.

The goal of this lecture is to present a survey of recent developments in the area of mathematical
modeling of credit risk and credit derivatives. Credit risk embedded in a financial transaction is
the risk that at least one of the parties involved in the transaction will suffer a financial loss due
to decline in the creditworthiness of the counter-party to the transaction, or perhaps of some third
party. For example:

e A holder of a corporate bond bears a risk that the (market) value of the bond will decline due
to decline in credit rating of the issuer.

e A bank may suffer a loss if a bank’s debtor defaults on payment of the interest due and (or)
the principal amount of the loan.

e A party involved in a trade of a credit derivative, such as a credit default swap (CDS), may
suffer a loss if a reference credit event occurs.

e The market value of individual tranches constituting a collateralized debt obligation (CDO)
may decline as a result of changes in the correlation between the default times of the underlying
defaultable securities (i.e., of the collateral).

The most extensively studied form of credit risk is the default risk — that is, the risk that
a counterparty in a financial contract will not fulfil a contractual commitment to meet her/his
obligations stated in the contract. For this reason, the main tool in the area of credit risk modeling
is a judicious specification of the random time of default. A large part of the present text will be
devoted to this issue.

Our main goal is to present the most important mathematical tools that are used for the arbitrage
valuation of defaultable claims, which are also known under the name of credit derivatives. We also
examine the important issue of hedging these claims.

3



4 CHAPTER 0. INTRODUCTION

In Chapter 1, we provide a concise summary of the main developments within the so-called
structural approach to modeling and valuation of credit risk. We also study the random barrier case.
Chapter 2 is devoted to the study of a toy model within the hazard process framework. Chapter 3
studies the case of Cox processes. Chapter 4 is devoted to the reduced-form approach. This approach
is purely probabilistic in nature and, technically speaking, it has a lot in common with the reliability
theory. Chapter 5 studies hedging strategies under assumption that a defaultable asset is traded.
Chapter 6 studies different ways to give a price in incomplete market setting. Chapter 7 provides an
introduction to the area of modeling dependent credit migrations and defaults. An appendix recalls
some notion of stochastic calculus and probability theory.

Let us only mention that the proofs of most results can be found in Bielecki and Rutkowski [23],
Bielecki et al. [16, 19, 177] and Jeanblanc and Rutkowski [117]. We quote some of the seminal pa-
pers; the reader can also refer to books of Bruyere [164], Bluhm et al. [28], Bielecki and Rutkowski
[23], Cossin and Pirotte [51], Duffie and Singleton [73], Lando [141], Schénbucher [170] for more
information. At the end of the bibliography, we also mention some web addresses where articles can
be downloaded.

Finally, it should be acknowledged that some results (especially within the reduced form ap-
proach) were obtained independently by various authors, who worked under different set of assump-
tions and within distinct setups, and thus we decided to omit detailed credentials in most cases. We
hope our colleagues will accept our apologies for this deficiency, and we stress that this by no means
signifies that these results that are not explicitly attributed are ours.

Begin at the beginning, and go on till you come to the end. Then, stop.

L. Carroll, Alice’s Adventures in Wonderland



Chapter 1

Structural Approach

In this chapter, we present the structural approach to modeling credit risk (it is also known as the
value-of-the-firm approach). This methodology directly refers to economic fundamentals, such as the
capital structure of a company, in order to model credit events (a default event, in particular). As
we shall see in what follows, the two major driving concepts in the structural modeling are: the total
value of the firm’s assets and the default triggering barrier. This was historically the first approach
used in this area, and it goes back to the fundamental papers by Black and Scholes [26] and Merton
[157].

1.1 Basic Assumptions

We fix a finite horizon date T > 0, and we suppose that the underlying probability space (2, F,P),
endowed with some (reference) filtration F = (F})o<i<7~, is sufficiently rich to support the following
objects:

e The short-term interest rate process r, and thus also a default-free term structure model.

e The firm’s value process V, which is interpreted as a model for the total value of the firm’s
assets.

e The barrier process v, which will be used in the specification of the default time 7.

e The promised contingent claim X representing the firm'’s liabilities to be redeemed at maturity
date T' < T™*.

e The process C, which models the promised dividends, i.e., the liabilities stream that is redeemed
continuously or discretely over time to the holder of a defaultable claim.

e The recovery claim X representing the recovery payoff received at time T, if default occurs
prior to or at the claim’s maturity date T'.

e The recovery process Z, which specifies the recovery payoff at time of default, if it occurs prior
to or at the maturity date T.

1.1.1 Defaultable Claims

Technical Assumptions. We postulate that the processes V, Z, C' and v are progressively mea-
surable with respect to the filtration F', and that the random variables X and X are Fp-measurable.
In addition, C is assumed to be a process of finite variation, with Cy = 0. We assume without
mentioning that all random objects introduced above satisfy suitable integrability conditions.



6 CHAPTER 1. STRUCTURAL APPROACH

Probabilities P and Q. The probability P is assumed to represent the real-world (or statistical)
probability, as opposed to the martingale measure (also known as the risk-neutral probability). The
latter probability is denoted by Q in what follows.

Default Time. In the structural approach, the default time 7 will be typically defined in terms of
the firm’s value process V' and the barrier process v. We set

r=inf{t>0:te7 and V; < v}

with the usual convention that the infimum over the empty set equals +o0o. In main cases, the set
7 is an interval [0, 7] (or [0,00) in the case of perpetual claims). In first passage structural models,
the default time 7 is usually given by the formula:

7=inf{t>0:t€[0,7T] and V; <5(¢)},

where ¢ : [0,T] — IRy is some deterministic function, termed the barrier.

Predictability of Default Time. Since the underlying filtration F in most structural models
is generated by a standard Brownian motion, 7 will be an F-predictable stopping time (as any
stopping time with respect to a Brownian filtration): there exists a sequence of increasing stopping
times announcing the default time.

Recovery Rules. If default does not occur before or at time 7', the promised claim X is paid in
full at time 7. Otherwise, depending on the market convention, either (1) the amount X is paid
at the maturity date T, or (2) the amount Z, is paid at time 7. In the case when default occurs
at maturity, i.e., on the event {r = T}, we postulate that only the recovery payment X is paid.

In a general setting, we consider simultaneously both kinds of recovery payoff, and thus a generic
defaultable claim is formally defined as a quintuple (X,C, X, Z, 7).

1.1.2 Risk-Neutral Valuation Formula

Suppose that our financial market model is arbitrage-free, in the sense that there exists a martingale
measure (risk-neutral probability) Q, meaning that price process of any tradeable security, which
pays no coupons or dividends, becomes an F-martingale under Q, when discounted by the savings

account B, given as
t
B; = exp (/ Tudu).
0

We introduce the jump process H; = 1(;<¢), and we denote by D the process that models all cash
flows received by the owner of a defaultable claim. Let us denote

Xd(T) = XH{T>T} + jz]l{rgT}-

Definition 1.1.1 The dividend process D of a defaultable contingent claim (X, C,)Z', Z, 1), which
settles at time T, equals

(1— H,)dC, + / Zu dH,,.
10.4]

10,¢]

It is apparent that D is a process of finite variation, and
/ (1-H,)dC, = / Tirsuy dC, = CT—II{TSt} + Ctll{7.>t}.
10,] 10,t]

Note that if default occurs at some date ¢, the promised dividend C; —C;_, which is due to be paid at
this date, is not received by the holder of a defaultable claim. Furthermore, if we set 7At = min {7, ¢}
then

/ ZydHy = Zepi U (r<ty = Zr U <yy
10,¢]
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Remark 1.1.1 In principle, the promised payoff X could be incorporated into the promised divi-
dends process C. However, this would be inconvenient, since in practice the recovery rules concerning
the promised dividends C and the promised claim X are different, in general. For instance, in the case
of a defaultable coupon bond, it is frequently postulated that in case of default the future coupons
are lost, but a strictly positive fraction of the face value is usually received by the bondholder.

We are in the position to define the ex-dividend price S; of a defaultable claim. At any time ¢,
the random variable S; represents the current value of all future cash flows associated with a given
defaultable claim.

Definition 1.1.2 For any datet € [0, T, the ex-dividend price of the defaultable claim (X, C, X, Z, T)
18 given as

S, = B, E@( . B-1dD,

}'t). (1.1)

In addition, we always set S7 = X?(T'). The discounted ex-dividend price S}, t € [0, T], satisfies

Sy =5,B;" - B;'dD,, Vte[0,T],
10,¢]

and thus it follows a supermartingale under Q if and only if the dividend process D is increasing.

The process Sy + B; in g B LdD, is also called the cum-dividend process.

1.1.3 Defaultable Zero-Coupon Bond

Assume that C =0, Z =0 and X = L for some positive constant L > 0. Then the value process S
represents the arbitrage price of a defaultable zero-coupon bond (also known as the corporate discount
bond) with the face value L and recovery at maturity only. In general, the price D(¢,T) of such a
bond equals

D(t,T) = BiEq(Bz' (Ll {r>ry + Xlrary) | F).

It is convenient to rewrite the last formula as follows:
D(t,T) = LB, Eqg(Bz"' (Lr>7y + (1) Lir<1y) | Fo)

where the random variable §(T) = X /L represents the so-called recovery rate upon default. It is
natural to assume that 0 < X < L so that §(T) satisfies 0 < §(T) < 1. Alternatively, we may
re-express the bond price as follows:

D(t,T) = L(B(t,T) — By Eq(Br'w(T)L{z<1y Ift))>

where
B(t,T) = B, Eo(B;' | F)

is the price of a unit default-free zero-coupon bond, and w(T) = 1 — §(7T) is the writedown rate
upon default. Generally speaking, the time-t value of a corporate bond depends on the joint proba-
bility distribution under Q of the three-dimensional random variable (Br,d(T'), 7) or, equivalently,
(Br,w(T), ).

Example 1.1.1 Merton [157] postulates that the recovery payoff upon default (I.E., when Vp < L,
equals X = Vi, where the random variable Vi is the firm’s value at maturity date T of a corporate
bond. Consequently, the random recovery rate upon default equals §(7') = Vip/L, and the writedown
rate upon default equals w(T) =1 — Vr/L.
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Expected Writedowns. For simplicity, we assume that the savings account B is non-random
— that is, the short-term rate r is deterministic. Then the price of a default-free zero-coupon bond
equals B(t,T) = B;B. ! and the price of a zero-coupon corporate bond satisfies

D(t,T) = Li(1 — w*(t,T)),

where Ly = LB(¢,T) is the present value of future liabilities, and w*(¢,T) is the conditional expected
writedown rate under Q. It is given by the following equality:

The conditional expected writedown rate upon default equals, under Q,

wh = EQ (w(T)]l{TST} |ft) _ w*(t,T)
' Q{r <T|F} pr

where pf = Q{7 < T'| F;} is the conditional risk-neutral probability of default. Finally, let 0; = 1—w}
be the conditional expected recovery rate upon default under Q. In terms of p}, d; and pf, we obtain

D(t,T) = Li(1 = p}) + Lip; 6 = Li(1 — pywy).

If the random variables w(T') and 7 are conditionally independent with respect to the o-field F;
under Q, then we have w} = Eg(w(T) | F).

Example 1.1.2 In practice, it is common to assume that the recovery rate is non-random. Let
the recovery rate 6(T) be constant, specifically, 6(T) = ¢ for some real number §. In this case, the
writedown rate w(T) = w = 1 — § is non-random as well. Then w*(¢,T) = wp; and w} = w for
every 0 <t < T. Furthermore, the price of a defaultable bond has the following representation

D(t,T) = Li(1 = p;) + 6 Lupy = Li(1 — wpy).

We shall return to various recovery schemes later in the text.

1.2 Classic Structural Models

Classic structural models are based on the assumption that the risk-neutral dynamics of the value
process of the assets of the firm V' are given by the SDE:

AV, =V, ((r — k) dt + oy dW;), Vo >0,

where & is the constant payout (dividend) ratio, and the process W is a standard Brownian motion
under the martingale measure Q.

1.2.1 Merton’s Model

We present here the classic model due to Merton [157].

Basic assumptions. A firm has a single liability with promised terminal payoff L, interpreted as
the zero-coupon bond with maturity 7" and face value L > 0. The ability of the firm to redeem its
debt is determined by the total value Vp of firm’s assets at time T. Default may occur at time T
only, and the default event corresponds to the event {Vy < L}. Hence, the stopping time 7 equals

T = T]l{VT<L} + OO]I{VTEL}'
Moreover C' =0, Z = 0, and

XUT) = Vel vpery + vy
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so that X = V. In other words, the payoff at maturity equals
D7 =min (Vy, L) = L —max (L — Vp,0) =L — (L —Vp)".

The latter equality shows that the valuation of the corporate bond in Merton’s setup is equivalent
to the valuation of a European put option written on the firm’s value with strike equal to the bond’s
face value. Let D(t,T) be the price at time ¢t < T of the corporate bond. It is clear that the value
D(V;) of the firm’s debt equals

D(V;f) :D(th) :LB(t?T)_Pta

where P; is the price of a put option with strike L and expiration date T. It is apparent that the
value E(V;) of the firm’s equity at time t equals

E(V;) =V; — D(V;) = Vs — LB(t,T) + P, = C},

where C} stands for the price at time ¢ of a call option written on the firm’s assets, with strike price
L and exercise date T. To justify the last equality above, we may also observe that at time T we
have

E(VT) = VT - D(VT) = VT — min (VT,L) = (VT - L)+.
We conclude that the firm’s shareholders are in some sense the holders of a call option on the firm’s

assets.

Merton’s Formula. Using the option-like features of a corporate bond, Merton [157] derived
a closed-form expression for its arbitrage price. Let A denote the standard Gaussian cumulative
distribution function:

1 x
N(z) = E/ e 2 du, VaeR.
—00

Proposition 1.2.1 For every 0 <t < T the value D(t,T) of a corporate bond equals
D(t,T) = Vie " T ON (= dy (V;, T — 1)) + L B(t, )N (d—(V;, T — 1))

where
In(V;/L)+ (r—k+10d)(T —t)

de(Ve, T —1) = ovv1T —t
v —

The unique replicating strategy for a defaultable bond involves holding at any time 0 <t < T: ¢}V,
units of cash invested in the firm’s value and ¢? B(t,T) units of cash invested in default-free bonds,
where
¢ = e "IN (—dp(V;, T — 1))
and
D(ta T) _ %V;&

9} = T BLT) = LN(d-(V;, T — 1)).

Credit Spreads
For notational simplicity, we set kK = 0. Then Merton’s formula becomes:
D(t,T)=LB(t,T)(TN(=d) + N(d — oy VT — 1)),
where we denote I'y = V;/LB(t,T) and

_ W(Vi/L) + (r+ 02 /2)(T — t)
B O’V\/T—t

Since LB(t,T) represents the current value of the face value of the firm’s debt, the quantity I'; can
be seen as a proxy of the asset-to-debt ratio V;/D(t,T). It can be easily verified that the inequality

d=d(V,, T —1)



10 CHAPTER 1. STRUCTURAL APPROACH

D(t,T) < LB(t,T) is valid. This property is equivalent to the positivity of the corresponding credit
spread (see below).
Observe that in the present setup the continuously compounded yield r(¢,T) at time ¢ on the

T-maturity Treasury zero-coupon bond is constant, and equal to the short-term rate r. Indeed, we

have
B(th) = efr(t’T)(T*t) — e*T(Tft)'

Let us denote by r%(¢,T) the continuously compounded yield on the corporate bond at time ¢t < T,
so that
D(t,T) = Le " (:T)(T=1)

From the last equality, it follows that

InD(¢,T)—InL

rd(t,T) = T3

For t < T the credit spread S(t,T) is defined as the excess return on a defaultable bond:

S(t.7) = r'(t.T) = r(t.T) = i I LDB(gt%).

In Merton’s model, we have

In (N(d — oy VT — 1) + TN (=d))

S(t,T) = — —

> 0.

This agrees with the well-known fact that risky bonds have an expected return in excess of the risk-
free interest rate. In other words, the yields on corporate bonds are higher than yields on Treasury
bonds with matching notional amounts. Notice, however, when t tends to T, the credit spread in
Merton’s model tends either to infinity or to 0, depending on whether Vi < L or Vi > L. Formally,
if we define the forward short spread at time T as

FSSy = %1%1 S(t,T)

then ‘ )
_J0, ifwe{Vyr>L}
FSSr(w) = {oo, ifwe{Vp <L}

1.2.2 Black and Cox Model

By construction, Merton’s model does not allow for a premature default, in the sense that the default
may only occur at the maturity of the claim. Several authors put forward structural-type models in
which this restrictive and unrealistic feature is relaxed. In most of these models, the time of default
is given as the first passage time of the value process V' to either a deterministic or a random barrier.
In principle, the bond’s default may thus occur at any time before or on the maturity date T. The
challenge is to appropriately specify the lower threshold v, the recovery process Z, and to explicitly
evaluate the conditional expectation that appears on the right-hand side of the risk-neutral valuation
formula

S, = B, E@( B-ldD,

1t,7]

),

which is valid for ¢ € [0, T[. As one might easily guess, this is a non-trivial mathematical problem,
in general. In addition, the practical problem of the lack of direct observations of the value process
V largely limits the applicability of the first-passage-time models based on the value of the firm
process V.

Corporate Zero-Coupon Bond Black and Cox [25] extend Merton’s [157] research in several
directions, by taking into account such specific features of real-life debt contracts as: safety covenants,



1.2. CLASSIC STRUCTURAL MODELS 11

debt subordination, and restrictions on the sale of assets. Following Merton [157], they assume that
the firm’s stockholders receive continuous dividend payments, which are proportional to the current
value of firm’s assets. Specifically, they postulate that

AV, = Vy((r — k) dt + oy dW;), Vo >0,

where W is a BM (under the risk-neutral probability Q), the constant x > 0 represents the payout
ratio, and oy > 0 is the constant volatility. The short-term interest rate r is assumed to be constant.

Safety covenants. Safety covenants provide the firm’s bondholders with the right to force the
firm to bankruptcy or reorganization if the firm is doing poorly according to a set standard. The
standard for a poor performance is set by Black and Cox in terms of a time-dependent deterministic
barrier 5(t) = Ke= 7Tt t € [0, T, for some constant K > 0. As soon as the value of firm’s assets
crosses this lower threshold, the bondholders take over the firm. Otherwise, default takes place at
debt’s maturity or not depending on whether V < L or not.

Default time. Let us set
o — o(t), fort<T,
L, fort ="T.

The default event occurs at the first time ¢ € [0, 7] at which the firm’s value V; falls below the level
vy, or the default event does not occur at all. The default time equals (inf ) = 400)

r=inf{t€[0,T]:V; <wu}.

The recovery process Z and the recovery payoft X are proportional to the value process: Z = 2V and
X = B1Vp for some constants 51, 82 € [0, 1]. The case examined by Black and Cox [25] corresponds

to B =02 = 1.

To summarize, we consider the following model:
X=L C=0,Z=3V, X =pVr, T=7AT,
where the early default time T equals
T=inf{te[0,T) :V, <9(t)}

and 7 stands for Merton’s default time: 7 = Ty, <1y + collfy,>1}-

Bond Valuation Similarly as in Merton’s model, it is assumed that the short term interest rate is
deterministic and equal to a positive constant r. We postulate, in addition, that v(¢) < LB(¢,T) or,
more explicitly,

Ke "T=0) < LemmT= " vt e0,T],

so that, in particular, K < L. This condition ensures that the payoff to the bondholder at the
default time 7 never exceeds the face value of debt, discounted at a risk-free rate.

PDE approach. Since the model for the value process V is given in terms of a Markovian diffusion,
a suitable partial differential equation can be used to characterize the value process of the corporate
bond. Let us write D(¢,T) = u(V;,t). Then the pricing function v = u(v,t) of a defaultable bond
satisfies the following PDE:

1
ug(v,t) + (r — K)vuy (v, t) + 50‘2/v2uw(v,t) —ru(v,t) =0

on the domain
{(v,t) e Ry xRy : 0<t<T,v>Ke TV},

with the boundary condition
uw(Ke "I 1) = gy Ke 7T

and the terminal condition u(v,T) = min (fyv, L).
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Probabilistic approach. For any ¢ < T the price D(¢,T) = u(V;,t) of a defaultable bond has the
following probabilistic representation, on the set {r >t} = {7 > t}

D(t, T) = EQ (Le_r(T_t)]l{fZT, Vi >L} ‘ ]:t)
+Eo(BiVee " T M rar viary | F1)

+Eqg (Kﬁg@iﬁ(T?f)eir(fit) Tiicrery ’ ft> .

After default — that is, on the set {7 <t} = {F < t}, we clearly have
D(t,T) = Bot(7) B~ (1, T)B(t,T) = KoY T ert=7),
To compute the expected values above, we observe that:

e the first two conditional expectations can be computed by using the formula for the conditional
probability Q{V, > z, 7 > s| F:},

e to evaluate the third conditional expectation, it suffices employ the conditional probability law
of the first passage time of the process V to the barrier ().

Black and Cox Formula. Before we state the bond valuation result due to Black and Cox [25],
we find it convenient to introduce some notation. We denote

L o
v = r—K-— -0y,
2 V

L 5

m = V—yY=Tr—K—7— -0y

2

b = mo 2.

For the sake of brevity, in the statement of Proposition 1.2.2 we shall write o instead of oy. As
already mentioned, the probabilistic proof of this result is based on the knowledge of the probability
law of the first passage time of the geometric (exponential) Brownian motion to an exponential
barrier (see Appendix equations (8.11) and (8.12)).

Proposition 1.2.2 Assume that m? + 20%(r — ) > 0. Prior to bond’s default, that is: on the set
{r > t}, the price process D(t,T) = u(V;,t) of a defaultable bond equals

D(t,T) = LBt T)(N (ha(Vi, T = 1)) = 22 "N (ha(Vi, T — 1))
+ B Vee "I (N (hg(Vi, T — 1)) = N (ha(Ve, T — 1))
+ P Vie "D ZE P2 (N (hs(Vi, T — 1) = N (h(Vi, T — 1))
+ Vi 2N (hr (Ve, T — 1)) + 20N (hs (Ve T — 1)),
where Zy = v(t) Vi, 0 =b+ 1, ( = 072y/m2 + 202(r —~) and

In(Vi/L) 4+ v(T —1t)

(V. T — 1)

ovT —t ’
ho(Vy, T —t) = In o= (¢) T%—i—u( )7
_ In(L/Vy) — (v +0*)(T - 1)
hs(V,, T —t) = = 7
ha(Vi, T —t) = In (K/V;) = (v +0°)(T — )

ovT —t ’
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Inv2(t) — In(LV;) + (v + o) (T — t)

hs(Ve,T —t) = AORAL |
he(Ve,T —t) = IHUQ(t)_ln(i‘j)TL(:JFUQ)(T_t)v
he(Ve,T —t) = ln(”(t)/:t};ifo%T H
(VT —1) = BOO/V) CoX(T —t)

ovT —t

Special Cases Assume that 3; = 2 = 1 and the barrier function v is such that K = L. Then
necessarily v > r. It can be checked that for K = L we have D(¢t,T) = D1(t,T) + Ds(t,T) where:

Di(t,T) = LB(t, T)(N (h(Vy, T — t)) — Z7*N (ha(Vy, T — 1))
Ds(t,T) = Vi (Z/ TN (ho (Vi, T — 1)) + 2N (hs(V;, T — 1))).
e Case v = r. If we also assume that v = r then ( = —o 27, and thus
V,Z8tC = LB(t,T), V,Z28™¢ =V, 22+ = LB(t,T)Z>.
It is also easy to see that in this case

In(V;/L) + v(T — 1)

h(Vi,T —t) = = —h(Vi, T — 1),
1( t ) U\/ﬁ 7( t )
while a2 |
92(t) — In(L T —
ho(Vi, T — 1) = REO =V b 0T 8) ()

oVl —t

We conclude that if 9(t) = Le="T=% = LB(t,T) then D(¢t,T) = LB(t,T). This result is quite
intuitive. A corporate bond with a safety covenant represented by the barrier function, which equals
the discounted value of the bond’s face value, is equivalent to a default-free bond with the same face
value and maturity.

e Case v > r. For K = L and v > r, it is natural to expect that D(¢,T) would be smaller than
LB(t,T). It is also possible to show that when ~ tends to infinity (all other parameters being fixed),
then the Black and Cox price converges to Merton’s price.

1.2.3 Further Developments

The Black and Cox first-passage-time approach was later developed by, among others: Brennan
and Schwartz [35, 36] — an analysis of convertible bonds, Kim et al. [132] — a random barrier and
random interest rates, Nielsen et al. [159] — a random barrier and random interest rates, Leland
[145], Leland and Toft [146] — a study of an optimal capital structure, bankruptcy costs and tax
benefits, Longstaff and Schwartz [150] — a constant barrier and random interest rates, Brigo [37].

One can study the problem
T=inf{t : V; < L(t)}

where L(t) is a deterministic function and V' a geometric Brownian motion. However, there exists
few explicit results. See the appendix for some references.

e Other stopping times Moraux suggests to chose, as default time a Parisian stopping time For
a continuous process V and a given t > 0, we introduce g?(V), the last time before ¢ at which the
process V was at level b, i.e.,

gt (V) =sup{s <t:V,=b}.
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The Parisian time is the first time at which the process V' is under b for a period greater than D,
ie.,

Gp'(V) =inf{t > 0: (t = ¢(V))Lyv,<ey > D}

This time is a stopping time. Let 7 = Gg’b(V). See Appendix for results on the joint law of (7, V)
in the case of a Black-Scholes dynamics.

Another default time is the first time where the process V has spend more than D time below
a level, i.e., 7 = inf{t : AY > D} where A} = fg 1y, >pds. The law of this time is related with
cumulative options.

Campi and Sbuelz [39] present the case where the default time is given by a first hitting time of a
CEV process and study the difficult problem of pricing an equity default swap. [39] More precisely,
hey assume that the dynamics of the firm is

dS, = Si_ ((r — k)dt + o SPdW, — dM,
t

where W is a BM and M the compensated martingale of a Poisson process (i.e., My = N; — At), and
they define
T=inf{t : S; <0}

In other terms, they take 7 = 77 A 7% where 7%V is the first jump of the Poisson process and
™ =inf{t : X; <0}

where
dX, = X,_ ((r RN+ adeWt) .

Using that a CEV process can be expressed in terms of a Bessel process time changed, and results
on the hitting time of 0 for a Bessel process of dimension smaller than 2, they obtain closed from
solutions.

e Zhou’s model Zhou [181] studies the case where the dynamics of the firm is

AVy =Vie ((p — Av)dt + odWy + dXy)
where W is a Brownian motion, X a compound Poisson process X; = i\h e¥i — 1 where InY; aw
N (a, b?) with v = exp(a+b?/2)—1. This choice of parameters implies that Ve*! is a martingale. In a
first part, Zhou studies Merton’s problem in that setting. In a second part, he gives an approximation
for the first passage problem when the default time is 7 = inf{¢ : V; < L}.

1.2.4 Optimal Capital Structure

We consider a firm that has an interest paying bonds outstanding. We assume that it is a consol
bond, which pays continuously coupon rate ¢. Assume that » > 0 and the payout rate x is equal to
zero. This condition can be given a financial interpretation as the restriction on the sale of assets,
as opposed to issuing of new equity. Equivalently, we may think about a situation in which the
stockholders will make payments to the firm to cover the interest payments. However, they have the
right to stop making payments at any time and either turn the firm over to the bondholders or pay
them a lump payment of ¢/r per unit of the bond’s notional amount.

Recall that we denote by E(V;) (D(V;), resp.) the value at time ¢ of the firm equity (debt, resp.),
hence the total value of the firm’s assets satisfies V; = E(V;) + D(V}).

Black and Cox [25] argue that there is a critical level of the value of the firm, denoted as v*,
below which no more equity can be sold. The critical value v* will be chosen by stockholders, whose
aim is to minimize the value of the bonds (equivalently, to maximize the value of the equity). Let us
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observe that v* is nothing else than a constant default barrier in the problem under consideration;
the optimal default time 7* thus equals 7* =inf {¢t > 0: V; <v*}.

To find the value of v*, let us first fix the bankruptcy level v. The ODE for the pricing function
u® = u* (V) of a consol bond takes the following form (recall that o = oy )

1
§V202u$/ov +rVuy +c—ru® =0,
subject to the lower boundary condition u*°(v) = min (v, ¢/r) and the upper boundary condition
li v(V)y=o.
Vgnoo U ( )

For the last condition, observe that when the firm’s value grows to infinity, the possibility of default
becomes meaningless, so that the value of the defaultable consol bond tends to the value ¢/r of the
default-free consol bond. The general solution has the following form:

uX (V) = ; LRV KV,

where o = 2r /0% and K7, K5 are some constants, to be determined from boundary conditions. We
find that K; = 0, and
Ky = vt — (¢/r)ve, if U < c/r,
0, if v >c/r.
Hence, if 7 < ¢/r then

u>(Vy) = ; + (17"‘“ - ;Tﬂ) v,

(o (1)) o ()

It is in the interest of the stockholders to select the bankruptcy level in such a way that the value
of the debt, D(V;) = u*(V%), is minimized, and thus the value of firm’s equity

or, equivalently,

C
EWVy)=Vi—=DWV;) =V, — ;(l—qt)—m

is maximized. It is easy to check that the optimal level of the barrier does not depend on the current

value of the firm, and it equals
c c

ro+1 :T+0'2/2.

*

Given the optimal strategy of the stockholders, the price process of the firm’s debt (i.e., of a consol
bond) takes the form, on the set {7* > ¢},

¢ 1 ¢ a+1
DV =S — (—5
() raV® (r+02/2>

* c * * ok
D (W):;(l_Qt)'i'U 9t »

P (G R I R
“=\v) Tve\rvor2)

We end this section by remarking that other important developments in the area of optimal
capital structure were presented in the papers by Leland [145], Leland and Toft[146], Christensen et
al. [45]. Chen and Kou [42], Dao [55], Hilberink and Rogers [97], LeCourtois and Quittard-Pinon
[143] study the same problem modelling the firm value process as a diffusion with jumps. The reason
for this extension was to eliminate an undesirable feature of previously examined models, in which
short spreads tend to zero when a bond approaches maturity date.

or, equivalently,

where

Further Developments
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1.3 Stochastic Interest Rates

In this section, we assume that the underlying probability space (2, F, P), endowed with the filtration
F = (F)i>0, supports the short-term interest rate process r and the value process V. The dynamics
under the martingale measure QQ of the firm’s value and of the price of a default-free zero-coupon
bond B(t,T) are

dV, = Vi ((ry — K(t)) dt + o (t) dWy)

and
dB(t,T) = B(t,T)(ry dt + b(t,T) dWy)

respectively, where W is a d-dimensional standard Q-Brownian motion. Furthermore, % : [0,T] — IR,
o :10,T) — R and b(-,T) : [0,T] — IR? are assumed to be bounded functions. The forward value
Fy(t,T)=V,/B(t,T) of the firm satisfies under the forward martingale measure Pp

dFy(t,T) = —k(t)Fy (t,T) dt + Fy (¢, T) (o (t) — b(t,T)) dW,"

where the process W = Wy — fot b(u,T)du, t € [0,T], is a d-dimensional SBM under Pr. For any
t €10,T], we set
F5(t,T) = Fy(t, T)e Ji nw)du,

Then
dFy(t,T) = F§(t,T)(o(t) — b(t,T)) dW, .

Furthermore, it is apparent that F{}(T,T) = Fy (T, T) = V. We consider the following modification
of the Black and Cox approach:

X=1L, Z,=0(V,, X=0Vp, T=inf {t €[0,T]: Vi < v},
where 32, 01 € [0,1] are constants, and the barrier v is given by the formula

vy = KB(t,T)el! swdu  for ¢ < T,
L fort =T,

with the constant K satisfying 0 < K < L.
Let us denote, for any ¢t < T

T T
W(T) = / () du, o2(t,T) = / (1) — bu, T)|2 du
¢ t
where | - | is the Euclidean norm in IR?. For brevity, we write F; = F{i(¢,T), and we denote
L o L 5
77+(t7T) = H(th) + 50— (th)a n—- (taT) = H(taT) - 50 (taT)'

The following result extends Black and Cox valuation formula for a corporate bond to the case of
random interest rates.

Proposition 1.3.1 For anyt < T, the forward price of a defaultable bond Fp(t,T) = D(¢,T)/B(t,T)
equals on the set {T > t}
LN (h(F, t,T)) — (Fi/K)e "CDN (hy(Fy, t,T)))
+ B1Fe "D (N (hy(Fy, t,T)) — N (ha(Fy, t,T)))
+ 51K(N(ﬁ5(Ft,t, 7)) - N(ﬁg(Ft,t, 7)))
+ BoK T (Fy t,T) + BoFre "1 J_(Fy,t, T),
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where
&mmﬂmmggﬁﬂﬂ’
FaFT ) = 2an—l;1(£ZF§3)+ nf(mT),
ha(Fy,t,T) = m‘L/fﬁézgiu’Tx
meﬂmmﬁygﬁn’
FLT) = 2an—1nC£éF§3)+ m(t,T)’
he(Fy,t,T) hmkvfﬁézgiu“rx

and for any fired 0 <t < T and F; > 0 we set

T
&@@ﬂ:/emmﬂf

t

(ln(K/Ft) +k(t,T) £ ;gQ(t,u)>
o(t,u) '

In the special case when k = 0, the formula of Proposition 1.3.1 covers as a special case the
valuation result established by Briys and de Varenne [38]. In some other recent studies of first
passage time models, in which the triggering barrier is assumed to be either a constant or an
unspecified stochastic process, typically no closed-form solution for the value of a corporate debt is
available, and thus a numerical approach is required (see, for instance, Kim et al. [132], Longstaff
and Schwartz [150], Nielsen et al. [159], or Sad-Requejo and Santa-Clara [167]).

1.4 Random Barrier

In the case of full information and Brownian filtration, the first hitting time of a deterministic barrier
is predictable. This is no longer the case when we deal with incomplete information (as in Duffie
and Lando [70], see also Chapter 2, Section 2.2.7), or when an additional source of randomness is
present. We present here a formula for credit spreads arising in a special case of a totally inaccessible
time of default. For a more detailed study we refer to Babbs and Bielecki [8]. As we shall see, the
method we use here is close to the general method presented in Chapter 4.

We suppose here that the default barrier is a random variable D defined on the underlying
probability space (Q,P). The default occurs at time 7 where

T=inf{t : V; < D},
where V is the value of the firm and, for simplicity, Vy = 1. Note that
{T>t}:{iriftVu > D}.
We shall denote by m,Y the running minimum of V, i.e. ml‘k/ = inf,<; Vi, . With this notation,
{r >t} ={m} > D}. Note that m" is a decreasing process.
1.4.1 Independent barrier

In a first step we assume that, under the risk-neutral probability Q, D is independent of the value of
the firm. We denote by Fp the cumulative distribution function of the r.v. D, ie. Fp(z) = Q(D <
z). We assume that Fp is differentiable and we denote fp its derivative.
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Lemma 1.4.1 Let F} = Q(7 < t|F;) and Ty = —In(1 — F}). Then

Proor: If D is independent of F,

F,=Q(r <t|F) =Q(m{ < D|F)=1-Fp(my).

\%4
The process m" is decreasing. It follows that T'y = —In Fp(m}'), hence dl'y = — IJ;]; ((7:;‘,)) dm) and

t 14
r, = [ Jolma) (ml{/) dm) .
0 FD(mu)

O

Example 1.4.1 Assume that D is uniformly distributed on the interval [0, 1]. Then, Ty = —Inm) .

The computation of quantities as E(e!'” f(Vr)) requires the knowledge of the joined law of the pair
(VTv m¥ )

We postulate now that the value process V is a geometric Brownian motion with a drift, that is,
we set V; = eVt where W, = ut + oW,. It is clear that 7 = inf {t > 0: U} < v}, where U* is the
running minimum of the process ¥: ¥F =inf{¥,: 0 < s <t}

We choose the Brownian filtration as the reference filtration, i.e., we set F = FW. Let us denote
by G(z) the cumulative distribution function under Q of the barrier . We assume that G(z) > 0
for z < 0 and that G admits the density g with respect to the Lebesgue measure (note that g(z) = 0
for z > 0). This means that we assume that the value process V' (hence also the process V) is
perfectly observed. In addition, we suppose that the bond investor can observe the occurrence of
the default time. Thus, he can observe the process Hy = ;<43 = Lig:<y). We denote by H the
natural filtration of the process H. The information available to the investor is represented by the
(enlarged) filtration G = F v H.

We assume that the default time 7 and interest rates are independent under Q. Then, it is
possible to establish the following result (see Giesecke [89] or Babbs and Bielecki [8]). Note that the
process ¥* is decreasing, so that the integral with respect to this process is a (pathwise) Stieltjes
integral.

Proposition 1.4.1 Under the assumptions stated above, and additionally assuming L =1, Z =0
and X =0, we have that for everyt <T

T DY) g+
u

1
S(t, T) = _I]-{T>t} Ti—t II’IEP* (ef‘ Fp(¥y)

]—'t).

In the next chapter, we shall introduce the notion of a hazard process of a random time. For the
default time 7 defined above, the F-hazard process I' exists and is given by the formula

t
T, =— U dUr.
'Sy Fo(uy)

This process is continuous, and thus the default time 7 is a totally inaccessible stopping time with
respect to the filtration G.

To be completed
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1.5 Comments on Structural Models

We end this chapter by commenting on merits and drawbacks of the structural approach to credit
risk.

Advantages

e An approach based on the volatility of the total value of a firm. The credit risk is thus measured
in a standard way. The random time of default is defined in an intuitive way. The default
event is linked to the notion of the firm’s insolvency.

e Valuation and hedging of defaultable claims relies on similar techniques as the valuation and
hedging of exotic options in the standard default-free Black-Scholes setup.

e The concept of the distance to default, which measures the obligor’s leverage relative to the
volatility of its assets value, may serve to reflect credit ratings.

e Dependent defaults are easy to handle through correlation of processes corresponding to dif-
ferent names.

Disadvantages

e A stringent assumption that the total value of the firm’s assets can be easily observed. In
practice, continuous-time observations of the value process V are not available. This issue
was recently addressed by Crouhy et al.[53], Duffie and Lando [70], Jeanblanc and Valchev
[120], who showed that a structural model with incomplete accounting data can be dealt with
using the intensity-based methodology. The paper of Guo [94] presents a case with delayed
information. See also Section 4.4.2.

e An unrealistic postulate that the total value of the firm’s assets is a tradeable security.

e This approach is known to generate low credit spreads for corporate bonds close to maturity.
It requires a judicious specification of the default barrier in order to get a good fit to the
observed spread curves.

Other issues

e A major problem with applying structural models is the difficulty with estimation of the
volatility of assets value. For the classical Merton’s model, there exists a simple formula that
relates this volatility to the volatility of the firm’s equity, which in principle can be easily esti-
mated. However, no such simple expression exists in case of first-passage-time models. Certain
market-oriented technologies, such as CreditGrades, attempt to produce such a formula.

e Structural models discussed above were at most one-factor models, with the only factor being
the short-term interest rate. Two- and three-factor structural models have been also developed
and closed-form valuation formulae were derived in some special cases.
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Chapter 2

Hazard process Approach: A Toy
Model

We provide in this chapter a detailed analysis of the relatively simple case of the reduced form
methodology, when the flow of informations available to an agent reduces to the observations of
the random time which models the default event. The focus is on the evaluation of conditional
expectations with respect to the filtration generated by a default time with the use of the hazard
function. We study hedging strategies based on CDS and/or with DZC. We also present a model with
two default times. In the following chapters, we shall study the case when an additional information
flow - formally represented by some filtration F - is present, with the use of the hazard process.

2.1 The Toy Model

We begin with the simple case where a riskless asset, with deterministic interest rate (r(s); s > 0) is
the only asset available in the default-free market. We denote as usual by R(t) = exp ( t o T(s)d )

the discount factor. The price of a risk-free zero-coupon bond with maturity 7" is B(0,T ) R(T),
whereas its time ¢ price B(t,T) is

B(t,T) = Rk = exp (— /Tr(s)ds> .

Default occurs at time 7 (where 7 is assumed to be a positive random variable with density f,
constructed on a probability space (©,G,P)). We denote by F the cumulative function of the r.v. 7
defined as F(t) = P(r <t) fo s)ds and we assume that F'(t) < 1 for any ¢t < T, where T is the
maturity date (Otherwise there ex1sts to < T such that F'(ty) = 1, and default occurs a.s. before ty).
We emphasize that the risk is not hedgeable. Indeed, a random payoff of the form 17} cannot
be perfectly hedged with deterministic zero-coupon bonds which are the only tradeable assets in our
model. To hedge the risk, we shall assume later on that some defaultable asset is traded, e.g., a
defaultable zero-coupon bond or a CDS (Credit default swap).

Remark 2.1.1 It is not difficult to generalize the study presented in what follows to the case where
7 does not admit a density by dealing with the right-continuous version of the cumulative function.
The case where 7 is bounded can also be studied along the same method. We leave the details to
the reader.
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2.1.1 Defaultable Zero-coupon with Payment at Maturity

A defaultable zero-coupon bond (DZC in short)- or a corporate bond- with maturity 7" and
rebate § paid at maturity, consists of

e The payment of one monetary unit at time T if default has not occurred before time T, i.e., if
T>T,

e A payment of § monetary units, made at maturity, if 7 < T, where 0 < § < 1.

Value of the defaultable zero-coupon bond

The “value” of the defaultable zero-coupon bond is defined as the expectation of discounted payoffs

D0, T) = E(R(T)[Mir<ry +lir<ry])
= RME1-(1- 5)]1{T§T})
— B0, T)[1 - (1—68)F(T)]. (2.1)

In fact, this quantity is a net present value and is equal to the value of the default free ZC, minus
the expected loss, computed under the historical probability. Obviously, this is not a hedging price.

The time-t value depends whether or not default has happened before this time. If default has
occurred before time ¢, the payment of § will be made at time 7', and the price of the DZC is 6 R, :
in that case, the payoff is hedgeable with § default-free zero-coupon bonds.

If the default has not yet occurred, the holder does not know when it will occur. The value D(¢,T)
of the DZC is the conditional expectation of the discounted payoff B(t,T') [l{p<r} + 1 r<1}] given
the information:

D(t,T) = 1<y B(t,T) + <, D(t,T)

where the predefault value D is defined as

Dt,T) = E(Rr(Lrery +0lr<ry) [t <7)
= B{t,T)(1-(1-0)P(r<T|t<T))
B Plt<7<T)
= B(t,T) (1 —(1- 6)]P’(t<7))

40y )

= B(t,T) (1—(1_5) a0

Note that the value of the DZC is discontinuous at time 7, unless F(T') =1 (or 6 = 1). In the case
F(T) =1, the default appears with probability one before maturity and the DZC is equivalent to a
payment of § at maturity. If § = 1, the DZC is in fact a default-free zero coupon bond.

Formula (2.2) can be read as
D(t,T) = B(t,T) — EDLGD x DP

where the Expected Discounted Loss Given Default (EDLGD) is defined as B(¢,T)(1 —§) and
the conditional Default Probability (DP) is

Pt<7<T)

PP =—=50<

=P(r<Tlt<T).
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In case the payment is a function of the default time, say §(7), the value of this defaultable zero-
coupon is

D(0,T) = E(R(T)lirery + RT)(T)i-<ry)

T
= B(0,T) |P(T < 1)+ /O 8(s)f(s)ds

If the default has not occurred before ¢, the predefault time-¢ value ﬁ(t, T) satisfies

DLT) = B(tDE(Lgrer +3(r)1grery |t < 7)

P(T <) 1 T
Plt<r)  PBlt<r) /t 5(5)f(5)ds] .

= B(tT)

To summarize,

D(t,T) =1y, ,DT)+ Nu _,,6(7)B(t,T).

Hazard function

We introduce the hazard function I' defined by
T(t) =—In(1 - F(t))

f(t)

and its derivative v(t) = liF(t)

where f(t) = F'(t), i.e.,

1-F(t)=eT® =exp (— /Ot ’y(s)ds) =P(r >1t).

The quantity (t) is the hazard rate. The interpretation of the hazard rate is the probability that
the default occurs in a small interval dt given that the default did not occur before time ¢

1
= lim — P(7 < .
~(t) lim - (r<t+h|t>1)

Note that I' is increasing.
Then, formula (2.2) reads

D(t,T)

1= F(T) _F(T)-F()
B“”(l—ﬂﬂ* TR )
= Ry +6(RL - RyY),

T
RL = exp (—/t (r+ 'y)(s)ds> .

In particular, for § = 0, D(t,T) = R’;d. Hence, the spot rate has to be adjusted by means of a
spread (equal to «y) in order to evaluate DZCs.

The dynamics of D can be easily written in terms of the function ~ as

where

5, D(t,T) = (r(t) +~(t))D(t, T)dt — B(t,T)y(t)5(t)dt

The dynamics of D will be written in the next section.

If v and ¢ are constant, the credit spread is

1 B(t,T) 1
In =—1— = — In(1+ 6™ -1
; . T) 7 n( d(e ))
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and goes to y(1 — §) when ¢ goes to T.

The quantity A(¢,T) = 1f1(;(tT)T) where

Ft,T)=Pr <T|r >1t)

and f(¢t,T)dT =P(r € dT|t > t) is called the conditional hazard rate. One has
T
Ft,T)=1- eXp—/ A(s, T)ds.
t

In our setting,
P(r>T)

T
1—F(t,T):m:eXp—/t ~(s)ds

and \(s,T) = v(s).

Remark 2.1.2 In case 7 is the first jump of an inhomogeneous Poisson process with deterministic
intensity (A(t),t > 0) (See Appendix if needed),

f(t) =P(r € dt)/dt = A(t) exp <—/O A(s)ds) = A(t)e 2™

¢
where A(t) = / A(s)ds and P(1 < t) = F(t) = 1 — e 2® hence the hazard function is equal to the
0

compensator of the Poisson process, i.e. I'(t) = A(t). Conversely, if 7 is a random time with density
f, setting A(t) = —In(1 — F(¢)) allows us to interpret 7 as the first jump time of an inhomogeneous
Poisson process with intensity the derivative of A.

2.1.2 Defaultable Zero-coupon with Payment at Hit
Here, a defaultable zero-coupon bond with maturity 7" consists of

e The payment of one monetary unit at time 7T if default has not yet occurred,

e A payment of §(7) monetary units, where § is a deterministic function, made at time 7 if
T<T.

Value of the defaultable zero-coupon

The value of this defaultable zero-coupon bond is
D(0,T) = E(R(T)Lir<ry + R(1)d(T)U{r<1y)

T
= P(T'<7)R(T)+ /0 R(s)0(s)dF (s)

— G(T)R(T) - /O R()3(s)dG(s), (2.3)

where G(t) =1 — F(t) = P(¢t < 7) is the survival probability. Obviously, if the default has occurred
before time ¢, the value of the DZC is null (this was not the case for payment of the rebate at
maturity), and D(¢,T) = Ly, D(t,T) where D(t,T) is a deterministic function (the predefault
price). The predefault time-t value D(t,T) satisfies

R(t)D(t,T) = E(R(T)Np<ery + R(T)0(T)Mr<my|t < T)

P(T < 1)

1 T
= WR(T)er/t R(s)6(s)dF(s).
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Hence,
R(OGHD(L,T) = G(T)R(T) — /t R(s)3(5)dG(s) .

In terms of the hazard function,
DO,T) = e "D R(T / R(s)e~Ts(s)dT'(s) . (2.4)
The time-t value D(t, T) satisfies:
Rt)e "D, T) = e "M R(T / R(s)e T)§(s)dl(s) .
The process t — D(t,T) admits a discontinuity at time 7.

A particular case

If F is differentiable, the function v = I satisfies f(t) = v(t)e '®*). Then,

DO.T) = e TORT / Rs)y(s)e~")6(s)ds (2.5)
= RYT)+ / R4 (s)y(s)d(s)ds
0

RY(t)D(t,T) = RY(T) + /t ! R (s)v(s)d(s)ds

and

with R(t) = exp ( fo ]ds) The defaultable interest rate is r + v and is, as expected,

greater than r (the value of a DZC with § = 0 is smaller than the value of a default-free zero-coupon).
The dynamics of D(t,T) are

dD(t,T) = {(r(t) + v(£))D(t,T) — 5(t)y(1)) }dt .

The dynamics of D includes a jump at time 7 and will be computed in a next section.

Fractional recovery of treasury value

This case corresponds to 6(¢t) = 6B(t,T).

T
D(,T) = Li<, <e_ftT(“s)”(s”s OB, T) / dsv(s>eff”(“)du>
t

Fractional recovery of market value

Let us assume here that the recovery is §(£) = dD(t, T)where & is a constant (i.e. the recovery is
0D(r7—,T)). The dynamics of D is

aD(t,T) = {r(t) +~(t)(1 — 6(1))} D(t, T)dt

D(t,T) = exp (-/t r(s)ds—/t 'y(u)(l—é(u))du).

hence
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2.1.3 Implied probabilities

If defaultable zero-coupon bonds with zero recovery are traded in the market at price D*(¢,T), the

implied survival probability is Q* such that Q*(r > T|r > t) = %*(Ef’TT)). Of course, this probability
may differ from the historical probability. The implied hazard rate is the function A(¢,T) such that
o . D*(,T)
At T) = ——In =) — (7).
(t.7) o ™ BT 7(T)

In the toy model, the implies hazard rate is not very interesting. The aim is to obtain
_ T
D*(t,T) = B(t,T) exp—/ A(t, s)ds .
t

This approach will be useful when he predefault price is stochastic.

2.1.4 Spreads

A term structure of credit spreads associated with the zero-coupon bonds S(¢,T') is defined as

1 DT
S(t,T) = T—tln BUT)

In our setting, on the set {7 > ¢}

St,T)=— InQ*(r > T|r > t),

T—t
whereas S(t,T) = oo on the set {7 < t}.

2.2 Toy Model and Martingales

We now present the results of the previous section in a different form, following closely Dellacherie
([62], page 122). We keep the same notation for the cumulative function and the hazard function,
assumed to be continuous. We denote by (Hy,t > 0) the right-continuous increasing process H; =
Ily>7y and by (M) its natural filtration. The filtration H is the smallest filtration which makes 7
a stopping time. The o-algebra H; is generated by the sets {7 < s} for s <t (or by the r.v. 7 At)
(note that the set {7 >t} is an atom). A key point is that any integrable H-measurable r.v. H is
of the form H = h(t At) = h(7)L ;<43 + h(t)L4<-y where h is a Borel function.

We now give some elementary tools to compute the conditional expectation w.r.t. H;, as presented
in Brémaud [32], Dellacherie [62], Elliott [79].Note that if the cumulative distribution function F' is
continuous, then, 7 is a H-totally inaccessible stopping time. (See Dellacherie and Meyer [66] TV,
107.)

2.2.1 Key Lemma

Lemma 2.2.1 If X is any integrable, G-measurable r.v.

E(X]I{S<T})

E(X‘Hs)]l{s<r} = ]1{s<‘r} P(S < 7_) (26)

PRrROOF: The r.v. E(X|Hs) is Hs-measurable. Therefore, it can be written in the form E(X|H,) =
h(t As) = h(T)l{s>7} + h(s)L{5<y for some function h. By multiplying both members by 1,1,
and taking the expectation, we obtain
E[H{S<T}E(X|HS)] = ]E[E(H{S<T}X|HS)] = IE[]1{5<7'})q
B(h(s)1{s<ry) = h(s)B(s < 7).
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E(XT{5<ry)

Hence, h(s) = Pls < 1)

gives the desired result. O

Corollary 2.2.1 Assume that Y is Heo-measurable, so that Y = h(7) for some Borel measurable
function h : Ry — IR. If the hazard function I' of T is continuous then

E(Y|H:) = Ly h(7) + Ljery /t h h(u)e" DT gr(y). (2.7)
If 7 admits the intensity function v then
BUY[H0) = Lreghr) + Dueny [ hlra)e 1770 du.
In particular, for any t < s we have
B(r > sHy) = Lyyapye I 100
and

P(t <7 < s|H) = yemy (1 PO! d)

2.2.2 Some Martingales

Proposition 2.2.1 The process (My,t > 0) defined as

TN dF(s) ! dF(s)
M b [ = e, 0 AT

is a H-martingale.

PROOF: Let s < t. Then:

F(t)— F(s
E(Ht - HS|HS) = H{S<T}E(H{S<T§t}|HS) = ]1{S<T}1FV(S())7 (28)
which follows from (2.6) with X = T;;<4).
On the other hand, the quantity
¢
def dF(u
c = EU (1Hu_)1_fF(L)|H5] :
is equal to
b dF (u)
¢ = /S T—F)” [0 sy [Hs]
o / AF(w) (| F(u) = F(3
- s TP 1—F(s)
o (F =)
ISt N R T Y
which, from (2.8) proves the desired result. O
The function . (&)
dF(s
) Im(1— F(#)) =T
| T =~ =F) =)

is the hazard function.
From Proposition 2.2.1, we obtain the Doob-Meyer decomposition of the submartingale H; as M; +
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L(t A 7). The predictable process A; = I'yar is called the compensator of H.
In particular, if F' is differentiable, the process

M, =H, — /OTM v(s)ds = Hy — /Ot ~v(s)(1 — Hy)ds

f(s)

171:‘() is a deterministic non-negative function, called the intensity
— F(s

is a martingale, where (s) =

of 7.

Proposition 2.2.2 Assume that F' (and thus also T') is a continuous function. Then the process
M, =H, —T(t AT) follows a D-martingale.

We can now write the dynamics of a defaultable zero-coupon bond with recovery ¢ paid at hit,
assuming that M is a martingale under the risk-neutral probability.

Proposition 2.2.3 The risk-neutral dynamics of a DZC with recovery paid at hit is

dD(t,T) = (r(t)D(t,T) — 0(t)y(t)(1 — Hy)) dt — 5(t7T)th (2.9)
where M is the risk-neutral martingale My = H; — fot(l — H)vsds.

PROOF: From D(t,T) = 14, D(t,T) = (1 — H,)D(t,T) and the dynamics of D(t,T), we obtain
dD(t,T) = (1— H,)dD(t,T)— D(t,T)dH,
(1= Hy) ((r(t) + () D T) = 6()(1)) dt ~ D&, T))dH,

= (r())D(t,T) = 5(t)(H)(1 — Hy)) dt — D(t, T)dM;

We emphazise that here, we are working under a risk-neutral probability. We shall see further on
how to compute the risk-neutral hazard rate from the historical one, using the Radon-Nikodym
density. 0

t
Proposition 2.2.4 The process L; def Tir>4) exp (/ 'y(s)ds> is a H-martingale and
0

Li=1- / Lo_dM, (2.10)
10,1]

In particular, fort < T,
T
E(M{r>7yHe) = Lroey exp (—/ ’V(S)d8> :
t

PRrROOF: We shall give 3 different arguments, each of which constitutes a proof.
a) Since the function « is deterministic, for t > s

E(Li[H.) = exp ( / tv(u)du) E(Ljpery M)

From the equality (2.6)

BLjr<rHe) = Loy 1 — ) = Lirsey o (~T(0) + T(5).

Hence,

E(L¢|Hs) = N r5 4y exp (/ 'y(u)du) = L.
0
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b) Another method is to apply integration by parts formula (see Appendix 8.4.2 if needed) to the

i
process Ly = (1 — Hy) exp (/ 'y(s)ds>
0

dL, = —dH,exp < /0 t’y(s)ds) +(t) exp < /0 t ’y(s)ds) (1— Hy)dt

~exp ( /0 t’y(s)ds) M, .

¢) A third (sophisticated) method is to note that L is the exponential martingale of M (see Ap-
pendix), i.e., the solution of the SDE

dL; = —Li_dM, , Ly = 1.

Lemma 2.2.2 Let h be a (bounded) Borel function. Then,

T
E(h(7)Lrcr|He) = M(T)Lray + Lipnpye / h(u)dF (u) (2.11)
t

Proposition 2.2.5 Assume that T is a continuous function. Then for any (bounded) Borel mea-
surable function h : IRy — IR, the process

tAT
M =1, ciyh(r) — / h(u) d(u) (2.12)
0
s a D-martingale.

PRrROOF: Notice that the proof given below provides an alternative proof of the first part of Proposition
2.2.2. We wish to establish via direct calculations the martingale property of the process M" given
by formula (2.12). To this end, notice that formula (2.7) in Corollary 2.2.1 gives

E(h(T)lt<r<sy | Dy) = ﬂ{t<7}er(t)/ h(u)e "W dr (u).
t

On the other hand, using the same formula, we get

sp( [ h(w) d0(w)) = B rcreny + h(5)Lgrsay | D)
where we set h(s) = J5 h(u) dT'(u). Consequently,
J = ]1{t<T}eF(t) ( /ts h(u)e ™ dr(u) + e_F(s)iz(s))
To conclude the proof, it is enough to observe that Fubini’s theorem yields
/ T T / ' h(v) dT(v) dT(u) 4 e " h(s)
t t
- / ") / "¢ gP(0) dD () + T / () dU(w)
t u t

/ " h(w)eT dr(u),

as expected. O
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Corollary 2.2.2 Let h: IRy — IR be a (bounded) Borel measurable function. Then the process

. tAT
M} = exp (L;<ph(r)) — / (e — 1) dT(u) (2.13)
0
is a D-martingale.

PROOF: In view of the preceding result applied to e — 1, it is enough to observe that
exp (]I{Tgt}h(T)) = ]l{.,.gt}eh(T) + ﬂ{tZT} = ]l{rgt} (eh(T) - 1) +1.

O

Proposition 2.2.6 Assume that ' is a continuous function. Let h : IRy — IR be a non-negative
Borel measurable function such that the random variable h(T) is integrable. Then the process

tAT
M, = (1+ Looh(r)) exp / () dr (u) ) (2.14)
0
is a H-martingale.

PROOF: One notes that

o~

M, = exp ( - /Ot(1 — Hy)h(u) dF(u)) + 1y <ih(r) exp ( - /OT(1 — Hy)h(u) dI‘(u))

esp (- /Ot(1 ~ Hy)h(u) dD(w)) + /Ot () exp ( - /Ou(1 ~ H)h(s)dT(s) )dH,
From It6’s calculus,
dM, = exp ( - /Otu — Hy)h(u) dF(u))(—(l — H)A(t) dT(t) + h(t)dH;)

= h(t)exp ( - /Ot(l — Hy)h(u) dI‘(u))th.

O
Tt is useful to compare with the Doleans-Dade exponential of hM (see Appendix, Section 8.4.4).

Example 2.2.1 In the case where N is an inhomogeneous Poisson process with deterministic in-
t

tensity A and 7 is the first time when N jumps, let H; = Niar. It is well known that N —/ A(s)ds
0

is a martingale (see Appendix). Therefore, the process stopped at time 7 is also a martingale,
tAT

ie., Hy — A(s)ds is a martingale. Furthermore, we have seen in Remark 2.1.2 that we can

0
reduce our attention to this case, since any random time can be viewed as the first time where an
inhomogeneous Poisson process jumps.

Exercise 2.2.1 In this exercise, F' is only continuous on right, and F(t—) is the left limit at point
t. Prove that the process (M, t > 0) defined as

[T dF(s) o o dF(s)
M, = H, /0 T FeD H, /0(1 H, )——"—

is a H-martingale.
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2.2.3 Representation Theorem

Proposition 2.2.7 Let h be a (bounded) Borel function. Then, the martingale M} = E(h(7)|H;)
admits the representation

B(h(r)[H:) = E(h(r) - [ "(9(s) — h(s)) dAM

where My = H, —T'(t AT) and

)= gy | MG = B 0. (2.15)

Note that g(t) = M} on {t < 7}. In particular, any square integrable H-martingale (X;,t > 0) can
be written as Xy = Xy + fg xsdMy where (x4,t > 0) is a predictable process.

PROOF: We give two different proofs.

e First proof:
From Lemma 2.2.1

M = h(r) <y + n{t<T}EU§81{§T})
= (T <y + L DE(A(T) Ljery).
An integration by parts leads to
FEN ] = [ MIAF() = 900
o ' t t
= /O h(s)dF(s) —/0 e"h(s)dF (s) +/0 E(h(7)L{s<ry)e" PdI(s)

Therefore, since E(h(7)) = [;° h(s)dF(s) and M} = eF(S)E(h(T)JI{S<T}) = g(s) on {s < 7}, the
following equality holds on the set {t < 7}:

EFtE[h(T)]l{t<T}] =E(h(r)) — /o eF(S)h(s)dF(s) —|—/O g(s)dT'(s) .
Hence,

L B = pery (ERED+ [ o0) — hoD 12 g )

0

= g (B0 — [ (600 - M, - ar(s) )

tAT
where the last equality is due to ]1t<T/ (9(s) — h(s))dHs = 0.

On the complementary set {t > 7}, we (I)lave seen that E(h(7)|H;) = h(7), whereas
[ tats) = o, —ar(s) = [ (g(s) = o) att, - ar(s)
0 10,7]
= /]O [(9(8) — h(s))(dHs — dl'(s)) + (9(r~) — h(7)).

Therefore,
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The predictable representation theorem follows immediately.

e Second proof Another proof consists in computing the conditional expectation

M = E((r)He) = h(r) Ly + Lgoge "0 / h(u)dF (u)
t

= /t h(s)dH, + (1 — Hy)e '® /Oo h(u)dF (u) = /t h(s)dH, + (1 — Hy)g(t)
0 t 0

and to use Itd’s formula and that dM; = dHy — v(t)(1 — Hy)dt. We obtain, using that dF'(t) =
el'Odr(t) = "Dy (t)dt = —dG(t)

dM{" = h(t)dH; + (1 = Hy)h(t)y(t)dt — g(t) dHy — (1 — Hy)g(t)y(t)dt
= (h(t) = g(t)dH, + (1 — Hy)(h(t) — g(t))v(t)dt = (h(t) — g(t))dM,

Exercise 2.2.2 If I" is not continuous, prove that

E(h(r)|H:) = E(h(r)) — / " eATO) (g(s) — h(s)) dM,

2.2.4 Change of a Probability Measure

Let P* be an arbitrary probability measure on (£2, H«, ), which is absolutely continuous with respect
to P. We denote by 1 the Ho.-measurable density of P* with respect to P

dP*
Ni= o =

= > -a.s. .
TP h(r) >0, P-as., (2.16)

where h : IR — IR, is a Borel measurable function satisfying
o0
Ep(h(7)) = / h(u)dF(u) = 1.
0

We can use Girsanov’s theorem. Nevertheless, we prefer here to establish this theorem in our
particular setting. Of course, the probability measure P* is equivalent to P if and only if the inequality
in (2.16) is strict P-a.s. Furthermore, we shall assume that P*(7 = 0) = 0 and P*(7 > ¢) > 0 for any
t € IR4. Actually the first condition is satisfied for any P* absolutely continuous with respect to P.
For the second condition to hold, it is sufficient and necessary to assume that for every ¢

]P’*(T>t):1—F*(t):/]t [h(u)dF(u)>0,

where the c.d.f. F’* of 7 under P*
F*(t) =P*(r <t) = h(u) dF (u). (2.17)
Put another way, we assume that
9(t) < OB (1,5,h(r)) = O /] [h(u) dF(u) = "W P* (1 > t) > 0.
t,00

We assume throughout that this is the case, so that the hazard function I'* of 7 with respect to P*
is well defined. Our goal is to examine relationships between hazard functions I'* and I'. It is easily
seen that in general we have

re(e) (oo 0 dF ()
It In(1 — F(t)) ’

(2.18)
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since by definition I'*(t) = — In(1 — F*(¢)).

Assume first that F' is an absolutely continuous function, so that the intensity function v of 7
under P is well defined. Recall that « is given by the formula

_ W
O=1"F0

On the other hand, the c.d.f. F* of 7 under P* now equals

F*(t) = P*(r < 1) = Ep(Ly<;h(r)) = /0 h(u) f (u) du.

so that F* follows an absolutely continuous function. Therefore, the intensity function +* of the
random time 7 under P* exists, and it is given by the formula

v RO h(t)f(t)
OSRGOS P hf ) da

To derive a more straightforward relationship between the intensities v and ~*, let us introduce an
auxiliary function h* : IRy — IR, given by the formula h*(t) = h(¢t)/g(¢).
Notice that
MOS0 s ks
L= [ h(u)f(u)ydu  f7 h(u)f(u)du e TOg(t)
This means also that dI™*(t) = h*(t) dT'(¢). It appears that the last equality holds true if F' is merely
a continuous function. Indeed, if F' (and thus F™*) is continuous, we get

f(®)
1- F(t)

= h*(t) = PE () (?)-

. dF*(t d(1 — e TMg(t t)dL(t) — dg(t .
ar(e) = - F(*()t) _d er(t)g(tg)( ) _9(®) ;()t) 9t) _ (£) dT(t).

To summarize, if the hazard function T' is continuous then T'* is also continuous and dI'™*(t) =
h*(t)dL(t).

To understand better the origin of the function h*, let us introduce the following non-negative
P-martingale (which is strictly positive when the probability measures P* and P are equivalent)

_dPr
ne == dP n,

= Ep(n[H¢) = Ep(h(7)[Hy), (2.19)
so that n; = M]*. The general formula for 7; reads (cf. (2.2.1))

e = ]lTﬁth(T) + 15 eF(t) / h(u) dF(u) = nTﬁth(T) + ]17'>tg(t)'

It,00]
Assume now that F' is a continuous function. Then
o0
n = Ty eth(7) + ooy / h(u)e" T gr(y).
t
On the other hand, using the representation theorem, we get

M} = M} + M!_(h*(u) — 1) dM,,
10.4]

where h*(u) = h(u)/g(u). We conclude that

=1 —|—/ Nu— (P (u) — 1) dM,,. (2.20)
10,1]
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It is thus easily seen that

m= (14 L<v(r)) exp ( - /0 " () dr(u)), (2.21)

where we write v(t) = h*(t) — 1. Therefore, the martingale property of the process n, which is obvious
from (2.19), is also a consequence of Proposition 2.2.6.

Remark 2.2.1 In view of (2.20), we have
m=&( [ 0w - vam).
0

where &£ stands for the Doléans exponential. Representation (2.21) for the random variable 7, can
thus be obtained from the general formula for the Doléans exponential. (See Appendix 8.4.4.)

We are in the position to formulate the following result (all statements were already established
above).

Proposition 2.2.8 Let P* be any probability measure on (2, Heo) absolutely continuous with respect
to P, so that (2.16) holds for some function h. Assume that P*(7 > t) > 0 for every t € IRy. Then

ZE; = 8t</0.(h*(u) 1)), (2.22)

where -
B0 = ho)/9(0). glt) = [ hw) dF ()
t
and T*(t) = g*(t)T'(t) with
10 (fj, o 1) dF ()
g (t) = :
In(1 — F(t))
If, in addition, the random time T admits the intensity function v under P, then the intensity function
~v* of T under P* satisfies v*(t) = h*(t)y(t) a.e. on IR. More generally, if the hazard function T

of T under PP is continuous, then the hazard function I'* of T under P* is also continuous, and it
satisfies dT'™*(t) = h*(¢t) dT'(¢).

(2.23)

Corollary 2.2.3 If F is continuous then M, = H, — T"*(t A7) is a H-martingale under P*.
PROOF: In view Proposition 2.2.2, the corollary is an immediate consequence of the continuity
of I'*. Alternatively, we may check directly that the product Uy = n M} = n(Hy — T*(t A 7)) follows

a H-martingale under P. To this end, observe that the integration by parts formula for functions of
finite variation yields

Ut = / MNe— th* + Mt* dnt
10,¢] 10,¢]

S TS R S SN TN
10,¢] 10,t]

u<t

= [ medMp o [ Mt Lo o).
10,t] 10,t]
Using (2.20), we obtain

Ut

/ ne— dMy + M dny + nr- 1< (B (7) = 1)
10,¢] 10,¢]

/] s (Tt A7)~ T*(t AT) + Lrce(h*(7) — 1)) + Ny,
0,t
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where the process N, which equals
Nt = / Nt— th + M;ﬁ d’r]t
10,2] 10,¢]

is manifestly a H-martingale with respect to P. It remains to show that the process
N =TEANT)=T*"(tAT)+ Lr<e(R"(7) — 1)

follows a H-martingale with respect to P. By virtue of Proposition 2.2.5, the process
AT
Lr<;(h*(7) —1)+T(@tAT)— / h*(u) dl(u)
0

is a H-martingale. Therefore, to conclude the proof it is enough to notice that

/OM B* (u) dD(u) — T* (¢ A 7) :/0 " (h* (u) T () — dT* () = 0,

where the last equality is a consequence of the relationship dI'™*(t) = h*(t)dI'(t) established in
Proposition 2.2.8. |

By virtue of Proposition 2.2.2 if I'* is a continuous function then the process M* = H; —T™*(tAT)
follows a H-martingale under P*. The next result suggests that this martingale property uniquely
characterizes the (continuous) hazard function of a random time.

Lemma 2.2.3 Suppose that an equivalent probability measure P* is given by formula (2.16) for some
function h. Let A* : Ry — IRy be an arbitrary continuous increasing function, with A*(0) = 0. If
the process My = H, — A*(t A 1) follows a H-martingale under P*, then A*(t) = —In (1 — F*(t))
with F* given by formula (2.22).

PRroOOF: The Bayes rule implies

* E M*77 HS — *
B () = SRy =0 B0,

and thus
Ep((Hi — A* (¢t A 7)) (Heh(T) + (1 = Hy)g(t)) | Hs)

Ep- (M;[H,) = Hoh(7) + (1= H,)g(s) ’

or equivalently

Ep (Hih(1) = HA*(t AT)R(T) — (1 — H)A*(t AT)g(t) | Hs)

Bp- (M{[Hs) = Hh(r) + (1 — Hy)g(s)

This means that

. B J
Bee (MEHe) = gy (= Hg(s)

where we write
J =Ep(Hh(t) — HIA*(t AT)R(T) — (1 — H)A*(t A T)g(t) | Hs).

We obtain

J = Hh(r) = HiA (7)h(1) — (1 = Hy)(1 = F(s)) 7' Ep (L scr<iy (A (1) = DA(T) + L prny A" (8)g(t))

and thus the martingale condition Ep« (M |H,) = M,

(1= Ho)(1 = F(s)) 7 Ep(Lgscr<iy (A (1) = DA(T) + Ly A (D)9 (1)) = A" (s)(1 — Hy)g(s).

is equivalent to the following equality
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Therefore, for every s < ¢t we have

Ep (L gucr <y (A (1) — DA(r) + Liran A" (£)g(8)) = A*()(1 — F(s))g(s)
so that . -

/ (A (u) — 1)h(u) dF (u) + A*(£)g(t) (1 — F(£)) = A*(s) / () dF (),
and finally,

/ (A% (u) = D) dF™(u) + A% () (1 = F7 (1)) = A"(s)(1 = F"(s)).

After simple manipulations involving the integration by parts, we get for s <t

/ (1= F*(u)) dA* (u) = F*(t) — F*(s),

and since A*(0) = F*(0) = 0, we find that A* = —1In (1 — F*(¢)). O

2.2.5 Incompleteness of the Toy model

In order to study the completeness of the financial market, we first need to define the tradeable
assets.
If the market consists only of the risk-free zero-coupon bond, there exists infinitely many e.m.m’s.
The discounted asset prices are constant, hence the set Q of equivalent martingale measures is the
set of probabilities equivalent to the historical one. For any Q € Q, we denote by F the cumulative
function of 7 under @Q, i.e.,

Fot) = Q(r < ).

The range of prices is defined as the set of prices which do not induce arbitrage opportunities. For
a DZC with a constant rebate § paid at maturity, the range of prices is equal to the set

{]EQ(RT(]I{T<T} + 51[{T<T}))>Q € 9}.

This set is exactly the interval |§Rr, Rr[. Indeed, it is obvious that the range of prices is included
in the interval |6 Ry, Rr[. Now, in the set Q, one can select a sequence of probabilities Q,, which
converge weakly to the Dirac measure at point 0 (resp. at point T') (the bounds are obtained as limit
cases: the default appears at time 07, or never). Obviously, this range is too large to be efficient.
(See Hugonnier for a generalization of this result)

2.2.6 Risk Neutral Probability Measures

It is usual to interpret the absence of arbitrage opportunities as the existence of an e m.m. . If DZCs
are traded, their prices are given by the market, and the equivalent martingale measure Q, chosen
by the market, is such that, on the set {t < 7},

D(t, T) = B(t, T)EQ( []1T<~r + 5]]-t<T§T] |t < 7') .

Therefore, we can characterize the cumulative function of 7 under Q from the market prices of the
DZC as follows.

Zero Recovery

If a DZC with zero recovery of maturity T is traded at a price D(¢,T") which belongs to the interval
10, B(¢,T)[ , then, under any risk-neutral probability Q, the process R(t)D(¢,T') is a martingale (for
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the moment, we do not know if the market is complete, so we can not claim that the e.m.m. is
unique), the following equality holds

T
D(t, T)R(t) = Eq(R(T)Uir<ry|Hi) = R(T) 1«7y exp (—/t )\Q(S)CLS)

dF, d
where \%(s) = 162;8)/(; It is obvious that if D(¢,T") belongs to the range of viable prices |0, R(T')],
— Fols

the process A is stricly positive (and the converse holds true). The process A% is the Q-intensity

of 7. Therefore, the value of A9(s)ds is known for any t as soon as there are DZC bonds for
t

each maturity, and the unique risk-neutral intensity can be obtained from the prices of DZCs as

r(t) + )\Q(t) =—0rlnD(t,T)|7=¢.

Remark 2.2.2 It is important to note that there is no relation between the risk-neutral intensity
and the historical one. The risk-neutral intensity can be greater (resp. smaller) than the historical
one. The historical intensity can be deduced from observation of default time, the risk-neutral one
is obtained from the prices of traded defaultable claims.

Fixed Payment at maturity

If the prices of DZCs with different maturities are known, then from (2.1)

B(0,T) — D(0,T)
B(0,T)(1-9)

= Fo(T)

where Fp(t) = Q(7 < t), so that the law of 7 is known under the e.m.m.. However, as noticed
in Hull and White [104], extracting default probabilities from bond prices [is] in practice, usually
more complicated. First, the recovery rate is usually non-zero. Second, most corporate bonds are not
zero-coupon bonds.

Payment at hit

In this case the cumulative function can be obtained using the derivative of the defaultable zero-
coupon price with respect to the maturity. Indeed, denoting by 07D the derivative of the value of
the DZC at time 0 with respect to the maturity, and assuming that G =1 — F' is differentiable, we
obtain from (2.3)

9rD(0,T) = g(T)R(T) = G(T)R(T)r(T) — 6(T)g(T)R(T),,

where g(t) = G'(¢t). Therefore, solving this equation leads to

Q(t >t) = G(t) = A(t) {1 + /Ot orD(0, s) (A(s)) " ds| ,

R(s)(1—4(s))
where A(#) = exp ( /O t %du).

2.2.7 Partial information: Duffie and Lando’s model
Duffie and Lando [70] study the case where 7 = inf{¢ : V; < m} where V satisfies

dVy = p(t, V)dt + o (t, V;)dW, .
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Here the process W is a Brownian motion. If the information is the Brownian filtration, the time
T is a stopping time w.r.t. a Brownian filtration, therefore is predictable and admits no intensity.
We will discuss this point latter on. If the agents do not know the behavior of V', but only the
minimal information H;, i.e. he knows when the default appears, the price of a zero-coupon is,

T
in the case where the default is not yet occurred, exp | — / A(s)ds | where A(s) = g;((ss)) and
¢

G(s) =P(r > s), f = —G’, as soon as the cumulative function of 7 is differentiable. Duffie and Lando
1 0
have obtained that the intensity is A(t) = 502(t, O)a—i(t7 0) where f(t,z) is the conditional density
]P)(% < z, TO > t)
P(T, > t)
the case where V' is an homogenous diffusion, i.e. dV; = u(V;)dt + o(V;)dW;, the equality between
Duffie-Lando and our result is not so obvious. See Elliott et al. [80] for comments.

of V; when Ty > t, i.e. the differential w.r.t. x of , where Ty = inf{t; V; = 0}. In

2.3 Pricing and Trading Defaultable Claims

This section gives an overview of basic results concerning the valuation and trading of defaultable
claims.

2.3.1 Generic Defaultable Claims

A strictly positive random variable 7, defined on a probability space (£2,G,Q), is termed a random
time. In view of its interpretation, it will be later referred to as a default time. We introduce
the jump process Hy = ll{;<4 associated with 7, and we denote by H the filtration generated by
this process. We assume that we are given, in addition, some auxiliary filtration F, and we write
G = HV F, meaning that we have G, = o(H;, F;) for every t € Ry

Definition 2.3.1 By a defaultable claim maturing at T we mean the quadruple (X, A, Z, 1), where
X is an Fp-measurable random wvariable, A is an F-adapted process of finite variation, Z is an
F-predictable process, and T is a random time.

The financial interpretation of the components of a defaultable claim becomes clear from the
following definition of the dividend process D, which describes all cash flows associated with a
defaultable claim over the lifespan ]0,7], that is, after the contract was initiated at time 0. Of
course, the choice of 0 as the date of inception is arbitrary.

Definition 2.3.2 The dividend process D of a defaultable claim maturing at T equals, for every
te[0,77],

(1—Hu)dAu+/ Z, dH,.

Dy = X1 roryLir ool (t) +/ o
0,

10,¢]

The financial interpretation of the definition above justifies the following terminology: X is the
promised payoff, A represents the process of promised dividends, and the process Z, termed the
recovery process, specifies the recovery payoff at default. It is worth stressing that, according to
our convention, the cash payment (premium) at time 0 is not included in the dividend process D
associated with a defaultable claim.

When dealing with a credit default swap, it is natural to assume that the premium paid at time
0 equals zero, and the process A represents the fee (annuity) paid in instalments up to maturity
date or default, whichever comes first. For instance, if A; = —kt for some constant x > 0, then the
‘price’ of a stylized credit default swap is formally represented by this constant, referred to as the
continuously paid credit default rate or premium (see Section 2.4.1 for details).
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If the other covenants of the contract are known (i.e., the payoffs X and Z are given), the
valuation of a swap is equivalent to finding the level of the rate x that makes the swap valueless
at inception. Typically, in a credit default swap we have X = 0, and Z is determined in reference
to recovery rate of a reference credit-risky entity. In a more realistic approach, the process A is
discontinuous, with jumps occurring at the premium payment dates. In this note, we shall only deal
with a stylized CDS with a continuously paid premium.

Let us return to the general set-up. It is clear that the dividend process D follows a process of
finite variation on [0, 7. Since

/ (1 - Hu) dA, = / ]1{T>u} dA, = AT—]l{‘rgt} + Atll{-r>t}7
10,t] 10,t]

it is also apparent that if default occurs at some date t, the ‘promised dividend’” A; — A;_ that is
due to be received or paid at this date is disregarded. If we denote 7 At = min (7,¢) then we have

/ ZydHy = Zipi U (r<ty = Z: W<y
10,t]

Let us stress that the process D,, — Dy, u € [t,T], represents all cash flows from a defaultable claim
received by an investor who purchases it at time t. Of course, the process D, — D; may depend on
the past behavior of the claim (e.g., through some intrinsic parameters, such as credit spreads) as
well as on the history of the market prior to z. The past dividends are not valued by the market,
however, so that the current market value at time t of a claim (i.e., the price at which it trades at
time t) depends only on future dividends to be paid or received over the time interval |¢, T].

Suppose that our underlying financial market model is arbitrage-free, in the sense that there
exists a spot martingale measure Q (also referred to as a risk-neutral probability), meaning that Q
is equivalent to Q on (£2,Gr), and the price process of any tradeable security, paying no coupons or
dividends, follows a G-martingale under Q, when discounted by the savings account B, given by

t
B; = exp (/ Tu du) , Vte R,. (2.24)
0

2.3.2 Buy-and-hold Strategy

We write S%, i = 1,...,k to denote the price processes of k primary securities in an arbitrage-free
financial model. We make the standard assumption that the processes S, i = 1,...,k — 1 follow
semimartingales. In addition, we set SF = B, so that S* represents the value process of the savings
account. The last assumption is not necessary, however. We can assume, for instance, that S* is the
price of a T-maturity risk-free zero-coupon bond, or choose any other strictly positive price process
as as numéraire.

For the sake of convenience, we assume that S%, i = 1,...,k — 1 are non-dividend-paying assets,
and we introduce the discounted price processes S™* by setting Si* = S{/B;. All processes are
assumed to be given on a filtered probability space (2, G, Q), where Q is interpreted as the real-life
(i.e., statistical) probability measure.

Let us now assume that we have an additional traded security that pays dividends during its
lifespan, assumed to be the time interval [0, 7], according to a process of finite variation D, with
Dy = 0. Let S denote a (yet unspecified) price process of this security. In particular, we do not
postulate a priori that S follows a semimartingale. It is not necessary to interpret S as a price
process of a defaultable claim, though we have here this particular interpretation in mind.

Let a G-predictable, IR**1-valued process ¢ = (¢°, ¢!, ..., ¢*) represent a generic trading strat-
egy, where ¢7 represents the number of shares of the j'" asset held at time t. We identify here S°
with S, so that S is the 0'" asset. In order to derive a pricing formula for this asset, it suffices to
examine a simple trading strategy involving S, namely, the buy-and-hold strategy.
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Suppose that one unit of the 0" asset was purchased at time 0, at the initial price Sy, and it
was hold until time 7. We assume all the proceeds from dividends are re-invested in the savings
account B. More specifically, we consider a buy-and-hold strategy v = (1,0,...,0,9*), where * is
a G-predictable process. The associated wealth process V (1) equals

Vi) = Sy +FB,, Yte[0,T], (2.25)

so that its initial value equals Vo(¢0) = Sp + ¥.

Definition 2.3.3 We say that a strategy ¢ = (1,0,...,0,9%) is self-financing if
dVy(1)) = dS, + dDy + ¥ dB,,

or more explicitly, for everyt € [0,T),

Vi) = Vo(¥) = 5p = So + Dy + ] ]%’f dBy. (2.26)
0,t

We assume from now on that the process ¥ is chosen in such a way (with respect to S, D and
B) that a buy-and-hold strategy v is self-financing. Also, we make a standing assumption that the
random variable Y = [, -y By 'dD,, is Q-integrable.

Lemma 2.3.1 The discounted wealth Vi*(1p) = By *Vi(v) of any self-financing buy-and-hold trading
strategy ¢ satisfies, for every t € [0,T],

Vi) =V () + S =S5+ | BrldDy. (2.27)
10,2]

Hence we have, for everyt € [0,T],

V() — V() = S5 — 87 + / B! dD,. (2.28)
1t,T7]

PROOF: We define an auxiliary process V(1) by setting Vi (1)) = V;(¢) — S, = kB for t € [0, T).
In view of (2.26), we have

~

D) :Vo<w>+Dt+/ Y dB,,

10,¢]

and so the process 17(@/1) follows a semimartingale. An application of It6’s product rule yields

d(By 'WVi(v)) = B;ldVi(v)+ Vi(v)dB;*
= B7'dD; +¢FB;YdB; + ¢F B, dB;?
= B;'dDy,

where we have used the obvious identity: B, YdB, + B, dB; ' = 0. Integrating the last equality, we
obtain

B (Vi) - ) = B (Vo(w) ~ S) + [ BlaD,,
10,t]

and this immediately yields (2.27). O
It is worth noting that Lemma 2.3.1 remains valid if the assumption that S* represents the
savings account B is relaxed. It suffices to assume that the price process S* is a numéraire, that is,

a strictly positive continuous semimartingale. For the sake of brevity, let us write S¥ = 3. We say
that ¢ = (1,0,...,0,9¥) is self-financing it the wealth process

Vt(i/J):St‘i‘l/Jfﬁt, Vte [07T]7
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satisfies, for every ¢ € [0,T],

Vi(1) — Vo(¥) = Sy — So + Dy + ] ]wfi dBy.
0,t

Lemma 2.3.2 The relative wealth Vi (v) = B, V() of a self-financing trading strategy ¢ satisfies,
for every t € [0,T],

VW) = Vg () + S — S5+ ] ]5;1dDu,
0,t

where S* = 3;15,.

PROOF: The proof proceeds along the same lines as before, noting that 31dg-+3d3 +d(3, 3') = 0.
O

2.3.3 Spot Martingale Measure

Our next goal is to derive the risk-neutral valuation formula for the ex-dividend price S;. To this end,
we assume that our market model is arbitrage-free, meaning that it admits a (not necessarily unique)
martingale measure Q, equivalent to QQ, which is associated with the choice of B as a numéraire.

Definition 2.3.4 We say that Q is a spot martingale measure if the discounted price S™* of any
non-dividend paying traded security follows a Q-martingale with respect to G.

It is well known that the discounted wealth process V*(¢) of any self-financing trading strat-
egy ¢ = (0,0, ¢%,...,¢%) is a local martingale under Q. In what follows, we shall only consider
admissible trading strategies, that is, strategies for which the discounted wealth process V*(¢) is
a martingale under Q. A market model in which only admissible trading strategies are allowed is
arbitrage-free, that is, there are no arbitrage opportunities in this model.

Following this line of arguments, we postulate that the trading strategy ¥ introduced in Section
2.3.2 is also admissible, so that its discounted wealth process V*(v) follows a martingale under Q
with respect to G. This assumption is quite natural if we wish to prevent arbitrage opportunities to
appear in the extended model of the financial market. Indeed, since we postulate that S is traded, the
wealth process V(1) can be formally seen as an additional non-dividend paying tradeable security.

To derive a pricing formula for a defaultable claim, we make a natural assumption that the
market value at time ¢ of the 0*" security comes exclusively from the future dividends stream, that
is, from the cash flows occurring in the open interval |¢, T[. Since the lifespan of S is [0,7], this
amounts to postulate that Sy = S} = 0. To emphasize this property, we shall refer to S as the
ez-dividend price of the O*" asset.

Definition 2.3.5 A process S with S = 0 is the ex-dividend price of the O™ asset if the discounted
wealth process V*(1) of any self-financing buy-and-hold strategy 1) follows a G-martingale under Q.

As a special case, we obtain the ex-dividend price a defaultable claim with maturity 7.

Proposition 2.3.1 The ex-dividend price process S associated with the dividend process D satisfies,
for every t € [0,T),

St = BtEQ(/]tT] B;l dDu

Gt). (2.29)

PROOF: The postulated martingale property of the discounted wealth process V*(¢) yields, for
every t € [0,T],
Eo (Vi (v) =V (¥) | Gr) = 0.
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Taking into account (2.28), we thus obtain

St =Eq(Si+ [ Blap,
Je.7)

G.).
Since, by virtue of the definition of the ex-dividend price we have S; = S} = 0, the last formula
yields (2.29). O
It is not difficult to show that the ex-dividend price S satisfies, for every ¢ € [0, 7],
S = 1121} S, (2.30)
where the process S represents the ex-dividend pre-default price of a defaultable claim.

The cum-dividend price process S associated with the dividend process D is given by the formula,
for every ¢ € [0, T,

S, = BtIE@< B-ldD,
10,7)

gt)- (2.31)

The corresponding discounted cum-dividend price process, S:=B-1§ , is a G-martingale under Q.

The savings account B can be replaced by an arbitrary numéraire 3. The corresponding valuation
formula becomes, for every ¢ € [0, 7],

St = ﬁt EQB([ ]5;1 d-D'u,
t, T

Qt), (2.32)

where Q° is a martingale measure on (£, Gr) associated with a numéraire 3, that is, a probability
measure on (2, Gr) given by the formula

M = br Q-a.s
dQ  BoBr’ .
2.3.4 Self-Financing Trading Strategies
Let us now examine a general trading strategy ¢ = (¢°, ¢!, ..., ¢*) with G-predictable components.

The associated wealth process V(¢) equals Vi(¢) = Zf:o #iS!, where, as before SO = S. A strategy

¢ is said to be self-financing if Vi(¢) = V(o) + G+(¢) for every t € [0,T], where the gains process
G(¢) is defined as follows:

k
Gito)= [ ap.+Y [ sasi.
]Ovt] =0 ]Ovt]
Corollary 2.3.1 Let S* = B. Then for any self-financing trading strateqy ¢, the discounted wealth
process V*(¢) = By Vi () follows a martingale under Q.

PROOF: Since B is a continuous process of finite variation, It6’s product rule gives
ds{* = SidB; ! + B 'dS!
for i =0,1,...,k, and so

dVi'(¢) = Vi(¢)dB; '+ B; 'dVi(¢)

k
= Vio)dB; + B (D 61dS; + ¢f dD,)
=0

k
= Y _¢i(S;dB; " + B;'dS]) + ¢{B; 'dD,
=0
k—1 k—1

= > ¢1dSy + P (dS; + B NdD,) =Y ¢} dS;* + ¢) dS,.,

i=1 i=1
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where the auxiliary process S is given by the following expression:

S, =5; +/ B;ldD,.
10,1

To conclude, it suffices to observe that in view of (2.29) the process S satisfies

3, = ]E@( B;'dD,
0,7]

Qt), (2.33)

and thus it follows a martingale under Q. O

It is worth noting that §t, given by formula (2.33), represents the discounted cum-dividend price
at time t of the 0" asset, that is, the arbitrage price at time ¢ of all past and future dividends
associated with the O*" asset over its lifespan. To check this, let us consider a buy-and-hold strategy
such that ¥)% = 0. Then, in view of (2.28), the terminal wealth at time T of this strategy equals

Vr(y) = BT/ B, ' dD,. (2.34)
10.7]

It is clear that V(1)) represents all dividends from S in the form of a single payoff at time T'. The

arbitrage price m(Y') at time t < T of a claim Y = Vr(y) equals (under the assumption that this
claim is attainable)
gt)

and thus S, = B, 173(?). It is clear that discounted cum-dividend price follows a martingale under
Q (under the standard integrability assumption).

ﬂt(}/}) = Bt ]EQ( o) B;l dDu

Remarks 2.3.1 (i) Under the assumption of uniqueness of a spot martingale measure Q, any Q-
integrable contingent claim is attainable, and the valuation formula established above can be justified
by means of replication.

(ii) Otherwise — that is, when a martingale probability measure Q is not uniquely determined by
the model (S',52%,...,5%) - the right-hand side of (2.29) may depend on the choice of a particular
martingale probability, in general. In this case, a process defined by (2.29) for an arbitrarily chosen
spot martingale measure Q can be taken as the no-arbitrage price process of a defaultable claim. In
some cases, a market model can be completed by postulating that S is also a traded asset.

2.3.5 Martingale Properties of Prices of a Defaultable Claim

In the next result, we summarize the martingale properties of prices of a generic defaultable claim.

Corollary 2.3.2 The discounted cum-dividend price §t, t € [0,T], of a defaultable claim is a Q-
martingale with respect to G. The discounted ex-dividend price Sy, t € [0,T], satisfies

St*:é\tf/ B;'dD,, Vte|0,T],
10,¢]
and thus it follows a supermartingale under Q if and only if the dividend process D is increasing.

In an application considered in Section 2.4, the finite variation process A is interpreted as the
positive premium paid in instalments by the claimholder to the counterparty in exchange for a
positive recovery (received by the claimholder either at maturity or at default). It is thus natural
to assume that A is a decreasing process, and all other components of the dividend process are
increasing processes (that is, we postulate that X > 0, and Z > 0). It is rather clear that, under
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these assumptions, the discounted ex-dividend price S* is neither a super- or submartingale under
@, in general.

Assume now that A = 0, so that the premium for a defaultable claim is paid upfront at time
0, and it is not accounted for in the dividend process D. We postulate, as before, that X > 0,
and Z > 0. In this case, the dividend process D is manifestly increasing, and thus the discounted
ex-dividend price S* is a supermartingale under Q. This feature is quite natural since the discounted
expected value of future dividends decreases when time elapses.

The final conclusion is that the martingale properties of the price of a defaultable claim depend on
the specification of a claim and conventions regarding the prices (ex-dividend price or cum-dividend
price). This point will be illustrated below by means of a detailed analysis of prices of credit default
swaps.

2.4 Pricing and Trading a CDS under Deterministic Inten-
sity

We are now in the position to apply the general theory to the case of a particular class contracts,
specifically, credit default swaps. We work throughout under a spot martingale measure Q on
(©,Gr). In the first step, we shall work under additional assumptions that the auxiliary filtration
F is trivial, so that G = H and the interest rate r = 0. Subsequently, these restrictions will be
relaxed.

2.4.1 Valuation of a Credit Default Swap

A stylized credit default swap is formally introduced through the following definition.

Definition 2.4.1 A credit default swap with a constant rate k and recovery at default is a defaultable
claim (0, A, Z, 1), where Zy = 6(t) and Ay = —xt for every t € [0,T]. An RCLL function ¢ : [0,T] —
IR represents the default protection, and a constant k € IR represents the CDS rate (also termed the
spread, premium or annuity of a CDS).

We shall first analyze the valuation and trading credit default swaps in a simple model of default
risk with the filtration G = H generated by the process H; = l;<;;. We denote by F' the cumulative
distribution function of the default time 7 under Q, and we assume that F' is a continuous function,
with F'(0) = 0 and F(T') < 1 for some fixed date T' > 0. Also, we write G = 1 — F' to denote the
survival probability function of T, so that G(t) > 0 for every ¢ € [0, T]. For simplicity of exposition,
we assume in this section that the interest rate » = 0, so that the price of a savings account B; =1
for every t. Note also that we have only one tradeable asset in our model (a savings account), and
we wish to value a defaultable claim within this model. It is clear that any probability measure Q
on (Q, Hr), equivalent to Q, can be chosen as a spot martingale measure for our model. The choice
of Q is reflected in the cumulative distribution function F' (in particular, in the default intensity if
F is absolutely continuous).

Ex-dividend Price of a CDS

Consider a CDS with the rate s, which was initiated at time 0 (or indeed at any date prior to the
current date t). Its market value at time ¢ does not depend on the past otherwise than through the
level of the rate . Unless explicitly stated otherwise, we assume that k is an arbitrary constant.

Unless explicitly stated otherwise, we assume that the default protection payment is received at
the time of default, and it is equal §(¢) if default occurs at time ¢, prior to or at maturity date 7'
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In view of (2.29), the ex-dividend price of a CDS maturing at T with rate x is given by the
formula

Si(k) =Eq (]]-{t<T§T}6(T) ’ Ht) —Eo (ﬂ{t<r}’<ﬁ((7 AT) —t) ‘ Ht)v (2.35)

where the first conditional expectation represents the current value of the default protection stream
(or the protection leg), and the second is the value of the survival annuity stream (or the fee leg).

Note that in Lemma 2.4.1, we do not need to specify the inception date s of a CDS. We only
assume that the maturity date T, the rate x, and the protection payment § are given.

Lemma 2.4.1 The ex-dividend price at time t € [s,T] of a credit default swap started at s, with
rate K and protection payment 6(7) at default, equals

Si(k) = Tery % (—/t 0(u) dG(u) — Kj/t G(u) du) . (2.36)

ProoF: We have, on the set {t < 7},

Se) = o dGw) (= [ udG(u) + TG(T) L,
B = Gt " G{t)

1 T T

- &5 <_ /t b(u) dG(u) — x(TC(T) — 1G(1) ~ /t udG(u))).
Since
T T
/ Gu) du = TG(T) — tG(t) — / wdG(u), (2.37)

we conclude that (2.36) holds. O

The ex-dividend price of a CDS can also be represented as follows (see (2.30))
St(’%) = ]1{t<7'}§t(’£)a Vi e [OvT]v (238)

where §t(n) stands for the ex-dividend pre-default price of a CDS. It is useful to note that formula

(2.36) yields an explicit expression for Sy(k), and that S(x) follows a continuous function, provided
that G is continuous.

2.4.2 Market CDS Rate

Assume now that a CDS was initiated at some date s < t and its initial price was equal to zero. Since
a CDS with this property plays an important role, we introduce a formal definition. In Definition
2.4.2, it is implicitly assumed that a recovery function ¢ is given.

Definition 2.4.2 A market CDS started at s is a CDS initiated at time s whose initial value is
equal to zero. A T-maturity market CDS rate (also known as the fair CDS spread) at time s is the
level of the rate k = k(s,T') that makes a T-maturity CDS started at s valueless at its inception. A
market CDS rate at time s is thus determined by the equation Ss(k(s,T)) = 0, where S is defined
by (2.85). By assumption, £(s,T) is an Fs-measurable random variable (hence, a constant if the
reference filtration is trivial).

Under the present assumptions, by virtue of Lemma 2.4.1, the T-maturity market CDS rate
k(s,T) solves the following equation

/s ' 6(u) dG(u) + K(s, T) / ' G(u) du = 0,
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and thus we have, for every s € [0, 7],

S 8(w) dG ()

Kk(s,T) = = .
(= T) [. G(u)du

(2.39)

Remarks 2.4.1 Let us comment briefly on a model calibration. Suppose that at time 0 the market
gives the premium of a CDS for any maturity 7. In this way, the market chooses the risk-neutral
probability measure Q. Specifically, if £(0,T") is the T-maturity market CDS rate for a given recovery
function § then we have .

Jo G(u)du

Hence, if credit default swaps with the same recovery function § and various maturities are traded
at time 0, it is possible to find the implied risk-neutral c.d.f. F (and thus the default intensity ~
under Q) from the term structure of CDS rates k(0,T) by solving an ordinary differential equation.

Standing assumptions. We fix a maturity date T', and we write briefly x(s) instead of x(s,T). In
addition, we assume that all credit default swaps have a common recovery function §.

Note that the ex-dividend pre-default value at time ¢ € [0,T] of a CDS with any fixed rate s
can be easily related to the market rate x(¢). We have the following result, in which the quantity
v(t,s) = k(t) — k(s) represents the calendar CDS market spread (for a given maturity 7).

Proposition 2.4.1 The ex-dividend price of a market CDS started at s with recovery § at default
and maturity T equals, for everyt € [s,T],

T T
81(6060) = Ly (600 = 1) TG ™ =gyt G

or more explicitly,

Si(k(s)) = Ngpery

ftT G(u) du ng (u)dG(u) j;T 5(u) dG(u)
G(t) fST G(u) du ftT G(u) du .
PRrROOF: To establish equality (2.41), it suffices to observe that Si(k(s)) = Si(k(s)) — St(k(t)),
and to use (2.36) and (2.39). O

Remark 2.4.1 Note that the price of a CDS can take negative values.

Forward Start CDS

A representation of the value of a swap in terms of the market swap rate, similar to (2.40), is well
known to hold for default-free interest rate swaps. It is particularly useful if the calendar spread is
modeled as a stochastic process. In particular, it leads to the Black swaption formula within the
framework of Jamshidian’s [110] model of co-terminal forward swap rates.

In the present context, it is convenient to consider a forward start CDS initiated at time s € [0, U]
and giving default protection over the future time interval [U,T]. If the reference entity defaults
prior to the start date U the contract is terminated and no payments are made. The price of this
contract at any date t € [s, U] equals

Si(k) = Eqg (n{U<TST}5(T) ( Ht) — Eqg (n{Uq}m((T AT) = U) ’ Ht). (2.42)

Since a forward start CDS does not pays any dividends prior to the start date U, the price Si(k), t €
[s,U], can be considered here as either the cum-dividend price or the ex-dividend price. Note that
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since G is continuous, the probability of default occurring at time U equals zero, and thus for t = U
the last formula coincides with (2.35). This is by no means surprising, since at time 7' a forward
start CDS becomes a standard (i.e., spot) CDS.

If G is continuous, representation (2.42) can be made more explicit, namely,

T T
Su(k) = ey % (- /U 5(u) dG(u) — k /U Glu) du>.

A forward start market CDS at time t € [0,U] is a forward CDS in which & is chosen at time ¢ in
such a way that the contract is valueless at time ¢. The corresponding (pre-default) forward CDS
rate k(t,U,T) is thus determined by the the following equation

Su((t,U,T)) = Eq (U <rery8(7) | He) = Bo (U wamys(t, U T)((r AT) = U) | 1) =0,
which yields, for every t € [0, U],
Jo 0(w) dG(u)
[7 Glu)du

The price of an arbitrary forward CDS can be easily expressed in terms of k and k(¢t,U,T). We
have, for every t € [0, U],

k(t,U,T) =

Si(n) = Si(k) = Si(s(t, U, T)) = (5(t,U,T) = #) B (1<) ( AT) = U) (Ht),

or more explicitly,
fUT G(u) du

G(t)
Under the assumption of a deterministic default intensity, the formulae above are of rather limited
interest. Let us stress, however, that similar representations are also valid in the case of a stochastic
default intensity, where they prove useful in pricing of options on a forward start CDS (equivalently,
options on a forward CDS rate).

St("{) = n{t<T}(K(t’ U, T) - K)

Case of a Constant Default Intensity

Assume that §(¢) = d is independent of ¢, and F'(t) = 1 — e~ for a constant default intensity v > 0
under Q. In this case, the valuation formulae for a CDS can be further simplified. In view of Lemma
2.4.1, the ex-dividend price of a (spot) CDS with rate s equals, for every ¢ € [0, 77,

St(k) = Lgyery (07 — r)y (1 - e—V(T—t)).

The last formula (or the general formula (2.39)) yields x(s) = v for every s < T, so that the market
rate k(s) is independent of s. As a consequence, the ex-dividend price of a market CDS started at
s equals zero not only at the inception date s, but indeed at any time ¢ € [s, T, both prior to and
after default). Hence, this process follows a trivial martingale under Q. As we shall see in what
follows, this martingale property the ex-dividend price of a market CDS is an exception, rather than
a rule, so that it no longer holds if default intensity is not constant.

2.4.3 Price Dynamics of a CDS
Unless explicitly stated otherwise, we consider a spot CDS and we assume that
t
G(t) =Q(1T > t) =exp (—/ ~(u) du) )
0

where the default intensity ~(¢) under Q is a strictly positive deterministic function. We first focus
on the dynamics of the ex-dividend price of a CDS with rate x started at some date s < T
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Lemma 2.4.2 The dynamics of the ex-dividend price Si(k) on [s,T] are
AS,(5) = —Su_ (k) dM, + (1 — H) (s — 5(t)1 () dt, (2.43)
where the H-martingale M under Q is given by the formula

t
0
Hence, the process Si(k), t € [s,T], given by the expression

Si(k) = Si(k) + /t §(u)dH, — n/t(l — H,)du (2.45)
is a Q-martingale for t € [s,T]. Speciﬁcallyf S
dSy(k) = (3(t) — st,(n)) dM, = (6(t) - (1 — H;-)S,—(k)) dM; = (3(t) — S,— (k) + R;) dM, (2.46)
where R; = f 5(u f

PROOF: It suffices to recall that
Si(#) = Lz Si(k) = (1 — Hy)Si(k)

so that
dSi(r) = (1 — Hy) dSy(k) — Se_(r) dHy.

Using formula (2.36), we find easily that we have
dS, (k) = v(t)S(k) dt + (k — 8(t)y(t)) dt. (2.47)

In view of (2.44) and the fact that S,_ (k) = S,_(k) , the proof of (2.43) is complete. To prove the
second statement, it suffices to observe that the process N given by

Ny = Si(k) — / (1 —Hy)(k —d(u)y(u)) du = 7/ Su—(K) dM,,

is an H-martingale under Q. But for every t € [s, T

Nt+/6

so that S(k) also follows an H-martingale under Q. Note that the process S(x) given by (2.45)
represents the cum-dividend price of a CDS, so that the martingale property S(x) is expected. O

Equality (2.43) emphasizes the fact that a single cash flow of §(7) occurring at time 7 can be
formally treated as a dividend stream at the rate §(¢)y(¢) paid continuously prior to default. It is
clear that we also have

dSy(k) = —=S,_ (k) dMy + (1 — Hy)(k — 6(t)y(t)) dt. (2.48)

In some instances, it can be useful to reformulate the dynamics of a market CDS in terms of
market observables, such as CDS spreads.

Corollary 2.4.1 The dynamics of the ex-dividend price Si(k(s)) on [s,T| are also given as
T
G(u)d
dSi(k(s)) = =St (k(s)) dMy + (1 — Hy) (LG((;;)U dv(t,s) —v(t,s) dt) . (2.49)

PRrROOF: Under the present assumptions, for any fixed s, the calendar spread v(t, s), t € [s,T] is
a continuous function of bounded variation. In view of (2.43), it suffices to check that

ftT G(u) du
Jt TN o s) —
G(f) tl/( ’S)
where div(t,s) = di(k(t) — k(s)) = dr(t). Equality (2.50) follows by elementary computations. [

v(t,s)dt = (k(s) — d(t)v(t)) dt, (2.50)
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Trading a Credit Default Swap

We shall show that, in the present set-up, in order to replicate an arbitrary contingent claim Y
settling at time 7" and satisfying the usual integrability condition, it suffices to deal with two traded
assets: a CDS with maturity U > T and a constant savings account B = 1. Since one can always
work with discounted values, the last assumption is not restrictive.

According to Section 2.3.4, a strategy ¢, = (¢%,¢1),t € [0,T], is self-financing if the wealth
process V(¢), defined as

Vi(¢) = ¢} + 61 5:(k), (2.51)
satisfies B
dVi(¢) = ¢; (dSi(k) +dDy) = ordSi(k), (2.52)

where S(k) is the ex-dividend price of a CDS with the dividend stream D , and so, S(x) = S(k) + D
is the corresponding cum-dividend price process. As usual, we say that a strategy ¢ replicates a
contingent claim Y if Vr(¢) =Y. On the set {r < ¢ < T} the ex-dividend price S(k) equals zero,
and thus the total wealth is necessarily invested in B, so that it is constant. This means that ¢
replicates Y if and only if V ,r(¢) =Y.

Lemma 2.4.3 For any self-financing strategy ¢ we have, on the set {T < T},
AV (9) = Vo(6) = Voo(6) = 61(6(r) — 5- (k). (2.53)
PROOF: In general, the process ¢' is G-predictable. In our model, ¢! is assumed to be an RCLL
function. The jump of the wealth process V(¢) at time 7 equals, on the set {r < T},
AV (0) = 01A,S + 1A D = 6LA. S,

where A, S(k) = S;(k) = S;—(k) = =S; (k) (recall that the ex-dividend price S(k) drops to zero at
default time) and manifestly A, D = §(7). O

2.4.4 Hedging of Defaultable Claims

An Hp-measurable random variable Y is known to admit the following representation
Y = N7y h(7) + Lyr<rye(T), (2.54)

where h : [0,7] — IR is a Borel measurable function, and ¢(T) is a constant. For definiteness, we
shall deal with claims Y such that & is an RCLL function, but this formal restriction is not essential.

In view of Lemma 2.4.2, the dynamics of the price S(k) are
45,(5) = — S, () My + (1 — H) (s — 6(8)(1))

From Corollary 2.3.1, we know that the wealth V(¢) of any admissible self-financing strategy is an
H-martingale under Q.
dVi(9) =~} (Si— — &,)dM, (2.55)

The terminal value of the wealth is
VT - ZT]17'<T + X]1T<T

and

1 t
E(VT‘Ht) =V = Z1l,«++ ]1-,—<ta (XGT +/ stGs>
t 0

t ot
_ / Z,dH, + (1 - Hs)1<XGT + / stGs>
0 Gt JO

hence dV; = (Z; — g)dM; with §(t) = G%(fot ZsdGs 4+ XGr) Then, by identification
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Proposition 2.4.2 Assume that the inequality S;(r) # 6(t) holds for every t € [0,T]. Let ¢° be an
RCLL function given by the formula

g = D=9 (2.56)

and let ¢} = Vi(¢) — ¢?S;(k), where the process V(¢) is given by (2.52) with the initial condition
Vo(¢) = Eq(Y), where Y is given by (2.54). Then the self-financing trading strategy ¢ = (¢°, ¢') is
admissible and it is a replicating strategy for a defaultable claim (X,0,Z,7), where X = ¢(T) and
Zy = h(t).

We now recall a suitable version of the predictable representation theorem and we shall present a
different proof. Subsequently, we derive closed-form solution for the replicating strategy for a claim
Y given by (2.54) and settling at time T. As tradeable assets, we shall use a CDS started at time 0
and maturing at 7', and a savings account.

Representation Theorem

For any RCLL function h IR, — IR such that the random variable ﬁ( ) is integrable, we set

M, = E@( (1) | Hy) for every ¢t € IRy. It is clear that M is an H-martingale under Q. The following

version of the martingale representation theorem is well known (see, for instance, Blanchet-Scalliet

and Jeanblanc [27], Jeanblanc and Rutkowski [119] or Proposition 4.3.2 in Bielecki and Rutkowski

[23]).

Proposition 2.4.3 Assume that G is continuous and h h is an RCLL function such that the random

variable h( ) is Q-integrable. Then the H-martingale M admits the following integral representation
5= 8o+ [ (h(w) ~ gw)) dM, (2:57)

10,¢]

where the continuous function g : Ry — IR is given by the formula
i) =~ E (Lan (7)) = . /mﬁ(u) dG (u) (2.58)
7w T T e , ‘ '

Remark 2.4.2 It is easily seen that on the set {t < 7} we have g(t) = M,_. Therefore, formula
(2.57) can also be rewritten as follows

o~ o~ —

M, = My + / (h(u) — M,_) dM, = My, + / (h(u) — M(u—)) dM,, (2.59)
10,¢] 10,t]

where M = ¢ is the unique function such that Mt]1{7>t} = ( Y~y for every t € IRy

Replication of a Defaultable Claim

Assume now that a random variable Y given (2.54) represents a contingent claim settling at 7T
Formally, we deal with a defaultable claim of the form (X,0,Z, 1), where X = ¢(T) and Z, = h(¢).

To deal with such a claim, we shall apply Proposition 2.4.3 to the function ﬁ, where ﬁ(t) = h(t)
for t <T and h(t) = ¢(T) for t > T (recall that Q(7 = T) = 0). In this case, we obtain

() = % (- /t h(u) dG(u)+c(T)G(T)> , (2.60)
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and thus for the process M, = Eq(Y | Hy), t € [0,T], we have

M, = Eq(v) + /] () =gy, (2.61)

with § given by (2.60). Recall that S(k) is the pre-default ex-dividend price process of a CDS with

rate k and maturity 7. We know that S(x) is a continuous function of ¢ if G is continuous.

Proposition 2.4.4 Assume that the inequality S;(r) # 5(t) holds for every t € [0,T]. Let ¢* be an
RCLL function given by the formula

= M) =9 2.62

" 5~ sl i
and let ¢) = Vi(¢) — ¢1Si(k), where the process V(¢) is given by (2.52) with the initial condition
Vo(¢) = Eq(Y), where Y is given by (2.54). Then the self-financing trading strategy ¢ = (¢°, ') is

admissible and it is a replicating strategy for a defaultable claim (X,0,Z, 1), where X = ¢(T) and

PROOF: The idea of the proof is based on the observation that it is enough to concentrate on

the formula for trading strategy prior to default. In view of Lemma 2.4.2, the dynamics of the price
S(k) are
dSi(k) = =S (k) dMy + (1 — Hy)(k — 0(t)7(t)) dt.

and thus we have, on the set {7 > t},
dS;(k) = dSi(r) = (Y(t)Si(k) + & — 8(t)(t))dt. (2.63)

JFrom Corollary 2.3.1, we know that the wealth V(¢) of any admissible self-financing strategy
is an H-martingale under Q. Since under the present assumptions dB; = 0, for the wealth process
V(¢) we obtain, on the set {7 > t},

dVy(9) = ¢} (dS(r) — kdt) = —dv(1) (5(t) — Sy(r)) dt. (2.64)

For the martingale M, = Eg(Y | H,) associated with Y, in view of (2.61) we obtain, on the set
{T > t},
4T, = —(6)(h(t) - §(1)) dt. (2.65)

We wish to find ¢! such that Vi(¢) = ]\/4\,5 for every t € [0,7]. To this end, we first focus on the

equality I, Vi(¢) = ]1{t<7}]\//ft for pre-default values. Since v(t) is assumed to be strictly positive,
a comparison of (2.64) with (2.65) yields

h(t) —g(t

M, vt e [0,7]. (2.66)
6(t) — Si(k)

We thus see that if V5(¢) = M, then also NyeryVi(o) = ]1{t<7}]\/4\t for every t € [0,7]. As usual,

the second component of a self-financing strategy ¢ is given by (2.51), that is, ¢9 = V;(¢) — ¢} S;(k),

where V(¢) is given by (2.52) with the initial condition V5(¢) = Eg(Y). In particular, we have that

¢ = Eq(Y) — ¢So(k).

To complete the proof, that is, to show that V;(¢) = J\/It for every t € [0, T, it suffices to compare
the jumps of both processes at time 7 (both martingales are stopped at 7). It is clear from (2.61)
that the jump of M equals A, M = h(r) — g(7). Using (2.53), we get for the jump of the wealth
process

ALV (9) = 61(8(r) = Sr (k) = h(r) = G(7),
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and thus we conclude that Vi(¢) = Z\Z for every t € [0,7]. In particular, ¢ is admissible and
Vr(¢) = Voar(¢) = h(r AT) =Y, so that ¢ replicates a claim Y. Note that if Kk = k(0) then
So(x(0)) = 0, 50 that 6§ = Vo(@) = Eg(Y). O

Let us now analyze the condition S;(k) # &(t) for every t € [0,T]. It ensures, in particular,
that the wealth process V(¢) has a non-zero jump at default time for any the self-financing trading
strategy such that ¢} # 0 for every t € [0,T]. It appears that this condition is not restrictive, since
it is satisfied under mild assumptions.

Indeed, if x > 0 and § is a non-increasing function then the inequality S;(k) < &(t) is valid
for every t € [0,T] (this follows easily from (2.35)). For instance, if v(¢) > 0 and the protection
payment 0 > 0 is constant then it is clear from (2.39) that the market rate (0) is strictly positive.
Consequently, formula (2.35) implies that S;(x(0)) < & for every t € [0,T], as was required. To
summarize, when a tradeable asset is a market CDS with a constant § > 0 and the default intensity
is strictly positive then the inequality holds. Let us finally observe that if the default intensity
vanishes on some set then we do not need to impose the inequality S;(x) # §(¢) on this set in order
to equate (2.64) with (2.65), since the desired equality holds anyway.

It is useful to note that the proof of Proposition 2.4.4 was implicitly based on the following
observation. In our case, Lemma 2.4.4 can be applied to the following H-martingales under Q:

—

M?' = V(¢), that is, the wealth process of an admissible self-financing strategy ¢ and M? = M, that
is, the conjectured price of a claim Y, as given by the risk-neutral valuation formula.

Lemma 2.4.4 Let M' and M? be arbitrary two H-martingales under Q. If for every t € [0,T] we
have Ly M} = Ny ry M then M} = M} for every t € [0,T].

PrROOF: We have M} = Eg(h;(7)|H;) for some functions h; : IR — IR such that h;(7) is
Q-integrable. Using the well known formula for the conditional expectation

1 > ~
EQ(hz(T) |Ht) = Il{tz'r}hi(T) - ]l{t<r} @/ hz(u) dG(u) = n{tz'r}hi(7-> + ﬂ{t<‘r}gi<t);
t

and the assumption that Il{t<T}Mt1 = ]1{t<T}Mt2, we obtain the equality g1(t) = ga(t) for every
t € [0,T] (vecall that Q(7 > t) > 0 for every t € [0,T]). Therefore, we have

/too o () dG () = /too ho(u) dG(u), Vi€ [0,T].

This immediately implies that hi(t) = h2(t) on [0,T], almost everywhere with respect to the dis-
tribution of 7, and thus we have hy (1 AT) = ho(r A T), Q-a.s. Consequently, M} = M} for every
t e 0,17 O

The method presented above can be extended to replicate a defaultable claim (X, A, Z, 7), where

X =cT), A = fot a(u) du and Z; = h(t) for some RCLL functions a and h. In this case, it is natural
to expect that the cum-dividend price process m; associated with a defaultable claim (X, A, Z, 1), is
given by the formula, for every ¢ € [0, T,

o 1 T t t
7= Lean 3+ L 55 /t a(u) G () du + /0 h(u) dH, + /0 a(w)(1— Hy)du,  (2.67)

where M, = Eo(Y | H,) with Y is given by (2.54). Let us denote by II; the corresponding ex-dividend

price, that is: II; = ]1{t<7}]\/4\t + ﬂ{t<7}% ftT a(u)G(u) du. It is rather straightforward to verify
that m; satisfies

7 = Eg(Y) +/OT a(t)G(t) dt+/(0 , (h(u) — M) dM,, te[0,T],
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so that it is a martingale. Consequently, the dynamics of m; are
dmy = (h(t) — ;) dM,, t€[0,T].

From this, or directly from (2.67), we see that the pre-default dynamics of process m; are

dmy = dM, + y(t)a(t) dt = —(t) (h(t) —g(t) —a(t)) dt = —~(t)(h(t) —11(t)) dt, t€[0,7),

where we set a(t) = (G(t))~* ftT a(u)G(u) du and TI(t) is the pre-default value of II,. Note that
a(t) represents the pre-default value of the future promised dividends associated with A. Therefore,
arguing as in the proof of Proposition 2.4.4, we find the following expression for the component ¢!
of a replicating strategy for a defaultable claim (X, A, Z, 7)

y _ h(t) —g(t) —a(t)
or = O -0 Yt e[0,T). (2.68)

It is easy to see that the jump condition at time 7, mentioned in the second part of the proof
of Proposition 2.4.4, is also satisfied in this case. In fact, it is enough to observe that Am, =
h(r) =1l = h(r) — g(7) — a(7).

Remark 2.4.3 Of course, if we take as (){, A, Z,7) a CDS with rate x and recovery function § ,
then we have h(t) = §(t) and g(t) + a(t) = Si(k), so that clearly ¢} = 1 for every t € [0,T].

The following immediate corollary to Proposition 2.4.4 is worth stating.

Corollary 2.4.2 Assume that Sy(k) # 6(t) for every t € [0,T]. Then the market is complete, in
the sense, that any defaultable claim (X, A, Z,7), where X = ¢(T), Ay = fot a(u)du and Zy = h(t)
for some constant ¢(T) and RCLL functions a and h, is attainable through continuous trading in a

CDS and a bond. The cum-dividend arbitrage price my of such defaultable claim satisfies, for every
t e 0,7,

m=%@=m+AwWM—M)M%

where
T
o = EQ(Y) + /0 a(t)G(t) dt,

with Y given by (2.54). Its pre-default price is 7(t) = g(t) + a(t) + A¢, so that we have, for every
te[0,7T)

T = ﬂ{t<7}(§(t> +a(t)+ A + ﬂ{tz,,-}(h(T) +A,)= Il{t<.,-}%(t) + Lomnymr

Case of a Constant Default Intensity

As a partial check of the calculations above, we shall consider once again the case of constant
default intensity and constant protection payment. In this case, kK(0) = év and S;(k(0)) = 0 for
every t € [0,T], so that

dVi(¢) = 1oy dt = —91r(0) dt. (2.69)

Furthermore, for any RCLL function h, formula (2.66) yields

ol =571 (h(t) +ert /t ’ h(u) d(e= ™) — c(T)e_"’T). (2.70)
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Assume, for instance, that h(t) = 6 for t € [0,T[ and ¢(T) = 0. Then (2.70) gives ¢} = =771,
Since Sp(k(0)) = 0, we have ¢ = 7o (Y) = Vo(¢) = 5(1 — e 7T). In view of (2.69), the gains/losses
from positions in market CDSs over the time interval [0, ¢] equal, on the set {7 > ¢},
t t
Vi(9) — Vo(o) = —dv / by, du = b / e 1T du= —5e T (' — 1) < 0.

0 0
Suppose that default occurs at some date ¢ € [0, T]. Then the protection payments is collected, and
the wealth at time ¢ becomes

Vi(9) = Vi (¢) + 66 = 6(1 —e ") = e (7" — 1) + 5e 70 =4,

The last equality shows that the strategy is indeed replicating on the set {r < T}. On the set
{7 > T}, the wealth at time T equals

Vr(¢) =6(1—e ") —ge T (7" — 1) = 0.
Since S;(x(0)) = 0 for every t € [0,T], we have that ¢? = V;(¢) for every t € [0,T].

Short Sale of a CDS

As usual, we assume that the maturity T of a CDS is fixed and we consider the situation where the
default has not yet occurred.

1. Long position. We say that an agent has a long position at time ¢ in a CDS if he owns at time
t a CDS contract that had been created (initiated) at time sg by some two parties and was sold to
the agent (by means of assignment for example) at time s. If sg = s then the agent is an original
counter-party to the contract, that is the agent owns the contract from initiation. If an agent owns
a CDS contract, the agent is entitled to receive the protection payment for which the agent pays
the premium. The long position in a contract may be liquidated at any time s < ¢ < T by means of
assignment or offsetting.

2. Short position. We stress that the short position, namely, selling a CDS contract to a dealer,
can only be created for a newly initiated contract. It is not possible to sell to a dealer at time ¢ a
CDS contract initiated at time sg < t.

3. Offsetting a long position. If an agent has purchased at time sqg < s < T a CDS contract
initiated at sg, he can offset his long position by creating a short position at time ¢. A new contract
is initiated at time ¢, with the initial price S;(x(sp)), possibly with a new dealer. This short position
offsets the long position outstanding, so that the agent effectively has a zero position in the contract
at time ¢ and thereafter.

4. Market constraints. The above taxonomy of positions may have some bearing on portfolios
involving short positions in CDS contracts. It should be stressed that not all trades involving a CDS
are feasible in practice. Let us consider the CDS contract initiated at time ¢y and maturing at time
T. Recall that the ex-dividend price of this contract for any ¢ € [tg, 7 A T is S¢(k(f)). This is the
theoretical price at which the contract should trade so to avoid arbitrage. This price also provides
substance for the P&L analysis as it really marks-to-market positions in the CDS contract.

Let us denote the time-t position in the CDS contract of an agent as ¢}, where t € [to, 7 A T).
The strategy is subject to the following constraints: ¢} > 0 if ¢}O >0 and ¢} > ¢}0 if ¢}0 <0.It
is clear that both restrictions are related to short sale of a CDS. The next result shows that under
some assumptions a replicating strategy for a claim Y does not require a short sale of a CDS.

Corollary 2.4.3 Assume that Sy(k) < 8(t) for every t € [0,T). Let h be a non-increasing function
and let ¢(T) < h(T). Then ¢; >0 for every t € [0,T].

PROOF: It is enough to observe that if & be a non-increasing function and ¢(T") < h(T) then it
follows easily from the first equality in (2.58) that for the function g given by (2.60) we have that
h(t) > g(t) for every t € [0,T]. In view of (2.62), this shows that ¢} > 0 for every t € [0,T]. O



2.5. SUCCESSIVE DEFAULT TIMES %)

2.5 Successive default times

The previous results can easily be generalized to the case of successive default times. We assume in
this section that » = 0.

2.5.1 Two times

Let us first study the case with two random times 71,75. We denote by T7 = inf(71,72) and
Ty = sup(71, 12), and we assume, for simplicity, that P(7; = 72) = 0. We denote by (H},t > 0) the
default process associated with 7, (i = 1,2), and by Hy; = H} + H? the process associated with two
defaults. As before, H is the filtration generated by the process H. The o-algebra H; is equal to
o(t1 At)Vo(ra At). Tt is useful to note that H; is strictly greater than G, = o(Th At) V o (Ta At).

Computation of joint laws

A H;-measurable random variable is equal to

- a constant on the set t < 7(y),

- a 0(7(1))-measurable random variable on the set 71y <t < 7(2), i.e., a o(71)-measurable
random variable on the set 71 <t < 7, and a o(73)-measurable random variable on the set 7 <t <
1

- a o(m, T2)-measurable random variable on the set 75 < t.

We note G the survival probability of the pair (71, m2), i.e.,

G(t78) = ]P(Tl >, 179 > 8) .
We shall also use the notation

g(s) = diiG(s, s) = 01 G(s,8) + G(s,s)

where 0;G is the partial derivative of G with respect to the first variable.

e We present in a first step some computations of conditional laws.

P(ray >s) = P(r1> s, >s) =G(s,5)
1
P(rg) > tltny =5) = o) (01G(s,t) + 02G(t,38)), fort > s

e We also compute conditional expectation in the filtration H: For t < T

P(T < 7'(1)) G(T7 T)
Vicry =~ = Licroy —m7
]P(t < 7'(1)) G(t,t)
P(T < 11 |HZ)
ey ——————= 4+ 1,
t<Ty P(t < Tl|Ht2) + 1<t
P(T < 71,t < 7o) P(T < 71|m)
= 1 T 1 T T T o T\ ]17'1
< ( KBl <m,i<n) | PSUBE<nin) <t

]P(T < T(1) |Ht)

]P(T < T1|Ht) =

G(T,t) P(T< 7'1|7'2)
SV (PO CLL) RSN il e B
NS ( TG t) U <) ) T

P(tST(1)<T(2)<T) Pt <1 <T|m)
P <T = 1 T Il‘r To w1~
(T(Z) - |Ht) t<T) P(t < 7'(1)) + 158<m2 ]P(t < 7'2‘7'1)
P(t <7 < T‘TQ)

]P(t <T1|T2)

+lr<tar, + 17, <t
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o The computation of P(T' < 71|m2) on the set {m» < ¢t} can be done as follows: the function h such
that P(T < 71|m2) = h(72) satisfies

E(h(72)@(12)Lr,<i) = E(p(72) Ur, <t<r <)

for any function . This implies that (assuming that the pair (71, 72) has a density f)

/Ot dvh(v)p(v) /000 duf(u,v) = /Ot dvp(v) /OO duf(u,v)

T

or

/dvh(v)gp(v)agG(O,v):/ dvp(v)02G(T, v)
0 0

hence, for v < t, h(v) = gﬁg%ﬁ;
We can also write
P(T <m,7 € dv) L 4 50T, 0)
P(T _ )= =- Em>T " %G0,0)
(T < 1|l =) P(r; € dv) P(ry € dv) dv (1 >T.72>v) 02G(0,v)

hence, on the set 5 < T,

62G(T, Tg)

]P)(T < 7'1|T2) = h(Tg) = m

e In the same way
P(Tl S T < T2|Ht)]]‘{T1St<T2} = ﬂ'{‘f‘1§t<7‘2}\]:](7—1)

where W satisfies
E(p(r)1r <t<r<r,) = E(@(1)W(T1) L7, <t<ry})
for any function . In other terms
¢ oo t oo
/0 dugo(u)/T dvf(u,v) = /0 ducp(u)‘l/(u)/t dvf(u,v)

/dugo(u)@lG(u,T):/ dup(u)¥(u)01G(u,t)
0 0

This implies that
 01G(u,T)

V) = 5 G

nG(m, T
P(ri <T < mao[Hi) U7 <t<ry) = ]l{ﬁgKTz}alG((Tllt))
Value of credit derivatives

We introduce different credit derivatives

A defaultable zero-coupon related to the default times DZC? delivers 1 monetary unit if 7; is
greater that T: DZC} = E(L{r<,,}|Hy)

A contract which pays d' is one default occurs before T and 65 if the two default occur before T
CDy = E(011{0<r, <1y + 021 {0<rp <1} [He)
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We obtain
G (T, T2) G(T,t)
DZC;{ = sy (11{72«}822(;@7;) + Lr ey Gl D) (2.71)
8,G(m,T) G(t,T)
DZC? = lyrsy (]1{71<t}512(;(71ht) + {n>t}G((t’t) (2.72)
G(t,t) - G(T,T
CD; = 5111{7-(1)>t} ( ( )G(t t)( )> +(52]l{.,-(2)§t} +51]l{.,.(1)§t} (2.73)
82G(T, 7'2) 81G(’7‘1,T)
5ol L1 (1 - =220 )+ 1,(1 1— =) 2.74
tiatin {100 (1- 2502 o (1- 290D ey
Gt,T)+ G(T,t) — G(T,T)
I 1— 2.
10,0 e (2.75)
where by
L(1,1) = Ur <t rp<iy I;(0,0) = L7 5t 750y
It(lao) = ]]-{Tlgt,7'2>t} ’ It(ov 1) = ]1{7'1>t,‘rg§t}

More generally, we compute E(h(7y,72)|H:). Some easy computation leads to

E(h(Tl,T2)|Ht) = It(]-7 1)h(7’1,7’2) -|— It(lvo)\Ill,O(Tl) + It(O, 1)\:[/071(7'2) + It(O, 0)\11070

where

S
i
o

g
N—

I

[

PREIO] /tOO h(u,v)01G(u,dv)

_m/t h(u,v)02G(du, v)
1 o0 oo
Voo = 7G(t,t)/t /t h(u,v)G(du, dv)

The next result deals with the valuation of a first-to-default claim in a bivariate set-up. Let us
stress that the concept of the (tentative) price will be later supported by strict replication arguments
(forthcoming work). In this section, by a pre-default price associated with a G-adapted price process
m, we mean here the functioE 7 such that mll(; ey = 7~r(t)]l{T(1)>t} for every t € [0,T]. In other
words, the pre-default price 7 and the price 7 coincide prior to the first default only.

Proposition 2.5.1 The pre-default price of a FtD claim (X,0,Z, 7)), where Z = (Z1,Z>) and
X =¢(T), equals

T T
1 —/ Z1(u) G(du,u) — / Z5(0)G(v,dv) + XG(T,T) | .
G(t7 t) t t

PROOF: The price can be expressed as

E@(Zl (7-1)1[{T1ST7T2>T1} ‘gt) + E@(Z2(TQ)]1{T2§T,71>7'2} |gt) + EQ(C(T)H{T(1)>T}|gt)'

The pricing formula now follows by evaluating the conditional expectation, using the joint distribu-
tion of default times under the martingale measure Q. O

Martingales
o Filtration H’ We now study the decomposition of the semi-martingales H*. From our previous
study, the processes

fi(s)

tAT;
M! = H! —/ 0 s 2.76
t t o 1 . FI(S) ( )
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where Fy(s) = P(; < s) = [ fi(u)du are Hj-martingales.

Comments 2.5.1 Same computations appear in Kurtz and Riboulet [137]

2.5.2 More than two times

Suppose that the default times are modeled via a Poisson process with intensity h. (See the appendix
for definitions and main properties of Poisson processes) The terminal payoff is [[,, (1 — d(73)),
where ¢ is a deterministic function valued in [0, 1]. The value of this payoff is E([ [, (1 =6(Ty))).
In the case of constant 6(s) = J, we get -

B [[-6T)] =E(1-6) =exp (5/0 h(s)ds).

In the general case,

E ( IJa- 6(Ti))) =E (exp (Z In(1 — 5(3))ANS))) =" <exp (/T In(1 — 58)st>> .
T:<T s<T 0

Hence (See the appendix)

E H (1-46(T3)) | =exp </0 6(s)h(s)ds> .

T;<T



Chapter 3

Cox Processes and Extensions

We now present a case where some information is given by the default free market..

3.1 Construction of Cox Processes with a given stochastic
intensity

Let (2,G,P) be a probability space endowed with a filtration F. A nonnegative F-adapted process A
is given. We assume that there exists a random variable O, independent of F,, with an exponential
law: P(© > t) = e~*. We define the random time 7 as the first time when the process A, = fg Asds
is above the random level O, i.e.,

T=inf{t >0 : Ay > O}.
In particular, {7 > s} = {A; < ©}.We assume that A; < 00, Vi, Ay = 00.
Comments 3.1.1 Another example is to choose 7 = inf {t > 0 : N, = 1}, where A, = fot As ds
and N is a Poisson process with intensity 1, independent of the filtration F. The second method is
in fact equivalent to the first. Cox processes (or doubly stochastic Poisson processes) are used in a
great number of studies (see, e.g., [139]).

3.2 Conditional Expectations

Lemma 3.2.1 The conditional distribution function of T given the o-field F; is fort > s

P(1 > s|F;) = exp ( — AS> .

ProOF: The proof follows from the equality {7 > s} = {A; < ©}. From the independence
assumption and the Fi-measurability of Ag for s < ¢, we obtain

P(r > s|F) = IP(AS <0 ‘ .7-}) = exp ( — AS).

In particular, we have

P(r <t|F) =P(r < t|Fx), (3.1)
and, for t > s, P(1 > s|F;) = P(7 > s|Fs). Let us notice that the process Fy = P(7 < t|F;) is here
an increasing process. O
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Remark 3.2.1 If the process A is not non-negative, we get, for s < ¢

P(1 > s|F;) = exp(—supA,) .

u<s

3.3 Choice of filtration

We write as before Hy = <4, and H; = o(H, : s <t). We introduce the filtration G; = F; V 'Hy,
that is, the enlarged filtration generated by the underlying filtration F and the process H. (We denote
by F the original Filtration and by G the enlarGed one.) We shall frequently write G = F v H.

It is easy to describe the events which belong to the o-field G; on the set {7 > t}. Indeed, if
Gt € Gy, then Gy N {1 >t} = B, N {71 > t} for some event B, € F;.

Therefore any G;-measurable random variable Y; satisfies 1,1 Y; = ;54 ys, where y, is an
Fi-measurable random variable.

3.4 Key lemma

Proposition 3.4.1 Let Y be an integrable r.v. Then,

E(Y -5y | F)

1 E(Y =1 —_
(>0 E(Y[G) = Moy B o 7)

= Lo e™E(Y Ly |F).

PRrROOF: From the remarks on the G;-measurability, if ¥; = E(Y|G;), then there exists an Fi-
measurable r.v. y; such that

ﬂ{r>t}E(Y|gt) = H{T>t}yt
E(Yﬂ{’r>t}|}—t)

and taking conditional expectation w.r.t. F; of both members, we deduce yy = —————=. O
E(]l{'r>t}|]:t)
Corollary 3.4.1 If X is an integrable Fp-measurable random variable
E(X1L{r<r|Gt) = Lirspye™E(Xe 2| F). (3.2)

PROOF: Let X be an Fp-measurable r.v. From prop. 3.4.1, E(X1,~7}|G;) is equal to 0 on the
Gi-measurable set 7 < t, whereas

E(X1(;sry|Fi) = B(XLpsmy | Fr|F) = E(Xe | F).

]

Comments 3.4.1 This corollary admits an interesting interpretation. If X1 7.} is some default-
able payoff, its value is the value of the default free payoff X when the interest rate is higher that the
spot rate and the difference, i.e., A can be interpreted as a spread. However, we emphasize that we
are not dealing with a risk neutral probability. If the market is assumed to be complete, that means
in particular that a defaultable zero-coupon is traded. Then, the intensity has to be evaluated under
the risk-neutral probability given by the market.

Definition 3.4.1 The process A is called the intensity of T.

We now compute the expectation of a 7-time value of a predictable process.
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Lemma 3.4.1 (i) If h is an F-predictable (bounded) process then

E(h,|F,) = ]E( /OOO huduexp (— Ay) du ‘ J—'t)

and
]E(h-,—‘gt) = ]E(/ hu>\u exp (At — Au) du ‘ ft) :[I.{7->t} + hTH{TSt}' (33)
t

In particular

E(h,) = ]E(/ huda exp (— Ay) du)
0
(ii) The process (Hy — OtAT Asds,t > 0) is a G-martingale.

PROOF: Let hy = 1}, ,,)(t) B, where B, € F, be an elementary predictable process. Then, from
Corollary 3.4.1

E(helF) = By (1)BoF) = E(B(lu (1) BolFs) | 7:)

E(BP(v < 7 < wlFu) | F) = B(By (e — ) 17)
It follows that
E(h,|F;) = E(Bv / e du ‘ ft) - ]E( /0 T e du ‘ J-‘t)

and the result is derived from the monotone class theorem.

The martingale property (ii) follows from integration by parts formula. Indeed, let ¢ < s. Then,
on the one hand from Corollary 3.4.1

P(t <7< S|.7:t)
]P)(t < T‘ft)
= ]l{t<.,.}]E(1 - exp(AS - At)|ft)

E(Hs — Hi|G) = Pt <7 <5[Gr) =Ly

On the other hand, from part (i)

E(/ts/\f Audu ‘ Qt) = E(ASAT — AM.,.\gt) = ﬂ{t<T}E</too Buhge~ Bu=A0) gy ’ «7:15)

AT

where h, = A(s Au) — A(t A u). Consequently,

e @0 = [ = A de O (= ) [ A
t t R

—(Ay — Ap)e=Psmh0) —|—/ Au)e™ =2 dy 4 (A, — Ay)e™ R0
t

= 1—e (Mt

This ends the proof. O
3.5 Conditional Expectation of F,-Measurable Random Vari-

ables

Lemma 3.5.1 Let X be an Fo-measurable r.v.. Then

E(X|G:) = E(X|F). (3.4)
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PROOF: Let X be an Fy.-measurable r.v. To prove that E(X|G;) = E(X|F;), it suffices to check
that
E(Bih(r At)X) = E(Bih(r AE(X|F))

for any B; € F; and any h = 1o ,). For t < a, the equality is obvious. For ¢ > a, we have from (3.1)

E(Bl<a)E(X|F)) = EBEX|F)EL < Foo)) = EEBX[F)E(L(r<ay | F1))
]E(XBtE(ﬂ{Tgaﬂft)) = E(BtX]l{Tga})

as expected. O

Remark 3.5.1 Let us remark that (3.4) implies that every F-square integrable martingale is a
G-martingale. However, equality (3.4) does not apply to any G-measurable random variable; in
particular P(7 < t|G;) = ;<4 is not equal to Fy = P(7 < t|F;).

3.6 Defaultable Zero-Coupon Bond

From Corollary 3.4.1, for t < T

]—"t).

Let Q be a risk-neutral probability and B(¢,T) be the price at time ¢ of a default-free bond paying
1 at maturity T satisfies

T
E(lyr<ry|Gt) = ]1{T>t}E<eXp(—/ As ds)
t

B(t,T) = E@(GXp(— /tT re ds) ]-“t> = Eo(RL|F).

The market price D(t,T) of a defaultable zero-coupon bond with maturity T is

a)

T
= ]1{T>t}]EQ(exp ( - /t [rs + A9 ds) ‘ .7-}).

T
D, T) = ]E@(]I{T<T}exp(—/t TSdS)

The time-t value of a corporate bond, which pays d, at time T in case of default and 1 otherwise,
is given by

T
Eq (6_ Jereds (5 ey + Lirary) ’gt) =Eq (RtT (1-(1—-6r)lr<ry) ‘ gt)-
Then, setting A® = fot A du,

T
D(t,T)=B(tT)-E <RtTeAtQ / ds(1 — 5S)A§?6A3|ft>
t

Therefore, given the price of a DZC, we can deduce the risk neutral intensity.

In the case where the compensation is paid at default time,

T
D(t,T) = Eg (exp—/t (rs—l—)\?)ds.ﬂ)

T s
+ Eg (/ dsR’;és)\?exp(—/ )\udu)|}'t>
t t
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3.7 Extension

In Wong [179], the time of default is given as
T=inf{t : Ay >3}

where ¥ a non-negative r.v. independent of F.,. This model reduces to the previous one: if ® is
the cumulative function of ¥, the r.v. ®(X) has a uniform distribution and

T =inf{t : ®(A;) > &(X)} =inf{t : V' [B(A,)] > O}
where ¥ is the cumulative function of the exponential law. Then,

Fy=P(r <t|F) =P(A > B|F) = 1 —exp (=0 7H(D(Ay))) -

3.8 Term Structure Models

Some authors choose to model the intensity. A substantial literature proposes to model both the de-
fault free term structure and the term structure representing the relative prices of different maturities
of default-risky debt, using an extension of the method developed by Heath-Jarrow-Morton.

Major papers in this area include Jarrow and Turnbull [114], Schénbucher [171, 172], Hubner
[102, 101], and Bielecki and Rutkowski [23].

Other authors choice to model directly credit spreads Duffie and Singleton [73], Douady and
Jeanblanc [67].

3.8.1 Duffee’s model

Duffee [68] assumes that the value of a default free bond is

Eg <exp ( /t ' 7’st> m)

and that the defaultable bond is priced as
T
Eq | exp —/ (rs +7s)ds | | Fe
t

Te =81t + S2t, he =B+ P151,¢ + Basa + 53,4

where

and
dsm = "ﬁz‘<9i — Si’t)dt + Ui,/Si)tdWi(t)

TO BE COMPLETED

3.8.2 Jarrow and Turnbull’s model

Jarrow and Turnbull consider a situation where the interest rate follows a Vasicek’s dynamics and
where the intensity v is a linear function of the interest rate and a factor Z, modeled as a Brownian
motion.

dry = K(reo — r)dt + odW;
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and v = ag(t) + a1 (t)rs + a2(t)Z;. The problem is that ~ is not a non-negative value. nevertheless,
the corporate bond follows

D(t,T) =0B(t,T)+ (1 — 6) exp(—p + %’U)

where p and v are the mean and variance of Ry + I'p.
TO BE COMPLETED

3.8.3 Vacicek Model
In Schonbucher, the dynamics of interest rate and of the intensity are

drt = (k(t) — CL’]"t)dt + J(t)th
dhe = (k(t) —a\)dt + 5(t)dB,

where W and B are two Brownian motion with correlation p.
Proposition 3.8.1 The price of a default free zero-coupon with maturity T is
B(t,T) = exp(A(t, T; 0, k) — 5(t, T: a)r)

where
1 (T T
A(t,T;a,k,0) = 5/ 02(u)n(t7u;a)2du—/ K(t, u;a)k(u)du
t t

and K(t,u:a) = 1(1- ema(T=1)),

The price of a defaultable zero-coupon with maturity T with zero recovery is
D(t,T) = B(t,T)B(t,T) = exp(A(t, T; h,5) — £(t, T;@)\r))

with

~

h(t) = k(1) = p3(t)o(t)x(t, T; a)

PROOF: See Appendix for (i). For (ii) write
T
D(t,T) = B(t,T)Eq, (exp —/ Asds)
t

where Qr is the T-forward probability measure. The dynamics of A under Qr are

d\ = (h(t) — @\,)dt + G(t)dB,

3.8.4 The CIR model

To be written

3.9 Copula

To be written



Chapter 4

Hazard process Approach:
Reference filtration

4.1 General case

4.1.1 The model

In reduced form approach, we shall deal with two kinds of information : the information from the
asset’s prices, denoted as (F;,t > 0) and the information from the default time, i.e. the knowledge
of the time were the default occured in the past, it the default has appeared. More precisely, this
information is modeled by the filtration H generated by the default process H.

At the intuitive level, F is generated by prices of some assets, or by other economic factors (e.g.,
interest rates). This filtration can also be a subfiltration of the prices. The case where F is the
trivial filtration is exactly what we have studied in the toy example. Though in typical examples F
is chosen to be the Brownian filtration, most theoretical results do not rely on such a specification
of the filtration F. We denote by G; = F; V H;.

Special attention is paid here to the hypothesis (H), which postulates the invariance of the
martingale property with respect to the enlargement of F by the observations of a default time. We
establish a representation theorem, in order to understand the meaning of complete market in a
defaultable world and we deduce the hedging strategies for credit derivatives. The main part of this
section can be found in the surveys of Jeanblanc and Rutkowski [117, 118].

4.1.2 Key lemma

It is straightforward to establish that any G;-random variable is equal, on the set {7 > t}, to an
Fi-measurable random variable.

We denote by F, = P(7 < t|F;) the conditional law of 7 given the information F;.

Lemma 4.1.1 Let X be an Fr-measurable integrable r.v. Then,

E(X1 1y | Fr)

E(XTr<r|Gi) = Lirse) IE(]I{ >t}|~7:t)

=Lpopne E(Xe 17| F). (4.1)
where T'y = —In(1 — F})

PROOF: The proof is exactly the same as Corollary 3.4.1. Indeed,
I]'{T>t}]E(X|gt) = H{T>t}$t

65
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where x; is Fi-measurable, and taking conditional expectation w.r.t. F; of both members, we deduce

E(XW >4 Fr)

S AP Y e E(Xe TR
]E(]].{7->t}‘ft) { >t} ( | t)

Tt =

|
The main point is that here, the process I' is not necessarily increasing.
Lemma 4.1.2 Let h be an F-predictable process. Then,
T
E(h; 1 <r|G:) = h‘r]l{7'<t} + ]1{T>t}eFtE(/ hydFy|Fy) (4.2)
t

We are not interested with G predictable processes, mainly because any G predictable process is
equal, on {t < 7} to an F-predictable process.

Lemma 4.1.3 The submartingale Fy admits a decomposition as Z+ A where Z is a martingale and
A a predictable increasing process. In terms of A,

T
E(hr Ly or|Ge) = hollrcry + grorye K / hud A F)
t

As we shall see, this elementary result will allow us to compute the value of credit derivatives, as
soon as some elementary defaultable asset is priced by the market.

Comments 4.1.1 It can be useful to understand the meaning of the lemma in the case where, as
in the structural model, the default time is an (F;) stopping time.

Remark 4.1.1 We emphasize that, in the Cox process approach, the enlarged filtration G = FVH
is here the filtration which should be taken into account; the filtration generated by F; and o(0)
is too large. In the latter filtration, in the case where F is a Brownian filtration, 7 would be a
predictable stopping time.

4.1.3 Martingales

Proposition 4.1.1 The process Fy is a submartingale.
PROOF: We have to prove that
Vt > s, E(F|Fs) > Fs.

From definition, and form the increasing property of the process H,

E(Ft|]:s) E (E(Htlft) |fs) =E (Ht|~7:s)

E (H9|-7:9) == Fs

v

O

This property implies, from the Doob-Meyer decomposition that F; = Z; + A; where Z is a
F-martingale and A a F-predictable increasing process.

Proposition 4.1.2 (i) The process Ly = (1 — H;)e'® is a G -martingale.
(i) If X is a bF-martingale, XL is a G -martingale.

(iii) The process My = Hy —T'(t A7) is a G -martingale as soon as F' (or T') is continuous.
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PROOF: (i) From the key lemma, for ¢ > s
E(Li|Gs) = E(Lrsi€7Gs) = Mprasp e E(L e | Fs) = Lprsge’s = L
since E(LLgr>pet|Fy) = E(E(L e | Fr)et | Fs) = 1.
(#4) From the key lemma,
E(Li X:1Gs) = E(lrseyLiXt|Gs)
]l{T>s}eFSE(]1{T>t}€FtXt‘f:S)
= Tgrssy€ EE( sy | Fr)e X | Fo)
= L,X,.
(#i1) From Integration by parts Formula (H is a finite variation process, and I' a continuous
process):
dL; = (1 — Hy)e'*dl'y — et dH,
and the process M; = H; — I'(t A 7) can be written

M, = / dH, — (1—H,)dl, = —/ e 'L,
10,4] 10,4] 10,]

and is a G-local martingale since L is G-martingale. O

Comments 4.1.2 Assertion (ii) seems to be related with a change of probability. However, setting
Q* = LP does not define a probability Q equivalent to P, since the positive martingale L vanishes.
The probability @* would be absolutely continuous wrt P. See Collin-Dufresne and Hugonnier [48].

4.1.4 Interpretation of the intensity

In this general setting, the process I' is not with bounded variation. Hence, (iii) does not give the
Doob-Meyer decomposition of H.

Proposition 4.1.3 We assume for simplicity that F is continuous. The process

tAT
dA
M:H—/ u
t t 0 I*Et

is a G-martingale.

Assuming that A is absolutely continuous wrt the Lebesgue measure and denote by a its derivative,
we have proved the existence of a F-adapted process «, called the intensity such that the process

tAT t
Hy — / Yudu = Hy — / (1 — Hy)yudu
0 0

is a G-martingale. More precisely, 75 = 7% -

Lemma 4.1.4 The process ~y satisfies

. 1Pt <T<t+h|F)
v = lim —

0 h Pt < T|F)

PROOF: The martingale property of M implies that

t+h
E(Locr<tsn|Gi) — / E((1— Hy)Au|Gr)ds = 0
t

It follows that t+h
P(t <7 <t+h|F)= / AsP(s < 7|F)ds
t
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4.1.5 Restricting the information

Suppose from now on that ft C F; and define gt = .7?,5 V 'H; and the associated hazard process
Gy = P(t < 7|F;) = E(G4|F;). Then, the key lemma implies that

~ 1 ~
E(L{>Y[G) = 1zony=E (ﬂ{r>t}Y\ft)
G
and if Y is a fT—measurable variable,
~ 1 ~ ~
E( (7)Y [G) = 1oy = E (GrYI 7).
G

From EP(H{T>T}Y|§,§) = ]EP(JI{T>T}Y|Qt|§t), we deduce

E(GrY|F)

]E(]]'{T>T}Y|§t) = ]E<]]-{T>t} G,

)

1 E(GrY|F,)
= Dpop=FE( Loy ——an 2t
g < e )

7).

It can be noted that, from the uniqueness of the predefault F-adapted value, for any t,
]—"t) |

E(14snBGYIF)G) " F) = E(E(lpsnlF)G)  EGYIF)| F)

(GrY|F)

BGrYIF) = (Lo oy

As a check, a simple computation shows

E(EGrY|F)| F) =E (GrY|7)
E(E(GrlFr) YIF) = E (GrY|F).

since Y is Fpr-measurable.

4.1.6 Enlargement of filtration

4.2 (H) Hypothesis

We discuss now the hypothesis on the modeling of default time that we require in order to avoid
arbitrages in the defaultable market.

4.2.1 Complete model case

Proposition 4.2.1 Let S be a semi-martingale on (2, G, P) such that there exists a unique probabil-
ity Q, equivalent to P on Fr, where F; = F = 0(Ss,s < t) such that (St SiR;,0 <t <T) is an
F°-martingale under the probability Q. We assume that there ezists a probability Q, equivalent to P
on Gr such that (St, 0<t< T) is a G-martingale under the probabzlzty Q. Then, square integrable
(F,Q)-martingales are (G, (@) martingales and the restriction of Q to Fr is equal Q.

PROOF: We give a "financial proof”. Under the hypothesis, any square integrable F — ) martingale
can be thought as the discounted value of a contingent claim § € Fr. Since the same claim exists
in the larger market, which is assumed to be arbitrage free, the claim process is also a G — Q
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martingale. From the uniqueness of price for hedgeable claims, for any contingent claim X € Fr
and any G-e.m.m. Q,
Eo(XRp|F:) = IEIQ(XRT|Qt) .

In particular, Eq(Z) = E4(Z) for any Z € Fr (taket =0 and X = ZR;'), hence the restriction of
any em.m. @) to the o-algebra Fr equals Q. Moreover, since any square integrable F-Q-martingale
can be written as Eq(X|F;) = IEQ(X|Qt), we get that any square integrable F-Q-martingale is a
G-Q@-martingale. |

Comments 4.2.1 In the literature, it is generally assumed that the defaultable market is complete
and arbitrage free. If this assumption means that the set of contingent claims is the set of Gp-
measurable random variable, then, in particular, any Fpr-measurable random variable is a tradeable
contingent claim, and St is a tradeable asset.

4.2.2 Definition and Properties of (H) Hypothesis

We shall now examine the hypothesis (H) which reads:
(H) Every F square-integrable martingale is a G square-integrable martingale.

This hypothesis implies that the F-Brownian motion remains a Brownian motion in the enlarged
filtration. It was studied by Brémaud and Yor [34] and Mazziotto and Szpirglas [156], and for
financial purpose by Kusuoka [138]. This can be written in any of the equivalent forms (see, e.g.
Dellacherie and Meyer [64]) :

Lemma 4.2.1 Assume that G = FV H, where F is an arbitrary filtration and H is generated by
the process Hy = Nl <4y. Then the following conditions are equivalent to the hypothesis (H).
(i) For any t,h € IRy, we have

P(r < t|F) = P(r < t| Fan). (4.3)

(1) For any t € IR, we have
P(r < t|F) = B(r < | Fuo). (1.4)

(i) For any t € IRy, the o-fields F and G; are conditionally independent given Fy under P, that
18,

Ep(§n | Fr) = Ep(& | Fi) Bp(n | Fr)

for any bounded, Fo-measurable random variable £ and bounded, Gy-measurable random variable 7).
(iii) For any t € Ry, and any u > t the o-fields F,, and Gy are conditionally independent given Fy.
(iv) For any t € IRy and any bounded, Foo-measurable random variable £: Ep(€|Gy) = Ep(€ | Fy).
(v) For any t € Ry, and any bounded, Gi-measurable random variable n: Ep(n|F;) = Ep(n| Foo)-

PROOF:

If (H) holds, then (4.4) holds too. If (4.4) holds, the fact that H; is generated by the sets
{1 < s},s <t proves that Fo, and H; are conditionally independent given F;. The property follows.
This result can be also found in [65]. The equivalence between (4.4) and (4.3) is left to the reader.

Using monotone class theorem it can be shown that conditions (i) and (i’) are equivalent. The
proof of equivalence of conditions (i')—(v) can be found, for instance, in Section 6.1.1 of Bielecki and
Rutkowski [23] (for related results, see Elliott et al. [80]). Hence, we shall only show that condition
(iv) and the hypothesis (H) are equivalent.

Assume first that the hypothesis (H) holds. Consider any bounded, F-measurable random
variable £. Let Ly = Ep(¢ | F;) be the martingale associated with £. Then, (H) implies that L is also
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a local martingale with respect to G, and thus a G-martingale, since L is bounded (recall that any
bounded local martingale is a martingale). We conclude that L; = Ep(£|G;) and thus (iv) holds.

Suppose now that (iv) holds. First, we note that the standard truncation argument shows that
the boundedness of £ in (iv) can be replaced by the assumption that £ is P-integrable. Hence, any
F-martingale L is an G-martingale, since L is clearly G-adapted and we have, for every ¢ < s,

Ly = EP(LS |-7:t) = EJP’(LS |gt)'

Now, suppose that L is an F-local martingale so that there exists an increasing sequence of F-
stopping times 7, such that lim,, .. 7, = 00, for any n the stopped process L™ follows a uniformly
integrable F-martingale. Hence, L™ is also a uniformly integrable G-martingale, and this means
that L follows a G-local martingale. O

Remarks 4.2.1 (i) Equality (4.4) appears in several papers on default risk, typically without any
reference to the (H) hypothesis. For example, in the Madan-Unal paper [151], the main theorem
follows from the fact that (4.4) holds (See the proof of B9 in the appendix of their paper). This is
also the case for Wong’s model [179].

(ii) If 7 is Foo-measurable, and if (4.4) holds, then 7 is an F-stopping time. If 7 is a F-stopping
time, equality (4.3) holds. If F is the Brownian filtration, 7 is predictable and A = H.

(iii) Though condition (H) does not necessarily hold true, in general, it is satisfied when 7 is con-
structed through a standard approach (See Cox processes). This hypothesis is quite natural under
the historical probability, and is stable under some change of measure. However, Kusuoka provides
an example where () holds under the historical probability and does not hold after a change of
probability. This counter example is linked with dependency between default of different firms.

(iv) Hypothesis (H) holds in particular if 7 is independent from F,. See Greenfield thesis. [91].
(iv) This hypothesis was studied by Brémaud and Yor [34], Mazziotto and Szpirglas [156], and in a
financial setting by Kusuoka [138], Elliott et al. [80] and Jeanblanc and Rutkowski [117, 118].

We reduce our attention to the case where
vt, P(1 < t|F) = P(7 < t|Foo) -
In that case F' is an increasing process.

Comments 4.2.2 See Elliott et al. [80] for more comments. The increasing property of F is
equivalent to the fact that any F-martingale, stopped at time 7 is a G martingale. Nikeghbali and
Yor [160] proved that this is equivalent to E(m.) = mg for any bounded F martingale. The (H)
hypothesis is studied also in Florens and Fougere [85], under the name noncausality.

Proposition 4.2.2 If X is a F-martingale, XL and [L, X] are G -martingales.

PrROOF: We have seen in Proposition 4.1.2 that XL is a G-martingale. Since [L,X] = LX —
JL_dX — [ X_dL, and that X is a F, hence a G-martingale, the process [L, X] is the sum of three
G-martingales. |

4.2.3 (H) hypothesis and shrinking filtration

LetF C Fand 'g} = .7-'t\/Ht. Let F; = Z;+ A; be the Doob-Meyer decomposition of the submartingale
F and assume that A is differentiable with respect to t: A; = fot asds. The process A; = E(A¢|F:)
is a submartingale and its Doob-Meyer decomposition is

A/t = 3t + &t
Hence, setting Z, = ]E(Zt|ft), the sub-martingale

F, =P(t > 7|F,) = E(F|F)
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admits a Doob-Meyer decomposition as
Fo =7, 4%+,
Next lemma allows to link a and a:

Lemma 4.2.2 The compensator ofﬁ 18 Oy = fo as|.7:

PROOF: Let us prove that the process M} = E(F,|F,) — f E(as|Fs)ds is a F-martingale. It is
integrable and f‘—adapted. Moreover
ft>

= E(Fr|F)—-E (/Ot]E(ast’-:s)ds ﬁt> -E </tT E(as|Fy)ds

- Zt+1E(/0tans ]—') +E</tTasds ft>
~E (/OtE(asm)ds ﬁt> ~E (/tT E(as|F)ds ﬁt>
7)

= MF+E (/Tfsds ﬁt> —E (/TE(fsm)ds
= Mf+/tT1E(fs|ft)ds—/tT ( (fol Fo) )ds
= Mf—k/TIE(aSU?t) ds—/T]E(as]?t)ds:Mf.

Hence (ﬁt—fg E(a,|F,)ds,t > 0) is a F-martingale and IN E(a,|F,)ds is predictable. The uniqueness
in Doob Meyer theorem implies &; = fo (as|Fs)ds. O

It follows that _
tAT f
Ht —/ 75,\, ds
o 1-—F;

is a G- martingale and that the F-intensity of 7 is equal to E(as|Fy) /( G, and not ”as we could think”
to E(as/Gs|F,). Note that even if (H) hypothesis holds between F and F, this proof can not be
simplified since Ft is increasing but not F-predictable (there is no raison for F; to have an intensity).

E (M7 |F;)

~ T ~
E <E(FT|]:T) —/0 E(CLSU:S)CIS

)

H, — MT Asds is a G-martingale hence H;, — MT E(X|G.)ds is a G-martingale.
Note that
AT _ ¢ _ ¢ _
/ E(),|G,)ds = / 1<y E(A|Gu)ds = / E(1l {s<ry As|Ge)ds
0 0 0
G Is<ry 7
E(]]‘{SST}AS|gS) = ?E(ﬂ{sgf})\s‘fs)
1 ST T 1 ST T
= =UR@F) = SR (0, F)
S GS
hence H; — MT E(as|Fs)/Gsds is a G-martingale, and we are done.
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4.2.4 Change of a probability measure

Kusuoka [138] shows, by means of a counter-example, that the hypothesis (H) is not invariant with
respect to an equivalent change of the underlying probability measure, in general. It is worth noting
that his counter-example is based on two filtrations, H! and H?, generated by the two random times
71 and 72, and he chooses H! to play the role of the reference filtration F. We shall argue that
in the case where F is generated by a Brownian motion (or, more generally, by some martingale
orthogonal to M under P), the above-mentioned invariance property is valid under mild technical
assumptions.

Preliminary lemma

Let us first examine a general set-up in which G = F V H, where F is an arbitrary filtration and H
is generated by the default process H. We say that Q is locally equivalent to P if QQ is equivalent to
P on (92,G;) for every t € IR;. Then there exists the Radon-Nikodym density process n such that

dQ|g, = ndP|g, Vte R.. (4.5)

Part (i) in the next lemma is well known (see Jamshidian [112]). We assume that the hypothesis
(H) holds under P.

Lemma 4.2.3 (i) Let Q be a probability measure equivalent to P on (Q,G;) for every t € IRy, with
the associated Radon-Nikodym density process . If the density process n is F-adapted then we have
Q(r <t|Fy) =P(r < t|F) for every t € IRy. Hence, the hypothesis (H) is also valid under Q
and the F-intensities of T under Q and under P coincide.

(ii) Assume that Q is equivalent to P on (,G) and dQ = ns dP, so that ny = Ep(Neo | Gt). Then
the hypothesis (H) is valid under Q whenever we have, for everyt € R,

]EIP’(nooHt |foo) _ E]P’(nth |foo)
Ep (Moo | Foo) Ep (e | Foo)

(4.6)

PROOF: To prove (i), assume that the density process 1 is F-adapted. We have for each ¢t < s €
Ry
Ep(nellgr<sy | F2)
Ep(ne | F2)
where the last equality follows by another application of the Bayes formula. The assertion now
follows from part (i) in Lemma 4.2.1.

Qr <t|F) =

=P(r <t[F) =P(r <t|F) = Qr < t[Fy),

To prove part (ii), it suffices to establish the equality
F=Q(r<t|F)=Q(r <t|Fs), VtelR,. (4.7)

Note that since the random variables 71 (- <;; and 7, are P-integrable and Gi-measurable, using
the Bayes formula, part (v) in Lemma 4.2.1, and assumed equality (4.6), we obtain the following
chain of equalities

Ep(mlir<ty [ Ft)  Ep(nllir<iy | Foo)
Ep(n: | Ft) Ep(n: | Foo)
Ep (100 L ir<sy | Foo)

- Ep (1o | Foo) :Q(TgtlfOO)'

We conclude that the hypothesis () holds under Q if and only if (4.6) is valid. O

Unfortunately, straightforward verification of condition (4.6) is rather cumbersome. For this
reason, we shall provide alternative sufficient conditions for the preservation of the hypothesis (H)
under a locally equivalent probability measure.

Qr <t|FR) =
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Case of the Brownian filtration

Let W be a Brownian motion under P with respect to its natural filtration F. Since we work under
the hypothesis (H), the process W is also a G-martingale, where G = F vV H. Hence, W is a
Brownian motion with respect to G under P. Our goal is to show that the hypothesis (H) is still
valid under Q € Q for a large class Q of (locally) equivalent probability measures on (2, G).

Let Q be an arbitrary probability measure locally equivalent to P on (£2,G). Kusuoka [138]
(see also Section 5.2.2 in Bielecki and Rutkowski [23]) proved that, under the hypothesis (H), any
G-martingale under P can be represented as the sum of stochastic integrals with respect to the
Brownian motion W and the jump martingale M. In our set-up, Kusuoka’s representation theorem
implies that there exist G-predictable processes # and ¢ > —1, such that the Radon-Nikodym density
7 of Q with respect to IP satisfies the following SDE

dny = ny— (00 AW, + G dMy) (4.8)

with the initial value g = 1. More explicitly, the process 1 equals

— ( /0 0. qu> £ < /O o dMu) — pVn®, (4.9)

_ ' _ ! Lt
=& (/0 euqu> = exp </0 0, dW, 2/0 eudu), (4.10)

(2) . t AT
=¢ LdM, | = In(1 + ¢,) dH, — Yo du ) . 4.11
n t(/OC ) eXp(/O n(1+¢y) /O Cuy U> (4.11)

Moreover, by virtue of a suitable version of Girsanov’s theorem, the following processes W and M
are G-martingales under Q

where we write

and

t t
Wf Wt / Hu du, Mt = Mt - / ]l{u<7-}")/ucu du. (412)
0 0

Proposition 4.2.3 Assume that the hypothesis (H) holds under P. Let Q be a probability measure
locally equivalent to P with the associated Radon-Nikodgm density process n given by formula (4.9)
. If the process 0 is F- adapted then the hypotheszs (H) is valid under Q and the F-intensity of T

gnder Q equals 7 = (1 + Ct)%; where C is the unique F-predictable process such that the equality
Celly<ry = Cellgy<7y holds for every t € IR, .

PROOF: Let P be the probability measure locally equivalent to P on (€, G), given by
o =& [ Gat,) dPle, = apl. (413)
0

We claim that the hypothesis (H) holds under P. From Girsanov’s theorem, the process W follows

a Brownian motion under P with respect to both F and G. Moreover, from the predictable repre-
sentation property of W under IP’ we deduce that any F-local martingale L under P can be written
as a stochastic integral with respect to W. Specifically, there exists an F-predictable process £ such
that

t
Li = Lo +/ o dW,.
0

This shows that L is also a G-local martingale, and thus the hypothesis () holds under P. Since

dQ|g, = & </O euqu) dP|g,,
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by virtue of part (i) in Lemma 4.2.3, the hypothesis (H) is valid under Q as well. The last claim in
the statement of the lemma can be deduced from the fact that the hypothesis () holds under Q
and, by Girsanov’s theorem, the process

t t _
My = M, — / LpucryYuCu du = Hy — / W gy (1 + Cu) v
0 0

is a Q-martingale. O
We claim that the equality P = P holds on the filtration F. Indeed, we have dP | 7, = 1 dP| £,
S (2
where we write 7 = Ep(n,”’ | F1), and

Ep(n” | Fe) = Ep (& (/ Cu dMu> ’foo> =1, Vte Ry, (4.14)
0

where the first equality follows from part (v) in Lemma 4.2.1.

To establish the second equality in (4.14), we first note that since the process M is stopped at 7,
we may assume, without loss of generality, that { = Z where the process QT is F-predictable. More-
over,the conditional cumulative distribution function of 7 given F, has the form 1 — exp(—T';(w)).
Hence, for arbitrarily selected sample paths of processes ¢ and T, the claimed equality can be seen
as a consequence of the martingale property of the Doléans exponential.

Formally, it can be proved by following elementary calculations, where the first equality is a
consequence of (4.11)),

Ep ( ( G dM, > (f ) ((1 + o0y Cr) exp ( _ /OW it du) ’]—'OO>

(/ (1+ L) exp(—/omu Co Yo dW)W e Jo dvdu‘}— )
</Ot(1+Cu %exp( / 1+Cv'yvdv)du’.7-" )

+exp< ")/»Ud'U)]EP< Yue~ o %d”du’}" )

/ (1 Cu Yu exp( /0 (1 —|—CU Yo dv)du

+exp /vaydv / Yu€ Jo" o dv gy,
t
t

:l—exp(—/ot(l—i-zv)%clv)—&—exp(—/ota,%dv)exp(—/o ’yvdv) =1,

where the second last equality follows by an application of the chain rule.

Ep

Ep

Extension to orthogonal martingales

Equality (4.14) suggests that Proposition 4.2.3 can be extended to the case of arbitrary orthogonal
local martingales. Such a generalization is convenient, if we wish to cover the situation considered
in Kusuoka’s counterexample.

Let N be a local martingale under P with respect to the filtration F. It is also a G-local
martingale, since we maintain the assumption that the hypothesis (H) holds under P. Let Q be an
arbitrary probability measure locally equivalent to P on (€2, G). We assume that the Radon-Nikodym
density process 1 of Q with respect to P equals

dne = 1e— (0 ANy + (¢ dMy) (4.15)
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for some G-predictable processes # and ¢ > —1 (the properties of the process 6 depend, of course,
on the choice of the local martingale N). The next result covers the case where N and M are
orthogonal G-local martingales under P, so that the product M N follows a G-local martingale.

Proposition 4.2.4 Assume that the following conditions hold:

(a) N and M are orthogonal G-local martingales under P,

(b) N has the predictable representation property under P with respect to F, in the sense that any
F-local martingale L under P can be written as

t
Lt:LO+/ €udN,, Vte R,,
0

for some F-predictable process &,

(c) P is a probability measure on (2, G) such that (4.13) holds.

Then we have: B

(i) the hypothesis (H) is valid under P,

(ii) if the process 0 is F-adapted then the hypothesis (H) is valid under Q.

The proof of the proposition hinges on the following simple lemma.

Lemma 4.2.4 Under the assumptions of Proposition 4.2.4, we have:
(i) N is a G-local martingale under P,
(ii) N has the predictable representation property for F-local martingales under P.

PROOF: In view of (c), we have dP | G, = nf) dP|g,, where the density process (?) is given by
.11), so that =1, ¢ From the assumed orthogonality o an , 1t follows that
4.11 hat dn{® = n{®¢, dM,. From th d orthogonality of N and M, it follows that N

and 17(®) are orthogonal G-local martingales under P, and thus NV n® is a G-local martingale under
P as well. This means that N is a G-local martingale under PP, so that (i) holds.

To establish part (ii) in the lemma, we first define the auxiliary process 77 by setting 7; =
IE]p(ng) | ¢). Then manifestly dP|z, = 7:dP| 7, and thus in order to show that any F-local

martingale under [P follows an F-local martingale under IP, it suffices to check that 7; = 1 for every
t € IRy, so that P =P on F. To this end, we note that

EIP’(W(Q) | Fi) = Ep (5t (/ Cu dMu> ’foo> =1, VtelR,,
0

where the first equality follows from part (v) in Lemma 4.2.1, and the second one can established
similarly as the second equality in (4.14).

We are in a position to prove (ii). Let L be an F-local martingale under P. Then it follows also
an F-local martingale under P and thus, by virtue of (b), it admits an integral representation with
respect to N under P and P. This shows that N has the predictable representation property with
respect to F under P. O

We now proceed to the proof of Proposition 4.2.4.

Proof of Proposition 4.2.4. We shall argue along the similar lines as in the proof of Proposition
4.2.3. To prove (i), note that by part (ii) in Lemma 4.2.4 we know that any F-local martingale
under P admits the integral representation with respect to N. But, by part (i) in Lemma 4.2.4, N
is a G-local martingale under ED We conclude that L is a G-local martingale under ]TD, and thus the
hypothesis (H) is valid under P. Assertion (ii) now follows from part (i) in Lemma 4.2.3. O

Remark 4.2.1 It should be stressed that Proposition 4.2.4 is not directly employed in what follows.
We decided to present it here, since it sheds some light on specific technical problems arising in the
context of modeling dependent default times through an equivalent change of a probability measure
(see Kusuoka [138]).



76 CHAPTER 4. HAZARD PROCESS APPROACH: REFERENCE FILTRATION

Example 4.2.1 Kusuoka [138] presents a counter-example based on the two independent random
times 71 and T2 given on some probability space (Q,G,P). We write M} = H} — otATi vi(u) du,
where H{ = ll{;>,} and +; is the deterministic intensity function of 7; under P. Let us set dQ|g, =

n: dP|g,, where 1, = nt(l)ng) and, for i = 1,2 and every t € IRy,

n =1+ / my G M, = & ( / ¢ dM;)
0 0

for some G-predictable processes ¢V, i = 1,2, where G = H' v H2. We set F = H! and H = H?.
Manifestly, the hypothesis (H) holds under P. Moreover, in view of Proposition 4.2.4, it is still valid
under the equivalent probability measure P given by

dﬁ)|gt = gt (/ C&Q) dM’i) dIP)|gt.
0
It is clear that P = P on F, since
EP(WEQ) | F+) = Ep (& (/ ¢@ dM,f) ’H%) =1, VteR,.
0

However, the hypothesis () is not necessarily valid under Q if the process ¢(!) fails to be F-
adapted. In Kusuoka’s counter-example, the process ¢(*) was chosen to be explicitly dependent
on both random times, and it was shown that the hypothesis (H) does not hold under Q. For an
alternative approach to Kusuoka’s example, through an absolutely continuous change of a probability
measure, the interested reader may consult Collin-Dufresne et al. [47].

4.2.5 Stochastic Barrier

Suppose that
P(r <t|Fy)=1—eT

where I' is an arbitrary continuous strictly increasing F-adapted process. Our goal is to show that
there exists a random variable O, independent of F.,, with exponential law of parameter 1, such

that 7 "2 inf {t>0:T;>0O}. Let us set © “I 1., Then
{t<0}={t< T} ={C; < 1},

where C is the right inverse of I', so that I'c, = ¢. Therefore
P(O > u|Fy) =eTon =7

We have thus established the required properties, namely, the probability law of © and its indepen-
dence of the o-field Foo. Furthermore, 7 = inf{t : I’y > I'; } = inf{t : 'y > O©}. See also Norros [161],
who extended this result to several default times. He proves that the total hazard up to default are
independent if all the compensator, computed in the large filtration are continuous. In particular,
if one defines

t
Ti:{tii/ Nds > 0;}
0

where ©; are not independent, the total hazard up to default are fo
pendent.

‘Aids = ©; and are not inde-

4.3 Representation theorem

Kusuoka [138] establishes the following representation theorem.
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Théoréme 4.1 Under (H), any G-square integrable martingale admits a representation as the sum
of a stochastic integral with respect to the Brownian motion and a stochastic integral with respect to
the discontinuous martingale M.

We assume for simplicity that F' is continuous and Fy < 1,Vt € IRT. Since (H) hypothesis holds,
F' is an increasing process. Then,
dFt = e_Ft dFt

and
dF,

1-F°

d(e't) = eldly = €' (4.16)

Proposition 4.3.1 Suppose that hypothesis (H) holds under P and that any F-martingale is con-
tinuous. Then, the martingale M} = Ep(h.|G;), where h is an F-predictable process such that
E(h,) < oo, admits the following decomposition as the sum of a continuous martingale and a dis-
continuous martingale

tAT
Ml =ml +/ elvdmh +/ (hy — Ju) dM,, (4.17)
0 10,tAT]
where m" is the continuous F-martingale m? = E]p(fooo hydFy, | }'t) ., J is the process J; = et (m,’}f
t
dF,
/ hydFy) and M is the discontinuous G-martingale My = Hy — Typn, where dT,, = T ; .
0 — Lu

PROOF: From (3.3) we know that

o) t
Ml =E(h,|G:) = n{fgt}hfﬂl{m}e“]E( / hudF, ft) = Liranyhrtlgrspet (m?— / hudFu> :
t 0

(4.18)

From the facts that T' is an increasing process and m” a continuous martingale, and using the
integration by parts formula, we deduce that

t
dJ; = eltdml + (mh — / hydFy)yiettdt — et hydFy
0
= eldml + Jyeltdt — e hydF,

Therefore, from (4.16)

dF,
dJ, = e tdmh + (J, — ht)l_i;t

or, in an integrated form,
¢ t
Ji = mo +/ eldm! +/ (Jy — hy)dD,.
0 0
Note that J, = M for u < 7. Therefore, on {t < 7}
tAT tAT
M =mp + / elvdmh + / (Ju — hy)dT,
0 0
From (4.18), the jump of M" at time 7 is h, — J, = h, — M"_. Then, (4.17) follows. O

Remark 4.3.1 Since hypothesis (H) holds, the processes (my,t > 0) and (fMT el

N vdm,,, t > 0) are
also G-martingales.
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4.4 Partial information

As pointed out by Jamshidian [111], “one may wish to apply the general theory perhaps as an
intermediate step, to a subfiltration that is not equal to the default-free filtration. In that case, F
rarely satisfies hypothesis (H)”. We present here simple cases of such a situation.

4.4.1 Information at discrete times

Assume that
dVy = Vi(pdt + odWy), Vo = v
ie., Vi = ve?Wetvt) — 40Xt with v = (u—0?/2)/o and X; = W;+vt. The default time is assumed
to be the first hitting time of o with o < v, i.e.,
T=inf{t : V; <a} =inf{t : X; <a}

where a = 07! In(a/v). Here, F is the filtration of the observations of V at discrete times t1,- - -1,
where t, <t < t,41, ie.,
ft:U(‘/tlv"';‘/;fna tz St)

and we compute Fy = P(1 < t|F;). Let us recall that (See Section 8.1.2)

P(ir<1f; X > 2)=0(vt, 2), (4.19)
where
vt —z z+ vt
(v, t,2) = N —62V2N< >, for z <0, t >0,
) = ¥ (7F) Vi
0, forz>0,t>0,

O(v,0,2) = 1, for z < 0.

Ont<t

In that case, F; is the cumulative function of 7. Since a < 0, we obtain

- 1®(V7t;a)N<a\/£yt> +62VaN<aj}£Vt) '

Ont <t<ty

We denote by FV = o(W,s < t) the natural filtration of the Brownian motion (this is also the
natural filtration of X)

Ft = P(T§t|Xt1):1*P(T>t|th)
. W
= E(Lint,.,, X.>a} P(tllgllsf<th > al|F )| X)

The independence and stationarity of the increments of X yield to

. W _ _ _
P(tlgqf<th >alFy) =t —ti,a—Xy,).

Hence
Ft =1- (D(l/,t—tl,a—th)P( gtf XS > G‘th) .
s<t1
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From results on Brownian bridges, for X;, > a, we obtain (we skip the parameter v in the definition
of ¥)
2
Fr=1-®(t—t,a—X,) {1 — exp (-t“ (a— th))] . (4.20)

The case Xy, < a corresponds to default and, therefore, for X;, <a, F; = 1.

The process F is continuous and increasing in [t1,t2[. When ¢ approaches t; from above, for
2a
Xi, >a, Fiy =exp {_t (a — th)] , because lim, .+ O(t—t1,a— Xz,) =1.
1
For X, > a, the jump of F' at ¢; is

2
AF? = exp [—ta (a— th)} — 1+ ®(t1,a).
1
For X, < a, ®(t —t;,a — X¢,) = 0 by the definition of ®(-) and

AFtl = @(tl, (L).

General observation times t; <t <t;11 <T,7>2

Fort, <t < tit1,

i

P(T>t‘Xt1,...,Xt.) = P(mes>aP( inf Xs>a|fti)th,...,Xti)
s<t; ti<s<t
= @(t—tz,a—Xt7)P(1£1£ Xs>a|Xt1,...,Xti>.

Write K; for the second term on the right-hand-side

Ki = P<12f Xs>a|Xt1,...,Xti)
s<t;
= P <s§1?f_1 Xs>a P(ti—112£<ti Xs > a|lF,_, VX)Xt ,Xt,i> .
Obviously,
P( inf XS > a|.7:ti71 \Y th> = P( inf XS > G|Xti71,Xti))
ti—1<s<t; ti—1<s<t;
2
= exp <(a - X, )(a— Xti)) )
ti —tia
Therefore,
2
K; = K;_1exp (_tt(a - X, )a— Xn)) . (4.21)
i — tic1
Hence,
P(r<t|F) = 1 if X;, < a for at least one ¢;, t; <t
= l—q)(t—ti,a—Xti)Ki,
where

Ki = k(t1, X, 0)k(ta — t1, Xy, Xo) - k(ts — tic1, Xy, 1, X4,)
and k(s,x,y) =1 —exp (—2(a — z)(a — y)).

Lemma 4.4.1 The process ¢ defined by

G= ) AR,

it <t

is an F-martingale.
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ProOF: Consider first the times t; < s < t < t;41. In this case, it is obvious that E((;|Hs) = s
since ¢; = (s = (;,, which is Hs-measurable.

It suffices to show that E((;|F,) = (s for t; < s < {41 <t < ti42. In this case, ¢, = ¢, and
Gt = (i, + AFy,, .. Therefore,

E(Ctu:S) = E(Ctz + AFtHl‘fS)
- Cti + E(AFt¢+1 ‘fs)a

which shows that it is necessary to prove that E(AF;,, |F,) = 0.
Let s <u < t;41 <v <t. Then,

E<Fv - Fu|~7:s) = E(nu<‘r§v|}—s)-
When

v —tiy1, V> tipr and

U —tipr, w<tit1, F’U_F’u,_)AFti+1‘

It follows that
E(AFti+1|‘7:S) = lim E(ﬂu<7§v‘}—s)

u—ti41,0v—=ti41

- ]E(]lT:ti+1‘f:9) = O'

The Doob-Meyer decomposition of F is
Fy =G+ (Fy = G),

where ( is an F-martingale and F; — (; is a predictable increasing process.

The intensity of the default time would be the process A defined as

d(Fy — ()
Adt = ————>=.
’ 1—F,_
Comments 4.4.1 Tt is also possible, as in Duffie and Lando [70], to assume that the observation at
time [t] is only Vi + € where € is a noise, modelled as a random variable independent of V. Another
example, related with Parisian stopping times is presented in Cetin et al. [41]

4.4.2 Delayed information

In Guo et al. [94] the authors study a structural model with delayed information. More precisely,
they start from a structural model where 7 is a F;-stopping time, and they set ]?t = Fi_s where
0 > 0 and Fy is the trivial filtration for negative s. We set G; = F; and C:t = ]Ft V 'Hy. We prove
here that the process F is not increasing.

Let Ty = inf{t : W; = b}. Then, for ¢t > §,

F, = P(Ty <t|F) = P(inf W, > b| )

= ﬂinfsgt,5Ws<bP(t_§I<1£St W, > b|F;)

= lintoe, swopP(_inf  Wo =W, 5>b— Wies|Fe) = Lint o, s wo<v®(8,b — Wi_s

t—0<s

where ®(u, z) = P(inf,<, Bs > ) = P(sup,c, Ws < —2) = P(|W,| < —2) = N(—z) — N ().

For t < 6, ﬁt =P(T, <1t)
TO BE COMPLETED.
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4.5 Intensity approach

In the so-called intensity approach, the starting point is the knowledge of default time 7 and some
filtration G such that 7 is a G-stopping time. The intensity is defined as any non-negative process
A, such that

tAT
M, g, — / Aods
0

is a G-martingale. The existence of the intensity relies on the fact that H is an increasing process,
therefore a sub-martingale and can be written as a martingale M plus a predictable increasing
process A. The increasing process A is such that A.ll;>, = A;1;>,. In the case where 7 is a
predictable stopping time, obviously A = H. The intensity exists only if 7 is a totally inaccessible
stopping time.

Under some additional properties, Duffie et al. [71] establish formulae similar to (3.2). We emphasize
that, in that setting the intensity is not well defined after time 7, i.e., if A is an intensity, for any
non-negative predictable process g the process A = M\ Ti<r + gtll 4>y is also an intensity.

Lemma 4.5.1 The process Ly = ;< exp (fg )\Sds) is a martingale.

PROOF: From integration by parts formula (see Section 8.4.2)

t t
dL; = exp (/ )\Sds) (=dHy + (1 — Hi_ ) \dt) = —exp (/ )\sds) dM; .
0 0

O

T
Proposition 4.5.1 If the process Yy = E (X exp (—/ )\udu> |Qt> is continuous at time T, then
0

T
E(X1{r<ry|Gt) = Lz B <X exp (—/ )\udu> gt> (4.22)
t

T
PRrRoOOF: The process U; = 1y, exp (fot )\Sds) E(X exp—/ Audu|Gt) = LY is a martingale. In-
0
deed, dU; = Ly_dY; + YidL; and
E(Ur|G:) = E(X {7y |Gt) = Us -

The result follows. O

It can be mentioned that the continuity of the process depends on the choice of A\ after time 7.

Proposition 4.5.2 If the process Y is not continuous, then

t

E(X17<;|G:) = Lierexp (/ )\Sds> E(X exp —Ar|G:) — E(AY,e7|G,) .
0

dU, = Ly_dY; + Y,_dLy + d[L,Y]; = L,_dY; + Y,_dL, + AL,AY,

and
E(Ur|G:) = B(Xir<s)|Gr) = Up — e E(AY,eM|G,).

Nevertheless, in practise, it is difficult to compute the size of the jump.
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4.5.1 Aven’s Lemma
We recall Aven’s lemma [7]

Lemma 4.5.2 Let (2, G, P) be a filtered probability space and N be a counting process. Assume
that E(Ny) < oo for any t. Let (h,,n > 1) be a sequence of real numbers converging to 0, and

_ b

t hn

(Ntgn, — NilGe)
Assume that there exists Ay and y; non-negative G-adapted processes such that

(1) For any t, lim Yt(”) =\
(i) For any t, there exists for almost all w an ng = ng(t,w) such that
V(™) — A (W) < ys(w), s <t, n>ngt,w)
(iii) fg ysds < 00, Vt
en, Ny — sds is a G-martingale.
Then, Ny — [o Ayds is a G-martingal
We emphazise that, using this theorem when N; = H; gives a value of the intensity which is
equal to 0 after the default time. This is not convenient for using Duffie’s no jump criteria, since,

with this choice of intensity, the process Y in Proposition 4.5.1 has a jump at time 7. See Jeanblanc
and LeCam [116] for a comparison between intensity and hazard process approaches.



Chapter 5

Hedging

5.1 Semimartingale Model with a Common Default

In what follows, we fix a finite horizon date T" > 0. For the purpose of this work, it is enough to
formally define a generic defaultable claim through the following definition.

Definition 5.1.1 A defaultable claim with maturity date T is represented by a triplet (X, Z,T),
where:

(i) the default time T specifies the random time of default, and thus also the default events {T < t}
for every t € [0,T],

(ii) the promised payoff X € Fr represents the random payoff received by the owner of the claim
at time T, provided that there was no default prior to or at time T; the actual payoff at time T
associated with X thus equals X1y,

(iii) the F-adapted recovery process Z specifies the recovery payoff Z. received by the owner of a
claim at time of default (or at maturity), provided that the default occurred prior to or at maturity
date T

In practice, hedging of a credit derivative after default time is usually of minor interest. Also, in
a model with a single default time, hedging after default reduces to replication of a non-defaultable
claim. It is thus natural to define the replication of a defaultable claim in the following way.

Definition 5.1.2 We say that a self-financing strategy ¢ replicates a defaultable claim (X, Z, 1) if
its wealth process V(¢) satisfies Vp(d)Lirery = Xlyrery and Vo (@) ir>ry = Z-lipsry.

When dealing with replicating strategies, in the sense of Definition 5.1.2, we will always assume,
without loss of generality, that the components of the process ¢ are F-predictable processes.

5.1.1 Dynamics of asset prices

We assume that we are given a probability space (€2, G, P) endowed with a (possibly multi-dimensional)
standard Brownian motion W and a random time 7 admitting an F-intensity v under P, where F is
the filtration generated by W. In addition, we assume that 7 satisfies (4.4), so that the hypothesis
(H) is valid under P for filtrations F and G = F vV H. Since the default time admits an F-intensity,
it is not an F-stopping time. Indeed, any stopping time with respect to a Brownian filtration is
known to be predictable.

We interpret 7 as the common default time for all defaultable assets in our model. For simplicity,
we assume that only three primary assets are traded in the market, and the dynamics under the

83
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historical probability P of their prices are, for i = 1,2,3 and ¢ € [0, T,
d}/;‘ = }/ti_ (ﬂi,t dt —+ O"L',t th =+ Ki,t th), (51)

or equivalently,
AYy =Yy (i — kigvellpi<ry) dt + 050 AW, + ki dHy). (5.2)

The processes (i, 04, ki) = (it Tit, Kig, t > 0), 1 = 1,2,3, are assumed to be G-adapted, where
G = F vV H. In addition, we assume that x; > —1 for any ¢ = 1,2, 3, so that Y’ are nonnegative
processes, and they are strictly positive prior to 7.

Note that, according to Definition 5.1.2, replication refers to the behavior of the wealth process
V(¢) on the random interval [0,7 A T] only. Hence, for the purpose of replication of defaultable
claims of the form (X, Z, ), it is sufficient to consider prices of primary assets stopped at 7 AT. This
implies that instead of dealing with G-adapted coefficients in (5.1), it suffices to focus on F-adapted
coeflicients of stopped price processes. However, for the sake of completeness, we shall also deal with
T-maturity claims of the form Y = G(Y}, Y2, Y2, Hr) (see Section 5.4 below).

Pre-default values

As will become clear in what follows, when dealing with defaultable claims of the form (X, Z, 1), we

will be mainly concerned with the so-called pre-default prices. The pre-default price Y of the ith
asset is an F-adapted, continuous process, given by the equation, for ¢ = 1,2,3 and ¢ € [0, T,

AYy =Y ((wie — kieye) dt + 040 AW,) (5.3)

with 17(} = Y{. Put another way, Y is the unique F-predictable process such that f@i]l{tST} =
Ytill{tgf} for t € IRy. When dealing with the pre-default prices, we may and do assume, without
loss of generality, that the processes yu;,0; and k; are F-predictable.

It is worth stressing that the historically observed drift coefficient equals p; ¢ — &; 47y, rather
than p;¢. The drift coefficient denoted by p; . is already credit-risk adjusted in the sense of our
model, and it is not directly observed. This convention was chosen here for the sake of simplicity of
notation. It also lends itself to the following intuitive interpretation: if ¢’ is the number of units of
the ith asset held in our portfolio at time ¢ then the gains/losses from trades in this asset, prior to
default time, can be represented by the differential

GLAY} = GV} (i dt + 040 AW,) — G147y, dt.

The last term may be here separated, and formally treated as an effect of continuously paid dividends
at the dividend rate x;;v;. However, this interpretation may be misleading, since this quantity is
not directly observed. In fact, the mere estimation of the drift coefficient in dynamics (5.3) is not
practical.

Still, if this formal interpretation is adopted, it is sometimes possible make use of the standard
results concerning the valuation of derivatives of dividend-paying assets. It is, of course, a delicate
issue how to separate in practice both components of the drift coefficient. We shall argue below
that although the dividend-based approach is formally correct, a more pertinent and simpler way of
dealing with hedging relies on the assumption that only the effective drift y; ; — x; 17y is observable.
In practical approach to hedging, the values of drift coefficients in dynamics of asset prices play no
essential role, so that they are considered as market observables.

Market observables

To summarize, we assume throughout that the market observables are: the pre-default market prices
of primary assets, their volatilities and correlations, as well as the jump coefficients &, ; (the financial
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interpretation of jump coefficients is examined in the next subsection). To summarize we postulate
that under the statistical probability P we have

aYy =Y} (fiedt + 050 AWy + k4 dH,y) (54)

where the drift terms fi; ; are not observable, but we can observe the volatilities o;; (and thus the
assets correlations), and we have an a priori assessment of jump coefficients ;. In this general
set-up, the most natural assumption is that the dimension of a driving Brownian motion W equals
the number of tradable assets. However, for the sake of simplicity of presentation, we shall frequently
assume that W is one-dimensional. One of our goals will be to derive closed-form solutions for repli-
cating strategies for derivative securities in terms of market observables only (whenever replication
of a given claim is actually feasible). To achieve this goal, we shall combine a general theory of
hedging defaultable claims within a continuous semimartingale set-up, with a judicious specification
of particular models with deterministic volatilities and correlations.

Recovery schemes

It is clear that the sample paths of price processes Y are continuous, except for a possible discon-
tinuity at time 7. Specifically, we have that

AY! =Y -V =k Y,

sothat Y/ =Y/ (14 ki) =Y (1+kir).

A primary asset Y is termed a default-free asset (defaultable asset, respectively) if x; = 0 (k; # 0,
respectively). In the special case when x; = —1, we say that a defaultable asset Y* is subject to a
total default, since its price drops to zero at time 7 and stays there forever. Such an asset ceases to
exist after default, in the sense that it is no longer traded after default. This feature makes the case
of a total default quite different from other cases, as we shall see in our study below.

In market practice, it is common for a credit derivative to deliver a positive recovery (for instance,
a protection payment) in case of default. Formally, the value of this recovery at default is determined
as the value of some underlying process, that is, it is equal to the value at time 7 of some F-adapted
recovery process Z.

For example, the process Z can be equal to §, where ¢ is a constant, or to g(t,dY;) where g is a
deterministic function and (Y;, ¢ > 0) is the price process of some default-free asset. Typically, the
recovery is paid at default time, but it may also happen that it is postponed to the maturity date.

Let us observe that the case where a defaultable asset Y pays a pre-determined recovery at
default is covered by our set-up defined in (5.1). For instance, the case of a constant recovery payoff
d; > 0 at default time 7 corresponds to the process k;; = 51-(}/?_)*1 — 1. Under this convention, the
price Y is governed under P by the SDE

AY;! =Y} (i dt + opp dWe + (6;(Y, )1 — 1) dMy). (5.5)

If the recovery is proportional to the pre-default value Y!_, and is paid at default time 7 (this scheme
is known as the fractional recovery of market value), we have k;; = 6; — 1 and

AY} = Vi (i dt + 01 AW, + (5 — 1) dM,). (5.6)

5.2 Trading Strategies in a Semimartingale Set-up

We consider trading within the time interval [0,T] for some finite horizon date T' > 0. For the
sake of expositional clarity, we restrict our attention to the case where only three primary assets are
traded. The general case of k traded assets was examined by Bielecki et al. [15]. We first recall
some general properties, which do not depend on the choice of specific dynamics of asset prices.
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In this section, we consider a fairly general set-up. In particular, processes Y% i = 1,2,3,
are assumed to be nonnegative semi-martingales on a probability space (€2, G, P) endowed with some
filtration G. We assume that they represent spot prices of traded assets in our model of the financial
market. Neither the existence of a savings account, nor the market completeness are assumed, in
general.

Our goal is to characterize contingent claims which are hedgeable, in the sense that they can
be replicated by continuously rebalanced portfolios consisting of primary assets. Here, by a con-
tingent claim we mean an arbitrary Gp-measurable random variable. We work under the standard
assumptions of a frictionless market.

5.2.1 Unconstrained strategies

Let ¢ = (¢!, #, #®) be a trading strategy; in particular, each process ¢’ is predictable with respect
to the filtration G. The wealth of ¢ equals

3
Vi(g) =Y )Yy, Vtelo,T],
i=1

and a trading strategy ¢ is said to be self-financing if

3 t
vm#w%+2/%wavmmn
i=170

Let ® stand for the class of all self-financing trading strategies. We shall first prove that a self-
financing strategy is determined by its initial wealth and the two components ¢2, $3. To this end,
we postulate that the price of Y'! follows a strictly positive process, and we choose Y'! as a numéraire
asset. We shall now analyze the relative values:

Vig) = Vi(o)(YH ™, Y=Y

Lemma 5.2.1 (i) For any ¢ € ®, we have

3 t
ww:ww+zlmww,waww
1=2

(ii) Conversely, let X be a Gr-measurable random variable, and let us assume that there exists x € IR
and G-predictable processes ¢*, i = 2,3 such that

3 T
X =Y} (a: + Z/ ol dYu“) . (5.7)
i=2 /0

Then there exists a G-predictable process ¢ such that the strategy ¢ = (¢, 9%, ¢3) is self-financing
and replicates X. Moreover, the wealth process of ¢ (i.e. the time-t price of X) satisfies Vi(¢) =
VY, where

3 t
W:HZ/ ¢t Ayt vt elo,T). (5.8)
i=2 /0

PROOF: In the case of continuous semimartingales, (it is a well-known result; for discontinuous
processes, the proof is not much different. We reproduce it here for the reader’s convenience.

Let us first introduce some notation. As usual, [X,Y] stands for the quadratic covariation of the
two semi-martingales X and Y, as defined by the integration by parts formula:

t t
X,Y; = XoYo + / Xo_dY, + / Yoo dX, + [X,Y],.
0 0
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For any cadlag (i.e., RCLL) process Y, we denote by AY; = Y; — Y;_ the size of the jump at time
t. Let V =V (¢) be the value of a self- ﬁnancmg strategy, and let VI=V3(¢)=V(g)(Y!)"! beits
value relative to the numéraire Y. The integration by parts formula yields

AV = Vid(Y,) ™+ (VL) TNV + d[(Y) T Ve

From the self-financing condition, we have dV; = $2°_ ¢i dY}. Hence, using elementary rules to
compute the quadratic covariation [X, Y] of the two semi-martingales X,Y, we obtain

AVt = @Yl d(Y) T+ Y2 d(Y) T+ iy d(Y) T
+ (VL) Ty dYy + (VL) T Ay + (VL) T Yy
+ oy d[(YH) LY+ 07 dl(Y) LY+ gf d[(Y) LY
= G (YLdy) T+ (L) T Ay +d[(YH) LY )

)
+oF (V2 AYH) T+ (VL) Tyl +d[(Y) T Y
+o} (V2 AT+ (VL) YL +d[(y) T Y.
We now observe that
YL dYH) T+ (VL) Ay +d[(YH) LY =AY ()T =0

and
Y dYH) TN+ (VL) Ay +d[(YH) LY = d(() YY),

Consequently,
V' = ¢f dY;"' + ¢t dY,

as was claimed in part (i). We now proceed to the proof of part (ii). We assume that (5.7) holds for
some constant z and processes ¢?, ¢®, and we define the process V! by setting (cf. (5.8))

3 t
th:x—&-Z/ ¢ Ay, Vie[o,T).
i=2 70

Next, we define the process ¢! as follows:
DA SR (AL
i=2 i=2

where V;, = V,1Y,!. Since dV}! = Z?=2 ¢l dY;"* | we obtain

dv; = dV'Y}) =VEidY +YLiav} +dy' VY,
3
VEay! +3 oi(Vih ayt +dyhy ).

=2

From the equality
Ay = d(Y;"'Y") =YYy + iLdyyt +dy! Yy,
it follows that
_ 3. 3.
e = VY] + 3 di(avy - viay) - (Vi =Yooy )ay) + 3 g avy,
i=2 i=2 i=2
and our aim is to prove that dV; = E?:1 ¢t dY}. The last equality holds if

3 3
bf =V =Y oV =VE =Y ey, (5.9)
=2

=2
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Le., if AV,' = 322 ¢iAY,"", which is the case from the definition (5.8) of V!. Note also that from
the second equality in (5.9) it follows that the process ¢! is indeed G-predictable. Finally, the wealth
process of ¢ satisfies V;(¢) = V,'V}! for every t € [0,T], and thus Vr(¢) = X. O

We say that a self-financing strategy ¢ replicates a claim X € Gp if

3

X =Y ¢V =Vr(9),

=1

or equivalently,
3 T
X =Vo(e) + Z/ ¢ dYy.
i=170

Suppose that there exists an e.m.m. for some choice of a numéraire asset, and let us restrict our
attention to the class of all admissible trading strategies, so that our model is arbitrage-free.

Assume that a claim X can be replicated by some admissible trading strategy, so that it is
attainable (or hedgeable). Then, by definition, the arbitrage price at time ¢ of X, denoted as m(X),
equals V;(¢) for any admissible trading strategy ¢ that replicates X.

In the context of Lemma 5.2.1, it is natural to choose as an e.m.m. a probability measure Q!
equivalent to P on (2, Gr) and such that the prices Y%!, i = 2,3, are G-martingales under Q!. If a
contingent claim X is hedgeable, then its arbitrage price satisfies

m(X) = Y Eq (X (Y7) ' G).

We emphasize that even if an e.m.m. Q' is not unique, the price of any hedgeable claim X is
given by this conditional expectation. That is to say, in case of a hedgeable claim these conditional
expectations under various equivalent martingale measures coincide.

In the special case where Y} = B(t,T) is the price of a default-free zero-coupon bond with
maturity T’ (abbreviated as ZC-bond in what follows), Q! is called T-forward martingale measure,
and it is denoted by Q. Since B(T,T) = 1, the price of any hedgeable claim X now equals
m(X) = B(t,T) Eq, (X | Ge).

5.2.2 Constrained strategies

In this section, we make an additional assumption that the price process Y is strictly positive. Let
¢ = (¢, 92, ¢3) be a self-financing trading strategy satisfying the following constraint:

2
Z QY =2, Ytel0,T), (5.10)

i=1

for a predetermined, G-predictable process Z. In the financial interpretation, equality (5.10) means
that a portfolio ¢ is rebalanced in such a way that the total wealth invested in assets Y'!, Y2 matches
a predetermined stochastic process Z. For this reason, the constraint given by (5.10) is referred to
as the balance condition.

Our first goal is to extend part (i) in Lemma 5.2.1 to the case of constrained strategies. Let
®(Z) stand for the class of all (admissible) self-financing trading strategies satisfying the balance
condition (5.10). They will be sometimes referred to as constrained strategies. Since any strategy
¢ € ®(Z) is self-financing, from dV;(¢) = 2?21 @i dY}, we obtain

3 3
AVi(¢) = Y jAY] = Vi(¢) = Y iV
=1 =1
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By combining this equality with (5.10), we deduce that

3
Vi(¢) =Y oY = Zi+ Y.

i=1

Let us write Y,;"* = Y;(Y?)~!, Z3 = Z,(Y;*)~". The following result extends Lemma 1.7 in Bielecki
et al. [16] from the case of continuous semi-martingales to the general case (see also [15]). It is
apparent from Proposition 5.2.1 that the wealth process V(¢) of a strategy ¢ € ®(Z) depends only
on a single component of ¢, namely, ¢2.

Proposition 5.2.1 The relative wealth V2(¢) = Vi(¢)(Y,2)™! of any trading strategy ¢ € ®(Z)
satisfies

u— u—

3 3 ’ 2 2,3 Y27*3 1,3 i 23 1,3
v =)+ [ o (avee - avts )+ [k avgs (5.11)

PROOF: Let us consider discounted values of price processes Y!, Y2 Y3 with Y3 taken as a
numéraire asset. By virtue of part (i) in Lemma 5.2.1, we thus have

2 t
Vo) = V) + Y / o, AV, (5.12)
1=1

The balance condition (5.10) implies that
2 . .
et =73,
i=1

and thus
of = (V207 (28— oir2?). (5.13)

By inserting (5.13) into (5.12), we arrive at the desired formula (5.11). O

The next result will prove particularly useful for deriving replicating strategies for defaultable
claims.

Proposition 5.2.2 Let a Gr-measurable random variable X represent a contingent claim that settles

at time T'. We set 93
Y )

AYy =AY = eyt = ayt - vRtav, (5.14)
t_

where, by convention, Yo = 0. Assume that there exists a G-predictable process ¢?, such that

) T T23
X:néx+/(ﬁm¢+/ Y&dﬁﬁ. (5.15)
0 0

t—

Then there exist G-predictable processes ¢ and ¢ such that the strategy ¢ = (1, @2, ¢3) belongs to
®(Z) and replicates X. The wealth process of ¢ equals, for every t € [0,T],

3
u

t t Z
V(o) =Y <x+ /0 ¢2 dY; + /0 13 ay,* . (5.16)

u—

PROOF: As expected, we first set (note that the process ¢! is a G-predictable process)

1 1

@:ﬁf&—ﬁﬁ) (5.17)
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and

t t 23
V=g +/ ¢ Y, +/ e dY, P,
0 I

u—

Arguing along the same lines as in the proof of Proposition 5.2.1, we obtain

2 t
ve=vi+y [ elary
i=170
Now, we define
o = Vi =Yoo = () (V= Yoy,
=1 i=1

where V, = V3Y2. As in the proof of Lemma 5.2.1, we check that
2 . .
0P =V =) oy,
i=1

and thus the process ¢3 is G-predictable. It is clear that the strategy ¢ = (¢, ¢?, ¢3) is self-financing
and its wealth process satisfies V;(¢) = V; for every ¢ € [0,T]. In particular, Vr(¢) = X, so that ¢
replicates X. Finally, equality (5.17) implies (5.10), and thus ¢ belongs to the class ®(Z). |

Note that equality (5.15) is a necessary (by Lemma 5.2.1) and sufficient (by Proposition 5.2.2)
condition for the existence of a constrained strategy that replicates a given contingent claim X.
Synthetic asset

Let us take Z = 0, so that ¢ € ®(0). Then the balance condition becomes E?Zl 1Y, =0, and
formula (5.11) reduces to

A fk
avi(9) = of (dYﬁ‘* ~yIe dYJ‘”) . (5.18)

t—

The process Y2 = Y3Y*, where Y* is defined in (5.14) is called a synthetic asset. It corresponds
to a particular self-financing portfolio, with the long position in Y2 and the short position of Yf_l
number of shares of Y'!, and suitably re-balanced positions in the third asset so that the portfolio is
self-financing, as in Lemma 5.2.1.

It can be shown (see Bielecki et al. [17]) that trading in primary assets Y1, Y2 Y3 is formally
equivalent to trading in assets Y1 Y2 Y3 This observation supports the name synthetic asset
attributed to the process Y2. Note, however, that the synthetic asset process may take negative
values.

Case of continuous asset prices

In the case of continuous asset prices, the relative price Y* = Y2(Y?)~! of the synthetic asset can be
given an alternative representation, as the following result shows. Recall that the predictable bracket
of the two continuous semi-martingales X and Y, denoted as (X,Y’), coincides with their quadratic
covariation [X,Y].

Proposition 5.2.3 Assume that the price processes Y and Y2 are continuous. Then the relative
price of the synthetic asset satisfies

t
yt*:/ (Y21 Leo dY,,
0
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where Y; := Y em and

o = (InY?H Iny31), = /Ot(y2»1)1(y?~1)1 Ayt y3hy,. (5.19)
In terms of the auziliary process 3/}, formula (5.11) becomes

t
V() = VE(6) + /O BudVi + yis, (5.20)

where ¢ = §F(Y;) ~teo.

PRrROOF: It suffices to give the proof for Z = 0. The proof relies on the integration by parts
formula stating that for any two continuous semi-martingales, say X and Y, we have

HdX - YT (XY )) = d(XGYT) - X dY

provided that Y is strictly positive. An application of this formula to processes X = Y?! and
Y =Y3! leads to

(V)T Ay = () TR Y, = dy ()T = YAy S

The relative wealth V;3(¢) = Vi(¢)(Y?) ™! of a strategy ¢ € ®(0) satisfies
t
+ / ¢z dYy
_ / ¢2 —1 eQu dYu,
+ / by dY,
0

Vi (9)

where we denote ¢, = ¢2(Y;>!) " Leor.

Remark 5.2.1 The financial interpretation of the auxiliary process Y will be studied below. Let
us only observe here that if Y* is a local martingale under some probability Q then Yisa Q-local
martmgale (and vice versa, if Y is a Q local martingale under some probability Q then Y* is a
Q-local martingale). Nevertheless, for the reader’s convenience, we shall use two symbols Q and Q,
since this equivalence holds for continuous processes only.

It is thus worth stressing that we will apply Proposition 5.2.3 to pre-default values of assets, rather
than directly to asset prices, within the set-up of a semimartingale model with a common default,
as described in Section 5.1.1. In this model, the asset prices may have discontinuities, but their
pre-default values follow continuous processes.

5.3 Martingale Approach to Valuation and Hedging

Our goal is to derive quasi-explicit conditions for replicating strategies for a defaultable claim in a
fairly general set-up introduced in Section 5.1.1. In this section, we only deal with trading strategies
based on the reference filtration F, and the underlying price processes (that is, prices of default-
free assets and pre-default values of defaultable assets) are assumed to be continuous. Hence, our
arguments will hinge on Proposition 5.2.3, rather than on a more general Proposition 5.2.1. We
shall also adapt Proposition 5.2.2 to our current purposes.

To simplify the presentation, we make a standing assumption that all coefficient processes are
such that the SDEs appearing below admit unique strong solutions, and all stochastic exponentials
(used as Radon-Nikodym derivatives) are true martingales under respective probabilities.
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5.3.1 Defaultable asset with total default

In this section, we shall examine in some detail a particular model where the two assets, Y and Y2,
are default-free and satisfy

dYy =Y (i dt + 0 dWy), i=1,2,

where W is a one-dimensional Brownian motion. The third asset is a defaultable asset with total
default, so that
dYS _ }/)‘53

(3, dt + o3 dW, — dM,).

Since we will be interested in replicating strategies in the sense of Definition 5.1.2, we may and do
assume, without loss of generality, that the coefficients p; ¢+, 0;+, @ = 1,2, are F-predictable, rather
than G-predictable. Recall that, in general, there exist F-predictable processes j13 and g3 such that

3 illgery = p3ellypary,  034ll<ry = 03¢ lp<ry. (5.21)

We assume throughout that Yj > 0 for every i, so that the price processes Y!, Y2 are strictly
positive, and the process Y3 is nonnegative, and has strictly positive pre-default value.

Default-free market

It is natural to postulate that the default-free market with the two traded assets, Y' and Y?2,
is arbitrage-free. More precisely, we choose Y'! as a numéraire, and we require that there exists a
probability measure P!, equivalent to P on (£2, Fr), and such that the process Y21 is a P'-martingale.
The dynamics of processes (Y1)~ and Y21 are

dYH =T (07, — pa) dt — o1 dW), (5.22)
and
vyt = YtQ’l((,uZt — 1+ o14(o1 — 02,)) dt + (02, — 01¢) dW),

respectively. Hence, the necessary condition for the existence of an e.m.m. P! is the inclusion A C B,
where A = {(t,w) € [0,T] x Q: 014(w) = 024(w)} and B = {(t,w) € [0,T] x Q@ : p14(w) = po(w)}-
The necessary and sufficient condition for the existence and uniqueness of an e.m.m. P! reads

Es {ET (/0 0, qu> } —1 (5.23)

where the process 6 is given by the formula (by convention, 0/0 = 0)

O, = o1y — LB 2 gy e 0, T (5.24)
O1,t — 02t
Note that in the case of constant coefficients, if 01 = o5 then the model is arbitrage-free only in the
trivial case when po = 1.

Remark 5.3.1 Since the martingale measure P! is unique, the default-free model (Y, Y?) is com-
plete. However, this is not a necessary assumption and thus it can be relaxed. As we shall see
in what follows, it is typically more natural to assume that the driving Brownian motion W is
multi-dimensional.

Arbitrage-free property

Let us now consider also a defaultable asset Y. Our goal is now to find a martingale measure Q* (if
it exists) for relative prices Y2! and Y*!. Recall that we postulate that the hypothesis (H) holds
under P for filtrations F and G = F V H. The dynamics of Y>! under P are

dyt = Yfil{(ug,t — e+ 01 (01 — 03,0))dt + (03, — 01,0) AWy — th}'
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Let Q' be any probability measure equivalent to P on (£2,Gr), and let 1 be the associated
Radon-Nikodym density process, so that

dQ'|g, = n:dP|g,, (5.25)

where the process 7 satisfies
d?]t = ntf(gt th + Ct th) (526)
for some G-predictable processes 6 and (, and 7 is a G-martingale under P.

From Girsanov’s theorem, the processes W and M , given by

t t
Wt = Wt — / Hu d’LL, Mt = Mt — / ﬂ{u<‘r}7u<u du, (527)
0 0

are G-martingales under Q!. To ensure that Y>! is a Q!-martingale, we postulate that (5.23)
and (5.24) are valid. Consequently, for the process Y21 to be a Q!-martingale, it is necessary and
sufficient that ¢ satisfies

K1t — M2t
—(

03t — Ul,t)-
01t — 02

YeCe = p3,p — p1s —

To ensure that Q! is a probability measure equivalent to P, we require that ¢; > —1. The unique
martingale measure Q' is then given by the formula (5.25) where 7 solves (5.26), so that

e = & (/OIHuqu> & </O~<UdMu>.

We are in a position to formulate the following result.

Proposition 5.3.1 Assume that the process 6 given by (5.24) satisfies (5.23), and

1 [, — p2,
Ct = — (/.L37t — M1t — ¥(U3,t - Ul,t) > —1. (528)
Yt 01t — 02t

Then the model M = (Y1, Y2,Y3; ®) is arbitrage-free and complete. The dynamics of relative prices
under the unique martingale measure Q' are
AV =Y 00,0 — 01,0) AW,
d}/;g’l = }/t?il ((0’3’15 — O—l,t) th — d]\/Zt)
Since the coefficients p; ¢, 05+, ¢ = 1,2, are F-adapted, the process W is an F-martingale (hence,

a Brownian motion) under Q!. Hence, by virtue of Proposition 4.2.3, the hypothesis (H) holds under
Q', and the F-intensity of default under Q' equals

Ve =714+ G) =y + (M3,t — M1t — Bie = B2y (03,6 — Ul,t)) .
01t — 02t

Example 5.3.1 We present an example where the condition (5.28) does not hold, and thus arbitrage

opportunities arise. Assume the coefficients are constant and satisfy: pu; = pe = 01 =0, puz < —v
for a constant default intensity v > 0. Then

1 1
Yt3 = ]1{t<7_}y03 exp <03Wt - §U§t + (us + 'y)t) < Y03 exp (Uth - 2J§t) = Vi(o),

where V(¢) represents the wealth of a self-financing strategy (¢',$%,0) with ¢* = 2% Hence, the
arbitrage strategy would be to sell the asset Y3, and to follow the strategy ¢.
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Remark 5.3.2 Let us stress once again, that the existence of an e.m.m. is a necessary condition for
viability of a financial model, but the uniqueness of an e.m.m. is not always a convenient condition
to impose on a model. In fact, when constructing a model, we should be mostly concerned with
its flexibility and ability to reflect the pertinent risk factors, rather than with its mathematical
completeness. In the present context, it is natural to postulate that the dimension of the underlying
Brownian motion equals the number of tradeable risky assets. In addition, each particular model
should be tailored to provide intuitive and handy solutions for a predetermined family of contingent
claims that will be priced and hedged within its framework.

Hedging a survival claim

We first focus on replication of a survival claim (X,0,7), that is, a defaultable claim represented by
the terminal payoff X1 7., where X is an Fr-measurable random variable. For the moment, we
maintain the simplifying assumption that W is one-dimensional. As we shall see in what follows,
it may lead to certain pathological features of a model. If, on the contrary, the driving noise is
multi-dimensional, most of the analysis remains valid, except that the model completeness is no
longer ensured, in general.

Recall that Y3 stands for the pre-default price of Y3, defined as (see (5.3))
dY2 = Y2 ((Jiz + ve) dt + 3.0 AW;) (5.29)

with 1703 =Y. This strictly positive, continuous, F-adapted process enjoys the property that Y,? =
I{;<- Y. Let us denote the pre-default values in the numéraire Y3 by ¥;"* = V/(¥?)~', i = 1,2,
and let us introduce the pre-default relative price Y* of the synthetic asset Y2 by setting
2,3
Yy 1,3 _ 72,3 ~
S dY; " =Y ((p2g — e + 03.4(01,0 — 02,4)) dt + (02,4 — 01,4) AWy ),

t

di;t* — di2,3 _

and let us assume that o1 — 02, # 0. It is also useful to note that the process }/}, defined in
Proposition 5.2.3, satisfies

dy, = ﬁ((m,t — p1g 4 034(01 — 02,)) dt + (024 — 01,1) th)-

We shall show that in the case, where « given by (5.19) is deterministic, the process Y has a nice
financial interpretation as a credit-risk adjusted forward price of Y2 relative to Y''. Therefore, it is
more convenient to work with the process Y* when dealing with the general case, but to use the
process Y when analyzing a model with deterministic volatilities.

Consider an F-predictable self-financing strategy ¢ satisfying the balance condition ¢}Y,! +
?Y,? = 0, and the corresponding wealth process

3
Vi(o) ==Y 6iYy = ¢}VE.
=1

Let XZ(ng) = f’?t?’ Since the process V((;S) is F-adapted, we see that this is the pre-default price
process of the portfolio ¢, that is, we have 1154 Vi(¢) = 1+~ Vi(¢); we shall call this process the
pre-default wealth of ¢. Consequently, the process V3(¢) := Vi(¢)(Y;3) ™1 = ¢3 is termed the relative
pre-default wealth.

_ Using Proposition 5.2.1, with suitably modified notation, we find that the F-adapted process
V3(¢) satisfies, for every t € [0, T,

o~ ~ t ~
73(6) = V3(6) + / 02 dvr.
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Define a new probability Q* on (Q, Fr) by setting
dQ* = np dP,
where dn; = n;0; dW;, and

0F — Pot — Pt + 03,(01,6 — 02t)
=
O1,t — 02t

: (5.30)

The process 1775*, t €10,T], is a (local) martingale under Q* driven by a Brownian motion. We shall
require that this process is in fact a true martingale; a sufficient condition for this is that

T - 2
/ Eg- (Y;2’3(02,t — 01,,5)) dt < 0.
0

From the predictable representation theorem, it follows that for any X € Fr, such that X (}7}”)’1 is
square-integrable under Q, there exists a constant « and an F-predictable process ¢ such that

T
X=Y} (m +/ o2 dff;) . (5.31)
0

We now deduce from Proposition 5.2.2 that there exists a self-financing strategy ¢ with the pre-
default wealth V;(¢) = Y,2V;? for every t € [0,7], where we set

t
Vi=x+ / P2 dY,r. (5.32)
0

Moreover, it satisfies the balance condition ¢;Y;' + ¢7Y;> = 0 for every t € [0,T]. Since clearly
Vr(¢) = X, we have that

Vr(9) = 61Y3 = Niran¢3 Y7 = Liran Ve (9) = Iirany X,
and thus this strategy replicates the survival claim (X,0,7). In fact, we have that V;(¢) = 0 on the

random interval [7,T7.

Definition 5.3.1 We say that a survival claim (X,0,7) is attainable if the process V3 given by
(5.32) is a martingale under Q*.

The following result is an immediate consequence of (5.31) and (5.32).

Corollary 5.3.1 Let X € Fr be such that X(f’f’)’l is square-integrable under Q*. Then the
survival claim (X,0, 1) is attainable. Moreover, the pre-default price 7 (X,0,7) of the claim (X,0,7)
is given by the conditional expectation

%t(X7O7T) = 23 EQ* (X(i;’lg)_l |*7:t)7 Vit e [07T] (533)

The process 7(X,0,7)(Y3)™L is an F-martingale under Q.

PRrROOF: Since X ()773’)*1 is square-integrable under @Q, we know from the predictable represen-
tation theorem that ¢? in (5.31) is such that Eq- (fOT (¢2)? d(?*)t) < 00, so that the process V3
given by (5.32) is a true martingale under Q. We conclude that (X,0,7) is attainable.

Now, let us denote by m(X,0,7) the time-¢ price of the claim (X,0,7). Since ¢ is a hedging
portfolio for (X,0,7) we thus have V;(¢) = m(X,0,7) for each ¢t € [0,T]. Consequently,

]l{T>t}%t(X70>T) = H{T>t}‘7t(¢) = Il{T>t}5~/t3 ]EQ*(T/I?‘) ‘Ft)
= ﬂ{‘r>t}ﬁ3 Eq- (X(}N/I??)_l | Ft)
for each ¢ € [0,T]. This proves equality (5.33). O

In view of the last result, it is justified to refer to Q as the pricing measure relative to Y3 for
attainable survival claims.
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Remark 5.3.3 It can be proved that there exists a unique absolutely continuous probability mea-
sure Q on (2, Gr) such that we have

LirsmyX = X
Y2 Eq ()gt = 1, V3 Eqg- T’ft .
Q Yqi} {r>t} 11 Yzz’
However, this probability measure is not equivalent to @Q, since its Radon-Nikodym density vanishes

after 7 (for a related result, see Collin-Dufresne et al. [47]).

Example 5.3.2 We provide here an explicit calculation of the pre-default price of a survival claim.
For simplicity, we assume that X = 1, so that the claim represents a defaultable zero-coupon bond.
Also, we set v4 = v = const, p;; =0, and 0, = 04, 1 = 1,2,3. Straightforward calculations yield
the following pricing formula
7o(1,0,7) = Y3~ (rtzod)T

We see that here the pre-default price m(1,0,7) depends explicitly on the intensity -, or rather,
on the drift term in dynamics of pre-default value of defaultable asset. Indeed, from the practical
viewpoint, the interpretation of the drift coefficient in dynamics of Y2 as the real-world default in-
tensity is questionable, since within our set-up the default intensity never appears as an independent
variable, but is merely a component of the drift term in dynamics of pre-default value of Y3.

Note also that we deal here with a model with three tradeable assets driven by a one-dimensional
Brownian motion. No wonder that the model enjoys completeness, but as a downside, it has an unde-
sirable property that the pre-default values of all three assets are perfectly correlated. Consequently,
the drift terms in dynamics of traded assets are closely linked to each other, in the sense, that their
behavior under an equivalent change of a probability measure is quite specific.

As we shall see later, if traded primary assets are judiciously chosen then, typically, the pre-
default price (and hence the price) of a survival claim will not explicitly depend on the intensity
process.

Remark 5.3.4 Generally speaking, we believe that one can classify a financial model as ‘realistic’
if its implementation does not require estimation of drift parameters in (pre-default) prices, at least
for the purpose of hedging and valuation of a sufficiently large class of (defaultable) contingent
claims of interest. It is worth recalling that the drift coefficients are not assumed to be market
observables. Since the default intensity can formally interpreted as a component of the drift term in
dynamics of pre-default prices, in a realistic model there is no need to estimate this quantity. From
this perspective, the model considered in Example 5.3.2 may serve as an example of an ‘unrealistic’
model, since its implementation requires the knowledge of the drift parameter in the dynamics of
Y3. We do not pretend here that it is always possible to hedge derivative assets without using the
drift coefficients in dynamics of tradeable assets, but it seems to us that a good idea is to develop
models in which this knowledge is not essential.

Of course, a generic semimartingale model considered until now provides only a framework for
a construction of realistic models for hedging of default risk. A choice of tradeable assets and
specification of their dynamics should be examined on a case-by-case basis, rather than in a general
semimartingale set-up. We shall address this important issue in the foregoing sections, in which we
shall deal with particular examples of practically interesting defaultable claims.

Hedging a recovery process

Let us now briefly study the situation where the promised payoff equals zero, and the recovery payoff
is paid at time 7 and equals Z, for some F-adapted process Z. Put another way, we consider a
defaultable claim of the form (0, Z, 7). Once again, we make use of Propositions 5.2.1 and 5.2.2. In
view of (5.15), we need to find a constant x and an F-predictable process ¢? such that

T
Yp = — i Wczytl’?’:gwr/o ¢2dY; . (5.34)
t
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Similarly as before, we conclude that, under suitable integrability conditions on v, there exists ¢
such that diy; = ¢? dY;*, where 1, = Eq- (¢ | F;). We now set

~ ¢ T 3o _
Vf’zx—i—/ ¢3dYu*+/ —=dY,?,
0 o Yy

so that, in particular, V3 = 0. Then it is possible to find processes ¢! and ¢3 such that the strategy
¢ is self-financing and it satisfies: Vi(¢) = V;3Y? and Vi(¢) = Z; + ¢}Y;? for every t € [0,T)]. It is
thus clear that V;(¢) = Z; on the set {7 < T} and Vp(¢) = 0 on the set {7 > T'}.

Bond market

For the sake of concreteness, we assume that Y;! = B(¢,T) is the price of a default-free ZC-bond
with maturity T, and Y,> = D(¢,T) is the price of a defaultable ZC-bond with zero recovery, that
is, an asset with the terminal payoff V.3 = Iy7<+y. We postulate that the dynamics under P of the
default-free ZC-bond are

dB(t,T) = B(t,T)(u(t,T)dt + b(t,T) dW;) (5.35)

for some F-predictable processes u(t,7) and b(t,T). We choose the process Y;! = B(t,T) as a
numéraire. Since the prices of the other two assets are not given a priori, we may choose any
probability measure Q equivalent to P on (£2,G7) to play the role of Q!.

In such a case, an e.m.m. Q! is referred to as the forward martingale measure for the date T', and
is denoted by Qp. Hence, the Radon-Nikodym density of Qp with respect to PP is given by (5.26)
for some F-predictable processes 6 and ¢, and the process

t
WtT:Wt—/ 0, du, Yte[0,T],
0

is a Brownian motion under Qr. Under Qp the default-free ZC-bond is governed by
dB(t,T) = B(t,T)(f(t,T) dt + b(t, T) dW;")

where 7i(t,T) = u(t,T) + 6;b(t,T). Let T stand for the F-hazard process of 7 under Qr, so that
[, = —In(1 — F,), where F, = Qp(r < t|F). Assume that the hypothesis (H) holds under Qr so
that, in particular, the process T is increasing. We define the price process of a defaultable ZC-bond
with zero recovery by the formula

D(t,T) := B(t,T)Eq, (Iir<ry |Gt) = Ljpary B(t, T) Eq, ("7 | 7)),

It is then clear that Y;>' = D(¢,T)(B(t,T))"! is a Qp-martingale, and the pre-default price D(t,T)
equals

D(t,T) = B(t,T)Eq, (" T | 7).

The next result examines the basic properties of the auxiliary process f(t,T) given as, for every
t e 0,17,

L(t,T)=Y>" = D, T)(B(t,T)) ! = Eq, (" 717 | 7).
The quantity f(t, T) can be interpreted as the conditional probability (under Qr) that default will
not occur prior to the maturity date T', given that we observe F; and we know that the default has
not yet happened. We will be more interested, however, in its volatility process 3(¢,T) as defined
in the following result.
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Lemma 5.3.1 Assume that the F-hazard process r of T under Qr is continuous. Then the process
L(t,T),te|0,T], is a continuous F-submartingale and

dU(t, T) = T(t, T)(dT; + B(t, T) dW;]T) (5.36)

for some F—predzctable process B(t,T). The process F(t T) is of ﬁmte variation if and only if the

hazard process T is deterministic. In this case, we have I‘(t T)= ele—Tr,

PRrROOF: We have R L R
Lt T) =Eq, (" "7 |F) = e Ly,

where we set L, = Eq, (e Tz | F¢). Hence, [(t,T) is equal to the product of a strictly positive,

increasing, right-continuous, F-adapted process el , and a strictly positive, continuous F-martingale
L. Furthermore, there exists an F-predictable process 6(t T) such that L satisfies

dL; = L,B(t, T) dW;

with the initial condition Ly = Eg,. (e*fT). Formula (5.36) now follows by an application of It&’s

formula, by setting 5(¢,T) = e’ftg(t, T). To complete the proof, it suffices to recall that a continuous
martingale is never of finite variation, unless it is a constant process. O

Remark 5.3.5 It can be checked that (¢, T) is also the volatility of the process

I(t,T)=Ep(e' 17| F).

Assume that ft = fot ~w du for some F-predictable, nonnegative process 4. Then we have the
following auxiliary result, which gives, in particular, the volatility of the defaultable ZC-bond.

Corollary 5.3.2 The dynamics under Qr of the pre-default price 5(t,T) equals
dD(t,T) = 15(t,T)<(ﬁ(t,T) +0(t, T)B(t, T) +7) dt + (b(t,T) + B(t,T))d(t,T) dW; )
Equivalently, the price D(t,T) of the defaultable ZC-bond satisfies under Qr
dD(t,T) = D(t,T) ((ﬁ(t, T) + b(t, T)B(t, T)) dt + d(t,T) AW — th).
where we set d(t,T) = b(t,T) + B(t, T).

Note that the process 3(t,T) can be expressed in terms of market observables, since it is simply
the difference of volatilities d(¢,T) and b(t,T) of pre-default prices of tradeable assets.

Credit-risk-adjusted forward price
Assume that the price Y2 satisfies under the statistical probability P

dY? = Y7 (2, dt + o AWy) (5.37)

with F-predictable coefficients yu and o. Let Fy=(t,T) = Y2(B(t,T))~! be the forward price of Y2.
For an appropriate choice of € (see 5.30), we shall have that

dFy:(t,T) = Fy2(t,T)(o¢ — b(t, T)) dW}".
Therefore, the dynamics of the pre-default synthetic asset fft* under Q7 are

Yy = Y23 (o, — b(t, T)) (dWT — B(t,T) dt),



5.3. MARTINGALE APPROACH TO VALUATION AND HEDGING 99

and the process Y, = Y;2'e=@ (see Proposition 5.2.3 for the definition of ) satisfies

dY; = Y (o — b(t,T)) (AW — B(t,T) dt).

Let @ be an equivalent probability measure on (£2,Gr) such that Y (or, equivalently, 17*) is a
Q-martingale. By virtue of Girsanov’s theorem, the process W given by the formula

t
Wt:WtT—/ B(u,T)du, Ytel[0,T],
0

is a Brownian motion under Q. Thus, the forward price Fy- (t,T) satisfies under Q
dFy2(t,T) = Fy2(t,T)(or — b(t, T)) (AW, + B(¢, T) dt). (5.38)

It appears that the valuation results are easier to interpret when they are expressed in terms
of forward prices associated with vulnerable forward contracts, rather than in terms of spot prices
of primary assets. For this reason, we shall now examine credit-risk-adjusted forward prices of
default-free and defaultable assets.

Definition 5.3.2 Let Y be a Gr-measurable claim. An Fi-measurable random variable K is called
the credit-risk-adjusted forward price of Y if the pre-default value at time t of the vulnerable forward
contract represented by the claim Iyp. (Y — K) equals 0.

Lemma 5.3.2 The credit-risk-adjusted forward price Fy (t,T) of an attainable survival claim (X, 0, 1),

represented by a Gr-measurable claimY = X ry, equals 7 (X,0,7)(D(t, T))~1, where 74(X,0,7)
is the pre-default price of (X,0,7). The process ﬁy(t, T), t €[0,T], is an F-martingale under @

PROOF: The forward price is defined as an F;-measurable random variable K such that the claim
Lirery(Xlyrery — K) = X177y — KD(T.T)

is worthless at time ¢ on the set {t < 7}. It is clear that the pre-default value at time ¢ of this claim
equals 7¢(X,0,7) — KD(t,T). Consequently, we obtain Fy (t,T) = 7;(X,0,7)(D(t,T))~!. O

Let us now focus on default-free assets. Manifestly, the credit-risk-adjusted forward price of the
bond B(t,T) equals 1. To find the credit-risk-adjusted forward price of Y2, let us write

ﬁy2 (t,T) = Fy2 (t, T) etT TN = thz’leaTiat, (539)

where « is given by (see (5.19))
ap = /o (00 = b(u, 1)) B(u, T) du = /0 (70 — b(u, T)) (d(u, T) — b(u, T)) du. (5.40)

Lemma 5.3.3 Assume that « given by (5.40) is a deterministic function. Then the credit-risk-
adjusted forward price of Y? equals Fy=(t,T) (defined in 5.39) for every t € [0,T).

PRrROOF: According to Definition 5.3.2; the price ﬁyz (t,T) is an Fy-measurable random variable
K, which makes the forward contract represented by the claim D(T,T)(Y? — K) worthless on the

set {t < 7}. Assume that the claim Y} — K is attainable. Since D(T,T) = 1, from equation (5.33)
it follows that the pre-default value of this claim is given by the conditional expectation

D(t,T)Eg (Y7 — K | 7).
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Consequently,
Fy=(1,T) = By (Y | Fi) = B (Fy=(T, T) | F) = Fya(t,T) e** =,

as was claimed. O

It is worth noting that the process Fy- (t,T) is a (local) martingale under the pricing measure

@, since it satisfies R ~ -
dFy2 (t, T) = Fy2 (t, T) (O‘t - b(t, T)) th (541)

Under the present assumptions, the auxiliary process Y introduced in Proposition 5.2.3 and the
credit-risk-adjusted forward price Fy2(t,T) are closely related to each other. Indeed, we have
Fy2(t,T) = Y1e*T, so that the two processes are proportional.

Vulnerable option on a default-free asset

We shall now analyze a vulnerable call option with the payoff
Cf = Typery(Yi — K)*.

Here K is a constant. Our goal is to find a replicating strategy for this claim, interpreted as a
survival claim (X,0,7) with the promised payoff X = Cr = (YZ — K)T, where Cr is the payoff
of an equivalent non-vulnerable option. The method presented below is quite general, however, so
that it can be applied to any survival claim with the promised payoff X = G(Y?) for some function
G : IR — IR satisfying the usual integrability assumptions.

We assume that V! = B(¢,T), Y2 = D(¢,T) and the price of a default-free asset Y2 is governed
by (5.37). Then
OF = Vgran) (¥ — K)* = Wggn) (Y — KR

We are going to apply Proposition 5.2.3. In the present set-up, we have Yf’l = Fy2(t,T) and
Y: = Fy2(t,T)e”*. Since a vulnerable option is an example of a survival claim, in view of Lemma
5.3.2, its credit-risk-adjusted forward price satisfies Fa(t, T) = Ci(D(t,T))~ .

Proposition 5.3.2 Suppose that the volatilities o,b and § are deterministic functions. Then the
credit-risk-adjusted forward price of a vulnerable call option written on a default-free asset Y2 equals

ﬁcd (t7 T) = ﬁYZ (ta T)N(d-i-(ﬁYQ (ta T)7 t7 T)) - KN(d— (}/ﬁY2 (ta T)a t) T)) (542)
where -
Inz—InK + sv(t,T)
T) = 2
di(zvta ) ’U(t,T)
and

T
V(t,T) = / (0w — b(u, T))? du.
t
The replicating strategy ¢ in the spot market satisfies for every t € [0,T], on the set {t < 7},
%B(taT) = _¢t2Y;527 Qﬁ = ﬁ(tvT)(B(tvT))_lN(d+(t’T))eaT_at’ ?ﬁ(th) = 6217
where d(t,T) = do(Fy2(t,T),t,T).

PROOF: In the first step, we establish the valuation formula. Assume for the moment that the
option is attainable. Then the pre-default value of the option equals, for every ¢ € [0, T],

C! = D(t, T) Eg ((Fy=(T,T) — K)* | ) = D(t,T) Eg((Fy=(T,T) — K)* | 7). (5.43)
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In view of (5.41), the conditional expectation above can be computed explicitly, yielding the valuation
formula (5.42).

To find the replicating strategy, and establish attainability of the option, we consider the Ito
differential dFa(t,T) and we identify terms in (5.32). It appears that
dFca(t,T) = N(dy(t,T)) dFy=(t,T) = N(dy(t,T))e" dY, (5.44)
= N(d+(t, T))i;tg’leaT_at dﬁ*a
so that the process ¢? in (5.31) equals
62 = VP N (dy (1, T))eor =
Moreover, ¢! is such that ¢ B(t, T) + ¢2Y2 = 0 and ¢ = C4(D(t,T))". It is easily seen that this
proves also the attainability of the option. O
Let us examine the financial interpretation of the last result.
First, equality (5.44) shows that it is easy to replicate the option using vulnerable forward
contracts. Indeed, we have
~ cd T ~
Fou(T,T) = X = =2 +/ N(di(t,T))dFy=(t,T)
D(0,T) 0

and thus it is enough to invest the premium ég = C¢ in defaultable ZC-bonds of maturity 7', and
take at any instant ¢ prior to default N(dy(¢,T')) positions in vulnerable forward contracts. It is
understood that if default occurs prior to T, all outstanding vulnerable forward contracts become
void.

Second, it is worth stressing that neither the arbitrage price, nor the replicating strategy for a
vulnerable option, depend explicitly on the default intensity. This remarkable feature is due to the
fact that the default risk of the writer of the option can be completely eliminated by trading in
defaultable zero-coupon bond with the same exposure to credit risk as a vulnerable option.

In fact, since the volatility 3 is invariant with respect to an equivalent change of a probability
measure, and so are the volatilities o and b(¢,T'), the formulae of Proposition 5.3.2 are valid for any
choice of a forward measure Qr equivalent to P (and, of course, they are valid under P as well).
The only way in which the choice of a forward measure Q7 impacts these results is through the
pre-default value of a defaultable ZC-bond.

We conclude that we deal here with the volatility based relative pricing a defaultable claim. This
should be contrasted with more popular intensity-based risk-neutral pricing, which is commonly used
to produce an arbitrage-free model of tradeable defaultable assets. Recall, however, that if tradeable
assets are not chosen carefully for a given class of survival claims, then both hedging strategy and
pre-default price may depend explicitly on values of drift parameters, which can be linked in our
set-up to the default intensity (see Example 5.3.2).

Remark 5.3.6 Assume that X = G(Y?) for some function G : IR — IR. Then the credit-risk-

adjusted forward price of a survival claim satisfies ﬁX(t,T) = v(t,ﬁyz (t,T)), where the pricing
function v solves the PDE

(o — b(t, T))*220.,0(t, 2) = 0

N =

o(t, z) +

with the terminal condition v(T,z) = G

—~

z). The PDE approach is studied in Section 5.4 below.

Remark 5.3.7 Proposition 5.3.2 is still valid if the driving Brownian motion is two-dimensional,
rather than one-dimensional. In an extended model, the volatilities o¢, b(t, T') and 3(¢,T) take values
in IR? and the respective products are interpreted as inner products in IR3. Equivalently, one may
prefer to deal with real-valued volatilities, but with correlated one-dimensional Brownian motions.
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Vulnerable swaption

In this section, we relax the assumption that Y is the price of a default-free bond. We now let Y!
and Y? to be arbitrary default-free assets, with dynamics

dYy =Y (i dt + 01 dWy), i=1,2.

We still take D(t,T) to be the third asset, and we maintain the assumption that the model is
arbitrage-free, but we no longer postulate its completeness. In other words, we postulate the exis-
tence an e.m.m. Q', as defined in subsection on arbitrage free property, but not the uniqueness of

Q.
We take the first asset as a numéraire, so that all prices are expressed in units of Y'!. In particular,

}Qm =1 for every t € IR, and the relative prices Y*! and Y3! satisfy under Q! (cf. Proposition
5.3.1)

AV = Y (09 — 01,0) AW,
d)/tg’l = Yt‘qﬁl((a&t — Ul,t) dW, — th)

It is natural to postulate that the driving Brownian noise is two-dimensional. In such a case, we
may represent the joint dynamics of Y>! and Y3! under Q' as follows

APt =Y (020 — 01,0) AW},
d}/ts’l = }/15221((0'37,5 — Ul,t) thQ — th),

where W1 W? are one-dimensional Brownian motions under Q!, such that d(W?!, W?2), = p; dt for
a deterministic instantaneous correlation coefficient p taking values in [—1, 1].

We assume from now on that the volatilities o;, i = 1,2, 3 are deterministic. Let us set
_ _ t
a; = (Y Iny3>), = / pu(02.4 — 01,0) (034 — 01,4) du, (5.45)
0

and let @ be an equivalent probability measure on (2, Gr) such that the process }?} = Ytz’le_o‘t
is a Q-martingale. To clarify the financial interpretation of the auxiliary process Y in the present
context, we introduce the concept of credit-risk-adjusted forward price relative to the numéraire Y''.

Definition 5.3.3 Let Y be a Gr-measurable claim. An Fi-measurable random variable K is called
the time-t credit-risk-adjusted Y ' -forward price of Y if the pre-default value at time t of a vulnerable
forward contract, represented by the claim

]]-{T<T}(YT:E)71(Y - KYZI:E) = ]]-{T<7'}(Y(Y71’)71 - K)v

equals 0.

The credit-risk-adjusted Y '-forward price of Y is denoted by F\y‘yl (t,T), and it is also interpreted
as an abstract defaultable swap rate. The following auxiliary results are easy to establish, along the
same lines as Lemmas 5.3.2 and 5.3.3.

Lemma 5.3.4 The credit-risk-adjusted Y *-forward price of a survival claim 'Y = (X,0,7) equals
ﬁY|Y1 (ta T) = %t(X17 Oa T)(ﬁ(t7 T))_l

where X' = X(Y})™1 is the price of X in the numéraire Y1, and 7,(X',0,7) is the pre-default
value of a survival claim with the promised payoff X'.
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PROOF: It suffices to note that for ¥ = Iy, X, we have
H{T<T}(Y(Y'11)_1 - K) = H{T<T}X1 - KD(Ta T),

where X' = X (Y})™!, and to consider the pre-default values. O

Lemma 5.3.5 The credit-risk-adjusted Y -forward price of the asset Y? equals
Fyapyi (t,T) = Y2 0170 = Y,e07 (5.46)

where «, assumed to be deterministic, is given by (5.45).

PRroOOF: It suffices to find an F;-measurable random variable K for which
D(t,T)Eg(YZ(Y}) ' = K| F) =0.
Consequently, K = ﬁy2‘yl(t, T), where
Fyzwl(f,T)—E@(YT |]:t) =Y""e =Y, e,

where we have used the facts that Y, = Ylemo is a Q-martingale, and « is deterministic. O
We are in a position to examine a vulnerable option to exchange default-free assets with the
payoff
_ 2,1
Ct = Wrary (V7)1 (YF = KYZ)T = Lgpery (Yp — K)*. (5.47)
The last expression shows that the option can be interpreted as a vulnerable swaption associated
with the assets Y and Y2. It is useful to observe that

Cf _ Lr<ny <Y% K)+

i\

so that, when expressed in the numéraire Y'!, the payoff becomes
Cp' = DYT.T)(v7" — K)*,

where 14 = C4(Y,})~! and DY(t,T) = D(t,T)(Y;})~* stand for the prices relative to Y1,

It is clear that we deal here with a model analogous to the model examined in previous subsections
in which, however, all prices are now relative to the numéraire Y'!. This observation allows us to
directly derive the valuation formula from Proposition 5.3.2.

Proposition 5.3.3 Assume that the volatilities are deterministic. The credit-risk-adjusted Y-
forward price of a vulnerable call option written with the payoff given by (5.47) equals

Feapyr (8, T) = Fyzpy1 (t, T)N (dy (Fy2py1 (8, T),8,T)) — KN (d—(Fy2y1(t,T),t,T))

where
Inz—InK+ $02(t,T)

v(t, T)

d+ (Z, t, T) =
and
T
Vi, T) = / (020 — 01.4)% du.
t
The replicating strategy ¢ in the spot market satisfies for every t € [0,T], on the set {t < 7},
o1V = —¢tY?, @7 = Dt T)(Y; ) 'N(dy(t,T))e"™ =, ¢}D(t,T) = CY,

where dy(t,T) = dy (Fy2(t,T),t,T).
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PROOF: The proof is analogous to that of Proposition 5.3.2, and thus it is omitted. (Il

It is worth noting that the payoff (5.47) was judiciously chosen. Suppose instead that the option
payoff is not defined by (5.47), but it is given by an apparently simpler expression

CF = Lyrery (Y — KY7)T. (5.48)
Since the payoff C4 can be represented as follows
Cf = GOV, Y2, Y}) = YR (Vf = KY7)*,

where G(y1,ya, y3) = y3(y2 — Ky1)™, the option can be seen an option to exchange the second asset
for K units of the first asset, but with the payoff expressed in units of the defaultable asset. When
expressed in relative prices, the payoff becomes

Cr' = Npen (V7" = K)*.

where lyrory = DY(T,T)Y}. It is thus rather clear that it is not longer possible to apply the same
method as in the proof of Proposition 5.3.2.

5.3.2 Defaultable asset with non-zero recovery

We now assume that
dYP = Y2 (us dt + o3 AWy + k3 dMy)

with k3 > —1 and k3 # 0. We assume that Y > 0, so that Y;?> > 0 for every ¢t € IRy. We shall
briefly describe the same steps as in the case of a defaultable asset with total default.

Arbitrage-free property

As usual, we need first to impose specific constraints on model coefficients, so that the model is
arbitrage-free. Indeed, an e.m.m. Q! exists if there exists a pair (6, ¢) such that

K1
1+ k1

Ri — K1
1+ k1

Oi(os —o1) + G =1 — pi +o1(o; —o1) + & (ks — K1) , =23

To ensure the existence of a solution (6, () on the set 7 < ¢, we impose the condition

M1 — f2 H1 — p3
S st )

g1 )
g1 — 09 01 — 03

that is,
(o3 — 02) + p2(o1 — 03) + ps(oz — 01) = 0.
Now, on the set 7 > ¢, we have to solve the two equations
0i(02 —01) = 1 — p2+o1(o2 —o1),

0i(03 —01) + Cyks = p1 — pz +o1(o3 — o1).

If, in addition, (02 — 01)k3 # 0, we obtain the unique solution

0 — M1 — M2 H1 — U3
=01———— =01 — ——

01 — 02 01— 03
¢=0>-1,

so that the martingale measure Q' exists and is unique.
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5.3.3 Two defaultable assets with total default

We shall now assume that we have only two assets, and both are defaultable assets with total default.
This case is also examined by Carr [40], who studies some imperfect hedging of digital options. Note
that here we present results for perfect hedging.

We shall briefly outline the analysis of hedging of a survival claim. Under the present assumptions,
we have, for i = 1,2,
AY; =Y} (i dt + o5 dWy — dM,), (5.49)

where W is a one-dimensional Brownian motion, so that
V! =14V, Y2 =1pen Y,
with the pre-default prices governed by the SDEs
df’ti = fftl((uzt + ) dt + 05y th). (5.50)

The wealth process V associated with the self-financing trading strategy (¢!, ¢?) satisfies, for every
t e 0,17,

t
V= v (vol + [ o invl) ,
0

where }7;2’1 = 17;52 / }N’tl. Since both primary traded assets are subject to total default, it is clear that the
present model is incomplete, in the sense, that not all defaultable claims can be replicated. We shall
check in the following subsection that, under the assumption that the driving Brownian motion W is
one-dimensional, all survival claims satisfying natural technical conditions are hedgeable, however.
In the more realistic case of a two-dimensional noise, we will still be able to hedge a large class of
survival claims, including options on a defaultable asset and options to exchange defaultable assets.

Hedging a survival claim

For the sake of expositional simplicity, we assume in this section that the driving Brownian motion
W is one-dimensional. This is definitely not the right choice, since we deal here with two risky
assets, and thus they will be perfectly correlated. However, this assumption is convenient for the
expositional purposes, since it will ensure the model completeness with respect to survival claims,
and it will be later relaxed anyway.

We shall argue that in a model with two defaultable assets governed by (5.49), replication of
a survival claim (X,0,7) is in fact equivalent to replication of the promised payoff X using the
pre-default processes.

Lemma 5.3.6 If a strategy ¢, i = 1,2, based on pre-default values f”, i = 1,2, is a replicating
strategy for an Fr-measurable claim X, that is, if ¢ is such that the process Vi(¢) = ¢}Y,! + ¢?Y}?
satisfies, for every t € [0,T],

dVi(9) = 6y dY}! + o7 dY7,

Vr(¢) = X,
then for the process Vi(¢) = ¢i Yt + ¢7Y,2 we have, for every t € [0,T),

dVi(¢) = ¢fdY + 67 dY?,
Vr(¢) = Xlir<s).

This means that the strategy ¢ replicates the survival claim (X,0, 7).
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PROOF: It is clear that V;(¢) = ]1{t<7}‘/;5(¢) = ]1{t<r}‘7;f(¢)- From
¢p AY;' + 97 dY2 = —(¢ Y} + ¢7Y2) dH, + (1 — Hy_ ) (¢} dY,' + 67 dY}?),

it follows that _ _
¢¢ AV} + 97 dY? = —Vi(¢) dH, + (1 — Hy—)dVi(9),

that is, B
o1 dY} + ¢7 dY? = d(L 1<y Vi(9)) = dVi(9).

It is also obvious that Vr(¢) = Xlrr). O

Combining the last result with Lemma 5.2.1, we see that a strategy (¢!, $?) replicates a survival
claim (X,0,7) whenever we have

T
ﬁ@+/¢ﬁﬁﬂ:x
0
for some constant # and some F-predictable process ¢2, where, in view of (5.50),
df/t2,1 — 22,1 ((,U/Q,t — M1t + Ul7t(o-17t — U2,t)) dt + (O'Q}t — 0'17t) th)

We introduce a probability measure @, equivalent to P on (2,Gr), and such that Y21 is an F-
martingale under Q. It is easily seen that the Radon-Nikodym density 7 satisfies, for ¢ € [0, 77,

dQ|g, =mdP|g, =& </ 0s dWs) dP|g, (5.51)
0

with

0, — pat — p1t +01e(01t — 02¢)
t — 9

01t — 02t

provided, of course, that the process 6 is well defined and satisfies suitable integrability conditions.
We shall show that a survival claim is attainable if the random variable X (Y})™! is Q-integrable.
Indeed, the pre-default value V; at time ¢ of a survival claim equals

Vi = V) Ey (X)),
and from the predictable representation theorem, we deduce that there exists a process ¢ such that
t
Bg(X(T)™ 1 7) = Eg(X(F) ) + [ dhavet

The component ¢! of the self-financing trading strategy ¢ = (¢, ¢?) is then chosen in such a way
that _ _ _
oY + Y2 =V, Vte|0,T).

To conclude, by focusing on pre-default values, we have shown that the replication of survival claims
can be reduced here to classic results on replication of (non-defaultable) contingent claims in a
default-free market model.

Option on a defaultable asset

In order to get a complete model with respect to survival claims, we postulated in the previous
section that the driving Brownian motion in dynamics (5.49) is one-dimensional. This assumption
is questionable, since it implies the perfect correlation of risky assets. However, we may relax this
restriction, and work instead with the two correlated one-dimensional Brownian motions. The model
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will no longer be complete, but options on a defaultable assets will be still attainable. The payoff of
a (non-vulnerable) call option written on the defaultable asset Y2 equals

Cr= (Y7 - K)* =1 (Y7 - K)*,
so that it is natural to interpret this contract as a survival claim with the promised payoff X =
(Y2 - K)*.

To deal with this option in an efficient way, we consider a model in which
dYy =Y, (i dt + o;4 dW) — dM,), (5.52)

where W' and W? are two one-dimensional correlated Brownian motions with the instantaneous
correlation coefficient p;. More specifically, we assume that Y, = D(¢,T) = I« D(t,T) represents

a defaultable ZC-bond with zero recovery, and Y;? = ]1{t<7}1~/f is a generic defaultable asset with
total default. Within the present set-up, the payoff can also be represented as follows

Cr = G(Yy,Y7) = (Y7 — KYp)™,
where g(y1,y2) = (y2 — Ky1)T, and thus it can also be seen as an option to exchange the second

asset for K units of the first asset.

The requirement that the process Y>' = Y2(Y;))~! follows an F-martingale under Q implies
that

dﬁll = ﬁm ((Uz,tpt - Ul,t) thl +o2,0/1— P% dwtz)v (5.53)

where W = (W', W?2) follows a two-dimensional Brownian motion under Q. Since Y} =1, replica-
tion of the option reduces to finding a constant = and an F-predictable process ¢? satisfying

T
@ +/ ¢7 AV = (Y7 — K)*.
0

To obtain closed-form expressions for the option price and replicating strategy, we postulate that the
volatilities oy +, 72+ and the correlation coefficient p; are deterministic. Let Fy2(¢t,T) = Y,2(D(t,T))™*

(Fo(t,T) = Cy(D(t,T)) !, respectively) stand for the credit-risk-adjusted forward price of the sec-
ond asset (the option, respectively). The proof of the following valuation result is fairly standard,
and thus it is omitted.

Proposition 5.3.4 Assume that the volatilities are deterministic and that Y is a DZC. The credit-
risk-adjusted forward price of the option written on Y2 equals

Fe(t,T) = Fy2(t, T)N (dy(Fy2(t,T),t,T)) — KN (d_(Fy2(t,T),t,T)).
Equivalently, the pre-default price of the option equals
Cy = Y2N(dy(Fy2(t,T),t,T)) — KD(t, )N (d—(Fy=(t,T),t,T)),
where

Inzf —InK+ 202(t,7T)
v(t,T)

di(27taT) =

and

T
v2(t, T)= / (O'iu + aiu — 2py01,4,02.4) du.
t
Moreover the replicating strategy ¢ in the spot market satisfies for everyt € [0,T], on the set {t < T},

¢r = —KN(d_(Fy=(t,T),t,T)), ¢? = N(dy(Fy2(t,T),1,T)).
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5.4 PDE Approach to Valuation and Hedging

In the remaining part of the paper, we take a different perspective, and we assume that trading
occurs on the time interval [0, 7] and our goal is to replicate a contingent claim of the form

Y = H{TZT}gl(Y%vyiga Y’1§) + ]1{T<T}90(Y’11’ YYZ“7YZ§) = G(Y’ll’ YYZ“7YZ§’ HT)v

which settles at time 7. We do not need to assume here that the coefficients in dynamics of primary
assets are F-predictable. Since our goal is to develop the PDE approach, it will be essential, however,
to postulate a Markovian character of a model. For the sake of simplicity, we assume that the
coefficients are constant, so that

dYti =Y (Nz’ dt + o; AWy + Ky th)’ i=1,23.

The assumption of constancy of coefficients is rarely, if ever, satisfied in practically relevant models of
credit risk. It is thus important to note that it was postulated here mainly for the sake of notational
convenience, and the general results established in this section can be easily extended to a non-
homogeneous Markov case in which p; ¢ = pi(t, ;1 Y2, V3  Hi_ )00 = 0i(t, Y, YA Y2 Hy ),
etc.

5.4.1 Defaultable asset with total default

We first assume that Y and Y2 are default-free, so that x1 = 2 = 0, and the third asset is subject
to total default, i.e. k3 = —1,

dY? =Y7 (usdt + o3 AW, — dMy).

We work throughout under the assumptions of Proposition 5.3.1. This means that any Q'-integrable
contingent claim Y = G(Y}, Y2, Y3; Hr) is attainable, and its arbitrage price equals

m(Y) = Y Eqr (Y (YA) 1[G, Vi€ [0,T] (5.54)
The following auxiliary result is thus rather obvious.
Lemma 5.4.1 The process (Y1,Y?2 Y3 H) has the Markov property with respect to the filtration G

under the martingale measure Q'. For any attainable claim Y = G(Y},Y2,Y.3; Hr) there exists a
function v : [0,T] x IR? x {0,1} — IR such that 7, (Y) = v(t, Y}, Y2, Y3 Hy).

We find it convenient to introduce the pre-default pricing function v(-;0) = v(¢,y1,y2,y3;0) and
the post-default pricing function v(-;1) = v(t,y1,v2,¥3; 1). In fact, since Y;> = 0 if H; = 1, it suffices
to study the post-default function v(t,y1,y2;1) = v(t, y1,y2,0;1). Also, we write

H1 — M2
3 )
01— 02

o =p; —0 b= (u3 —p1)(o1 — 02) = (11 — p3)(o1 — 03).
Let v > 0 be the constant default intensity under P, and let { > —1 be given by formula (5.28).

Proposition 5.4.1 Assume that the functions v(-;0) and v(-;1) belong to the class C2([0,T] x
IR, R). Then v(t,y1,y2,ys3;0) satisfies the PDE

2 3
1
O(-30) + D aiyidiv(50) + (a5 + Qysdsv(-50) + 5 Y 0iosyiy;0150(-50)
1=1

ij=1

—av(-;0) + (v - > [o(t,y1,y2:1) — v(t, y1,Y2,¥3;0)] =0

01— 02
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subject to the terminal condition v(T,y1,y2,y3;0) = G(y1,Yy2,y3;0), and v(t,y1,y2;1) satisfies the
PDE

2
Opv (- +Za1ylﬁv % Z 009y 0iv(-;1) —aqv(-;1) =0
ij=1
subject to the terminal condition v(T,y1,y2;1) = G(y1,y2,0;1).
PRrROOF: For simplicity, we write Cy = m(Y"). Let us define
Av(t,y1,y2,y3) = v(t, 1,925 1) — v(t, 91, 2,93 0).

Then the jump ACy; = C; — C;_ can be represented as follows:

AC = ]1{T=t} ('U(t, Yt1> Yf; 1) —o(t, Ytl’ Yt2> Yf—v 0)) = ]1{7'=t} Av(t, Ytl> Y;Qv Ytg—)

We write 0; to denote the partial derivative with respect to the variable y;, and we typically omit
the variables (¢,Y,! , Y2, Y2  H; ) in expressions d;v, 0;v, Av, etc. We shall also make use of the
fact that for any Borel measurable function g we have

t t
/ g(u, Y2, V3 )du:/ g(u, Y2, Y3) du
0 0

since Y2 and Y2 differ only for at most one value of u (for each w). Let & = Ijcryy. An
application of It6’s formula yields
3 13 o
c, = atvdt—F;@ide;—FEi]z;laiantl_Ytj_aijvdt

+ (Av + Y3_83v) dH,;

Btvdt—kzade +z Zozajy Y} 90 dt
i=1 i,j=1

+ (A0 + Y 0g0) (AM; + & dt),

and this in turn implies that

dc, atvdt+ZYl v (i dt + oy AW,) + Z 010V, Y7 050 dt

i=1 3,j=1

+ AvdM, + (Av TYR agv)gt dt

3 3
Osv + g w Y Ov + 5 E 0i0; Y. Y 050 + (Av + Yﬁ@gv) & pdt

i=1 ij=1
3 .
+ (Z Uthl_aiv) dW; + AvdM;.
i=1

We now use the integration by parts formula together with (5.22) to derive dynamics of the relative
price Cy = C(Y,})~1. We find that

dCy = Cy_ ((*ﬁh +o2)dt — oy th)

3
+ ()T 0w+ > i o+ 5 Zazajy Y7 00+ (Av+ Y2 dg) g ¢ dt
=1 1,7=1
3 .
ZalY O dWy + (Y1) P AvdM; — (Y1) _1alein_8ivdt.

=1 i=1
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Hence, using (5.27), we obtain

dOt Ct (—/L1+O'%)dt+6t_<—0'1dﬁ/\t—0'19dt>

3
+ ()T 0w+ > i o+ 5 ZMJY Vi oyv+ (Av+ Vi osv)g o dt
i=1 i,j=1

+( ZalY v dW, + Zaly 00;v dt

=1 1=1
3
+ (V)T AvdM, + (VL) T g Avdt — (V) Toy Y oY Qv dt
i=1
This means that the process C admits the following decomposition under Q'

d@t = at,(—ul +U% —0'10) dt

3 3
. 1 L )
+ ()/tl_)71 at’U + Z ,Uliftl_aﬂ) + 5 Z O'Z‘O'jyrtl_}/tj_aij’l} + (A’U + Yt‘j_(?;gv)gt dt

i=1 i,j=1

3
Y)Y oY 00wt + (VL) TG Av dt
i=1
3 .
- () toy Z 0, Y, O;vdt + a Ql-martingale.

i=1

From (5.54), it follows that the process Cisa martingale under Q. Therefore, the continuous finite
variation part in the above decomposition necessarily vanishes, and thus we get

0= Ct_(Y;l_)il( — M1 +O’% 7010)

3 3
—|—(Yt1_)71 3tv—|—z,u,Y ;v + = Z cr,U]Yt_Y (9Zjv—|—(Av—|—Y 8311)5
=1 1,7=1
3 .
Y aY 00w+ (VL) TG A — (VL UlzalY div.

i=1
Consequently, we have that

Oict_(*ﬂl‘F(f%*O'lg)

3 3
—+ 8t1} + E ule_&v + 5 E UinY;ZY;j_aijv + (A’U + Y;S_83U) ft
i=1 i,j=1

3 3
+ Z athi_Qaw + C&Av — o Z a,-Yti_aw.
i=1 i=1
Finally, we conclude that

2 3
Oy + E aiY;’,aiv + (Oé3 + gt) }/;?:831) + 5 E aiantZYt{@jv
i=1 ij=1

- 041C’t_ + (1 + C)EtAU =0.

Recall that & = llyy<,yy. It is thus clear that the pricing functions v(-,0) and v(-;1) satisfy the
PDEs given in the statement of the proposition. O

The next result deals with a replicating strategy for Y.
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Proposition 5.4.2 The replicating strategy ¢ for the claim Y is given by formulae

¢?Y;:i = _A'U(taY;l?Y??Y;?L) :’U(LY—tl’Y?,Y;Bi;O) _U(tvy;17n2;]-)v
3
¢%Y;2(02—01) = —(Jl—Ug)AU—Ulvﬁ-ZYvX_UZ‘aﬂ),
i=1
aY! = v— Y -6}y,

PROOF: As a by-product of our computations, we obtain

3
dCy = —(Y) oo dW, + (V)Y 0V 00 dW, + (V) AvdD,.

i=1

The self-financing strategy that replicates Y is determined by two components ¢?, ¢ and the fol-
lowing relationship:

dCy = ¢2 AV + ¢} AV = 2V (09 — 01) AW, + ¢3Y,>! ((ag —o1)dW, — dm) :

By identification, we obtain ¢3Y;>' = (Y;})~'Av and

3
(,ZS?Y;Q(O'Q — 0'1) — (03 — Ul)A’U = 70’1015 + Z}/?_O'laz’l)

i=1
This yields the claimed formulae. O

Corollary 5.4.1 In the case of a total default claim, the hedging strategy satisfies the balance con-
dition.

PROOF: A total default corresponds to the assumption that G(y1,y2,y3,1) = 0. We now have
v(t,y1,y2;1) = 0, and thus ¢3Y2 = v(t, Y}, Y2, Y2 ;0) for every t € [0,7]. Hence, the equality
H1YE + ¢2Y2 = 0 holds for every t € [0,7]. The last equality is the balance condition for Z = 0.
Recall that it ensures that the wealth of a replicating portfolio jumps to zero at default time. O

Hedging with the savings account
Let us now study the particular case where Y! is the savings account, i.e.,
Ay} =rY dt, Yy =1,

which corresponds to u; = r and o7 = 0. Let us write 7 = r + 7, where

~

T3
V==t —rt )

stands for the intensity of default under Q'. The quantity 7 has a natural interpretation as the risk-
neutral credit-risk adjusted short-term interest rate. Straightforward calculations yield the following
corollary to Proposition 5.4.1.

Corollary 5.4.2 Assume that o2 # 0 and
dY,;} =rY}!dt,
dY;Q = Y;Q (,ug dt + o9 th),
dY? =Y (psdt + o3 dWy — dMy).
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Then the function v(-;0) satisfies

Opu(t, Y2, Y35 0) + 1y2020(t, Y2, Y35 0) + Ty303v(t, Y2, y3; 0) — T (t, Yo, y3;0)
3
1 N
+3 Z 00599050 (t, Y2, y3; 0) +Fvu(t, y2;1) =0
i,j=2

with v(T, ya2,y3;0) = G(y2,y3;0), and the function v(-;1) satisfies
1
Ov(t,y2; 1) + ry2020(t, y2; 1) + 50%3/%3221)(757;/2; 1) —ro(t,y2;1) =0
with v(T,y2; 1) = G(y2,0;1).

In the special case of a survival claim, the function v(-;1) vanishes identically, and thus the
following result can be easily established.

Corollary 5.4.3 The pre-default pricing function v(-;0) of a survival claim'Y = ]1{T<T}G(Y7%, Y3)
is a solution of the following PDE:

Opv(t, y2,y3;0) + ry202v(t, Y2, y3; 0) + Ty303v(t, Y2, y3; 0)

3
1 A
+3 >~ 0i05iy;0:50(t, Y2, Y35 0) — Po(t, y2, y3;0) = 0
i,j=2

with the terminal condition v(T,ya2,y3;0) = G(y2,y3). The components ¢ and ¢ of the replicating
strategy satisfy

3
GroaY? =Y oY 0iw(t, Y72, 50) + osu(t, Y7, Y25 0),
=2

BYE =v(t, Y2 Y73 ,0).

Example 5.4.1 Consider a survival claim Y = ]1{T<T}g(Y:,21)7 that is, a vulnerable claim with
default-free underlying asset. Its pre-default pricing function v(-;0) does not depend on ys3, and
satisfies the PDE (y stands here for y, and o for o3)

1
v(t,; 0) + rydyu(t, y; 0) + 50y 0apv(t, 3 0) — Fult, y;0) = 0 (5.55)
with the terminal condition v(7',y;0) = Il {;-19(y). The solution to (5.55) is
v(t,y) = T 902 (1 y) = T R3¢t y),
where the function v™9? is the Black-Scholes price of g(Yr) in a Black-Scholes model for Y; with
interest rate r and volatility os.

5.4.2 Defaultable asset with non-zero recovery

We now assume that
dY? = Y2 (uzdt + o3 dW,; + k3 dM;)

with k3 > —1 and k3 # 0. We assume that Y > 0, so that Y;3 > 0 for every t € IR,. We shall
briefly describe the same steps as in the case of a defaultable asset with total default.
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Pricing PDE and replicating strategy

We are in a position to derive the pricing PDEs. For the sake of simplicity, we assume that Y! is
the savings account, so that Proposition 5.4.3 is a counterpart of Corollary 5.4.2. For the proof of
Proposition 5.4.3, the interested reader is referred to Bielecki et al. [18].

Proposition 5.4.3 Let 0y # 0 and let Y, Y2, Y? satisfy
dY; = rY,} dt,
dY? = Y;Z (,u2 dt + oo th),
dYy =Y (s dt + o5 AW, + kg dMy).
Assume, in addition, that oo(r — ps) = os(r — p2) and k3 # 0, k3 > —1. Then the price of a

contingent claim Y = G(Y2, Y3, Hr) can be represented as m(Y) = v(t, Y2, Y2, Hy), where the
pricing functions v(-;0) and v(-;1) satisfy the following PDFEs

Ov(t, y2,y3;0) + ry202v(t, Y2, y3; 0) + y3 (1 — K37y) O3v(t, y2,y3;0) — rov(t, y2,y3;0)
3

1
+5 > oioyiy;0iv(t y2,y3; 0) + v (v(t, y2, ys(1+ K3 ); 1) — 0(t, 2, 3;0)) =0
i,j=2

and

Opu(t, y2,ys; 1) + 1y2020(t, Y2, y3; 1) + 1y303v(t, y2,y3; 1) — ro(t, y2,y3; 1)
3

1
T3 .Zz 0:0;Yiy;0i;v(t, Y2, y3;1) = 0
1,]=

subject to the terminal conditions
U(T7 Y2,Y3; 0) = G(?J% Y33 0)7 U(T> Y2,Y3; 1) = G(y27 Ys3; 1)

The replicating strategy ¢ equals

1 3

Qﬁ? = WZaiyiaiv(t,Yf,Ki,Ht—)
toi=2
T (0 YA Y (L)1) (e Y2,V 0)
t
1
O = o (0 YAV k)i 1) — ot VPV 0)),
t7

and 6} is given by 9} +GRY2 + 6}V = Ci.

Hedging of a survival claim

We shall illustrate Proposition 5.4.3 by means of examples. First, consider a survival claim of the
form

Y = G(ng Y’I?’)a HT) = ]1{T<T}9(YJ§)'

Then the post-default pricing function v9(- ;1) vanishes identically, and the pre-default pricing func-
tion v9(-;0) solves the PDE

O (+50) + ry202v9(-50) 4+ ys (r — k37y) 93v9(-;0)

3

1 Z
g 2 f“’jyiyjaijvg('?o) —(r+y)v?(-;0)=0

i,j=
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with the terminal condition v9(T, ya,y3;0) = g(y3). Denote a = r — k3y and 8 = v(1 + K3).

It is not difficult to check that v9(t,ys,ys3;0) = T ~Du*93(¢ y3) is a solution of the above
equation, where the function w(t,y) = v*93(t,y) is the solution of the standard Black-Scholes PDE
equation

1
Oyw + yadyw + iogyzayyw —aw=0

with the terminal condition w(T,y) = g(y), that is, the price of the contingent claim g(Yr) in the
Black-Scholes framework with the interest rate a and the volatility parameter equal to o3.

Let C} be the current value of the contingent claim Y, so that
Cy = Ty T Dp™93(, V7).

The hedging strategy of the survival claim is, on the event {t < 7},

1 1
(b?}/tiﬂ — _76_[3(T_t)1}a’g’3(t7}/;3) — _761157

K3 K3
e = 2 (e P00 ) - YY)

Hedging of a recovery payoff

As another illustration of Proposition 5.4.3, we shall now consider the contingent claim G(Y2, Y32, Hr) =
II{TZT}g(YTQ), that is, we assume that recovery is paid at maturity and equals g(Y?). Let v9 be
the pricing function of this claim. The post-default pricing function v9(-;1) does not depend on ys.
Indeed, the equation (we write here ys = y)

1
O (-5 1) +rydyv? (-5 1) + 5”5923@”}”9(' ;1) —rv?(-51) =0,

with v9(T,y;1) = g(y), admits a unique solution v™92, which is the price of g(Y7) in the Black-
Scholes model with interest rate r and volatility os.

Prior to default, the price of the claim can be found by solving the following PDE

09 (+;0) + 1y209v7(+;0) + y3 (r — k3y) O3v9(+;0)
3

+ % > 0iojyiy;0i09(50) — (r + )09 (50) = =709 (£, 23 1)
i,j=2
with v9(T, y2,y3;0) = 0. It is not difficult to check that
VI (t, 12, y3;0) = (1 — YD) 92 (¢ ).
The reader can compare this result with the one of Example 5.4.1. e now assume that
dY? = Y2 (uzdt + o3 dW; + k3 dM;)
with k3 > —1 and k3 # 0. We assume that Y > 0, so that Y;*> > 0 for every ¢t € IRy. We shall

briefly describe the same steps as in the case of a defaultable asset with total default.

Arbitrage-free property

As usual, we need first to impose specific constraints on model coefficients, so that the model is
arbitrage-free. Indeed, an e.m.m. Q! exists if there exists a pair (6, ¢) such that

Ki — K1 K1

i(o U1)+Q&1+H1 w1 — i +o1(op —o1) + &k fil)lJrK1

. i=23.
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To ensure the existence of a solution (6, () on the set 7 < ¢, we impose the condition

H1— p2 M1 — 13
e B

g1 )
01 — 02 01— 03

that is,
pi(os — 02) + p2(o1 — 03) + pz(o2 — 1) = 0.
Now, on the set 7 > ¢, we have to solve the two equations
Oi(o2 —01) = p1— p2 +o1(o2 —01),
0i(03 — 01) + Gyks = p1 — p3 +o1(oz —o1).

If, in addition, (o2 — o1)k3 # 0, we obtain the unique solution

9 — H1— H2 H1 — M3
=01 — =01 — )

g1 — 09 01 — 03
¢=0> -1,

so that the martingale measure Q' exists and is unique.

5.4.3 Two defaultable assets with total default

We shall now assume that we have only two assets, and both are defaultable assets with total default.
We shall briefly outline the analysis of this case, leaving the details and the study of other relevant
cases to the reader. We postulate that

dYy =Y (pidt + o; dWy — dM,), i =1,2, (5.56)

so that
Vi =lgeny', Y72 =1pen Y7,

with the pre-default prices governed by the SDEs
AV} =Y (i +7) dt + ;. dW,), i = 1,2.
In the case where the promised payoff X is path-independent, so that
Xlyrery = GV, YP) Iirary = GV, Y7) I rery

for some function G, it is possible to use the PDE approach in order to value and replicate survival
claims prior to default (needless to say that the valuation and hedging after default are trivial here).

We know already from the martingale approach that hedging of a survival claim X1 p.;y is
formally equivalent to replicating the promised payoff X using the pre-default values of tradeable
assets

dY} =Y (i +) dt + 0, dWy), i =1,2.

We need not to worry here about the balance condition, since in case of default the wealth of the
portfolio will drop to zero, as it should in view of the equality Z = 0.

We shall find the pre-default pricing function v(¢, y1, y2), which is required to satisfy the terminal
condition v(T, y1,y2) = G(y1,¥2), as well as the hedging strategy (¢*, ¢?). The replicating strategy
¢ is such that for the pre-default value C of our claim we have C; := v(t, Y}, V2) = ¢}V,! + ¢2Y2,
and

dCy = ¢} dY}! + ¢2 dY2. (5.57)
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Proposition 5.4.4 Assume that o1 # 0. Then the pre-default pricing function v satisfies the PDE

@v+m(m+w—oJ”“)aw+y20@+v—@“2’“)@v
09 — 01 02 — 01

1 —
+ B (y%a-f@nv + y505000 + 2y1y20102812v) = (Ml +ty—o01 H) v
2 — 01

with the terminal condition v(T,y1,y2) = G(y1, y2)-

PRrROOF: We shall merely sketch the proof. By applying Itd’s formula to v(t, 37;1, }N/t2)7 and com-
paring the diffusion terms in (5.57) and in the It6 differential dv(t,Y;',Y;?), we find that

Y101010 + Y202000 = ¢ y101 + ¢ y200, (5.58)
where ¢! = ¢'(t,y1,y2). Since ¢ry; = v(t,y1,y2) — ¢?y2, we deduce from (5.58) that
Y101010 + Y202000 = vo1 + ¢*y2(02 — 01),

and thus
_ 4101010 + Y202020 — vOy

Y2
09 — 01
On the other hand, by identification of drift terms in (5.58), we obtain
o+ y1(pr + )0 + ya(p2 +7)dov
1
+ 5 (yfaf@uv + y%agamv + 2y1y20'10'2(912’0)
= Oyl +7) + O y2(p2 + 7).

Upon elimination of ¢! and ¢2, we arrive at the stated PDE. (]

Recall that the historically observed drift terms are f; = p; + 7y, rather than p;. The pricing
PDE can thus be simplified as follows:

. L2 — [ ~ Lo — [
5tv+y1(u1—01'u u>aw+y2(uz—azu M)azv

02 — 01 02 — 01

m—m>

1 Y
+3 (y%(/’%anv + y3050200 + 2y1y20102812v> =v (Nl -~
2 — 01

2

The pre-default pricing function v depends on the market observables (drift coefficients, volatilities,
and pre-default prices), but not on the (deterministic) default intensity.

To make one more simplifying step, we make an additional assumption about the payoff function.
Suppose, in addition, that the payoff function is such that G(y1,y2) = y19(y2/y1) for some function
g : Ry — IR (or equivalently, G(y1,y2) = y2h(y1/y2) for some function h : IRy — IR). Then we
may focus on relative pre-default prices C; = Cy(Y;})~! and Y2! = Y2(Y;!)~!. The corresponding
pre-default pricing function v(¢, z), such that C, = v(t, Yf’l) will satisfy the PDE

1 ~
aﬂ) + 5(0’2 — 0'1)222822’0 =0

with terminal condition ¥(T), z) = g(z). If the price processes Y'! and Y2 in (5.49) are driven by the

correlated Brownian motions W and W with the constant instantaneous correlation coefficient p,
then the PDE becomes

1
040 + 5(03 + 0’% - 2p0102)228zzﬁ =0.

Consequently, the pre-default price C~'t = f’tl@(t, }7;2’1) will not depend directly on the drift coefficients
111 and fio, and thus, in principle, we should be able to derive an expression the price of the claim in
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terms of market observables: the prices of the underlying assets, their volatilities and the correlation
coefficient. Put another way, neither the default intensity nor the drift coefficients of the underlying
assets appear as independent parameters in the pre-default pricing function.

Before we conclude this work, let us stress once again that the martingale approach can be used
in a fairly general set-up. By contrast, the PDE methodology is only suitable when dealing with a
Markovian framework.
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Chapter 6

Indifference pricing

6.1 Defaultable Claims

A defaultable claim (X7, X2, 7) with maturity date T consists of:
e The default time 7 specifying the random time of default and thus also the default events
{r <t} for every t € [0,T]. Tt is always assumed that 7 is strictly positive with probability 1.

e The promised payoff Xy, which represents the random payoff received by the owner of the
claim at time T, if there was no default prior to or at time 7. The actual payoff at time T
associated with X7 thus equals X1, ~7y. We assume that X; is an Fr-measurable random
variable.

e The recovery payoff Xo, where X5 is an Fp-measurable random variable which is received by
the owner of the claim at maturity, provided that the default occurs prior to or at maturity
date T.

In what follows, we shall denote by X = X117, + X2l < the value of the defaultable contingent
claim at maturity.

6.1.1 Hodges Indifference Price

In this section we discuss the concept of Hodges indifference price in our setup. When considering
Hodges indifference prices one starts with a given utility function, say u. Typically, u is assumed to
be strictly increasing and strictly concave. We shall also apply a similar methodology in the case
where u is assumed to be strictly convex (namely u(x) = z?) for quadratic hedging. In this case
however one can not use the term indifference price and one solves a minimization problem.

Problem (P): Optimization in the default-free market.

The agent invests his initial wealth v > 0 in the default-free financial market using a self-financing
strategy. The associated optimization problem is,

(P) : V(v):= sup Ep{u(vqy(qb))},
PED(F)

where the wealth process (V; = V,V(¢), t < T), is solution of
dVi = rVidt + ¢ (dSy — rSidt), Vo =wv. (6.1)

Here ®(F) is the class of all F-adapted, self-financing trading strategies.

119
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Problem (771?( ): Optimization in the default-free market using F-adapted strategies and
buying the defaultable claim.

The agent buys the defaultable claim X at price p, and invests his remaining wealth v — p in
the default-free financial market, using a trading strategy ¢ € ®(F). The resulting global terminal
wealth will be

Vi () = VTP (9) + X.

The associated optimization problem is

(PR) : VE(v—p):= sup Ep{u(VZ7P(¢)+X)},
PeR(F)

where the process VV7P(¢) is solution of (6.1) with the initial condition V' "(¢) = v —p. We
emphasize that the class ®(F') of admissible strategies is the same as in the problem (P), that is,
we restrict here our attention to trading strategies that are adapted to the reference filtration F.

Problem (P&): Optimization in the default-free market using G-adapted strategies and
buying the defaultable claim.

The agent buys the defaultable contingent claim X at price p, and invests the remaining wealth
v — p in the financial market, using a strategy adapted to the enlarged filtration G. The associated
optimization problem is

(P&) : V(@ —p):= sup Ep{u(Vy "(¢)+X)},
PeP(G)

where ®(G) is the class of all G-admissible trading strategies.

Remark. It is easy to check that the solution of

(Pg) : sup EP{U(V}’(QZ)))},
PED(G)

is the same as the solution of (P).

Definition 6.1.1 For a given initial endowment v, the F-Hodges buying price of the defaultable
claim X is the real number py(v) such that

V(v) = VX (v —pp(v)).
Similarly, the G-Hodges buying price of X is the real number pg (v) such that V(v) = V§ (vfpa (v))

Remark 6.1.1 We can define the F-Hodges selling price p¥ (v) of X by considering —p, where p is
the buying price of —X, as specified in Definition 6.1.1.

If the contingent claim X is Fp-measurable, then (See Rouge and ElKaroui[78]) the F- and the
G-Hodges selling and buying prices coincide with the hedging price of X, i.e.,

pi(v) = pa(v) = Ep(CrX) = Eg(X) = pi (v) = pi (v),

where we denote by ¢ the deflator process (; = ne™"t.

6.2 Hodges prices relative to the reference filtration

In this section, we study the problem (Pg) (i.e., we use strategies adapted to the reference filtra-
tion). First, we compute the value function, i.e., VE(v — p). Next, we establish a quasi-explicit
representation for the Hodges price of X in the case of exponential utility. Finally, we compare the
spread obtained via the risk-neutral valuation with the spread determined by the Hodges price of a
defaultable zero-coupon bond.
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6.2.1 Solution of Problem (Pg)

In view of the particular form of the defaultable claim X it follows that

VTP X(9) = Loy (VETP(0) + X1) + Lrary (V2P (9) + Xa).

Since the trading strategies are F-adapted, the terminal wealth V.~ ?(¢) is an Fr-measurable random
variable. Consequently, it holds that

Ep [u(Vy P (9)] =
= Ee (u(V5P(0) + X1)Uprsry +u(Ve P(9) + Xo) Lgr<ry)
= Ep (Be [u (V7 "(0) + X1) Lrory +u (Vi 7 (6) + Xo) Lry | Fr))
Ep [u(Vy P(¢) + X1)(1 — Fr) +u(Vy "(¢) + X2) Fr],
where Fr =P {7 < T|Fr}. Thus, problem (Pg) is equivalent to the following problem:
(Pe) : VX(v—p):= sup Ep(Jx(Vz "(9),")),
PED(F)

where

Ix(y,w) = u(y + X1 (w))(1 = Fr(w)) + u(y + Xo(w)) Fr(w),
for every w € Q and y € IR. The real-valued mapping Jx (-, w) is strictly concave and increasing. Con-
sequently, for any w € ), we can define the mapping I'x (z,w) by setting Ix(z,w) = (Jé((-,w))_l(z)
for z € IR, where (J%(-,w))™! denotes the inverse mapping of the derivative of Jx with respect to
the first variable. To simplify the notation, we shall usually suppress the second variable, and we
shall write Ix () in place of Ix(-,w).

The following lemma provides the form of the optimal solution for the problem (Px ),

Lemma 6.2.1 The optimal terminal wealth for the problem (Pg ) is given by Vi P = Ix (N (r),
P-a.s., for some A* such that

v—p=Ep(CrVy 7). (6.2)
Thus the optimal global wealth equals Vvap’Xﬁ = Vi P4+ X = Ix(X*(r)+ X and the value function
of the objective criterion for the problem (Pg) is

VE(w —p) = Ep(u(Vy ")) = Ep(u(Ix (\'¢r) + X)) (6.3)

PROOF: It is well known (see, e.g., Karatzas and Shreve [128]) that, in order to find the optimal
wealth it is enough to maximize u(A) over the set of square-integrable and Fr-measurable random
variables A, subject to the budget constraint, given by

Ep(¢rA) <v—p.

The mapping Jx (+) is strictly concave (for all w). Hence, for every pair of Fpr-measurable random
variables (A, A*) subject to the budget constraint, by tangent inequality, we have

Es{Jx(8) ~ Jx(A)} < Eo{(A— AT (A%},
For A* = V77" given in the formulation of the Lemma we obtain
Ep{Jx (D) — Jx (VE7%)} < MEp{Cr(A — V2 P5)} <0,

where the last inequality follows from the budget constraint and the choice of \*. Hence, for any
¢ € O(F),

Ee{Jx (V7 "(9)) — Jx (Vi "")} 0.
To end the proof, it remains to observe that the first order conditions are also sufficient in the case of
a concave criterion. Moreover, by virtue of strict concavity of the function Jx, the optimal strategy
is unique. O
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6.2.2 Exponential Utility: Explicit Computation of the Hodges Price

For the sake of simplicity, we assume here that r = 0.

Proposition 6.2.1 Let u(z) = 1 — exp(—ox) for some o > 0. Assume that the random variables
Cre=2Xi i =1,2 are P-integrable. Then the F-Hodges buying price is given by

1
pe(v) = - Ep (CrIn((1 — Fr)e % + Fre=9%?)) = Ep(¢r V),
where the Fr-measurable random variable ¥ equals

1
U =——In((1—FPr)e ¢ + Fre 2%2). (6.4)
0

Thus, the F-Hodges buying price pi(v) is the arbitrage price of the associated claim V. In addition,
the claim ¥ enjoys the following meaningful property

Ep{u(X — ) |Fr} =0. (6.5)

PROOF: In view of the form of the solution to the problem (P), we obtain
V% 1 ,U/*CT )
Vit =—=In{—=|.
g 0 ( 0

The budget constraint Ep(¢rVy™) = v implies that the Lagrange multiplier p* satisfies

%ln (lto*) = —éEP(CT IHCT) — . (66)

The solution to the problem (Pg) is obtained in a general setting in Lemma 6.2.1. In the case of
an exponential utility, we have (recall that the variable w is suppressed)

Jx(y) = (1 — e_g(y+X1))(1 - FT) + (1 - e—g(y-{-Xz))FT’

so that
J5(y) = ge’gy(e’gxl(l — Fp)+ 679X2FT).

Thus, setting
A=e 2 (1~ Fr)+e ¢ 2Fp = e 0¥,

r=-4m () -2u() -+

It follows that the optimal terminal wealth for the initial endowment v — p is

L1 )\*CT) 1 (A) 1
VU p, :—ln< :—7111 —_— —*hl —\117
T 0 Ap 0 0 0 r

where the Lagrange multiplier \* is chosen to satisfy the budget constraint Ep(¢rVy ") = v — p,
that is,

we obtain

éln ();:) = _éEP(CTlnCT) —Ep(gT\I/) —U+p. (67)

(From definition, the F-Hodges buying price is a real number p* = pj(v) such that

Ep(exp(—oVy™)) = Ep(exp(—g(VTE*p*’* + X)),
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where p* and A* are given by (6.6) and (6.7), respectively. After substitution and simplifications,
we arrive at the following equality

Ep{ exp ( — o(Ep(Cr¥) —p* + X — \p))} — 1 (6.8)

It is easy to check that
EP(E—Q(X—‘I’) ‘]:T) =1 (6.9)

so that equality (6.5) holds, and Ep(e¢X~%)) = 1. Combining (6.8) and (6.9), we conclude that
p;‘(v) = EIP(CT\P) O

We briefly provide the analog of (6.4) for the F-Hodges selling price of X . We have pF (v) = Ep(¢7 V),
where

1
U = =1In((1 — Fr)e?™ + Fre®*?). (6.10)
0

Remark 6.2.1 It is important to notice that the F-Hodges prices pj(v) and pF (v) do not depend
on the initial endowment v. This is an interesting property of the exponential utility function. In
view of (6.5), the random variable ¥ will be called the indifference conditional hedge.

From concavity of the logarithm function we obtain
In((1 — Fr)e %%t + Fre=¢%2) > (1 — Fr)(—0X1) + Fr(—oXa2).
Hence, using that (7 is Fpr-measurable,

pr(v) < Ep(Cr((1 — Fr)X1 + FrXs)) = Eg(X).

Comparison with the Davis price. Let us present the results derived from the marginal utility
pricing approach. The Davis price (see Davis [57]) is given by
Ep{u (V") X
oy < B0
V'(v)
In our context, this yields

d*(’U) = ]E]P’{CT(XIFT + X2(1 — FT))}

In this case, the risk aversion ¢ has no influence on the pricing of the contingent claim. In particular,
when F' is deterministic, the Davis price reduces to the arbitrage price of each (default-free) financial
asset X', 7 =1, 2, weighted by the corresponding probabilities Fr and 1 — Frp.

6.2.3 Risk-Neutral Spread Versus Hodges Spreads

In our setting the price process of the T-maturity unit discount Treasury (default-free) bond is
B(t,T) = e~ "(T=1)_ Let us consider the case of a defaultable bond with zero recovery, i.e., X; = 1
and X5 = 0. Tt follows from (6.10) that the F-Hodges buying and selling prices of the bond are (it
will be convenient here to indicate the dependence of the Hodges price on maturity T')

D5(0,T) = fé Ez{CrIn(e¢(1 — Fr) + Fr)}

and )
DF(0,17) = p Ep{(rIn(e?(1 — Fr) + Fr)},
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respectively.

Let @ be a risk-neutral probability for the filtration G, that is, for the enlarged market. The
“market” price at time t = 0 of defaultable bond, denoted as D°(0,T), is thus equal to the expec-
tation under Q of its discounted pay-off, that is,

D°(0,T) = Eg (L r>my Rr) = Eg((1 - Fr)Rr),
where F, = Q{7 < t|F;} for every t € [0,T]. Let us emphasize that the risk-neutral probability

Q is chosen by the market, via the price of the defaultable asset. The Hodges buying and selling
spreads at time t = 0 are defined as

. _ 1. Dg(0,7)
S'(0.7) = 5 n T
and P )
1 DF(0,T
(0,7) = — = 02
5(0.1) = =7 In 557

respectively. Likewise, the risk-neutral spread at time t = 0 is given as

1. D°0,T)
0 - p =27
SY(0,T) = Tln 0.7

Since Di(0,0) = DF(0,0) = D°(0,0) = 1, the respective backward short spreads at time t = 0 are
given by the following limits (provided the limits exist)

d* In D;(0,T)

* — 1' * T — ‘ .
s™(0) lim & (0,7) e reo "
and . F( )
dtIn DS (0, T
* =1i * 7T = - - ’ -
$4(0) Tnl%S (0,7) T . r
respectively. We also set
dtInD°(0,T)
°(0) = lim $°(0,7) = - S22
s7(0) lim & (0,7) - reo "

Assuming, as we do, that the processes ﬁT and Fr are absolutely continuous with respect to the
Lebesgue measure, and using the observation that the restriction of Q to Fr is equal to Q, we find
out that

1?((00,’7?)) - iEQ{m(ef@(kFTHFT)}
T T
= —%EQ{ln(e_Q(l—/o ftdt)+/0 ftdt)}’
and
lm - %EQ{ln(eg(l—FT)-l-FT)}
_ ;EQ{IH<69(1/OTftdt)+/0Tftdt)}'
Furthermore,
D%0,7)

m:EQ(l—ﬁT):EQ(l—/OTﬁdt).
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Consequently, L
1
s*(0) = P’ (e =1)fo, 5:(0)= 0 (1—e7?)fo,

and s°(0) = fo. Now, if we postulate, for instance, that s,(0) = s°(0) (it would be the case if the
market price is the selling Hodges price), then we must have

fo= (=)= o (1= )

so that 79 < 7p. Similar calculations can be made for any ¢ € [0,T]. It can be noticed that, if
the market price is the selling Hodges price, fo corresponds to the risk-neutral intensity at time 0
whereas -y, is the historical intensity. The reader may refer to Bernis and Jeanblanc [12] for other
comments.

6.2.4 Recovery paid at time of default

Assume now that the recovery payment is made at time 7, if 7 < 7. More precisely, let (X, ¢ > 0)
be some F-adapted process. If 7 < T, the payoff X is paid at time ¢ = 7 and re-invested in the
riskless asset. The terminal global wealth is now

(Vp(m) + X0)hper + (Vo 7 (7) + Z7) s
where Z; = X?eT(T*t), and we are still interested in optimization of wealth at time T

The corresponding optimization problem is

(PE): V(v —p) = sup Ep(U(VyP(d)+ X1)lrar + UVEP(0) + Zo)r<r) .
PEDP(F)

The supremum part above can be written as

sup Ex{J(V;7"(6))},
PED(F)

where, for P-a.e. w € Q,

Ty w) = Uly + X1 (@))(1 — Fr(w)) + / Uly + Zo(w)) fud.

Let us introduce the conditional indifference hedge:

1 T
D= _Eln(/o exp(—07Z;) fedt + exp(—o0X1)(1 — FT)) (6.11)

We have the following result,

Théoréme 6.1 Assume that supy<,<pexp(—0Z;) and exp(—oX*') are Q-integrable. The Hodges
price of (X, X?3) is the arbitrage price of the indifference conditional hedge®, the pay-off of which
is given by (6.11).

PROOF: Observe first that problem (73FZ ) can be written as
V(e —p)= sup Ep{exp(—o[Vy "(¢)+®])}.
PED(F)

Thus, problem (7315 ) is the same as problem (Py) with X = ®, so that finding the Hodges price
of (X1, X3) amounts to finding the Hodges price of ®. But now, the claim ® is a Fr-measurable
random variable. Thus, its Hodges price must coincide with its arbitrage price.

([l

Observe that ® is a pay-off at time 7. However, at time of default selling the derivative ® yields
enough money to obtain the utility needed.
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6.3 Optimization Problems and BSDEs

We now consider strategies ¢ that are predictable with respect to the full filtration G. The dynamics
of the risky asset (St, ¢t > 0) are
dSt = St (Z/dt + O'th). (612)

In order to simplify notation, we denote by (&,t¢ > 0) the G-predictable process such that
dM; = dH; — & dt is a G-martingale, i.e., & = (1 — H;_).)

We assume for simplicity that » = 0, so that now 6 = v/o, and we change the definition of
admissible portfolios to one that will be more suitable for problems considered here: instead of using
the number of shares ¢ as before, we set 1 = ¢S, so that 7w represents the value invested in the
risky asset. In addition, we adopt here the following relaxed definition of admissibility of trading
strategies.

Definition 6.3.1 The class II(F) (II(G), respectively) of F-admissible (G-admissible, respectively)
trading strategies is the set of all F-adapted (G-predictable, respectively) processes m such that

fOT 72 dt < oo, P-a.s.

The wealth process of a strategy m satisfies

AVi(m) = (vdt + odW,). (6.13)

Let X be a given contingent claim, represented by a Gr-measurable random variable. We shall
study the following problem:

sup  Ep{u(V{(r)+ X)}.
Tell(G)

in the case of the exponential utility. In a last step, for the determination of Hodges’ price, we shall
change v into v — p.

6.3.1 Optimization Problem

Our first goal is to solve an optimization problem for an agent who sells a claim X. To this end, it
suffices to find a strategy m € II(G) that maximizes Ep(u(V}(7) + X)), where the wealth process
(Vi = Vi (m),t > 0) (for simplicity, we shall frequently skip v and 7 from the notation) satisfies

d‘/;g = Qst dSt = 7Tt(l/dt + O'th), ‘/0 = .
We consider the exponential utility function u(xz) =1 — e~ 2%, with ¢ > 0. Therefore,

sup Ep{u(VE(m)+X)} =1— inf Ep(e 2V7(Me—0X),
T€ll(G) plulVi(m) )} rell(G) 7 ( )

We shall give three different methods to solve inf cr(q) Ep (e*QVTv(”)e*QX).

Direct method

We describe the idea of a solution; the idea follows the dynamic programming principle.

Suppose that we can find a G-adapted process (Z;,t > 0) with Zp = e~2X | which depends
only on the claim X and parameters p,o,v, and such that the process (e’QVtv(“)Zt,t > 0)is a
(P, G)-submartingale for any admissible strategy 7, and is a martingale under P for some admissible
strategy m* € II(G). Then, we would have

Ep(e_QVTv(ﬂ—)ZT) > e_gvov(ﬂ)Zo =e %7
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for any 7 € II(G), with equality for some strategy 7* € II(G). Consequently, we would obtain

inf Ep(e—eY2(Me=0X) _ i, (e—eVF (@) g—eX) _ —ovy 6.14
nf Br(e™ @ MemeX) = Bp(e=?Feme) = e, (040

and thus we would be in the position to conclude that 7* is an optimal strategy. In fact, it will
turn out that in order to implement the above idea we shall need to restrict further the class of
G-admissible trading strategies to such strategies that the ”martingale part” in (6.16) determines a
true martingale rather than a local-martingale.

In what follows, we shall use the BSDE framework. We refer the reader to the chapter by
ElKaroui and Hamadéne in the volume on Indifference prices and to the papers of Barles (1997),
Rong [165] and the thesis of Royer [166] for BSDE with jumps.

We shall search the process Z in the class of all processes satisfying the following BSDE
dZ; = zp dt + /Z\t dW,; + Zt th, te [O,T[, I = B_QX, (615)

where the process z = (z¢,t > 0) will be determined later (see equation (6.18) below). By applying
1t6’s formula, we obtain

1
d(e=eVt) = ¢=V <<2 o’rio? — QTFtl/) dt — omo th) ,

so that
1 -~
dle V7)) = e % (2 + Zt(igzﬂ'faQ — om) — om0 %) dt
+e V(2 — om0 Zy) AW, + %, dM). (6.16)

Let us choose * = (7}, t > 0) such that it minimizes, for every ¢, the following expression
1 - - 1
Zt(§ 927rfa2 — gmy) — om0z = —om(VZy + 0Zy) + 3 Q2ﬂfJ2Zt.

It is easily seen that, assuming that the process Z is strictly positive, we have

W:=W=;(9+z). (6.17)
Now, let us choose the process z as follows
2 = Zy <Q71'z<l/ — % QQ(WD202> + om; 0%
= om; (Zw+oz) — % 02 (1)%0?Z, = (VZ;U—Z;?)Q
_ %o?zt 0%+ 2%23 . (6.18)

Note that with the above choice of the process z the drift term in (6.16) is positive for any admissible
strategy m, and it is zero for m = 7*.

Given the above, it appears that we have reduced our problem to the problem of solving the
BSDE (6.15) with the process z given by (6.18), i.e.,

dZ; = (%GQZt + G/Z\t + ig’?)dt + /Z\tth + thMt, te [O,T‘)7
(6.19)
Zp = e—oX

In fact, assuming that (6.19) admits a solution (Z,Z,Z), so that with 7 = 7* the "martingale part”
in (6.16) is a true martingale part rather than a local-martingale part, then the process

1 2
«— ~ (p 7),
Tt ga(Jth
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will be an optimal portfolio, i.e.,

inf Ep(efgv%)(“)eng) = Ep(efgv%(”*)efgx) .
T€Il(G)

However, this BSDE is not of standard. This is a BSDE with jumps, and existence theorems

and comparison theorems are known only if the driver is Lipschitz. Hence, we shall establish the
existence using another approach, an approach due to Mania and Tevzadze.

Mania and Tevzadze approach
In a very general setting, when the underlying asset is of the form
dSt = th + )\td<ﬁb>t

where p is a continuous local martingale, Mania and Tevzadze [154, 153] study the family of processes

T
Vi(v) = mq?x]Ep(U(v + /t ¢sdSs)|Gt)

where v is a real-valued deterministic parameter. They establish that the process (V(¢,v) = Vi (v),t >
0) (which depends on the parameter v) is solution of a BSDE

V(0) = G5 (Pult) 4 MV,(00) P+ (e, 00+ N,
V(T’ U) = U(U)a (620)

where N is a martingale orthogonal to p, and the optimal portfolio is proved to be

pult, Vi) = AV (8, Vi)

e N (A7)

Analysis of the proof of the equation (1.4) in Mania and Tevzadze [154] reveals that their results
carry to the case when

T
Vi(v) = max E(U(v —|—/ dsdSs + X)|G)
¢ t

for a claim X satisfying appropriate integrability conditions, in which case the process (V;(v),t > 0)
satisfies the BSDE (6.20) with terminal condition V(T,v) = U(v 4+ X). We note however that there
are several technical conditions postulated in Mania and Tevzadze [154] that need to be verified
before their results can be adopted.

In the particular case when the dynamics of the underlying asset follows
dSt = St(l/dt + O'th)

we have du; = SyodW,; and \; = v/(S;0?), and the BSDE (6.20) reads

S2 2
dV(t,v) o (el o) + GQLStvv(u v))2dt + p(t, v)SiodW; + dN,

2V (t, v
1

= m((p(t, v)oQSt + vV, (t, v))th + p(t,v)SodWy + dN;

where N is a martingale orthogonal to W (hence, in our setting a martingale of the form fg YsdMs).
The terminal condition is
V(T,v)=Uw+ X).
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and the optimal portfolio is
* Py + VUV/(GQSIE)
o = -5 2 .
v
Here, U is an exponential function. Thus, it is convenient to factorize process V as V(t,v) = e 2" Z,,

and to factorize process ¢ as p(t,v) = @(t)e9". It follows that Z satisfies

N v
() + O_Tsvtzt)z

27,

dZ; = SZo2dt + §(t)S;odWy + ANy,  Zp = e 9.

Setting z; = @(t)o S, we get

1
dZy = —(z + KZt)zdt + 2 dWy + dN;,  Zr = e X,
2Zt g

which is exactly equation (6.18), where N is a stochastic integral w.r.t. the martingale M, orthogonal
to W. Thus, it appears that a solution to equation (6.18) is given as

dNy
dM;

Zy =eV(t,v), z=o({t)oS;, and Z =

The optimal portfolio is
O'/Z\t + Ztl/

002 Z;
which is exactly (6.17).

Remark 6.3.1 Analogous results follow from by Mania and Tevzadze [154] where a more general
case of utility function is studied.

Duality Approach

We present now the duality approach (See for example Delbaen et al. [60], or Mania and Tevzadze
[153]). In the case dS; = S;(vdt + odWy), the set of equivalent martingale measure (emm) is the set
of probability measures Q¥ defined as

d(@wbt = Ltdﬂp|gt

where
dLy = Ly (—0dW; + ¢rdMy)

where 1 is a G-predictable process, with ¢» > —1 and 6 is the risk premium 6 = v/o. Indeed, using
Kusuoka representation theorem [138], we know that any strictly positive martingale can be written
of the form

dLy = Ly (.dWy + ¢ d M) .

The discounted price of the default-free asset is a martingale under the change of probability, hence,
it is easy to check that ¢; = —. (We have already noticed that the restriction of any emm to the

filtration F is equal to Q.) Let us denote by WtQ = Wy + 0t and ]\/4\t = M;— fg 1s€sds. The processes
WQ and M are Q¥ martingales. Then,

Ly

t t
exp <—9Wt — %0215 +/ ln(]- + 'l/)s)st - / ¢s§sd8)
0 0

2 t

t
exp <9Wg@ + % + / In(L+ 4y )d, + / (14 45) In(1 4+ 1) — ws]fsds)
0 0
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Hence, the relative entropy of Q¥ with respect to P is

T
H(me’) = EQUJ (hlLT) = EQUJ (;QQT + /0 [(1 + ¢s) hl(l + %) - '(/)5}5st> .

From duality theory, the optimization problem

inf Ep (e‘gvﬂg(”)e_gx)
mell(G)

reduces to maximization over 1 of
Lo
Egu (X — EH(Q IP)),
that is, maximization over v of

Clgpn 1T N _
E@z/; (X 290 T Q/O [(1 +¢5)1 (1 +ws) ¢s]§sd8> .

We solve this latter problem by operating
1 N o~
dUt = (Q[(l —|—1/1t) 11’1(1 —|—1/)t) —¢t]ft) dt—!—utthQ +Utht,
1
Ur = X-——0T
20

Setting Y; = o U; we obtain

([(L + ) In(1 + 1by) — Yel&) dt + GedW + JidM;,
Yr = oX-— %GQT.

dYy

In terms of the martingale M, we get

dYy = ([(1 + ) In(1 + ) — (1 + 3)]&) dt + GedW2 + God My,

The solution is obtained by maximization of the drift in the above equation w.r.t. 1, which leads
to 1+ 9, = ys. Consequently, the BSDE reads

dy, = — (eﬂt 1 gt) &t + G5, dWR + G, dM,, Yy = X — %921
and setting Z; = exp(—Y;) we conclude that
dz; = %ng?fdt — Z G dWR + ZF (¥ —1)dM,, Z; = exp(—oX + %92T)7
or, denoting 2; = —Z; s, % = Z;_(e¥* — 1)
dz; = %Efdt + 5 dW2 + ZdM,,  Z% = exp(—oX + %GQT),
t

which is equivalent to (6.19). (Note that Z; = Zfe_%ez(T_t).)
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6.3.2 Hodges Buying and Selling Prices
Particular case: attainable claims

Assume, as before, that » = 0 and let us check that the Hodges buying price is the hedging price in
case of attainable claims. Assume that a claim X is Fp-measurable. By virtue of the predictable
representation theorem, there exists a pair (z,Z), where x is a constant and Z; is an F-adapted

process, such that X = = + fo « dWQ | where W;@ Wi + 6t. Here 2 = EgX is the arbitrage

u

price of X and the replicating portfoho is obtained through z. Hence, the time ¢ value of X is
Xy =x+ fg 7,dWQ. Then dX; = 74 thQ and the process

Z, = 6762(T7t)/2engt
satisfies
iz, = (( 0% + - 92£§)dt+gfc} aw?)

1 ~
= 20’2Z (Z/Zt + UQZtZ‘t) dt + QZtJ?t th,

Zr = e 92X,

Hence (Z;, 0Z;@,0) is the solution of (6.19) with the terminal condition e=¢%, and
Zo = 6—92T/26—,ga: )

Note that, for X = 0, we get Zo = e~ T/2, therefore

inf E]p(efgv%)(”)) — 6*9v6702T/2'
Tell(G)

The G-Hodges buying price of X is the value of p such that

inf Ep(e ?7(M) = inf Ep(e oVr "(M+X)
m€ell(G) m€ell(G)

that is,

efgvefﬁzT/Z 79('u7p+]EQX)6702T/2.

=e
We conclude easily that p&(X) = EgX. Similar arguments show that p (X) = EgX.
General case

Assume now that a claim X is Gr-measurable. Assuming that the process Z introduced in (6.19) is
strictly positive, we can use its logarithm. Let us denote wt Zi) 7z =, 1/1:& Zy/z; = and

¥

Ky = ————=— > 0.
ln(l + wt)
Then we get R _
d(In Z;) = 3 0%dt + ¢y AW 2 + In(1 + ¢y (dMy + &(1 — ky) dt),
and thus N - -
d(In Z,) = £ 0%dt + ¢, AW + In(1 + 4y) dM;,
where

dl\/it = th + gt(l — Klt) dt = dHt — gtK/t dt.

The process Misa martingale under the probability measure @ defined as d@|gt = 7 dP|g,, where
7] satisfies
dify = —1i— (9 dWi + (1 — Ky) th)

with ﬁo =1.
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Proposition 6.3.1 The G-Hodges buying price of X with respect to the exponential utility is the
real number p such that e °WP) Z&K = e~V 70 that is, p&(X) = 07 In(Z20/Z8) or, equivalently,
Pe(X) = EgX.

Our previous study establishes that the dynamic hedging price of a claim X is the process
X, = E@(X | G¢). This price is the expectation of the payoff, under some martingale measure, as is
any price in the range of no-arbitrage prices.

Remark All the results presented in this section remain valid if v and ¢ are adapted processes.

6.4 Quadratic Hedging

We work under the same hypothesis as before; in particular, the wealth process follows
dVyP (m) = m(vdt + odWy), Vi (m)=wv.

In the last part of this section we shall study a more general case.
The objective of this section is to examine the issue of quadratic pricing and hedging. Specifically,
for a given P-square-integrable claim X € G, we study the following problems:

e For a given initial endowment v, solve the minimization problem:
min Ep((VE(7) — X)?).
™

A solution to this problem provides the portfolio which, among the portfolios with a given initial
wealth, has the closest terminal wealth to a given claim X, in the sense of L?-norm under the
historical probability P. The solution of this problem exists, since the set of stochastic integrals of
the form fOT ¢sdS; is closed in L2.

e Solve the minimization problem:

min Ez (V7 (7) — X)?).
The optimal value of v is called the quadratic hedging price and the optimal 7 the quadratic hedging
strategy.

The quadratic hedging problem was examined in a fairly general framework of incomplete markets
by means of BSDEs in several papers; see, for example, Mania [152], Mania and Tevzadze [154],
Bobrovnytska and Schweizer [29], Hu and Zhou [100] or Lim [149]. Since this list is by no means
exhaustive, the interested reader is referred to the references quoted in the above-mentioned papers.
The reader may refer to Bielecki et al. [14] for a study of the same problem under a constraint on
the expectation. Also, some additional references can be found in that paper.

6.4.1 Quadratic Hedging with F-Adapted Strategies

We shall first solve, for a given initial endowment v, the following minimization problem

: IE v _X 2
L in p((Vr(m) — X)%),

where X is given as
X =X1lir>ry + Xollr<ry

for some Fpr-measurable, P-square-integrable random variables X; and X5. Using the same approach
as in Section 6.2.1, we define

Ix(y) = (y—X1)*(1 = Pr) + (y — X2)*Fr
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and its derivative
Jx(y) =2y — X1)(1 = Fr) + (y — X2)Fr] = 2[y — Xi(1 — Fr) — XoFr].
Hence, the inverse of J% (y) is
Ix(2) = %z +X1(1-Fr)+ XoFr
and thus the optimal terminal wealth equals
Vi = DN+ X1 Fr) + XoPy,

where \* is specified through the budget constraint:

Bp(CrV3") = 50 Ee(Gh) + Er(Gr X (1 - Fr)) + Ba(GrXaFr) = v.
The optimal strategy is the one, which hedges the Fpr-measurable contingent claim

NCr+ X1(1 = Fr) + XoFp = 2727 (v — Eo(X))¢r + X1(1 — Fr) + XoFr .

We deduce that

min Ep((VE — X)?)

1 2
Ep <2/\*CT+X1(1—FT)+X2FT—X1> (1 - Fr)

1 2
+Ep (2/\*CT+X1(1—FT)+X2FT)—X2> Fr

= F(\)?Ep(G7) + Ep (X1 — X2)*Fr(1 - Fr))
1 2
= m (1} — E]P’(CT(Xl + FT(XQ — Xl)))
+Ep((X; — X2)?Fr(1 — Fr)).

It remains to minimize over v the right-hand side, which is now simple. Therefore, we obtain the
following result.
Proposition 6.4.1 If we restrict our attention to F-adapted strategies, the quadratic hedging price
of the claim X = XqW o7y + Xoll (<1} equals

Ep(¢r(X1 + Fr(X2 — X1)) = Eo(X1(1 — Fr) + FrXs).
The optimal quadratic hedging of X is the strategy which replicates the Fr-measurable contingent
claim Xl(l — FT) + FTXQ.

Let us now examine the case of a generic Gr-measurable random variable X. Here, we shall only
examine the solution of the second problem introduced above, that is,

min Bz (Vi () — X)?).

As explained in Bielecki et al. [176], this problem is essentially equivalent to a problem where we
restrict our attention to the terminal wealth so that we may reduce the problem to miny ¢z, Ep((V —
X)?). From the properties of conditional expectations, we have

min B ((V — X)?) = Ex((Be(X | Fr) - X)?)
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and the initial value of the strategy with terminal value Ep(X | Fr) is
Ep(CrEp(X | Fr)) = Ep(¢rX).

In essence, the latter statement is a consequence of the completeness of the default-free market
model. Indeed, the fact that the conditional expectation Ep(X | Fr) can be written as a stochastic
integral w.r.t. S follows directly from the completeness of the default-free market. In conclusion,
the quadratic hedging price equals Ep((rX) = EgX and the quadratic hedging strategy is the
replicating strategy of the attainable claim Ep(X | Fr) associated with X.

6.4.2 Quadratic Hedging with G-Adapted Strategies

Similarly as in the previous subsection we assume here that the price process of the underlying asset
obeys
dSt = St(l/dt + O'th).

The wealth process follows
dVyP (m) = m(vdt + odWy), Vi (m)=wv.
We shall first solve, for a given initial endowment v, the following minimization problem

in Ep((VE(r) — X)?).
_min. Be((Vi() = X)?)
As discussed in Bielecki et al.[176] one way of solving this problem is to project the random variable

X on the closed set of stochastic integrals of the form fOT psdSs. Here, we present an alternative
approach. We are looking for G-adapted processes X, © and ¥ such that the process

Ji(mv) = (VP (x) — X))@, + 0, Vielo,T], (6.21)

is a G-submartingale for any G-adapted trading strategy m and a G-martingale for some strategy
7*. In addition, we require that X7 = X, O = 1, &1 = 0 so that Jp(m,v) = (VF(r) — X)?. Let us
assume that the dynamics of these processes are of the form

dXt = It dt + /l’\t th + Et th, (622)
A0, = O (0, dt+ 9, dW, + 9, dM,), (6.23)
AU, =y dt+ P, dW; + by dM,, (6.24)

where the drifts x4, ¥4 and v, are yet to be determined. From Itd’s formula, we obtain (recall that
& =7l r>y)

d(‘/t — Xt)2 = 2(‘/,5 - Xt)(TFtO' — 53}) th — 2(‘/} — Xt_)./’l\?'t th
+ [(V;: - X - @)2 - (Vi — th)Q]th
+ (20 = Xo)(mw = @) + (mo — 70)°
+ (Vi X, = 5% = (Vi - X)) ) dt,

where we denote V; = V(7). Then, using integration by parts formula, we obtain by straightforward
calculations
Ji(m) = k(t, m, ¢, x4, 4 )dt + martingale

where
k(t, 0, g, 0, 00) = e + Oy [ﬁt(vt _X,)?
+2(V — Xo) [(mev — @) + (00 — By) + &4
+(mo —2)2 + &0+ 1)[(Vi — X, — 7)? — (Vi — Xt)QH :
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The process J(w) is a (local) martingale if and only if its drift term k(¢, 7, z¢, 9, ¢:) equals O for
every t € [0,T.

In the first step, for any ¢ € [0, T] we shall find 7} such that the minimum of k(t, 7, x¢, ¥4, 1) is
attained. Subsequently, we shall choose the processes z = x*,9 = 9¥* and ¢ = ¥* in such a way that
k(t,my, xy,95,¢F) = 0. This choice will imply that k(t, ¢, 25,95, 1;) > 0 for any trading strategy m
and any ¢ € [0, 7.

The strategy 7* which minimizes k(t, 7, x¢, s, 1) is the solution of the following equation:
(V¥ (x) = X)) (v + 0y0) + o(mo —F) =0, Vtel0,T).
Hence, the strategy 7* is implicitly given by
7 =08 — o v+ 0,0) (VP (nT) — X)) = A — BV (") — Xo),

where we denote N
At:O'_l/{E\t, Bt:O'_2(l/+’l9tO').

After some computations, we see that the drift term of the process J(n*) admits the following
representation:

k(t, m, 0, e, 1) = Uy + O4(Ve — X4)2 (0 — 0 BY)
+20,(Vi — Xo) (02 A By — 001 — 04F16s — 1) + O1&e(U; + 1)72.
From now on, we shall assume that the auxiliary processes ¢, x and @ are chosen as follows:
¥y =V = 0*B},
r, =2} =0’ AB, — D3y — 0,546y,
Y = = —0u& (D +1)37.

Straightforward computation verifies that if the drift coefficients ¢, x, in (6.22)-(6.24) are chosen
as above, then the drift term in dynamics of J is always non-negative, and it is equal to 0 for
T = Ay — Bi(V (") — Xu).

Our next goal is to solve equations (6.22)-(6.24). Since ¥; = 02 B2, the three-dimensional process
(0,9,1) is the unique solution to the linear BSDE (6.23)

d@t = @t(0_2(1/ + 1/9\150')2 dt + ’1/9\t th + {9175 th>, @T =1.
It is obvious that a solution is
0, =0, 9,=0, O, =exp(—0*(T—1t), Vtel0,T] (6.25)

The three-dimensional process (X, 7, ) solves equation (6.22) with x; = ] = 02A4,(v/0?) = 07;.
This means that (X, 7, z) is the unique solution to the linear BSDE

dXt = Gs?t dt + Et th + 55:& th, XT = X.

The unique solution to the last equation is X; = Eg(X |G;). The components T and Z are given
by the integral representation of the G-martingale (X;,¢ > 0) with respect to W@ and M, where
W;Q) = W; + 6t. Notice also that since = 0, the optimal portfolio 7* is given by the feedback
formula

T =0 (T — 0V (1) — Xy)).
Finally, since 9= 0, we have ¢, = —&,;770,. Therefore, we can solve explicitly the BSDE (6.24) for

the process . Indeed, we are now looking for a three-dimensional process (\I/,zZ, zﬂ/;), which is the
unique solution of the BSDE

AV, = —0,6,77 dt + Yy AW, + 1y dMy, U = 0.
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Noting that the process
t
U, + / 0.£,7% ds
0

is a G-martingale under P with terminal value fOT ©,£,72% ds, we obtain the value of ¥ in a closed
form:

v, Ep ( /t ! 0,¢,72 ds ‘ gt)

T
= / 6—02(T—s) EP(VSEEI‘-{T>5} ’ gt) ds
t

T
_ / o0 (T—5) Ep(ysﬁerﬁrs
t

Fy) ds (6.26)

where we have identified the process Z with its F-adapted version (recall that any G-predictable
process is equal, prior to default, to an F-predictable process).

Substituting (6.25) and (6.26) in (6.21), we conclude that for a fixed v the value function for our
problem is J;(v) = Jy(7*,v), where in turn

T
Je(m*,v) = (VP (7*) — Xt)Qe_az(T_t) +Mrsny / e (T Fp (ys@2e™ T | F) ds.
t

In particular,
T
Jy(v) = 6792T((U - Xo)? + Ep(/ 692S’YS§§67FS ds)).
0

The quadratic hedging price, say v*, is obtained by minimizing Jj(v) with respect to v. From the
last formula, it is obvious that the quadratic hedging price is v* = Xy = EgX. We are in the
position to formulate the main result of this section. A corresponding theorem for a default-free
financial model was established by Kohlmann and Zhou [136].

Proposition 6.4.2 Let a claim X be Gr-measurable and square-integrable under P. The optimal
trading strategy ©*, which solves the quadratic problem

: v o 2
ﬂgﬁl(%})EP((VT (m) — X)),

is given by the feedback formula
77 = 071 (@ — 6(VY (n7) — X)),
where Xy = Eq(X | Gy) for every t € [0,T], and the process Ty is specified by
dX, = 2, dWR2 + T, dM,.

The quadratic hedging price of X is EgX.

Example: Survival Claim

Let us consider a simple survival claim X = 1>z}, and let us assume that I' is deterministic,
specifically, T'(t) = fg v(s)ds. In that case, from the representation theorem (see Bielecki and
Rutkowski (2002), Page 159), we have dX; = T; dM; with z; = —el'®-T(T) | Hence

v, = EJP’(/tT 6858‘%2 ds ‘ gt)
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T
E]P’(/ 95’7(8):[]-{'r>s}CQF(S)_2F(T) ds ’ gt)
t
T
S T T ()—20(T) EIP’(/ e_gz(T_s),y(s)eF(s) ds ‘ ft)
t

T
= Il{T>t}eF(t)*2F(T)/ e*QQ(T*S)v(s)eF(S)ds.
t

One can check that, at time 0, the value function is indeed smaller that the one obtained with
F-adapted portfolios.

Case of an Attainable Claim

Assume now that a claim X is Fp-measurable. Then X; = Eq(X |G;) is the price of X, and it
satisfies dX; = ¥ thQ. The optimal strategy is, in a feedback form,

7_(_;; = 0'_1 (/(E\t — 9(‘/;5 — Xt))
and the associated wealth process satisfies
AV, = 7} (vdt + odW,) = 1ic dWRE = 07! (o2 —v(Vy — Xy)) AL

Therefore,
d(Vi = Xy) = —0(V; — X;) W2

Hence, if we start with an initial wealth equal to the arbitrage price EgX of X, then we that V; = X,
for every t € [0,T], as expected.

Hodges Price

Let us emphasize that the Hodges price has no real meaning here, since the problem min Ep((V})?)
has no financial interpretation. We have studied in Bielecki et al. [176] a more pertinent problem,
with a constraint on the expected value of Vi under P. Nevertheless, from a mathematical point of
view, the Hodges price would be the value of p such that

T
2 ~F —_
(v — (v —p)?) = / a1 )1 oy ds

In the case of the example studied in Section 6.4.2, the Hodges price would be the non-negative
value of p such that

T
Qup — p? = 2T / 692.9%61“5 ds.
0

Let us also mention that our results are different from results of Lim [149]. Indeed, Lim studies
a model with Poisson component, and thus in his approach the intensity of this process does not
vanish after the first jump.

6.4.3 Jump-Dynamics of Price

We assume here that the price process follows
dS; = Si_ (th + odW; + (det>, So >0

where the constant ¢ satisfy ¢ > —1 so that the price S; is strictly positive. Hence, the primary
market, where the savings account and the asset S are traded is arbitrage free, but incomplete (in
general). Tt follows that the wealth process follows

dVyP (m) = m(vdt + odWy + pdMy), Vi (m) =wv.
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As in the previous subsection, our aim is, for a given initial endowment v, solve the minimization

problem:
min Ep((VE (1) — X)?).

In order to characterize the value function we proceed analogously as before. That is, we are looking
for processes X, © and ¥ such that the process (for simplicity we write V; in place of V;(m))

Jt, W) =V, — Xt)29t + 0y

is a submartingale for any 7 and a martingale for some 7*, and such that UV =0, X7 = X, Op = 1.
(Note that Mania and Tevzadze[154] did a similar approach for continuous processes, with a value
function of the form J, = ®¢(t) + ®1(t)V; + ®2(t)V,2.) Let us assume that the dynamics of these
processes are of the form

dXy = fdt + 7 dWy + T,d My, (6.27)
dO, = O.(,dt + 0, dW; + U4dM;) (6.28)
AV, = dt + b dW; + b dM, (6.29)

where the drifts f;, 9; and i; have to be determined.
From Itd’s formula we obtain
d(V; — X;)? = 2(V; — X,) (o — Z)dW,
+ (Vi +mp— X —30)* — (Vi — X)) dM,
+ (2(Vt — X)) (mp — fi) + (mo — 3)?
+ & [(Vt + mp — Xy — Et)2 - (Vi — Xt)2 —2(Vy — Xy)(mep — ft)]) dt.
Process ©4(V; — X¢)? + ¥, is a (local) martingale iff k(m, f,9¢,10;) = 0 for all ¢, where
k(ﬂ-a 19’ f7 w) = w + ®t [ﬁt(‘/t - Xt)2
+ 2(Vi — Xy) ((77# — f) + Vu(mo — T) — Ex(mp — ft))
+ (7T0' — /.Z'\t)Q

+ G0+ D) (Vi +mp— X —5) = (Vi - X)) |-

In the first step, we find 7% such that the maximum of k(m) is obtained. Then, one defines
(f*,9*,9*) such that k(x# f* 9% 4*) = 0. This implies that, for any =, k(r, f*,9*,4*) < 0,
and that k(rf, f*,9*,¢*) = 0.

The optimal ¥ is the solution of
(Vi = Xo) (1 — &g + V10) + o(m0 — T4)
+ &G+ Dp(Vi + o — Xy —74) = 0.

hence
1 ~ ~ ~
ﬂ _ — ~
= - (0% + &V + 1)Ty) — (u+ 40 + &0 (Vi — Xy)
t 0_2 + ¢2£t(19t + 1) ( t t t t t t t t t )
= A —B(V: — Xy)
with
At = <O',1"\t + gt@('bvt + 1)%15) A;l
B, = (u 1+ 9,0 + §t<p5t) A

At = 0_2+S02§t({§t +1)
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After some computations the drift term of ©;(V; — X;) + U, is found to be
@t(‘/t - Xt)2(7—9t - BtzAt) Jr 261’(‘/1’ - Xt) (AtBtAt - ’;’\t&?t - gt{;t%t - ft)
+ 0 (0 + 1) (A — T1)? + Op(Aro — )2 + .

Then, we choose

07 = BIA
fi = ABA — 53 — §t5t5t
;= =050+ 1) (A — Ty)? — O4(Aro — Ty)”.

Let us suppose that with this choice of drifts equations (6.28)—(6.29) admit solutions (we shall discuss
this issue below). Next, let us denote these solutions as (@*,5*,15*), (X*,z*,z%) and (\I/*,QZ*MZ*);
the corresponding processes A, B and A will be denoted as A*, B* and A*. Consequently, the
drift term of ©F (V*(w) — X;) + Uy is non-positive for any admissible 7 and it is equal to 0 for
7= A; — B (V) () - X7).

The three dimensional process (0*, 1/9\*, 5*) is supposed to satisfy the BSDE

do, =

€] ((M + 00 + Ep0;)?

> dt + 9, dW, + 9,dM, (6.30)
o + 26 (0 + 1)

Or = 1.

We shall discuss this equation later.

The three dimensional process (X*,z*, %) is a solution of the linear BSDE

1 ~ ~ . ~
dXt = K (mytxt + Iigytxt) dt + .’Etth + l'tht
t
Xr = X
where _ . ~ ~ ~ ~
K1t = op+ op&ds — @206 (1 +9y), Ko = @& (14 9y) (1 + oV) — 0280, .
Thus,

X: = EQK (X|gt)7
where dQ"|g, = LE”)dPlgt and

AL — — ™ ELt g Rt an,) .
t t— ( At Wt + é—At t)

The three dimensional process (U*, 12*, zz*) is solution of

av; = -6 (gt(ﬁt + 1) (A — 7)* + (Ao — ft)2) dt + Yy dW; + PrdM,
Uy = 0.
Thus, noting that

t -~
w+£@%mm+mmwﬁﬁ+mw—@ﬂ%

is a G-martingale, we obtain that

Ui =F (/T 0, (53({9; 1) (A — 79)? + (Ao — @2) dsgt> . (6.31)
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Discussion of equation (6.30): Duality approach

Our aim is here to prove that the BSDE (6.30) has a solution. We take the opportunuity to correct
a mistake in Bielecki et al [176] where we claim that, in the particular case where the intensity ~;
is constant, we get a solution of the form @ constant. The solution that appear in Bielecki et al. is
valid only in the case P(7 < T) = 1. We proceed using duality approach.

The set of equivalent martingale measure is determined by the set of densities. From Kusuoka
[138] representation theorem, it follows that any strictly positive martingale in the filtration G can
be written as

st = Lt_ (ftth + Xtht) (632)

for a G-predictable process x satisfying x; > —1. In order that L corresponds to the Radon-Nikodym
density of an emm, a relation between ¢ and x has to be satisfied in order to imply that process
L;S; is a P (local) martingale. (Recall that » = 0.) Straightforward application of integration by
parts formula proves that the drift term of LS vanishes iff

oxiée + ol +v =0

Recall that by definition the variance optimal measure for L is a probability measure Q* such that it
minimizes Eg- (L%). At this moment we are unable to verify existence/uniqueness of such a measure
in the context of our model. We thus assume that the measure exists,

Hypothesis: We assume that the variance optimal measure exists.

In what follows we shall use the same argument as in Bobrovnytska and Schweizer [29]. Towards
this end we denote by L* the Radon-Nikodym density of the variance optimal martingale measure.
Let Z be the martingale Z; = Eg«(L%|G;) and U = L*/Z. Tt is proved in Delbaen and Shacher-
mayer [61] (Lemma 2.2) that, if the variance optimal martingale measure exists, then there exists a
predictable process z such that

dZt/th = /z\tdSt = Zt(O'th + QDth + l/dt)

where z; = 2;S;— (in the proof of lemma 2.2, the hypothesis of continuity of the asset is not required).
The process L* is a (P, G) martingale, hence there exist £ and x such that

dL; = L;_ (L, dW; + xdMy)
From Itd’s calculus, setting U = L*/Z, we obtain

dUt = Ut— (Atdt + (Et - ZtO')th + < (Xt + 1) - 1)) th) 5 UT = 1,

1+ 20
where
Ay = 2202+ &1+ 210 + —
¢ n Ee(1+ xe) (20 1+ 20
2 2
2 2 P
= 1
zi o + & ( +Xt)1+2t50
2
2( 2
= 1 .
Z; (a + & ( +Xt)1 Jrztgo)
We recall that ox:& + ol + v = 0. Hence, letting
ﬂt = gt — 20
~ 1
Uy = (Xt + 1) -1 3

14z
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we get _
v+ oty + &y

_0'2 +¢2€t(1+ﬂt) ’

Zt =

It follows that

2
A, = 222 1 '
t 2y (0 + & +Xt)1—|—zt<p

2
t

— th (02 +&(1+ ﬁt)ch)
(v + oty + p&ty)?
0'2 —+ @251‘(1 —+ ﬂf)

so that process U is a solution of

- ~ 2
dUt — Utf ((V+Uut +%0£t1;l’f) dt"’atth "l_atht) ; UT — 17

02 4+ p2& (1 + )

which establishes that the BSDE (6.30) has a solution as long as the variance optimal martingale
measure exists in our set-up.

6.5 MeanVariance Hedging

TO BE WRITTEN

6.6 Quantile Hedging

TO BE WRITTEN



142 CHAPTER 6. INDIFFERENCE PRICING



Chapter 7

Dependent Defaults and Credit
Migrations

Arguably, this is the most important and the most difficult research area with regard to credit risk
and credit derivatives. We describe the case of conditionally independent default time, the copula-
based approach, as well as the Jarrow and Yu [115] approach to the modeling of dependent stochastic
intensities. We conclude by summarizing one of the approaches that were recently developed for the
purpose of modeling term structure of corporate interest rates.

Let us start by providing a tentative classification of issues and techniques related to dependent
defaults and credit ratings.

Valuation of basket credit derivatives covers, in particular:

e Default swaps of type F (Duffie [69], Kijima and Muromachi [131] ) — they provide a protection
against the first default in a basket of defaultable claims.

e Default swaps of type D (Kijima and Muromachi [131]) — a protection against the first two
defaults in a basket of defaultable claims.

e The i*"-to-default claims (Bielecki and Rutkowski [21]) — a protection against the first 4 defaults

in a basket of defaultable claims.

Technical issues arising in the context of dependent defaults include:
e Conditional independence of default times (Kijima and Muromachi [131]).
e Simulation of correlated defaults (Duffie and Singleton [72]).
e Modeling of infectious defaults (Davis and Lo [58]).
e Asymmetric default intensities (Jarrow and Yu [115]).
e Copulas (Schénbucher and Schubert[169], Laurent and Gregory [142]).
e Dependent credit ratings (Lando [140], Bielecki and Rutkowski [24]).
e Simulation of dependent credit migrations (Kijima et al.[130], Bielecki [13]).

e Simulation of correlated defaults via Marshall Olkin copula, Elouerkhaoui [81]

7.1 Basket Credit Derivatives

Basket credit derivatives are credit derivatives deriving their cash flows values (and thus their values)
from credit risks of several reference entities (or prespecified credit events).
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Standing assumptions. We assume that:

e We are given a collection of default times 71,...,7, defined on a common probability space

(2,6,Q).
e Q{r; =0} =0 and Q{r; >t} > 0 for every i and t.
e Q{m =7;} =0 for arbitrary i # j (in a continuous time setup).

We associate with the collection 7,...,7, of default times the ordered sequence T < T(2) <
- < T(n), where 7(;) stands for the random time of the i*® default. Formally,

T(1) = min {71, 72,..., T}
and fori =2,...,n
Tay =min {7,k =1,...,m, T > 11 )
In particular,
T(n) = MAX{T1, T2, ..., Tn}

7.1.1 The i*"-to-Default Contingent Claims

We set H} = 1;;,<¢) and we denote by H’ the filtration generated by the process H?, that is, by the
observations of the default time 7;. In addition, we are given a reference filtration F on the space
(©,G,Q). The filtration F is related to some other market risks, for instance, to the interest rate
risk. Finally, we introduce the enlarged filtration G by setting

G=FVvH'VH?V...VH"
The o-field G; models the information available at time ¢.

A general i*P-to-default contingent claim which matures at time T is specified by the following
covenants:

o If 75y = 7, < T for some k = 1,...,n it pays at time 7(;) the amount Zf(i) where Z* is an
F-predictable recovery process.

o If 74y > T it pays at time T an Fr-measurable promised amount X.

7.1.2 Case of Two Entities

For the sake of notational simplicity, we shall frequently consider the case of two reference credit
risks.

Cash flows of the first-to-default contract (FDC):
o If 71y =min{m, 7} =7 < T for i = 1,2, the claim pays at time 7; the amount Z- .
o If min {m, 72} > T, it pays at time T the amount X.

Cash flows of the last-to-default contract (LDC):
e If 79y = max {7y, 7} =7, < T for i = 1,2, the claim pays at time 7; the amount Zii.

o If max{m, 72} > T, it pays at time T the amount X.

We recall that throughout these lectures the savings account B equals

t
By :exp(/ rudu),
0

and Q stands for the martingale measure for our model of the financial market (including defaultable
securities, such as: corporate bonds and credit derivatives). Consequently, the price B(¢,T) of a
zero-coupon default-free bond equals

B(t,T) = BEg(B;'|G:) = B:Eg(B;" | 7).
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Values of FDC and LDC

In general, the value at time ¢ of a defaultable claim (X, Z, 1) is given by the risk-neutral valuation

formula
St:Bt]EQ</ BgldDu gt)
1t,T7

where D is the dividend process, which describes all the cash flows of the claim. Consequently, the
value at time ¢ of the FDC equals:

S = BiEo(BL 2 ncr 1ensry | )
+Bi Eq (B;zl Z2 W (rycr, t<ra<t) ‘ gt)
+B, Eq (B;lX]l{T<T(1)} ‘ gt).

The value at time ¢ of the LDC equals:

St(z) = B EQ (B.:llz.,l—1 ]1{72<‘r1, t<m <T} ‘ gt)
+B; EQ (qu—;1 Z72—2 11{7'1<T2, t<mo<T} ‘ gt)

1B, Eq (B;lXII{T<T(2)} ‘ gt).

Both expressions above are merely special cases of a general formula. The goal is to derive more
explicit representations under various assumptions about 71 and 75, or to provide ways of efficient
calculation of involved expected values by means of simulation (using perhaps another probability
measure).

7.2 Conditionally Independent Defaults

Definition 7.2.1 The random times 7, ¢ = 1,...,n are said to be conditionally independent with
respect to F under Q if for any T > 0 and any t1,...,t, € [0,T] we have:

@{7’1 >t1,...,Tn >tn‘FT}:H@{Ti >t1;|.7:T}.

i=1
Let us comment briefly on Definition 7.2.1.

e Conditional independence has the following intuitive interpretation: the reference credits
(credit names) are subject to common risk factors that may trigger credit (default) events.
In addition, each credit name is subject to idiosyncratic risks that are specific for this name.

e Conditional independence of default times means that once the common risk factors are fixed
then the idiosyncratic risk factors are independent of each other.

e The property of conditional independence is not invariant with respect to an equivalent change
of a probability measure.

e Conditional independence fits into static and dynamic theories of default times.

e A stronger condition would be a full conditionally independence, i.e., for any T" > 0 and any
intervals I1,..., I, we have:

Q{Tl 6117...,7'” EIn‘]‘—T} ZHQ{Ti GIZ".FT}

i=1
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7.2.1 Canonical Construction

Let T% i =1,...,n be a given family of F-adapted, increasing, continuous processes, defined on
a probability space (€2, F,Q). We assume that ') = 0 and T, = oco. Let (2, F,P) be an auxil-
iary probability space with a sequence &;, ¢ = 1,...,n of mutually independent random variables

uniformly distributed on [0, 1]. We set
7(0,0) =inf{t € Ry : TH(®) > —In&(®)}

on the product probability space (2,G,Q) = (Q xQ, Fao @ F,Q® I@)) We endow the space (12,3, Q)
with the filtration G = F Vv H! v --. v H".

Proposition 7.2.1 The process I'* is the F-hazard process of T;:

Qf{ri > s|F \/Hi} =150 EQ(GFFFi

)

We have Q{r; = 7;} = 0 for every i # j. Moreover, default times T1,...,T, are conditionally
independent with respect to F under Q.

PRrROOF: It suffices to note that, for ¢; < T,

QTy, > —Ing&,....I? > —In&,, | Fr)

Q(Tl >t17~-~77—n>tn7‘]:T)

([l
Recall that if I} = [ 7% du then 47 is the F-intensity of 7;. Intuitively
Qfmi € [t,t+dt] | Fo VH} = L, sqyv; dt.
7.2.2 Independent Default Times
We shall first examine the case of default times 74,...,7, that are mutually independent under Q.

Suppose that for every k = 1,..., n we know the cumulative distribution function F(t) = Q{r < t}
of the default time of the k" reference entity. The cumulative distribution functions of 71y and T(y,)

are:
n

F(l)(t) = Q{T(l) < 75} =1- H(l — Fi(1))

k=1
and
Foy(t) = Q{rny <t} = [ [ Fr(®).
k=1
More generally, for any i = 1,...,n we have
Fo)=Q{re <t} =>_ > [[F® ][0 - Fu)
m=i well™ jer lgm
where II"™ denote the family of all subsets of {1,...,n} consisting of m elements.
Suppose, in addition, that the default times 7,...,7, admit deterministic intensity functions

Y1(t), ..., ¥n(t), such that

) tAT;
H; — / vi(s)ds
0
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are H'-martingales. Recall that Q{r; >t} = e~ Jo i@ dv Tt ig easily seen that, for any ¢ € Ry,

Q{7 >t} = [[Qfr > t} = e~ o @ dv,

where
Yuy(t) = 71(t) + ...+ yalt)

1) tAT(1)
O - / Yo (1)t
0

is a HW-martingale, where ’HEI) = o(7(1) At). By direct calculations, it is also possible to find the

hence

intensity function of the i** default time.

Example 7.2.1 We shall consider a digital default put of basket type. To be more specific, we
postulate that a contract pays a fixed amount (e.g., one unit of cash) at the i*® default time (i)
provided that 7(;; < T. Assume that the interest rates are non-random. Then the value at time 0 of
the contract equals

So = EQ(B;l:[I‘{T(i)ST}) = ‘/]0 . Bu_l dF(Z) (u)

If 7,...,7, admit intensities then

T T
SO - / B;l dF(Z) (u) = / B;lfy(l) (’U/)Gi fou Yy (’U)d'u du
0 0

7.2.3 Signed Intensities

Some authors (e.g., Kijima and Muromachi [131]) examine credit risk models in which the negative
values of ”intensities” are not precluded. In that case, the process chosen as the ”intensity” does
not play the role of a real intensity, in particular, it is not true that H;— €™ v;dt is a martingale
and negative values of the ”intensity” process clearly contradict the interpretation of the intensity
as the conditional probability of survival over an infinitesimal time interval. More precisely, for a
given collection T, i = 1,...,n of F-adapted continuous stochastic processes, with Ty = 0, defined
on ((AZ, F,HA”) one can define 7;, i = 1,...,n, on the enlarged probability space (2, G,Q):

o =inf{t € R, :THd) > —In& (D) }.

Let us denote I} = max ,<; I';,. Observe that if the process I' is absolutely continuous, than so it
the process I'?; in this case the intensity of 7; is obtained as the derivative of I'¥ with respect to the
time variable.

The following result examines the case of signed intensities.

Lemma 7.2.1 Random times 1;, © = 1,...,n are conditionally independent with respect to F under
Q. In particular, for every ty,...,t, <T,

n . .
Q{'rl>t1,...,Tn>tn|fT}:H6—Fii — e Zim
i=1

7.2.4 Valuation of FDC and LDC

Valuation of the first-to-default or last-to-default contingent claim in relatively straightforward under
the assumption of conditional independence of default times. We have the following result in which,
for notational simplicity, we consider only the case of two entities. As usual, we do not state explicitly
integrability conditions that should be imposed on recovery processes Z7 and the terminal payoff X.
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Proposition 7.2.2 Let the default times 7;, j = 1,2 be F-conditionally independent with F-intensities
v (i.e. H} — g/\n vids are G' martingales and v* is F adapted) Assume that the recovery Z is a
F-predictable process, and that the terminal payoff X is Fpr-measurable.

(i) If (H) hypothesis holds between F and G, then the price at time t = 0 of the first-to-default claim
equals

2 T S
s =3 Eof /0 By 2 e Tendie ™ du) + Bo(Br1XG),
ij=1, %]

where we denote
G = e~ Trtl7) = Q{ri >T, 7o >T|Fr}.

(ii) In the general case, setting F} = P(1; < t|F;) = Z} + A} where Z is an F martingale,
(1) ’ rl4r? 1 2 1
Syt = E/ Zy(em Tt (v 4 y2)du+ d < Zy, Zo >.) + Eq(B7 ' XG)
0

ProoOF: We have to compute E(Z,1,.7) for 7 = 71 A 7. We know that, if Z is F-predictable
E(Z . <r) =E [, Z,dF, where F, = Q(7 < u|F,).
For 7 = 7 A 7, the conditional independence assumption yields

1 —F,=Q(11 >u,m > ulF,) = Q(ry > u|F,) Q(r2 > ulF,) = (1 — FH(1 - F?),

e If we assume that (H) hypothesis holds between F and G?, for i = 1,2, the processes F* are
increasing hence

dF, = e_Fide + e_FidFI} — e Tue Tl (’yi + 'yz)du

It follows that

T T
]E(Zn/\'rz ]]-'r1/\'rz<T) = E/ Zue_r‘}‘e_Fi (’Yi + ’yg)du =E Z/ Zue_ri_ri’yiidu'
0 ; Y0

e In the general case, the Doob-Meyer decomposition of F; is F; = Z; + A; and

) tAT; )
Hy —/ Veds
0

i
aS
—Fi

s

is a G*-martingale where 'y; =73

dF, = e TvdF2 4+ e TudF} +d < 7y, Zy >,

It follows that

T
IE(Z'r1/\‘r2]1'1'1/\7'2<T) = E/ Zu(eiridAi + eiriqull +d < 21,2, >U)
0

T
IE/ Zu(emTATD () 4 42) L d < Z1, Zy >y,)
0

The bracket must be related with some correlation of default times. |
The computation of E(Z,1,.7|G;) can be done along the same lines. The case where the recovery
depends on the name of the obligor who defaulted is more difficult.
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7.3 Copula-Based Approaches

7.3.1 Direct Application

In a direct application, we first postulate a (univariate marginal) probability distribution for each
random variable 7;. Let us denote it by F; for ¢ = 1,2,...,n. Then, a suitable copula func-
tion C' is chosen in order to introduce an appropriate dependence structure of the random vector
(11, 72,...,T). Finally, the joint distribution of the random vector (71,72, ..., 7,) is derived, specif-
ically,

Qfri <ti,i=1,2,...,n} =C(Fi(t1),..., Fu(tn)).

In the finance industry, the most commonly used are elliptical copulas (such as the Gaussian copula
and the t-copula). The direct approach has an apparent drawback. It is essentially a static approach;
it makes no account of changes in credit ratings, and no conditioning on the flow of information is
present. Let us mention, however, an interesting theoretical issue, namely, the study of the effect of
a change of probability measures on the copula structure.

7.3.2 Indirect Application

A less straightforward application of copulas is based on an extension of the canonical construction of
conditionally independent default times. This can be considered as the first step towards a dynamic
theory, since the techniques of copulas is merged with the flow of available information, in particular,
the information regarding the observations of defaults.

Assume that the cumulative distribution function of (£1,...,&,) in the canonical construction
(cf. Section 7.2.1) is given by an n-dimensional copula C, and that the univariate marginal laws are
uniform on [0, 1]. Similarly as in Section 7.2.1, we postulate that (£1,...,&,) are independent of F,

and we set _
Ti(@,0) =inf{t € Ry : T}(®) > —In&(®) }.

Then:

e The case of default times conditionally independent with respect to F corresponds to the choice
of the product copula II. In this case, for t1,...,t, < T we have

Q{n >ty 7o >t | Fr}y =T(Z},, ..., 27,
where we set Z! = eIt
e In general, for t1,...,t, < T we obtain

Q{Tl >t1,...,Tn >tn|fT}:C(Zt117...,Z;;),

where C' is the copula used in the construction of &, ...,&,.

Survival Intensities
Schonbucher and Schubert [169] show that for arbitrary s < t on the set {r1 > s,...,7, > s} we

have )
c(zk,....zi, ..., Z")
7).
C(ZL, ... 77)

@{n->t|gs}=E@(

Consequently, assuming that the derivatives v} = dd—lz exist, the ¢*! intensity of survival equals, on

the set {m >¢,..., 7, > t},

trTtoz. 2y

0 nC(Z},...,7),

=25
1
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where ! is understood as the limit:

,£:%%h=%Mt<n§t+hLﬂnq>twnﬂ%>t}

It appears that, in general, the i*" intensity of survival jumps at time ¢, if the j* entity defaults at
time t for some j # 4. In fact, it holds that

2
gog; C(ZL,....27)

M =i 2 :
o C(2},....2p)

where
)\i’ﬂ :l}ifrolh_l(@{t<7—i <t+h|F, 1 >t k#75,7; =t}.

Schénbucher and Schubert [169] also examine the intensities of survival after the default times of
some entities. Let us fix s, and let t; < sfori=1,2,...,k<n,and T; > sfori =k+1,k+2,... n.
Then,

Q{Ti >ﬂ,i:k+1,k+2,...,n\fg, Tj :tj,j:1,2,...,k',

m>si=k+1,k+2,...,n}

o k41 "
_EQ(WO(Zt11’---thkk’ZTHI’---aZTn) ]-'S> .
- 2 C(Z} Zk  gkt+l Zn) . (7.1)

Ovy...0vg tirc o Lty Hs goeeydg

Remark 7.3.1 Jumps of intensities cannot be efficiently controlled, except for the choice of C. In
the approach described above, the dependence between the default times is implicitly introduced
through I's, and explicitly introduced by the choice of a copula C.

7.3.3 Laurent’s model

Laurent and Gregory (2002) examine a simplified version of the framework of Schénbucher and
Schubert (2001). Namely, they assume that the reference filtration is trivial — that is, 7, = {Q, 0} for
every t € IR, . This implies, in particular, that the default intensities 7¢ are deterministic functions,
and _

Qri >ty =1—F(t) = e o nud

They obtain closed-form expressions for certain conditional intensities of default, C.
Example: This example describes the use of one-factor Gaussian copula (Bank of International
Settlements (BIS) standard). Let

X, =piV+4/1-p2Vi,

where V, V;, i = 1,2,...,n, are independent, standard Gaussian variables under the probability
measure Q,. Define

¢
T = inf{t/ yldu > —InU;} = inf{t : 1 — F;(t) < U;}
0

where the random barriers are defined as U; = 1 — N(X;) where as usual N is the cumulative
distribution function of a Gaussian r.v..

Then,

NTUE(®) — piV

V1-p

{rn<t}={U; <F@®)}={X; < }
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Define qz‘lV = Q(7; > t|V) and pi‘v =1- qi‘v. Then,

Qi < t;,Vi <n) = /Hpi‘“f(v)dv

where f is the density of V.
It is easy to check that

i _ Nl(Fi(t))piv>
’ ( Vi-7

Q(r < t;,Vi<n) = /HN (Nl(j% in> f(v)dv.

and

7.4 Two default, general case

We present general results on the case of two default times, as presented in Section 2.5.1. We use
the same notation.

Martingales

o Filtration H’ We now study the decomposition of the semi-martingales H’. From our previous

study, the processes
tAT;
; ; ©fi(s)
M} = H{ — ———d 7.2
where F;(s) = P(r; < s) = [; fi(u)du are Hj-martingales.
e Filtration H From the general theory of enlargement of filtration, the process

) tATY a(l)
HY - / B g
t o 1— Fslj

is a H-martingale where F'* is the H2-submartingale F}'* = P(r; < t|H?) with decomposition

)
Flr =z + [ aVds where Z* is a H? martingale. The process A\ = i —er=ds is the
F-compensator of H'. The same methodology can be applied for the compensator of H?.
We now compute in an explicit form the compensator of H' in order to establish the proposition

Proposition 7.4.1 The process

tATL (1)
Htl _/ ai(s)ds
0

1— F1*(s)
where oM (t) = H2O1h W (t, 1) — (1 — Hf)alG%tt)t) and
DoG(t, )
D (. g) =1 — 2152
(t5) 3,G(0, )

is a H-martingale.
The process

tAT2 (2)
H752 _ / ai(s)ds
0

1— F2*(s)
where a®) (1) = Hp0,h)(r1,1) = (1~ H}) 2550 and
G(t, s)
@t ) =1 22\5)
(t:5) 8.G(%,0)

is a H-martingale.
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Note that

o /t/\n Lds g /t/\7'1 Hgalh(l)(s,Tg) (1- H2 )0:1G(s,5)/G(0, )dS
t 0 1— Fl*(S) t 0 1-— Hszh(l)(S,TQ) (]- - H )'ll)(S)

tAT
_ 1 ! 2 alh(l)(s>7—2) 2 G (8, S)/G( )
- Ht _/0 Hslfh(l)(S,TQ) _(l_Hs) 1_ ¢(S)

= H! /MT1 1hM) (s, 1) PATIAT2 9,G (s, 8)
1_ g1 7\S; T2)
¢

dg.3)
— ——d A4

1—h(s,T2) 0 G(s, s) s (7.4)

1—hOEAT AT, T2) B /M“M2 01G(s,s)
1—hW (AT T2) o G(s, s)

AT1N\T2

= H}—-In ds

PROOF: Some easy computation enables us to write

P(Tl <t< 7'2)

B o= HB(n <) + (1= HY) =gy
G(0,t) — G(t,t)
_ 27 (1) g2 U0, 0) — GG, T)
HinW(t, ) + (1 — Hy) Gl0.1) (7.5)
where Gt )
1 —q1_ 2Ly
R (tv) =1 5,G(0.0)
It follows that
* G(tﬂf) 82G(t7t) 2 2 810( ) 2
dFt = <G(O7t) aQG(O’t) th (]. Ht) G(O, ) dt+H 81 (t Tg)dt

where M? is given in (2.76), that is
. G(t,t)  0G(t,1) 9 o [ G(t,t)  02G(t,t)\ 02G(0,1)
F = — H 1-H -
dr, (G(O,t) ac0.n ) e U= H) Gon ~ a0 ) Gon
01G(t
—(1 H2)é:(o(t)) dt + HZ0 h(t, ) dt

Introducing the deterministic function 1 (t) = 1 — G(¢,t)/G(0,t), the submartingale F}'* writes (we
delete the superscript (1) for h in what follows)

Fj* = HEh(t,m) + (1= HY)p(t) (7.6)

Function ¢ — (t) and process t — h(t, ) are continuous and of finite variation, hence Ito’s rule
leads to

dE!M h(t,72)dH} + HZ01h(t, 72)dt + (1 — HE)Y' (t)dt — b (t)dH}

(h(t,72) —(t)) dHE + (H7O1h(t, ) + (1 — H?)Y'(t)) dt

- (g((é?) B gzg((éz))) dH} + (H7Oh(t,m2) + (1 — HP)y' (1)) dt

From the computation of the Stieljes integral, we can rewrite it as

TrGt)  9G(t,) s [(G(r,1)  0:G(72,7)
/0 (G(O,t) B ajc:(o,é)) dHy = (G(OQ, 722) - 522(;(& T;) ) Liro<ty

- | (G55 2a0q)

dFY = <g<(8?) — gjg(%?)) dH} + (H7O1h(t,72) + (1 — HP)Y'(t)) dt

and substitute it in the expression of dF™ :
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From J2G(0
dH? = dM? — (1 — H?) Mdt
with M? H2-martingale, we get the H?— semimartingale decomposition of F* :
it = (Gog - aews) -0~ (565 - acen) Foa
+ (Hfalh“)(t,fg) +(1- Hf)z//(t)) dt
and from

(G 3G 8GO0, BG(L1)
w(t)<G(0,t)82G(0,t)) GO0 GO0
we conclude

1 _ (Gtt)  0:G(L1) i O G(t,1)
dF* = (G(O,t) - 82(;(0’”) dM? + <Hfalh< )(t, ) — (1 7H3)7G(0,t) >dt

We can also check that this is the dynamics of F1* From (7.5), the process F1* has a single jump of

. G(tt) | 9aG(tt
size G((o,t) — ajc((o,t))' From (7.5),

GO -Gt
P S =)

on the set 75 > t, and its bounded variation part is U’(¢). On can check that
G(t7t) _ 82G<t7t) 82G(07t> _ alG(tat) _ _i G(tat) _ /( )
G(0,t)  0.G(0,t) ) G(0,1) G(0,t)  dtG(0,t)

The hazard process has a non null martingale part. This shows again that the intensity is not the
good tool to work with.

e Filtration G We reproduce now the result of Chou and Meyer [44], in order to obtain the
martingales in the filtration G, in case of two default times.
Let us denote by G4 (t) the survival distribution function of T and by Gs(t; u) the survival conditional
distribution function of 15 with respect to 17, i.e., for t > w,

b

GQ(U;t) = ]P)(TQ > t‘Tl = U) = g(u)

(01G(u, ) + BuG(t, 1)) .

We shall also note
K(u;t) =P(Te — Th > t|Th = u) = Go(u;t + u)

d . .
The process M, lef H; — A, is a G-martingale, where

Ay = A (O)eeq, + [A(Th) + Ap(Ty,t = T0)] Iy <<y

e A(t) =— HdG(s) — /t 9(s) ds=—1In Gt _ —InG(t,t)
BT ) Gils) o Gs,s) T T G(0,0) ’
and
b d K (s;u) K(s;t)
Ag(sit) = — [ Q20 )
250 == | K " K (s:0)
hence
KTt =-T) L Go(Thst)
AoTi,t=1) = —In K(Ty;0) = G»(T1;0)

1 81G(T1,t) + 82G(t,T1)
81G(T1,O) + 32G’(O,T1)




154 CHAPTER 7. DEPENDENT DEFAULTS

It is proved in Chou-Meyer [44] that any G-martingale is a stochastic integral with respect to M.
This result admits an immediate extension to the case of n successive defaults.

This representation theorem has an interesting consequence: a single asset is enough to get a com-
plete market. This asset with price M, and final payoff Hy — Ap. It corresponds to a swap with

cumulative premium leg A;

7.4.1 Application of Norros lemma for two defaults

Norros’s lemma

Proposition 7.4.2 Let 7;,i = 1,---,n be n finite-valued random times and G, = H} V -+ V H}.

Assume that

P(TZ:T]):O,VZ%‘]

there exists continuous processes A' such that M} = H} — Al ar; 0re G-martingales

then, the T‘.U.Aﬁ_i are independent with exponential law.

Proof. For any p; > —1 the processes L} = (1 + ui)HZe’“i

i .
At solution of

dLj = Ly pid My

are uniformly integrable martingales. Moreover,

these martingales have no commun jumps, and are

orthogonal. Hence E(]],(1 + pi)e Hi4%) = 1, which implies

E(H e_“'iAéO)

hence the independence property.

Application

= [+ p)™

K3

In case of two defaults, this implies that U; and U, are independent, where

Ui:/l
0

and
nG(t,t

ar(t) = —(1— Hf)é(ét)) + H?01h WV (t, 1),
9G(t,1)

—(1-H}) + H} 0ohP (11, 1),

G(t,0)

are independent. In a more explicit form,

T1A\T2
/ 81G(s,s)ds+
0

G(s,s)

is independent from

T1NAT2
/ 32G(s,s)ds n
0

G(s, s)

1—F7(s)

a:(5) ds

G(0,t) — G(t, 1)

Fi (1) = HERO( ) + (1= HE) T2

G(t,0) — G(t,¢)

F (1) = HE® (1) + (1= ) =g

1-— h(l)(Tl,Tg)
1-— h(l)(Tl /\7'277'2)

In

1 — h(z)(’rl,’rg)

1
. 1-— h(z)(Tl,Tl /\7'2)
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Example of Poisson process

In the case where 71 and 75 are the two first jumps of a Poisson process, we have

e Mfors<t
Gt s) = { e M1+ Ns—t)fors>t

with partial derivates

—de Mfort > s 0fort>s
Gt s) = { e Mfors>t 9xG(t,s) = { ~A2e (s —t) for s > t
and i f
lfort>s 0fort>s
h(t,s) = { Lfors>t Orh(t,s) = { Lfors>t
0fort>s 0fort>s
k(t,s) = { 1—e s Dfors>t Ouklt ) = { Ae A0 for s > ¢

Then, one obtains Uy =7 et Uy =19 — 7y

7.5 Jarrow and Yu Model

Jarrow and Yu [115] approach can be considered as another step towards a dynamic theory of
dependence between default times. For a given finite family of reference credit names, Jarrow and
Yu [115] propose to make a distinction between the primary firms and the secondary firms.

At the intuitive level:
e The class of primary firms encompasses these entities whose probabilities of default are influ-

enced by macroeconomic conditions, but not by the credit risk of counterparties. The pricing of
bonds issued by primary firms can be done through the standard intensity-based methodology.

e It suffices to focus on securities issued by secondary firms, that is, firms for which the intensity
of default depends on the status of some other firms.

Formally, the construction is based on the assumption of asymmetric information. Unilateral
dependence is not possible in the case of complete (i.e., symmetric) information.

7.5.1 Construction and Properties of the Model

Let {1,...,n} represent the set of all firms, and let F be the reference filtration. We postulate that:
e For any firm from the set {1,...,k} of primary firms, the ‘default intensity’ depends only on
F.

e The ‘default intensity’ of each firm belonging to the set {k + 1,...,n} of secondary firms
may depend not only on the filtration F, but also on the status (default or no-default) of the
primary firms.

Construction of Default Times 74,...,7,

First step. We first model default times of primary firms. To this end, we assume that we are
given a family of F-adapted ‘intensity processes’ A, ..., \¥ and we produce a collection 71, ..., 7 of
F-conditionally independent random times through the canonical method:

t
mi=inf {t € Ry : / N,du>—1In¢; }
0
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where &, ¢ = 1,...,k are mutually independent identically distributed random variables with uni-
form law on [0, 1] under the martingale measure Q. Second step. We now construct default times
of secondary firms. We assume that:

e The probability space (2,G,Q) is large enough to support a family &,7 = k+1,...,n of
mutually independent random variables, with uniform law on [0, 1].

e These random variables are independent not only of the filtration F, but also of the already
constructed in the first step default times 7, ..., 7 of primary firms.

The default times 7;, i = k+ 1,...,n are also defined by means of the standard formula:
t
T :inf{te R, : / /\Zdu > —lnfi}.
0

However, the ‘intensity processes’ A! for i = k + 1,...,n are now given by the following expression:
k
. . »
A=+ Y v <y,
1=1

where p* and v*! are F-adapted stochastic processes. If the default of the j** primary firm does not
affect the default intensity of the i*? secondary firm, we set v*J = 0.

Main Features

Let G = FVH!V...vH" stand for the enlarged filtration and let F = FVH**! v .. VH" be the
filtration generated by the reference filtration F and the observations of defaults of secondary firms.
Then:

e The default times 7, ..., 7 of primary firms are conditionally independent with respect to F.

e The default times 71, ..., 74 of primary firms are no longer conditionally independent when we
replace the filtration F by F.

e In general, the default intensity of a primary firm with respect to the filtration F differs from
the intensity A’ with respect to F.

We conclude that defaults of primary firms are also ‘dependent’ of defaults of secondary firms.

Case of Two Firms

To illustrate the present model, we now consider only two firms, A and B say, and we postulate
that A is a primary firm, and B is a secondary firm. Let the constant process A\} = \; represent the
F-intensity of default for firm A, so that

t
leinf{t€B+ : / )\idu:)\ltZ—lnfl},
0

where & is a random variable independent of F, with the uniform law on [0, 1]. For the second firm,
the ‘intensity’ of default is assumed to satisfy

A? = Xollr ey + allr <
for some positive constants Ay and as, and thus

t
7'2:inf{t€ZR+ : / )\iduZ—ln{Q}
0

where &> is a random variable with the uniform law, independent of F, and such that £&; and & are
mutually independent. Then the following properties hold:
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e )\l is the intensity of 7; with respect to F,
e )2 is the intensity of 7 with respect to F vV H!,
e \!is not the intensity of 7, with respect to F v H2.

7.5.2 Bond Valuation

7.5.3 Example: Jarrow and Yu’s Model

¢
Let, as in Section 3.1 7; = inf{¢t : A;(t) > ©;},i = 1,2 where A;(t) = / Ai(s)ds and ©; are

0
independent random variables with exponential law of parameter 1. Jarrow and Yu [115] study the
case where )\ is a constant and

Aa(t) = Ao+ (g — Ao)lyr <py = Aollyery +allr <4y

Assume for simplicity that » = 0 and compute the value of a defaultable zero-coupon with default
time 7;, with a rebate d;:

D; q(t,T) = E(Lr,>7) + 6ill (7, <1}|Ge), for Gy = H{ VH; .

As seen in section 2.5.1, we need to compute the joint law of the pair (71,72). Let G(s,t) =
P(r1 > 8,72 > t)

Case t <s
For t < s < 11, one has As(t) = Aot. Hence, the following equality

{7’1 > S}ﬂ{TQ > t} = {7'1 > S}ﬂ{AQ(i’) < @2} = {Tl > S}H{)\gt < @2} = {)\18 < @1}0{)\2t < @2}

leads to
for t <s, P(1; > 5,79 >t) = e e 2!
Caset > s
{n>stn{rn>t} = {{t>n>stn{n>t}} u{n{n >t}n{rn>1t}}
{t>7‘1 >S}ﬂ{7’2>t} = {t>7’1 >S}Q{A2(t)<@2}

{t > T > S} N {)\27’1 +042(t — T1) < @2}
The independence between ©; and ©5 implies that the r.v. 71 is independent from O, hence
P(t >T1 > 8,Ty > t) = E (ﬂ{t>7—1>s}67()\27—1+a2(t77—1)))

_ / du ]l{t>u>s}67()\2u+a2(t7u)))\167)\1u

1
— )\ —aat ( —s()\1+>\2—a2) _ —t()\1+>\2—042)>
)\1 + )\2 — Qg 1e € €
Setting A = A1 + Ay — ap, it follows that
1
P(ri > 8,72 > 1) = A ®2f (e758 — ¢ 718) f e Mlem Nt (7.7)

A



158 CHAPTER 7. DEPENDENT DEFAULTS

In particular, for s = 0,

P(TQ > t) = % ()\1 (e_a"’t — e—()‘1+>\2)t> + Ae—)qt)

e The computation of P; 4 reduces to that of
P(my > T|G;) = P(11 > T|F; VH})
where F; = HZ. From the key lemma,

P(Tl > T|ft)

P(Tl > T|.7:t V Htl) = ]1{t<7—1} P(ﬁ > t|~7:t) )

Therefore,
Py a(t,T) =61+ Mg 5y (1 — §y)e~M(T=1)

One can also use that

02G T,T G Tvt
P(n >T|Gi) =1-DZ0; = Iy (“{}aG(os)) i ““””G'((tt)))

e The computation of P, 4 follows from 2.72

Pog(t,T) = &3+ (1—082)Lprysn (H{Tlgt}ewz(pt)

1
Tl >t}Z(>\1€7a2(T7t) + (A2 — 042)6()‘1+)‘2)(Tt))>

Special Case: Zero Recovery

Assume that A\; + Ay — as # 0 and the bond is subject to the zero recovery scheme. For the sake of
brevity, we set 7 = 0 so that B(¢t,7') = 1 for ¢t < T. Under the present assumptions:

Do(t,T) = Q{r > T |H; VH;}
and the general formula yields

Q{m >T|'Ht1}
Q{m >t|H}

Dy(t,T) = Uiryney
If we set A? = fot A2 du then
Hy(t,T) = 17,50y Bg(e™ 2T | 1}).
Finally, we have the following explicit result.
Corollary 7.5.1 If 63 =0 then D2(t,T) =0 on {m2 < t}. On the set {2 >t} we have
Dy(t,T) = Ly, <y e~ 2070

1
g 3= (Aleiaz(T%) + (X2 — Oéz)eiA(Tit))'
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7.6 Extension of Jarrow and Yu Model

We shall now argue that the assumption that some firms are primary while other firms are secondary
is not relevant. For simplicity of presentation, we assume that:

e We have n = 2, that is, we consider two firms only.

e The interest rate r is zero, so that B(t,T) = 1 for every t < T.

e The reference filtration F is trivial.

e Corporate bonds are subject to the zero recovery scheme.

Since the situation is symmetric, it suffices to analyze a bond issued by the first firm. By
definition, the price of this bond equals

Di(t,T)=Q{mn > T|H; VH}}.

For the sake of comparison, we shall also evaluate the following values, which are based on partial

observations, ~
Di(t,T) = Q{ry > T|H?}

and R
Dy(t,T) = Q{r > T|H}}.

7.6.1 Kusuoka’s Construction

We follow here Kusuoka [138]. Under the original probability measure Q the random times 7;, ¢ = 1,2
are assumed to be mutually independent random variables with exponential laws with parameters
A1 and g, respectively. Girsanov’s theorem. For a fixed T' > 0, we define a probability measure
Q equivalent to Q on (2, G) by setting

dQ

@ =nr, Q-as.

where the Radon-Nikodym density process n;, t € [0,T], satisfies

2
=143 [ st
i—1 710,¢]

where in turn

) ) tAT;
0

Here H} = 1{,,<¢ and processes ' and x* are given by

(e%] a2
li% = ]1{7—2<t} (}\71 — 1), K}tz = ]1{7'1<t} ()\*2 — 1)

It can be checked that the martingale intensities of 71 and 7 under Q are

A= Ml +arlg,oy
X

Aollr sy + el <4y

Main features. We focus on 7; and we denote A} = fot AL du. Let us make few observations. First,
the process A! is H2-predictable, and the process

tATL
M=t} - [ Ndu=H] -,
0
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is a G-martingale under Q. Next, the process A!' is not the intensity of the default time 7, with
respect to H? under Q. Indeed, in general, we have

Q{Tl > s ‘ H% \/H?} 75 ]1{7—1>t} EQ(@A*_AS ‘H%)

Finally, the process A! represents the intensity of the default time 7; with respect to H? under a
probability measure Q! equivalent to Q, where

d 1
%y, Qas

and the Radon-Nikodym density process 7, t € [0, T, satisfies

=1 +/ Tu—tis dM.
10,t]
For s > t we have o
Ql{n > 8|'H% \/'Hf} =17 > E (eAt—AS ‘]:t)

but also

Qf{m > s|H; VH} =Q'{n > s|H, VHI}
7.6.2 Interpretation of Intensities
Recall that the processes A1 and Ao have jumps if a; # A;. The following result shows that the
intensities A' and A? are ‘local intensities’ of default with respect to the information available at

time ¢. It shows also that the model can in fact be reformulated as a two-dimensional Markov chain
(see Lando [140]).

Proposition 7.6.1 Fori=1,2 and every t € IR, we have

)\i:lhifrolh_l@{t<7'i§t+h|7'1>t, Ty >t} (7.8)
Moreover:

a zlﬂgh—l@{mn <t+h|m >t <t}
and

a2:1}i?3h_1(@{t<72§t+h|7'2>t, T <t}
1

7.6.3 Bond Valuation
Proposition 7.6.2 The price D1(t,T) on {1 >t} equals
D1 (t, T) = Il{T2St} e_al(T_t)

1
+]l{7-2>t} m ()\Qe—al(T—t) + (/\1 — 041)e—>\(T—t)) )

Furthermore
D ()\ — ag))\ze_al(T—Tz)
Di(t,T) = 1.,
1( > ) {m2<t} A\ age(A—a2)T _|_/\(>\2 _a2)
i, A Qama)e MY 4 ppem @Y
{m2>t} A —oq Ale*(A*az)t T Ao — ay
d
N D Aoe™ T 4 (N —ay)e ™
Dy (t,T)

=1 .
{ri>t} Age—a1t 4 (/\1 _ al)e—)\t
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Observe that:

e Formula for D;(¢,T) coincides with the Jarrow and Yu formula for the bond issued by a
secondary firm.

e Processes Dy (t,T) and Dy (t,T) represent ex-dividend values of the bond, and thus they vanish
after default time 7.

e The latter remark does not apply to the process Dl(t, 7).

7.7 Dependent Intensities of Credit Migrations

We present here a contribution to the dynamic theory of dependence between credit events. Specif-
ically, we discuss here an approach towards modeling of dependent credit migrations based on the
theory of continuous-time conditional Markov chains. We refer to Bielecki and Rutkowski [] for
information regarding conditional Markov chains. The goal is to extend the previous analysis to the
case of multiple credit ratings. Assume that the current financial standing of the i*" firm is reflected
through the credit ranking process C* with values in a finite set of credit grades K; = {1,...,k;}.
For simplicity, we assume that the reference filtration F is trivial, and we consider the case of two
firms.

Let Fi = Fci7 i =1,2, denote the filtration generated by C* and let G = F! v F2. We examine
the two following Markovian properties under the martingale measure Q. The Markov property of
C = (CY,0?):

Qs =k, CI=1|Gi} =Q{C; =k, C =1|Cy, G}
The F/-conditional Markov property of C* for i # j:

Q{CL =k|G) Q{Cl =k|o(Cl) v F},

Q{CZ =1]G:} Q{C2 =t1la(CY) v F}.

7.7.1 Extension of Kusuoka’s Construction

Assume that k1 = ko = 3 (three rating grades). We consider the two independent Markov chains
C*, i = 1,2 defined on (2,G,Q) and taking values in K = {1,2,3} with generators:

(A=A M A
(] 3 7 7 7
A= Adq =A% — A3 Ads

0 0 0

The state k = 3 is the only absorbing state for each chain. We assume that (C},C?) = (1,1). In
addition, we are given the following matrices:

il |l il il

" _/\1‘2 \_z >‘1‘3 '@1‘2 " )‘1:%

AT = Aol —Ag1 — Aoz Agg
0 0 0

for i = 1,2 and [ = 2,3. Tt should be observed that formally A* = A for i = 1,2. In general, the
intensities )\};m and )\;'in may follow F-predictable stochastic processes.
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Auxiliary Processes and Associated Martingales

We define a probability measure Q equivalent to Q. To this end, we introduce auxiliary processes

K., by setting
) Aﬂl
Kl (£) Z H ( 1)

km
fori=1,2, j#1i, k=1,2, m=1,2,3, k#m, where for j =1,2and k = 1,2, 3,
H, (1) = H () H}(1)
with ch (t) = Wycd—py- We also define, for ¢ = 1,2 and k # m, the transition counting process
Hip(t) = ) Hi(u=)H,,(u).
O<u<t

For i = 1,2 and k # m, the process M} = given by the expression

t
M%@:H%@_A L Hi(u) du

is known to follow an F’-martingale under @, and thus also a G-martingale under Q where G =
F! VvV F2Z

Equivalent Probability Measure

We define a strictly positive martingale under Q:

m—uij/ T o () M (1),

10,) p—1 = 1m7£k

The process 1 plays the role of the Radon-Nikodym density process. For any fixed, but otherwise
arbitrary, date T we define the probability measure Q equivalent to QQ by setting:

dQ

dQ =npr, Q-as.

The following result describes the properties of migration processes C! and C? under Q. Recall that
under the present convention: i == )\;Clrln

Proposition 7.7.1 For eachi # j the migration process C* follows an F -conditional Markov chain
under Q. For any k # m the Fi-conditional transition intensity of C* under Q equals:

3
Nt (8) = (14 Kl () Mk = Ao HI () + > HI (DAL
=2

Conditional Markov Property

The F/-conditional Markov property of C* under the equivalent probability measure Q established
in Proposition 7.7.1 is a consequence of:
e The fact that the Radon-Nikodym density process i depends only on C' = (C1,C?).

e The fact that the migration process C' has the Markov property under the original probability
Q.
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Let us summarize the properties of our model under Q. First, for i = 1, and j # i, the process
Afr (t) is the corresponding F7-martingale intensity. In other words, the processes M} defined as

t
M (1) = Hi () — / £ (u)H () du

for k # m are G-martingales under Q. Second, as we shall see soon, the intensities A}’ have the

natural interpretation as the ‘local intensities’ of credit migrations (in the special case of a trivial
reference filtration C' is a Markov chain under Q).

Interpretation of Intensities
Let us explain the intuitive meaning of intensity parameters. For original intensities we have
Allck’ = 1}1?01 ht Q{CtlJrh =k | Cg =k, Cz&2 =1},

but also for [ = 2,3
Mo = lim A~ Q{CL =K € = b, €2 = 1},

The modified intensities satisfy, for [ = 2, 3,
AN = lim W rQ{C, =K |Ct =k, C?=1}.

Let us recall that model’s inputs are: the original generators A', A2, and the modified matrices:

45l ;1 ;1 ;1

1 _/\12 _l /\13 '/l\12 ” A11?
(1 1; 3 [N 1

A = )‘21 _)‘21 - >‘23 >‘23
0 0 0

fori=1,2and [ =2,3.

First-to-Change Swap

Let C = (C%,...,C™). We assume that the payoff occurs at the first change of the credit rating of
the firm 1 or 2. The payoff is digital, specifically, if we set 7 = 7 A 7o then the payoff at time 7
equals

Zr = Killgrr <ry + Kol (rery <1y
for some constant K1, K5. Let us summarize the basic steps of the valuation procedure:

e Introduce an auxiliary probability measure Qb2 equivalent to Q.

e Verify that any martingale under QU2 with respect to G2 = FvH? Vv ... v H" is also a
martingale under Q2 with respect to G =FVH! v...v H".

e Use the standard formula to find the G'2-conditional laws of 7, and 75 under Q*, through
conditional expectations with respect to Q2.

e Use the fact that 7 and 7 are G1?-conditionally independent under Q* in order to value the
swap.

We argue that in some cases a high-dimensional (unconditional) expectation can be efficiently eval-
uated as a low-dimensional conditional expectation under an equivalent probability measure.

7.8 Dynamics of Dependent Credit Ratings

Let us denote by C; = (C},...,Cp) the vector of credit ratings at time ¢ of all relevant obligors
(credit names). Some authors focus directly on specification of dynamics of the process C. Note
that the assumption that the state space for C is finite is not always imposed.
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Continuous Time Setup

Indirect approach. Structural/factor models (KMV, CreditMetrics, etc.) are based on the as-
sumption that C; = ¥(&;), where £ is a (multivariate) factor process (representing, for instance, the
values of the firms). Dynamics of ¢ are typically modeled as an Ito process. Note that £ involves
both idiosyncratic risks and systemic risks.

Direct approach. Models proposed by Hull and White [105], Douady and Jeanblanc [67] and
Albanese et al. [1] postulate that the credit ratings process is a multi-dimensional diffusion, specifi-

cally,
dCt = Mt dt + Et de

The dependence between rating migrations is introduced here through the judicious choice of the
diffusion matrix X;.

Discrete Time Setup

Discrete-time Markov models of credit migrations were studied by Kijima et al. [130] and Bielecki
[13]. Credit ratings are modeled as

tn+1 = ®<CZL72ZL+1’BZL+17Y;+1> =
O(Cyr+ ZPy + Bl Yeg1), fCP <K -1, (7.9)
K, if C7 = K, :

where Z}* and B} represent idiosyncratic risks, and Y; represents systemic risks, and where 0(k) is
a cut-off function.

Main practical issues arising in the context of a model’s implementation are: the estimation and
calibration of the model, the structure of the pricing measure, the effect of change of measures on
the dependence structure. As soon as the model is estimated and calibrated, it can be easily used
for risk management purposes, as well as for pricing purposes (via Monte Carlo simulation).

7.9 Defaultable Term Structure

It this section, we shall summarize the model of defaultable term structure of interest rates developed
by Bielecki and Rutkowski [22] and Schénbucher[173], and then further generalized by Eberlein and
Ozkan [77]. Essentially, the model extends the Heath-Jarrow-Morton (HJM) model of term structure
of default-free interest rates to the case of defaultable bonds.

7.9.1 Standing Assumptions

Standard intensity-based models (as, for instance, in Jarrow and Turnbull [114] or Jarrow et al.[113])
rely on the following assumptions:
e Existence of the martingale measure Q is postulated.

e Relationship between the statistical probability IP and the risk-neutral probability Q is derived
via calibration.

Credit migrations process is modeled as a Markov chain.

Market and credit risks are separated (independent).

The HIM-type model of defaultable term structure with multiple ratings was proposed by Bielecki
and Rutkowski [22]. The main features of this approach are:
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e The model formulates sufficient consistency conditions that tie together credit spreads and
recovery rates in order to construct a risk-neutral probability Q and the corresponding risk-
neutral intensities of credit events.

e Statistical probability P and the risk-neutral probability Q are connected via the market price
of interest rate risk and the market price of credit risk.

e Market and credit risks are combined in a flexible way.

Term Structure of Credit Spreads
Suppose that we are given a filtered probability space (2, F,P) endowed with a d-dimensional stan-

dard Brownian motion W. We assume that the reference filtration satisfies F = FW. For any fixed
maturity 0 < T < T, the price of a zero-coupon Treasury bond equals

B(t,T) :exp(—/tTf(ﬁ,u)du)7

where the default-free instantaneous forward rate f(¢,T) process is subject to the standard (HJM)
assumption.

(HJM) Dynamics of the instantaneous forward rate f(t,T) are given by the expression

f(t,T):f(O7T)+/O a(u,T) du—i—/o o(u, T)dW,

for some function f(0,-) : [0,7*] — IR, and some F-adapted processes a : A X Q — IR, o :
AxQ— R where A = {(u,t)]0<u<t<T*}.

Credit Classes

Suppose there are K > 2 credit rating classes, where the K*" class corresponds to the default-free
bond. Essentially, credit rating classes are distinguished by the yields on the corresponding bonds.

In other words, for any fixed maturity 0 < T < T*, the defaultable instantaneous forward rate
gi(t,T) corresponds to the rating class i = 1,..., K — 1. We assume that:

(HJM?) Dynamics of the instantaneous defaultable forward rates g;(t,T) are given by

t t
(6, T) = g:(0,T) + / o, T) dut + / os(u, T) dWW,
0 0

for some deterministic functions g;(0,-) : [0,7*] — IR, and some F-adapted processes a; : AXQ —
R,0; : AxQ — R%

Credit Spreads

It is natural (although not necessary for further developments) to assume that
gKfl(t?T) > gK72(t7T) > > gl<t7T> > f(taT)

for every t < T.

Definition 7.9.1 For every i = 1,2,...,K — 1, the i*® forward credit spread equals si(-T) =
gz(vT) - f()T)
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Martingale Measure Q

It is known from the HJM theory that the following condition (M) is sufficient to exclude arbitrage
across default-free bonds for all maturities T < T™ and the savings account.

Condition (M) There exists an F-adapted IR%-valued process 3 such that

E]p{ exp(/oT* ﬂuqu—;/OT* |5u‘2du)} =1

and, for any maturity 7' < T*, we have
* 1 * 2 *
o (tv T) = §|J (tv T)| -0 (tv T)ﬂt

where

T
a*(t,T):/t alt,u) du

T
a*(t,T):/t o(t,u) du.

Let v be some process satisfying Condition (M). Then the probability measure Q, given by the

formula
dQ T* N
= exp (/O B dW, — 5/0 1Bl du), P-as.,

is a martingale measure for the default-free term structure. We will see that for any 7" the prices
B(t,T) is a martingale under the measure Q, when discounted with the savings account B;.

Zero-Coupon Bonds

The price of the T-maturity default-free zero-coupon bond is given by the equality

B(t,T) :exp(—/tTf(t,u)du).

Formally, such Treasury bond corresponds to credit class K. Similarly, the ‘conditional value’ of
T-maturity defaultable zero-coupon bond belonging at time ¢ to the credit class ¢ =1,2,..., K — 1,
equals

T
t
We consider discounted price processes
Z(t,T) = B, 'B(t,T), Z;(t,T) = B; ' D;(t,T),

where B is the savings account

B :exp(/otf(u,u) du).

Let us define a Brownian motion W* under Q by setting

t
Wt*:Wt—/ Budu, Yte[0,T%].
0
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Conditional Dynamics of the Bond Price

Lemma 7.9.1 Under the martingale measure Q, for any fired T < T™*, the discounted price processes
Z(t,T) and Z;(t,T) satisfy
dZ(t,T) = Z(t,T)b(t, T)dW;,

where b(t, T) = —o*(t,T), and
dZi(t,T) = Z;(t,T) (Ni(t) dt + b;(t, T) dW)
where
Ai(t) = ai(t,T) — f(t, 1) + bi(t, T) 5
and )
ai(t,T) = gi(t,t) = i (t,T) + 5 lo7 (+, T)|”
bi(t,T) = —o;(t,T).

Observe that usually the process Z;(t,T) is not a martingale under the martingale measure Q.
This feature is related to the fact that it does not represent the (discounted) price of a tradeable
security.

7.9.2 Credit Migration Process

Recall that we assumed that the set of rating classes is £ = {1,..., K}, where the class K cor-
responds to default. The migration process C' is constructed in Bielecki and Rutkowski [22] as a
(nonhomogeneous) conditionally Markov process on K, with the state K as the unique absorbing
state for this process. The process C' is constructed on some enlarged probability space (2%, G, Q),
where the probability measure Q is the extended martingale measure. The reference filtration F is
contained in the extended filtration G. For simplicity of presentation, we summarize the results for
the case K = 3.

Given some non-negative and F-adapted processes A1 2(t), A1,3(t), A2,1(¢) and Az 3(¢), a migration
process C' is constructed as a conditional Markov process with the conditional intensity matrix
(infinitesimal generator)

where A;;(t) = =3, Aij(¢) for i =1,2.

The conditional Markov property (with respect to the reference filtration F') means that if we
denote by F£ the o-field generated by C up to time ¢ then for arbitrary s > ¢ and i, j € K we have

Q{Ct+s=i|]:t\/7f} =Q{Cirs =i|Fv{Ci =} }.

The formula above provides the risk-neutral conditional probability that the defaultable bond is in
class 7 at time ¢ + s, given that it was in the credit class C; at time ¢. For any date ¢, we denote by
C} the previous bond’s rating; we shall need this notation later.

Finally, the default time 7 is introduced by setting
7'=1nf{t €R+ : Ct :3}

Let H;(t) = ll¢,—; fori=1,2, and let H; ;(t) represent the number of transitions from i to j
by C over the time interval (0,¢]. It can be shown that the process

Mi,j(t) = Hi’j(t) — /Ot )\i7j(8)Hi(S) dS, Vite [O,T],

for i = 1,2 and j # 4, is a martingale on the enlarged probability space (2*, G, Q). Let us empha-
size that due to the judicious construction of the migration process C, appropriate version of the
hypotheses (H.1)-(H.3) remain valid here.
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7.9.3 Defaultable Term Structure

We maintain the simplified framework with K = 3. We assume the fractional recovery of Treasury

value scheme. To be more specific, to each credit rating ¢ = 1,..., K — 1, we associate the recovery

rate §; € [0,1), where §; is the fraction of par paid at bond’s maturity, if a bond belonging to the
b class defaults prior to its maturity. Thus, the cash flow at maturity is

X = ]1{7->T} + 5C‘T]1{T§T}'

In order to provide the model with arbitrage free properties, Bielecki and Rutkowski [22] postulate
that the risk-neutral intensities of credit migrations A1 2(t), A\1,3(¢), A2,1(t) and Mg 3(t) are specified
by the no-arbitrage condition (also termed the consistency condition):

M 2(t)(Za(t,T) — Zl(t7T))+)\13 )(61Z(t,T) — Z1(t,T))
+M ()21, T) =

Ao (t)(Z1(t,T) Z2(t,T)+>\23 ( 2 Z(t,T) — Zo(t,T))
+ Xa(t) Z2(t, T

Martingale Dynamics of a Defaultable Bond

First, we introduce the process Z (t,T) as a solution to the following SDE

dZ(t,T) = (Zo(t,T) — Z1(t,T)) dMy2(t) + (Z1(t, T) — Z2(t,T)) dM2 1 (t)
+ (01 Z(t,T) — Z1(t,T)) dMy 5(t) + (62Z(t, T) — Zo(t,T)) dM2 3(t)
+ Hi(¢)Z1(t, T)b1(t,T) dW; + Ho(t) Zo(t, T)bo (¢, T) AW
+ (81Hy 3(t) + 62Ha 3(t)) Z (¢, T)b(t, T) AW,

with the initial condition Z(0,T) = Hy(0)Z1(0,T) + H,(0)Z5(0,T).

It appears that the process Z(t,T) follows a martingale on (2*, G,Q), so that it is justified to
refer to Q as the extended martingale measure). The proof of the next result employs the no-arbitrage
condition.

Lemma 7.9.2 For any maturity T < T* and for every t € [0,T] we have
Z(t,T) = Lyc, 23 Ze,(t,T) + Lo,y 0, Z(t,T)

Next, we define the price process of a T-maturity defaultable zero-coupon bond by setting
De(t,T) = B, Z(t,T)
for any t € [0,T]. In view of Lemma 7.9.2, we have that
D¢ (t,T) = Iyc, 23y D, (t,T) + lic,—3 d¢, B(t,T).
The defaultable bond price D¢ (t, T) satisfies the following properties:

e The process D¢ (t,T) is a G-martingale under Q, when discounted by the savings account.

e In contrast to the ‘conditional price’ D;(t,T), the process D¢ (t,T) admits discontinuities.
Jumps are directly associated with changes in credit quality (ratings migrations).

e The process D¢ (t,T) represents the price of a tradeable security: the corporate zero-coupon
bond of maturity 7.
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Risk-Neutral Representations

Recall that §; € [0,1) is the recovery rate for a bond which was in the i*! rating class just prior to
default.

Proposition 7.9.1 The price process De(t,T) of a T-maturity defaultable zero-coupon bond equals

T
Dc(t,T) = o235 B(t,T) exp ( - / sc, (t,u) du)
t
+ ]I{Ct:3} 50t B(t, T)

where s;(t,u) = g;(t,u) — f(t,u) is the i'" credit spread.

Proposition 7.9.2 The price process D (t,T) satisfies the risk-neutral valuation formula
Dc(t,T) = BiEq(0¢, Br'Li-<ry + Br'Lrary | Gr).
It is also clear that
Dc(t,T) = B(t,T)Eq, (66, Lr<ry + Loty | Ge),
where Qp stands for the T-forward measure associated with the extended martingale measure Q.

Let us end this section by mentioning that Eberlein and Ozkan [77] have generalized the model
presented above to the case of term structures driven by Lévy processes.

7.9.4 Premia for Interest Rate and Credit Event Risks

We shall now change, using a suitable version of Girsanov’s theorem, the measure Q to the equivalent
probability measure Q. In the financial interpretation, the probability measure Q will play the role
of the statistical probability (i.e., the real-world probability). It is thus natural to postulate that
the restriction of the probability measure QQ to the original probability space {2 necessarily coincides
with the statistical probability P for the default-free market. From now on, we shall assume that
the following condition holds.

Condition (P) We postulate that

aQ .
T@ = N>, Q—a.s.,

where the positive Q-martingale 7 is given by the formula
dijy = =By AWy + fje— dMy,  no = 1,
for some IR?-valued F-predictable process 3, where the Q-local martingale M equals
th = Z I’f/z'yj (t) dMiJ' (t)
1#]
= > kig(t) (dH (1) = Aoy (1) Hy(1) dt)

i#]

for some F-predictable processes x; ; > —1.

Assume that for any i # j

-
/ (fi@j (t) + 1))\7;71' (t) dt < oo, Q-a.s.
0
In addition, we postulate that Eg(7jr«) = 1, so that the probability measure Q is indeed well defined
on (2*,Gr+). The financial interpretation of processes 3 and & is

e The vector-valued process (3 corresponds to the premium for the interest rate risk.

e The matrix-valued process k represents the premium for the credit event risk.
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Statistical Default Intensities

We define processes A;7; by setting, for i # j,

A (1) = (ki () + DAis(1), AL = =DA% (0).
J#i

Proposition 7.9.3 Under an equivalent probability Q given by condition (P), the process C is a
conditionally Markov process. The matrix of conditional intensities of C under Q equals

2.t .. z‘%K(t)
! IF 1) o IR k(D)
0 0

If the market price for credit risk depends only on the current rating ¢ (and not on the rating
Jj after jump), so that k; ; = k,, for every j # i. Then AR = ®,A;, where &, = diag [¢;(t)] with
¢;i(t) = K;4(t) + 1 is the diagonal matrix (this case was examined, e.g., by Jarrow et al. [113]).

7.9.5 Defaultable Coupon Bond

Consider a defaultable coupon bond with the face value L that matures at time T and promises to
pay coupons ¢; at times 77 < ... < T,, < T. The coupon payments are only made prior to default,
and the recovery payment is made at maturity 7', and is proportional to the bond’s face value. Notice
that the migration process C' introduced in Section 7.9.2 may depend on both the maturity 7" and
on recovery rates. Therefore, it is more appropriate to write C; = C¢(d,T), where § = (61,...,0k).
Similarly, we denote the price of a defaultable zero-coupon bond D¢ 5,1y (t, T'), rather than D (t,T).

A defaultable coupon bond can be treated as a portfolio consisting of:

e Defaultable coupons — that is, defaultable zero-coupon bonds with maturities 77, ..., T, which
are subject to zero recovery.

e Defaultable face value — that is, a T-maturity defaultable zero-coupon bond with a constant
recovery rate d.

We conclude that the arbitrage price of a defaultable coupon bond equals
D.(t,T) = Z ciDeco,1,)(t,T;) + LDeos 1) (t,T),
i=1

where, by convention, we set DC(O,Ti)(ty T;) =0 for t > T;.

7.9.6 Examples of Credit Derivatives
Credit Default Swap

Consider first a basic credit default swap, as described, e.g., in Section 1.3.1 of Bielecki and Rutkowski
[23]. In the present setup, the contingent payment is triggered by the event {Cy = K}. The contract
is settled at time 7 = inf {¢t < T : C; = K }, and the payoff equals

Z. = (1-d¢, B(r,T)).

Notice the dependence of Z, on the initial rating Cy through the default time 7 and the recovery
rate d¢, . The following two market conventions are common in practice:
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e The buyer pays a lump sum at contract’s inception (default option).

e The buyer pays annuities up to default time (default swap).

In the first case, the value at time 0 of a default option equals
So =Eq(B; ! (1= d¢, B(r,T))Lir<ry ).

In the second case, the annuity x can be found from the equation

T
SO = HEQ(Z Bt_ll ]l{ti<‘r})'

i=1

Notice that both the price Sy and the annuity x depend on the initial bond’s rating Cj.

Total Rate of Return Swap

As a reference asset we take the coupon bond with the promised cash flows ¢; at times T;. Suppose
the contract maturity is T<T.In addition, suppose that the reference rate payments (the annuity
payments) are made by the investor at fixed scheduled times ¢; < T,i=1,2,...,m. The owner of a
total rate of return swap is entitled not only to all coupon payments during the life of the contract,
but also to the change in the value of the underlying bond. By convention, we assume that the
default event occurs when Cy(6,T) = K. According to this convention, the reference rate k to be
paid by the investor satisfies

E@( Zn:ciBiln{TiSTA}) +Eq (B;l (De(r,T) — DC(O,T)))
=1

= F»E@(Z B! ﬂ{cti,,(rs,T)aéK})v

=1

where 7 = inf {t > 0 : Cy(6,T) = K} AT.

7.10 Markovian Market Model

In this section we give a brief description of a Markovian market model that can be efficiently used
for evaluating and hedging basket credit instruments. This framework, is a special case of a more
general model introduced in Bielecki et al (2006), which allows to incorporate information relative
to the dynamic evolution of credit ratings and credit migration processes in the pricing of basket
instruments. Empirical study of the model is carried in Bielecki, Vidozzi and Vidozzi (2006).

We start with some notation. Let the underlying probability space be denoted by (2, G, G,P),
where P is a risk neutral measure inferred from the market (we shall discuss this in further detail
when addressing the issue of model calibration), G = HV F is a filtration containing all information
available to market agents. The filtration H carries information about evolution of credit events,
such as changes in credit ratings or defaults of respective credit names. The filtration F is a reference
filtration containing information pertaining to the evolution of relevant macroeconomic variables.

We consider L obligors (or credit names) and we assume that the current credit quality of each
reference entity can be classified into K := {1,2,...,K} rating categories. By convention, the
category K corresponds to default. Let X¢ ¢ = 1,2,... L be some processes on (£, G,P) taking
values in the finite state space K. The processes X’ represent the evolution of credit ratings of the
¢th reference entity. We define the default time 7; of the ¢! reference entity by setting

n=inf{t>0: X/ =K} (7.10)
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We assume that the default state K is absorbing, so that for each name the default event can only
occur once.

We denote by X = (X!, X2 ..., XL) the joint credit rating process of the portfolio of L credit
names. The state space of X is X := K and the elements of X will be denoted by . We postulate
that the filtration H is the natural filtration of the process X and that the filtration F is generated
by a IR™ valued factor process, Y, representing the evolution of relevant economic variables, like
short rate or equity price processes.

We assume that the process F = (X,Y) is jointly Markov under P, so that we have, for every
0<t<s,xe€X, and any set ) from the state space of Y,
P(X,=z,Y, e V|H,VF)=P(X, =Y, € V| X, V). (7.11)

We construct the process F as a Markov chain modulated by a Lévy process, and vice versa. We
shall refer to X (Y, respectively) as the Markov chain component of F (the Lévy component of F,
respectively). We provide the following structure to the generator of the process F.

n

Af(x,y) = (1/2) Z ¥)2:0;f (xy) + 3 bi(y)9:f (2,)

" / (f@ + 9(.9) — £, m) () (7.12)
L
+) 0D M2y fa,y),
=1 gt cC
where we write z, = (2!, 22, ..., 271 2/ 21 ... 2F). At any time ¢, the intensity matrix of the
Markov chain component is given as Ay = [A(z,2’;Y1)]p 27ex. The Lévy component satisfies the
SDE:

dY, = b(Yy) dt + o(Y;) AW, +/ g(Yi_,y') N(dy', dt),

where, for a fixed y € IR, N(dy',dt) is a counting process with Lévy measure v(dy')dt, and o(y)
satisfies the equality o(y)o(y)" = a(y).

Note that the model specified by (7.12) does not allow for simultaneous jumps of the components
X% and X* for ¢ # {¢'. In other words, the ratings of different credit names may not change
simultaneously. Nevertheless, this is not a serious lack of generality, as the ratings of both credit
names may still change in an arbitrarily small time interval. The advantage is that, for the purpose
of simulation of paths of process X, rather than dealing with X x X intensity matrix [A(z,z";y)],
we shall deal with L intensity matrices [\*(z, x);y)], each of dimension K x K (for any fixed y). We
stress that within the present set-up the current credit rating of the credit name ¢ directly impacts
the intensity of transition of the rating of the credit name ¢', and vice versa. This property, known
as frailty, may contribute to default contagion.

7.10.1 Description of some credit basket products

In this section, we describe the cash-flows associated to the main-stream basket credit products,
focusing in particular on the recently developed standardized instruments like the Dow Jones Credit
Default Swap indices (iTraxx and CDX), and the relative derivative contracts (Collateralized Debt
Obligations and First to Default Swaps).

CDS indices

CDS indices are static portfolios of L equally weighted credit default swaps (CDSs) with standard
maturities, typically five or ten years. Typically, the index matures few months before the underlying
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CDSs. For instance, the five years iTraxx S3 (series three) and its underlying CDSs mature on June
2010 and December 2010 respectively. The debt obligations underlying the CDSs in the pool are
selected from among those with highest CDS trading volume in the respective industry sector. We
shall refer to the underlying debt obligations as reference entities. We shall denote by 7" > 0 the
maturity of any given CDS index.

CDS indices are typically issued by a pool of licensed financial institutions, which we shall call the
market maker. At time of issuance of a CDS index, say at time ¢t = 0, the market maker determines
an annual rate known as index spread, to be paid out to investors on a periodic basis. We shall
denote this rate by ng.

In what follows, we shall assume that, at some time ¢ € [0,7], an investor purchases one unit
of CDS index issued at time zero. By purchasing the index, he/she enters into a binding contract
whose main provisions are summarized below,

(i) The time of issuance of the contract 0. The inception time of the contract is time ¢; the maturity
time of the contract is 7.

(ii) By purchasing the index, the investor sells protection to the market makers. Thus, the investor
assumes the role of a protection seller and the market makers assume the role of protection
buyers. In practice, the investors agrees to absorb all losses due to defaults in the reference
portfolio, occurring between the time of inception ¢ and the maturity 7. In case of default of
a reference entity, the protection seller pays to the market makers the protection payment in
the amount of (1 — ), where § € [0, 1] is the agreed recovery rate (typically 40%). (We assume
that the face value of each reference entity is one. Thus the total notional of the index is L.)
The notional on which the market maker pays the spread, henceforth referred to as residual
protection is then reduced by such amount. For instance, after the first default, the residual
protection is updated as follows (recall that, at inception the notional is L):

L—-L—-(1-9)

(iii) In exchange, the protection seller receives from the market maker a periodic fixed premium
on the residual protection at the annual rate of 7, that represents the fair index spread.
(Whenever a reference entity defaults, its weight in the index is set to zero. By purchasing
one unit of index the protection seller owes protection only on those names that have not yet
defaulted at time of inception.) If, at inception of the contract, the market index spread is
different from the issuance spread, i.e. 7; # 79, the present value of the difference is settled
through an upfront payment.

We denote by 7; the random default time of the i‘" name in the index and by H{ the right
continuous process defined as H} = Nyr <y, 2 =1,2,...,L. Also, let {t;,j =0,1,...,J} with t = t,
and t; < T denote the tenor of the premium leg payments dates. The discounted cumulative cash

flows associated with a CDS index are as follows:

J L
B .
Premium Leg = Z B—:(Z 1—Hy (1- 6))77t
7=0 7 a=1
L B , .
Protection Leg = Z Bt ((1 —0)(Hp — Ht’))
i=1" "

where
B; = exp(fot r¢dt) is the discount factor.
Collateralized Debt Obligations

Collateralized Debt Obligations (CDQO) are credit derivatives backed by portfolios of assets. If
the underlying portfolio is made up of bonds, loans or other securitized receivables, such products
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are known as cash CDOs. Alternatively, the underlying portfolio may consist of credit derivatives
referencing a pool of debt obligations. In the latter case, CDOs are said to be synthetic. Because
of their recently acquired popularity, we focus our discussion on standardized (synthetic) CDO
contracts backed by CDS indices.

We begin with an overview of the product.

(i) The time of issuance of the contract is 0. The time of inception of the contract is ¢ > 0, the
maturity is 7. The notional of the CDO contract is the residual protection of the underlying
CDS index at the time of inception.

(ii) The credit risk (the potential loss due to credit events) borne by the reference pool is layered
into different risk levels. The range in between two adjacent risk levels is called a tranche. The
lower bound of a tranche is usually referred to as attachment point and the upper bound as
detachment point. The credit risk is sold in these tranches to protection sellers. For instance,
in a typical CDO contract on iTraxx, the credit risk is split into equity, mezzanine, and senior
tranches corresponding to 0—3%, 3—6%, 6—9%, 9—12%, and 12—22% of the losses, respectively.
At inception, the notional value of each tranche is the CDO residual notional weighted by the
respective tranche width.

(iii) The tranche buyer sells partial protection to the pool owner, by agreeing to absorb the pool’s
losses comprised in between the tranche attachment and detachment point. This is better
understood by an example. Assume that, at time ¢, the protection seller purchases one currency
unit worth of the 6—9% tranche. One year later, consequently to a default event, the cumulative
loss breaks through the attachment point, reaching 8%. The protection seller then fulfills his
obligation by disbursing two thirds (= S%:g%) of a currency unit. The tranche notional is
then reduced to one third of its pre-default event value. We refer to the remaining tranche

notional as residual tranche protection.

(iv) In exchange, as of time ¢ and up to time T, the CDO issuer (protection buyer) makes periodic
payments to the tranche buyer according to a predetermined rate (termed tranche spread) on

the residual tranche protection. We denote the time ¢ spread of the I*" tranche by x.. Returning
to our example, after the loss reaches 8%, premium payments are made on % (= gg;:g;/g) of

the tranche notional, until the next credit event occurs or the contract matures.

We denote by L; and U; the lower and upper attachment points for the {*" tranche, fii its time
t spread. It is also convenient to introduce the percentage loss process,

I . .
o D= H)(1 - 5)
s L i
Zi:l(l - Ht)
where L is the number of reference names in the basket. (Note that the loss is calculated only on

the names which are not defaulted at the time of inception ¢.) Finally define by C!' = U; — L; the
portion of credit risk assigned to the I*" tranche.

Purchasing one unit of the [*" tranche at time t generates the following discounted cash flows:

J L
B .
Premium Leg = E B—tni g (1- HZ)(CZ - min(Cﬂmax(Fij - Ll,O)))
j=0 "ti

i=1

L
B . ,
Protection Leg = Z B—t(HlT —H))(1- 5)11{Lk§p$iSUk}

i=1 " ti

We remark here that the equity tranche of the CDO on iTraxx or CDX is quoted as an upfront rate,
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say k7, on the total tranche notional, in addition to 500 basis points (5% rate) paid annually on the
residual tranche protection. The premium leg payment, in this case, is as follows:

L

L
OO (1 —H)+ Y %(.05) Y- H) (00 — min(C°, max(T}, — Lo, 0)))

i=1 j=0 "t i=1

<

N*P-to-default Swaps

Nth_to-default swaps (NTDS) are basket credit instruments backed by portfolios of single name
CDSs. Since the growth in popularity of CDS indices and their associated derivatives, NTDS have
become rather illiquid. Currently, such products are typically customized bank to client contracts,
and hence relatively bespoke to the client’s credit portfolio. For this reason, we focus our attention
on First to Default Swap contracts issued on the iTraxx index, which are the only ones with a certain
degree of liquidity. Standardized FTDS are now issued on each of the iTraxx sector sub-indices. Each
FTDS is backed by an equally weighted portfolio of five single name CDSs in the relative sub-index,
chosen according to some liquidity criteria. The main provisions contained in a FTDS contract are
the following:

(i) The time of issuance of the contract is 0. The time of inception of the contract is ¢, the maturity
isT.

(ii) By investing in a FTDS, the protection seller agrees to absorb the loss produced by the first
default in the reference portfolio

(iii) In exchange, the protection seller is paid a periodic premium, known as FTDS spread, computed
on the residual protection. We denote the time-¢ spread by ;.

Recall that {t;,j = 0,1,...,J} with ¢t = ¢y and t; < T denotes the tenor of the premium leg
payments dates. Also, denote by 7(!) the (random) time of the first default in the pool. The
discounted cumulative cash flows associated with a FTDS on an iTraxx sub-index containing N
names are as follows (again we assume that each name in the basket has notional equal to one):

J
. B
Premium Leg = Z @t?t(n{r(l)ztj})
j=0

B,
B

Protection Leg = (1=0)(Mrm<ry)

Step-up corporate bonds.

As of now, these products are not traded in baskets, however they are of interest because they offer
protection against credit events other than defaults. In particular, step up bonds are corporate
coupon issues for which the coupon payment depends on the issuer’s credit quality: the coupon
payment increases when the credit quality of the issuer declines. In practice, for such bonds, credit
quality is reflected in credit ratings assigned to the issuer by at least one credit ratings agency
(Moody’s-KMV or Standard&Poor’s). The provisions linking the cash flows of the step-up bonds
to the credit rating of the issuer have different step amounts and different rating event triggers.
In some cases, a step-up of the coupon requires a downgrade to the trigger level by both rating
agencies. In other cases, there are step-up triggers for actions of each rating agency. Here, a
downgrade by one agency will trigger an increase in the coupon regardless of the rating from the
other agency. Provisions also vary with respect to step-down features which, as the name suggests,
trigger a lowering of the coupon if the company regains its original rating after a downgrade. In
general, there is no step-down below the initial coupon for ratings exceeding the initial rating.
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Let X; stand for some indicator of credit quality at time ¢t. Assume that ¢;,7 = 1,2,...,n are
coupon payment dates and let ¢, = ¢(X,_,) be the coupons (fp = 0). The time ¢ cumulative cash
flow process associated to the step-up bond equals

B

B
D:=(1- HT)B—T + / T](l — Hu)B—t dC\, + possible recovery payment
t u

where C; =37, _, ;.

7.10.2 Valuation of Basket Credit Derivatives in the Markovian Frame-
work

We now discuss the pricing of the basket instruments introduced in previous sub-section. In par-
ticular, computing the fair spreads of such products involves evaluating the conditional expectation
under the risk neutral measure P of some quantities related to the cash flows associated to each
instrument. In the case of CDS indexes, CDOs and FTDS, the fair spread is such that, at inception,
the value of the contract is exactly zero, i.e the risk neutral expectations of the fixed leg and protec-
tion leg payments are identical. The following expressions can be easily derived from the discounted
cumulative cash flows given in the previous sub-section.

e the time ¢ fair spread of a single name CDS (we shall need this during the calibration phase):

OB Hg)(1 — )

= Ny, J
B (S0 B )

e the time t fair spread of a CDS index is:

BN (SR, 21— 0)(Hf — 1))
By (S B (Sl 1 - 81 -9)))

n =

e the time ¢ fair spread of the CDO equity tranche is:

L

1 B )

0 X0 Y ¢ i
Ky ~(Ep” —(Hp — H{)(1 = )L <re <u}
COZzL 1(1Ht2)( i 1Bn 0="mi =0

J L
B Y 2E00) 31— 1) (00— min(C®.max(T, — L0.0))))
b 2 B, " 2 ¢ min(C”, max(I';, 0

e the time ¢ fair spread of the ¢/* CDO tranche is:

(2247 L 7 7
EXY (L, £ (Hy — B - 0)Lz,<re <uny )

£ _
Fe = EXt,Yt(ZJ By Z (1 H’)(Cl in(C! Tt L
P §=0 By, Lui=11t " — min(C*, max( t; l70)))>

e the time ¢ fair spread of a First To Default Swap is:

B B]itl) (1=0)(Lrm<ry)
Ejzo B (]1{7'(1)>t })
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e the time ¢ fair value of the step up bond is:

B B
Bt — Ei)(th ((1 — HT)B—; + /( T](l — Hu)B—t dC,, + possible recovery payment)
t, u

Depending on the dimensionality of the problem, the above conditional expectations will be
evaluated either by means of Monte Carlo simulation, or by means of some other numerical method
and in the low dimensional cases even analytically .
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Chapter 8
Appendix

The main part of the appendix comes from the forthcoming book of Jeanblanc et al. [121].

8.1 Hitting times

In this chapter, a Brownian motion (W, ¢t > 0) starting from 0 is given on a probability space
1 x

(Q,F,P), and F = (F;,t > 0) is its natural filtration. The function N (z) = \/7/ e 2 dy is
T J—c0

the cumulative function of the standard Gaussian law.
8.1.1 Hitting times of a level and law of the maximum for Brownian
motion

Let us study the law of the pair of random variables (W;, M;) where M is the maximum process

of the Brownian motion, i.e., M, =l sup,<; Ws. The law of hitting times of a given level by the
Brownian motion will be obtained.

Law of the pair of the random variables (W, M;)

Let us remark that the process M is an increasing process, with non negative values.

Théoréme 8.1 Let W be a Brownian motion starting from 0 and M; = sup (W,,0 < s <1t).

-2
for y>0,2<y PW, <a, M, <y) = N(%)—N(mﬁy),
for y>0,z>y PW, <a,M; <y) = P(Mtéy):N(%)fN(;\/z), (8.1)
for y <0 PW; <z, My <y) = 0.
2 — 29)2
P(Wt € dx, M, Edy) = ﬂyzoﬂwgy E(Qy—x) exp (—(x%y)) . (82)

Law of the supremum

Proposition 8.1.1 The random variable My has the same law as |Wy|.

179
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Law of the hitting time

For & > 0, the law of T, = inf{s: W, > x} can be now easily deduced from

P(I, <t)= Pl < M) = Pa < W) = Pa< GV = P(Ly <1). (83
where, as usual G stands for a Gaussian random variable, with zero expectation and unit variance.
Hence, T, law 2—22 and the density of T, follows:

x x?
P(T, € dt) = %exp(—?t)]ltzo dt .
For x < 0, we have, using the symmetry of the BM
T, =inf{t : W, <z} =inf{t : W, =z} ‘o,
and
P(T, € dt) = il eXp(—iQ)]ItZO dt. (8.4)

Vo3 2t

Law of the infimum

The law of the infimum of a Brownian motion is obtained by relying on the same procedure. It can
also be deduced by observing that

my def Hét; Wy = —sup(—W,) = —sup(B;)

s<t s<t
where B = —W is a Brownian motion. Hence
_ 2 —
for y<0,2>y P(Wy > z,my > y) :N(%)*N( y\/%x),
for y<0,z<y P(W, > z,m, > y) :N%) -M). (8:5)
for y>0 PWy>x,m:>y) =0.

In particular, P(m; > y) = N{( ;y) -N (%) As an immediate consequence, we obtain that, for

x>0andy >0,

P, (W, € dy, Ty > t)

Pi(Wy+zedy,T_, >1t)= P (Wi +x €dy,my > —2x)
1

B I ) P

Laplace transform of the hitting time

)\2
We have recalled that, for any A > 0 the process (exp(AW; — —t), t > 0) is a martingale. Let y > 0,

2
A > 0 and T, be the hitting time of y. The martingale
2

A
(exp(AWiny, = 5 (EAT), £ 0)

is bounded by e*¥. Doob’s optional sampling theorem yields
)\2
Elexp(AWr, — ?Ty)] =1.

The case where y < 0 is obtained by studying the Brownian motion —W.
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Warning 1 In order to apply Doob’s optional sampling theorem, we have to check carefully that
2

the martingale exp(AW;iat, — ?(t AT,)) is uniformely integrable. In the case A > 0 and y <0, a

wrong use of this theorem would lead to the equality between 1 and
)\2 2
Elexp(AWr, — ?Ty)] = e’\yE[eXp(—?Ty)]

A2 A2
that is between E[exp(— ETy)} and exp(—yA) This is obvioulsly wrong since the quantity E[exp(— ?Ty)]

is smaller than 1 whereas exp(—yA) is strictly greater than 1.

Proposition 8.1.2 Let T} be the hitting time of y € IR for a standard Brownian motion. Then, for

A>0
2

Blexp(~ % T,)] = exp(~ly]).

8.1.2 Hitting times for a Drifted Brownian motion

We study now the case where X; = vt+W;, where W is a Brownian motion. Let MtX =sup (Xs,s <
t), m;¥ = inf (X,,s < t) and T,(X) = inf{t > 0| X; = y}.

Laws of the pairs M, X and m, X at time ¢

Proposition 8.1.3 Fory >0,y >«

x — vt x— 2y — vt
P(X: <0 MF < 3) =N - N (2
and fory <0,y <=w
—x+uvt —x+2y+ vt
P(X; > z,m) >y) :N(T) —62uy/\/(+)-

Laws of maximum, minimum and hitting times

In particular, the laws of the maximum and of the minimum are deduced :

X _ y—Vt _ J2vy _y_l/t
POLY 2y) = M)+ (), gz

and for y > 0
P(T,(X) > t) = P(M{* <y).

The law of the variable T} (X) has density

P(Ty(X) € dt) = —2_ yerv L2y e)) ! t)?
(y( )e )_\/Wye €Xp _5 T—i_y —WZJGXP _E(y_y) )

named inverse Gaussian law with parameter (y,v). In particular, when ¢ — oo in

y—uvt
NG

we obtain P(T, = co) =1 —e?¥, for v <0 and y > 0.

-y —vt

Vit

P(Ty = ) = N( ) — N )5
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P(m* 2 ) = N(FL25) — N (E0E), <o (57)
—vt v + vt
P(mtxgy):J\/(z”\/7E ) + €2 ?W(y\/% ), y<0. (8.8)
Laplace transforms
From Cameron-Martin’s theorem
A2 2+ 22
E(exp—gTy(X)) =F (exp(uWTy . 2Ty(W))> .

From Proposition 8.1.2, the right hand side equals

€VyE[€Xp(—%(V2 + )\Q)Ty(W))] = e"Yexp[—|y| V2 + A\?].

Therefore
)\2

E(exp ——- Ty (X)) = e exp[~[y|vv* + A7]. (8.9)

8.1.3 Hitting Times for Geometric Brownian Motion
Let us assume that the dynamics of the risky asset are, under the risk neutral probability @, given

by
dSt = St(‘udt + O'th) 5 SO =X (810)

with o > 0, i.e.,
Sy =mexp ((n— 0 /2)t + oW,) = 2™,

where py=r—0, Xe =vt+ Wi, v = e %. We denote the first hitting time of a by
o
1
T,(S)=inf{t >0 : Sy =a} =inf{t >0 : X; = —In(a/z)}
o
1
Then T,(S) = To(X) where & = —1In(a/x). When a level b is used for the geometric Brownian
o

1
motion S, we shall denote 5 = —In(b/z).
o

Law of the pair (maximum, minimum)

We deduce from Proposition 8.1.3 that for b > a,b > =

—vt — 20—t
P(S; < a, M <b) = P(X, < a, MX < ) = N(O‘ﬁ” ) — 62"[3./\/(0[\/6%”)
whereas, for a > b,b < x
—a+ vt Vs —O 20+ vt
P(S; > a,mf > b) = P(Xy > a,m\ > ) = N(%) ¢ "N(O‘Jf”) (8.11)
It follows that, for a > x (or a > 0)
P(T,(S)<t) = P(Tn(X)<t)=1-PM" <a)
= 1-PX;<a,Mf <a)
a—vt —vt—«
- 1- 2va
N5+ N ()
_ —a+ vt o VL — @
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and, for a < z (or a < 0)
P(T,(S) < t)

P(T(X)<t)=1-P(m >a)

_ a—vt p2va vt +«
= N(iﬁ )+ e N( 7 )
It follows, from Markov property that
“2(r—o?/2)
PUL(S) > TI17) =N (50T~ 0) - (4 ) N(ro(SoT—1)  (8.12)
with ) ) )
hi(z,u) = U\f (1113j +(r— 202)(u)> , ho(z,u) = — (lnz + (r— 202)(u))

Laplace transforms
From the previous remarks
A\? A2
B(exp =5 To(8)) = BV (exp — - Ta(X)) -
Therefore, from (8.9)
)\2
E(exp—?Ta(S)) = exp (Va— \a|\/u2+)\2) . (8.13)

8.1.4 Other processes

OU Process

Let (r,t > 0) be defined as
dri = k(0 —ry)dt+odW, 19 =0,

and 7, =inf {t >0 : r, > p}. For any p > 19 = 0, the density function of 7, equals

3/2
__F k kt/2 k 2 2
0= 27r(sinhkt> M2exp | = 5= ((p=0)" = 0% + pFcothikt) |.

For the derivation of the last formula, the reader is referred to Géing and Yor [90]. The formula in
Leblanc and Scaillet [144] is only valid for g = 0. The Laplace transform of the stopping time 7, is
known (see Borodin and Salminen [30]):

X(r)
Y(p)

Y(r) = exp <(T4Uf)2> D_, (” - k)

where D is the parabolic cylinder function :

bt = en(-2)aems

1 Xow+2) .. (v+2k—2) (22"
{r((qul)/2)<1+Z 35.. 2k D& (2))

k=1

= v+1)( y+3) (v+2k-1) [z b
( 21 .2k + 1) k! (2))}

B, (exp (~67,)) =

where
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CEV Process
The Constant Elasticity of Variance (CEV) process Process! CEV - has dynamics
dZ, = Zy(pdt + o ZP dWy) . (8.14)

Lemma 8.1.1 For 8 >0, or § < —% a CEV process is a deterministic time changed process of a
power of a BESQ) process:

(St — oht (pc(t))*l/(w) > 0)
‘ ‘ ) ‘ 1 po* Gt
where p is a BESQ with dimension 6 =2+ 3 and ¢(t) = 2—(6 BPE—1).
w
If0>p3>—3
—1/(2
(St = e (peqr)) /@5 < TO)

where Ty is the first hitting time of 0 for the BESQ p.
For any B and y > 0, one has

18] e —2p 1 -
P:r S, €d — n(2B+1/2)t,.1/2 23-3/2 _ 23 20 2upt
(S; Y) c(t)e /Y exp 0 (x +y e )

1 _5 _
X1y /(2p) <7<t)x By Be“ﬁt> dy .

Let X be a Bessel process with dimension § < 2, starting at 2 > 0 and Ty = inf{¢ : X; = 0}. Using
time reversed process, Going-Jaeschke and Yor [90] proved that the density of T is

R £ Ry
tl () \ 2t

where « = (4 —4)/2 — 1.

8.1.5 Non-constant Barrier

The case of non-constant barrier would be of great interest. For example, the process X is a geometric
Brownian motion with deterministic volatility

dSt = St(’/‘dt + O'(t)dBt), SO =X

and

To(S) =inf{t : Sy =a} =inf{t : rt — %[/O o(s))?ds +/0 0sdBs = a},

t
where a = In(a/x) As we shall see below, the process U, = / 0sdBs is a changed time Brownian
0

t

motion and can be written as Z ;) where Z is a brownian motion and A(t) = / [0(5)]*ds. Hence,
0

introducing the inverse C of the function A

To(S) = inf{t : rt — %A(t) + Zaqy = af =inf{C(u) : rC(u) — %u +Z, =a},

and we are reduced to the study of the hitting time of the non-constant boundary C(u) by the
drifted Brownian motion Z; — %t.
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Bibliography

More generally, let 7,(V) = inf{t > 0 : V, = f(¢)}, where f is a deterministic function and V
a diffusion process. There are only few cases for which the law of 7/(V) is explicitly known; for
instance, the previous case when V' is a Brownian motion and f is an affine function.

This problem is studied in a general framework in Alili’s thesis [2], Barndorfl-Nielsen et al. [10],
Daniels [54], Durbin [76], Ferebee [84], Hobson et al. [99], Jennen and Lerche [122][123], Lerche
[147], Salminen [168] and Siegmund and Yuh [175].

Breiman [31] studies the case of a square root boundary, i.e. T' = inf{t :  + B; = a/t} .

Groeneboom [92] studies the case T' = inf{t : x + B; = at?}. For any > 0 and o < 0,

Ai(\, — 2acx)

oo 2
P (T € dt) = 2(ac)* 5% exp(—pun, — = a’t?) AT

3

here \,, are the zeros on the negative half-line of the Airy function Ai, the unique bounded solution
of u” — zu = 0, uw(0) = 1, and u,, = —A,/c. This last expression was obtained by Salminen [168].
The Airy function is defined as

o L) s (20

8.1.6 Fokker-Planck equation
Let
dXt = b(t, l‘t)dlf + U(t, X — t)th

be a diffusion.

Proposition 8.1.4 Let h be a deterministic function, 7 =inf{t >0 : Xy < h(t)} and
g(t,x)dx = P(X; € dz, 7 > t).

The measure g(t,x)dx satisfies
d 0 10% ,

and the boundary conditions
g(t, x)d:v|t:0 = (S(.’E — X())
g(tv x)|ac:h(t) = 0

Using Fokker-Planck equation, He et al. [96] and Iyengar established the following result (See
also Patras [162] for a different approach)

Proposition 8.1.5 Let X;(t) = a;t + o;W;(t) where Wy, Wy are two correlated Brownian motion,
with correlation p, and M;, m; the running mazimum and mintmum. The probability density

P(Xl(t) € dxl,Xg(t) S dl’g,ml(t) € dml,mg(t) € dmg)
= p(x1, 22, t; M1, M2, a1, 2,01, 02, p)

18
ea1 x1+asxe+bt

01024/ 1— p2

h<x17$2at;m17m27a1;a2a017027p)
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with

2 « 4 4
h(xlax27t; my,ma,1,0Q2,01,02, p) = @ Z 6_(T2+T5)/(2t) sin (T”;O) sin (n;> I(nﬂ)/ﬁ (?)
n=1

and

a Q102 — pai20q , = Q201 — P02
(1= p?)oios (1-p?)or03
1
b = —aja; —asas + = 5 (01a1 + Ugag) + poiosaias

tang = ‘172

I T2 —my L o T2 me
1 p2 —-p oy ) 22 o

mi ma
210 = +,07 2o = ———
01 02

r = \/z%—i—za tan9:—, 6 €10,
21
ro = /23 + 23, tanégz—?o, 6o € 10,0]
10

P(Xl(t) S dIl,XQ(t) S d$27m1(t) > ml,Mg(t) < MQ)
(w1, —w2,t;m1, —Ma, 1, —g, 01, 02, —p)dr1dTy

8.2 Copulas

The concept of a copula function allows to produce various multidimensional probability distributions
with prespecified univariate marginal laws.

Definition 8.2.1 A function C : [0,1]™ — [0,1] is called a copula if the following conditions are
satisfied:

(i) C,...,1,v;1,...,1) = v; for any i and any v; € [0, 1],

(ii) C is an n-dimensional cumulative distribution function (c.d.f.).

Let us give few examples of copulas:

e Product copula: II(vy,...,v,) =7 v;,

e Gumbel copula: for 6 € [1,00) we set

. 1/6
C(vyy...,0p) =exp | — [Z(lnvi)al )

i=1
e Gaussian copula:
C(v1,...,vn) = N& (N (v1),..., N7 (vn)),
where N§ is the c.d.f for the n-variate central normal distribution with the linear correlation
matrix 3, and N1 is the inverse of the c.d.f. for the univariate standard normal distribution.
e t-copula:
C(v1,...,v0) = Ol (£, (1), 1, (0n))
where ©7 y, is the c.d.f for the n-variate t- dlstrlbutlon with v degrees of freedom and with the

linear correlation matrix ¥, and ¢! is the inverse of the c.d.f. for the univariate ¢-distribution
with v degrees of freedom.
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The following theorem is the fundamental result underpinning the theory of copulas.

Théoréme 8.2 (Sklar) For any cumulative distribution function F' on IR™ there exists a copula
function C' such that
F(zy,...,x,) = C(F1(21),..., Fao(zyn))

where Fy is the i™™ marginal cumulative distribution function. If, in addition, F is continuous then
C is unique.

TO BE COMPLETED

8.3 Poisson processes

We give some results on Poisson processes and martingales with jumps. For more details, see [121]

8.3.1 Standard Poisson process
Definition

The standard Poisson process is a counting process such that the random variables (7,41 —
T,,n > 0) are independent and identically distributed with exponential law of parameter \ with
A > 0. Hence, the explosion time is infinite and

(A"

P(N; =n)=e p

The standard Poisson process can be redefined as follows (See e.g., Cinlar [46]): it is a counting
process without explosion (i.e., T' = c0) such that

- for every s,t, Niis — Ny is independent of F,

- for every s, t, the r.v. Nyps — N, has the same law as Nj.
or, in an equivalent way, its increments are independent and stationary.

Definition 8.3.1 Let F be a given filtration and \ a positive constant. The process N is an F-
Poisson process with intensity A if N is an F-adapted process, such that for any (t,s), the random
variable Nyys — Ny is independent of F; and follows the Poisson law with parameter \s.

Martingale Properties

From the independence of the increments of the Poisson process, we derive the following martingale
properties:

Proposition 8.3.1 Let N be an F-Poisson process. For each a € IR, for each bounded Borel
function h, for any 8 > —1, and any bounded Borel function ¢ valued in | — 1, 00[, the processes the
following processes are F-martingales:

M; = Ny — M, M? — Xt = (N; — M\t)? — )\,
¢ ¢
exp(aN; — At(e® — 1)), exp[/ h(s)dNs — )\/ (ehl®) — 1)ds]
0 0
exp[ln(1 + B)N; — ABt] = (1 + B)Nre= P,

ex t s t — ")) ds
p[/o h )st+)\/O(1 )ds]
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=ex t s s t 5) — e"®))ds
ol [ B+ A [ (14 he) = i)
exp[/o In(1 + ¢(s))dNs — )\/O ©(s)ds]
= exp[/0 In(1 + ¢(s))dMs + )\/0 (In(1+ ¢(s)) — o(s))ds] ,

Definition 8.3.2 The martingale (M; = Ny — At, t > 0) is called the compensated process of N,
and X\ is the intensity of the process N.

Proposition 8.3.2 Let N be an F-Poisson process and H be an F-predictable bounded process, then
the following processes are martingales

t t t
(H*M)t:/ HSdMS:/ Hsts—)\/ H,ds
0 0 0

((H % M);)? — A/Ot HZds (8.15)

t t
exp (/ Hy,dN, + /\/ (1-— eHS)ds>
0 0

Watanabe’s Characterization of the Poisson Process

Let N be a counting process and assume that there exists a constant A > 0 such that M; = Ny — A\t
is a martingale. Then N is a Poisson process with intensity .

Change of Probability

Proposition 8.3.3 Let II* be the probability on the canonical space such that the canonical process
is a Poisson process with intensity X\. Then, the following absolute continuity relationship holds

MDA £ = (1 + B)Nee=20t) 1M g, .

8.3.2 Inhomogeneous Poisson Processes
Definition

Instead of considering a constant intensity A as before, now (A(t),t > 0) is an IRT-valued function
t

satisfying Auw)du < o00,Vt. An inhomogeneous Poisson process N with intensity A is a

0
counting process with independent increments which satisfies for ¢t > s

P(N,— N, =n) = e—“Svt)(A(iﬂ (8.16)

t

t
where A(s,t) = A(t) — A(s) = / A(u)du, and A(t) = / AMu)du.
s 0
If (T,,,n > 1) is the sequence of successive jump times associated with N, the law of T;, is:

P(T, <t) =~ /O exp(—A(s)) (A(s))" " dA(s) .

Tl

It can easily be shown that an inhomogeneous Poisson process with deterministic intensity is an
inhomogeneous Markov process. Moreover, E(N;) = A(t), Var(N;) = A(t). An inhomogeneous
Poisson process can be constructed as a deterministic changed time Poisson process.
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Martingale Properties

Proposition 8.3.4 Let N be an inhomogeneous Poisson process with deterministic intensity A and
FY its natural filtration. The process

(My = N, — /Ot A(s)ds, t > 0)

is an FN -martingale, and the increasing function A(t) = ft A(8)ds is called the (deterministic) com-

0
pensator of N.

Let ¢ be an FN -predictable process such that E(fg |ps|A(s)ds) < oo for every t. Then, the process
(fot ¢sdM,,t > 0) is an FN -martingale. In particular,

E </Ot s st> ) (/Ot d)s)\(s)ds> . (8.17)

As in the constant intensity case, for any bounded predictable process H, the following processes
are martingales

t t t
a) (H*M)t:/ HdeS:/ HstS—/ A(s)H,ds
0 0 0
t

b) ((H*M)t)2—/ (s)H?ds

c) exp (/Ot HSdNSO— /Ot A(s)(efls — 1)ds> .

Stochastic Calculus

In this section, M is the compensated martingale of an inhomogeneous Poisson process N with de-
terministic intensity (A(s), s > 0). From now on, we restrict our attention to integrals of predictable
processes, even if the stochastic integral is defined in a more general setting.

Integration by parts formula

t
Let g and g be two predictable processes and define two processes X and Y as X; = x + / gsd Ny
0

t
and Y; =y + / gsdNg. The jumps of X (resp. of Y') occur at the same times as the jumps of N

0
and AX, = gsAN,, AY,; = §,AN,. The processes X and Y are of finite variation and are constant

between two jumps. Then

XY: = ay+ Y AXY),=ay+ Y X, AVi+ Y Yo AX 4+ Y AX,AY,

s<t s<t s<t s<t

t t
xy+/ Ys_dXSJr/ X,_dY, + [X,Y]
0 0

where (note that (AN;)? = ANy)

t
[X7 Y]t = Z AX AY, = nggsANs = gsgsd]vs .

s<t s<t 0

More generally, if dX; = hydt + g:dN; with Xg = z and dY; = hedt + g:dN;y with Yy = y, one gets

t t
X,Y, :;cy+/ Y,_dX, +/ X,_dY, + [X, Y],
0 0
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where .
[X,Y]t :/ gsgsts-
0

In particular, if dX; = g, dM; and dY; = g;dM,, the process X;Y; — [X,Y]; is a martingale.

Ito6’s Formula

For Poisson processes, 1td’s formula is obvious as we now explain.
Let N be a Poisson process and f a bounded Borel function. The decomposition

FIND) = f(No) + D [f(No) = f(N,-)] (8.18)

0<s<t

is trivial and is the main step to obtain It6’s formula for a Poisson process.
We can write the right-hand side of (8.18)as a stochastic integral:

YN = f(N)] = D [F(Ne- +1) = f(N,-)JAN,

0<s<t 0<s<t

/O [f(Ns— + 1) - f(NS_)]dN57

hence, the canonical decomposition of f(N;) as the sum of a martingale and an absolute continuous
adapted process is

f(Ni) = f(No) +/0 [f(Ns- +1) = f(Ns-)]dM +/0 [f(Ng- +1) = f(N-)]Ads .

It is straightforward to generalize this result. Let
t
Xt:z+/ 9sdNy =+ > gr,,
0 T, <t

with g a predictable process. The process (X¢,t > 0) jumps at time T}, the size of the jump is g7, ,
the process is constant between two jumps. The obvious identity

F(Xy) = F(Xo) + ) (F(Xs) = F(Xs-))

s<t

holds for any bounded function F'. The number of jumps before ¢ is a.s. finite, and the sum is well
defined. This formula can be written in an equivalent form:

F(X,) ~ F(Xo) = Y (F(X.) — F(X._)) AN,

s<t
t t
= [ ) - PN, = [ (P 4 g.) ~ FOX-) aN,
0 0
where the integral on the right-hand side is a Stieltjes integral. More generally again, let
dX; = hydt + gidMy = (hy — geA(t))dt + gid Ny
and F € CY1(IRT x IR). Then
t t
F(,X) = F(0,Xo) +/ O, F (s, X.)ds +/ Do F (5, Xos) (he — goA(s))ds
0 0

+) " F(s, X,) — F(s,X,-) (8.19)

s<t
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t t
= F(07X0)+/ 8tF(s7XS)ds+/ 0, F (s, X,_)dX,
0 0

+ 3 [F(s,Xs) = F(s, Xo—) = 0:F (s, Xo_)gsAN,] .

s<t

Indeed, between two jumps, dX; = (hy — A(t)g:)dt, and for T, < s <t < Tpy1,
t t
F(t,X:) = F(s,Xs) + / O F (u, Xy)du + / 0 F(u, Xy)(hy — guA(u))du .

At jump times, F(T,,, X1,) = F(Ty, X1,-) + AF(, X)71,.
The formula (8.19) can be written as

LX) — F(O,Xo)—/t&gF(s,Xs)ds+/t8xF(s,Xs)(hs—gsA(s))ds

+/t[F(s,XS) — F(s, X,_)]dN, (8.20)
0

t t
= / 8tF(s,Xs)ds—|—/ 0 F(s, Xs_)dX,
0 0

+ /t[F(s,XS) — F(s,Xs_) — 0. F(s,Xs_)gs]dNg
0

t t
= / 8tF(s,Xs)ds—|—/ 0. F (s, Xs_)dX
0 0

+/t[F(s,Xs +gs) - F(S,XS,) - axF(Svaf)gs]sta
0
_ /Ot (0uF (5, X.) + [F(s, Xo +go) — Fls, Xo_) — D F(s, Xs_)gs]A) ds

+ /t[F(&XS +9s) — F(s, Xs-)]dMj . (8.21)
0

Remark that, in the “ds” integrals, we can write Xs_ or Xj, since, for any bounded Borel function

I
t t
[ recois= [ s
0 0
Note that since dNg a.s. Ny = N,_ + 1, one has

/f _)dN, = /fN+1)N

We shall use systematically use the form / f(Ng—)Ng, even if the / f(Ng+1)dN; has a meaning.
The reason is that / f(N, / F(Ng_)dNgs + A / f(Ns_)ds is a martingale, whereas

/ f(Ns + 1)dM; is not.
0

Predictable Representation Property

Proposition 8.3.5 Let FY be the completion of the canonical filtration of the Poisson process N
and H € L*(FY), a square integrable random wvariable. Then, there exists a unique predictable
process (hy,t > 0) such that

oo
H = E(H) +/ hedM,
0
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and E([;° h%ds) < co.

Comments 8.3.1 This result goes back to Brémaud and Jacod [33], Chou and Meyer [44], Davis
[59].

8.4 General theory

8.4.1 Semimartingales

A semi martingale is a cadlag process X with decomposition X; = M; + A; where M is a martingale
and A a bounded variation process. If A is predictable, the decomposition with predictable bounded
variation process is unique and the semi martingale is said to be special.

The martingales M* and M? are orthogonal if the product M*M? is a martingale.

If X is a submartingale, then the process A in its decomposition X = M + A is increasing (Doob-
Meyer decomposition)

A semimartingale can be written as X; = MZ+M¢+A; where M; = Mf+ M is the decomposition of
the martingale M into a continuous martingale M¢ and a discontinuous martingale M9 (orthogonal
to any continuous martingale)

8.4.2 Integration by parts formula for finite variation processes

If U and V are two finite variation processes, Stieltjes’ integration by parts formula can be written
as follows

UV = UOV(0)+ /M V(s)dU(s) + /M U(s—)dV (s) (8.22)
- U(O)V(O)—&—/m , V(s—)dU(s)—i—/]Ot] U(s—)dV (s)
+> AU(s) AV (s).

¢
We shall often write / V(s)dU(s) for V(s)dU(s).
0 10,¢]

8.4.3 Integration by parts formula for mixed processes

Let dX; = pedt + o dWy + ordM; where M is a compensated martingale of a compound Poisson
process. Then

For

8.4.4 Doléans-Dade exponential

If X is a semimartingale, then the process Z = £(X) is the unique solution to the SDE (called the
Doléans Dade exponential)

Zy=1 +/ Zy— dX,,.
10,¢]

It is known that 1
gt(X) = exXp (Xt — XO — §<Xc>t) H(]_ =+ AXu)e_AXu7
u<t

where X ¢ is the continuous martingale component of X.
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8.4.5 Itd’s formula

8.4.6 Stopping times

Definition 8.4.1 A stopping time T is predictable if there exists an increasing sequence (T,,) of
stopping times such that almost surely

i) lim, T, = T
ii) T,, < T for every n on the set {T > 0}.

A stopping time T is totally inaccessible if P(T = S < oo) = 0 for any predictable stopping
time S. An equivalent definition is: for any increasing sequence of stopping times T, P({lim T, =
T}NA) =0 where A=n{T, <T}.

8.5 Enlargements of Filtrations

In general, if G is a filtration larger than F' it is not true that an F-martingale remains a martingale
in the filtration G. From the end of the 1970’s the French school of probability studied the problem
of enlargement of filtration, and obtained results on the decomposition of the F-martingales in the
filtration G. The main papers and books are Brémaud and Yor [34], Jacod [109, 108], Jeulin [124],
Jeulin and Yor [125, 126] and Protter [163]. See also Barlow [9] and Dellacherie and Meyer [64].
The book of Yor [180] contains a concise introduction to enlargement of filtrations, and the book of
Mansuy and Yor [155] presents this theory in details. These results are extensively used in finance to
study the problem of insider trading, an incomplete list of authors is: Amendinger [3], Amendinger
et al. [4], Ankrichner et al. [5], Corcuera et al. [49], Eyraud-Loisel [82], Gasbarra et al. [87]
Grorud and Pontier [93], Hiliaret [98], Imkeller [106], Imkeller et al. [107], Karatzas and Pikovsky
[127], Kohatsu-Higa [133, 134], Kohatsu-Higa and Oksendal [135]. They are also used to study
asymmetric information, see e. g. Follmer et al. [86] and for the study of default in the reduced
form approach by Bielecki et al. [20, 17, 15], Elliott et al.[80] and Kusuoka [138].

8.5.1 Progressive Enlargement

We consider the case where G, = F; V o(7 A t) when 7 is a finite random time, i.e., a finite non-
negative random variable. For any G-predictable process H, there exists an F-predictable process
h such that H;l;<, = h14<,. Under the condition V¢, P(1 < ¢|F;) < 1, the process (hy, ¢t > 0) is
unique (See [63] page 186).

Let us first investigate the case where the (H) hypothesis holds
Lemma 8.5.1 In the progressive enlargement setting, (H) 1is equivalent to one of the following
equivalent conditions

(i) Vs<t, P(r<slFx) = P(r<s|F),

(@) v, P(r<t|F.) = P(r<t|F). (8.23)

In particular, if (H) holds, then the process (P(7 < t|F;),t > 0) is increasing.

The decomposition of the F-martingales in the filtration G are known up to time 7.

Proposition 8.5.1 FEvery F-martingale M stopped at time T is a G-semi-martingale with canonical
decomposition

tAT
T dM7 T)s
MtAT:Mt+/ #7
0 Zsf
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where M is a G-local martingale. The process

is a G-martingale.

As we have mentioned, if (H) holds, the process (Z7,t > 0) is an increasing process.

8.6 Markov Chains

Let X be a right-continuous process with values in a finite set F. Le G be some filtration larger
than the natural filtration of X.

Definition 8.6.1 A process X is a continuous time G-Markov-chain if for any functionh : E — IR
and any t,t
E(hM(Xi45)|Ge) = E(h(Xi4s)| Xe) = W (t, Xy, T+ 5)

A continuous time G-Markov-chain is time homogeneous if U(t,z,t + s) = V(t + u, z,t + s + u)

Definition 8.6.2 A family p; ;(t,s) is called a transition probability matriz if

P(X, =j|X; =) =pij(t,s)

In the case of time-homogeneous Markov chain, the one-parameter family p; ;(¢) is the family of
transition probability if
P(Xoqr = j|Xo = i) = pij(s)

Observe that

for all i, Di,j > 0
for all 4, > icppiy =1

Then

P(Xoqe € AlXy =) = Zpi,j(s)
jeA

The Chapman-Kolmogorov equation

Pig(t+5) =Y pin(t)pr;(s) =Y pin(s)pr;(s)

kel keE
is satisfied and can be written in a matrix form
P(t+s)=P(t)P(s) = P(s)P(t)
The following limit

Ppij(t) — pi;(0)

pij(t) —dij
t t

/\i,j = lim = lim

exists. Observe that
for ¢ 75], Ai,j > 0

>\i,i = - Zj;éi )\17.7
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The matrix A = (); ;) is called the infinitesimal generator matrix. The backward Kologorov equation
is

P
L(t) = AP(t), P(0)=1d
dt
The forward Kolmogorov equation is
%it) = P(t)A, P(0)=1d

These equation have the unique solution
P(t) = e
Note that, for any function h, the process
t
b~ [ (AR (X
0

is a martingale.

Elementary case Let us study a continuous time Markov chain with two states 0 and 1. T If

Pop(t) = P(T > t) = eiM, P071(t) =1- 67)\7:, Pl,o(t) = 07 Pl,l(t) =1

The transition matrix is

and can be written in the form

with A = [ _O)\ 6\ } The matrix A is called the generator of the Markov chain. The probability

for going from state 0 to state 1 between the date ¢ and ¢ + dt is Adt. (See Karlin and Taylor [129])

8.7 Ornstein-Uhlenbeck processes

8.7.1 Vacisek model

Proposition 8.7.1 Let k,0 and o be bounded Borel functions, and W a Brownian motion. The
solution of

dry = k(£)(0(t) — r,)dt + o (t)dW, (8.24)

t t
ry = e K® (ro —|—/ eK(S)k(s)H(s)ds—i—/ eK(S)U(s)dWS>

0 0

¢
where K (t) = / k(s)ds. The process (ry,t > 0) is a Gaussian process with mean
0

E(ry) = e~ KO (m + /O t eK(S)k(s)G(s)ds>

and covariance A
o~ K(H)—K(s) / KW 52 () du .
0
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The Hull and White model correspond to the dynamics (8.24) where k is a positive function.

In the particular case where 6 and k are constant, we obtain

Corollary 8.7.1 The solution of

d’/’t = k(@ - ’/‘t)dt + O'th (825)

18
t
re = (1o — 0)e * + 6+ 0/ e k=W g,
0

The process (ry,t > 0) is a Gaussian process with mean (rg — 0)e* + 60 and covariance

2

2
U—(fk(”t)(e%S —-1)= %eikt sinh(ks)

Cov(rs,mt) = %

for s <t.

In finance, the solution of (8.25) is called a Vasicek process. In general, k is chosen to be positive,
so that E(r;) — 6 as t — oo. The process (8.24) is called a Generalized Vasicek process (GV).
Since r is a Gaussian process, it can take negative values. This is one of the reasons why this process
is no longer used for modelling interest rates. When # = 0, the process r is called an Ornstein-
Uhlenbeck (OU) process. Consequently, for a general 6, the process (r —0,¢ > 0) is a OU process
with parameter k. More formally, here is a

Definition 8.7.1 An Ornstein-Uhlenbeck (OU) process driven by a BM follows the dynamics dry =
—kT’tdt + O'th,

An OU process can be constructed in terms of time-changed BM:

2kt

Proposition 8.7.2 i) If W is a BM starting from x and A(t) = 0267, the process Zy =
e”“WA(t) is an OU process starting from x.
11) Conversely, if U is an OU process starting from x, then there exists a BM W starting from x

such that Uy = e W yy).

PROOF: Indeed, the process Z is a Gaussian process, with mean ze~* and covariance e ~*(+5) (A(t) A

A(s)). O

From the Markov property of the process r it follows, in the case of constant coefficients:

Proposition 8.7.3 Let r be the solution of (8.25) and F the natural filtration of the Brownian
motion W. For s < t, the conditional expectation and the conditional variance of ry with respect to
Fs are given by

E(rrs) = (re—0)e =% 4¢
0_2

Vars (ry) = %

(1 o 672k(t75)) )
Note that the filtration generated by the process r is equal to the Brownian filtration. Due to the
Gaussian property of the process r, the integrated process fot rsds can be characterized as follows:

Proposition 8.7.4 Let r be a solution of (8.25). The process (fg rsds, t > 0) is Gaussian with

mean E(f(;5 rsds) = 0t + (rg — 0) 1_fkt , variance

t 2 2 —kt
o Cktva O 1-e
VG/I"(/O T‘Sds)——ﬁ(l—e ) +ﬁ(t_7)
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and covariance (for s < t)

0_72 . efkt ek:s -1 B 1— efkrs N eflc(tJrs) e2k:s -1
k k 2k '

t
PrROOF: From the definition, r; = rg + k0t — k/ rsds + cW;, hence
0

t
/ reds =
0

t
= %[kt% + (ro — 0)(1 — e7Ft) — a/ e R aw, + oWy].
0

[—7¢ + 10 + kOt + o W3]

—_

Obviously, from the properties of the Wiener integral, the right-hand side defines a Gaussian process.
It remains to compute the expectation and the variance of the Gaussian variable on the right-hand
side. ]

Zero-coupon Bond

Suppose that the dynamics of the interest rate under the risk-neutral probability are given by (8.25).
The value P(t,T) of a zero-coupon bond maturing at date T is given as the conditional expectation
of the discounted payoff. Using the Laplace transform of a Gaussian law, and using Proposition
8.7.4, we obtain

T 1
PtT)=F (exp (/ Tu du> |]-“t> =exp(—M(t,T) + 5V(t,T)),

ie.,

Proposition 8.7.5 In a Vasicek model, the price of a zero-coupon with maturity T is

1—e HT0 2 —R(T—1)\2
PLT) = exp [—G(T—t)—(rt—ﬁ)k—w(l—e )

0.2 1— e—k(T—t)
G (=
o (7o)

= exp(a(t,T) —b(t,T)rs),
with b(t, T) = =
It is not difficult to check that the risk-neutral dynamics of the zero-coupon bond is
dP(t,T) = P(t,T)(r«dt — b(t, T)dW,) .
Note that we know in advance, without any computation that
dP(t,T) = P(t,T)(ridt — ordWy)

since the discounted value of the zero-coupon bond is a martingale. It suffices to identify the volatility
term.

8.8 Cox-Ingersoll-Ross Processes

8.8.1 CIR Processes and BESQ

From general Theorem on the existence of solutions to one dimensional SDE, the equation

d’l’t = k(e-’f’t) dt+0’\/ |Tt|th, (826)
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admits a unique solution which is strong. For § = 0 and ry = 0, the solution is r; = 0, and from the
comparison Theorem, we deduce that, in the case k6 > 0, r, > 0 for 7o > 0. In that case, we omit
the absolute value and consider the positive solution of

d?"t = k(9 — Tt) dt + O'\/Eth . (827)

This solution is called a Cox-Ingersoll-Ross (CIR) process or a square-root process (See Feller
[83]). For o = 2, this process is the square of the norm of a d-dimensional OU process, with
parameter k6.

We shall denote by #Q*%¢ the law of the CIR process solution of the equation (8.26). In the case
o = 2, we simply note *Q*2 = kQ*  The elementary change of time A(t) = 4t/c? reduces the
study of the solution of (8.27) to the case o = 2: indeed, if Z; = r(4t/c?), then

dZt - k/(a - Zt) dt + 2\/ thBt

with &' = 4k /02 and B a Brownian motion.

Many authors prefer to write the dynamics of a square root process as
dry = (v — Ary) dt + o/ |r¢|dW; (8.28)

allowing to consider the interesting case v = 0. In the case v = 0, when a CIR process hits 0, it
remains at 0.

Proposition 8.8.1 The CIR process (8.27) is a space-time changed BESQ process: more precisely,

N

4k6
where (p(s),s > 0) is a BESQ® process, with dimension § = —5
o

PROOF: See [121]. O

It follows that for 2k > o2, a CIR process starting from a positive initial point stays always
positive. For 0 < 2kf < o2, a CIR process starting from a positive initial point hits 0 with probability
p €]0,1[if k < 0 (P(T§ < o0) = p) and almost surely if & > 0 (P(T§ < o0) = 1). In the case
0 < 2k#, the boundary 0 is instantaneously reflecting, whereas in the case 2kf < 0, the process r
starting from a positive initial point remains positive until 7o = inf{¢ : r; = 0}. Setting Z; = —rq, 1+,
we obtain that

dZt = (—6 + )\Zt)dt + o4/ |Zt‘dBt

where B is a BM. We know that Z; > 0, thus 77,4+ takes values in IR_.

Absolute Continuity Relationship

A routine application of Girsanov’s theorem leads to

k kQ t
Qlr = (Gl k-1 - 5 [ puas) @ (5.20)
0

Comments 8.8.1 From an elementary point of view, if the process r reaches 0 at time ¢, the formal
equality between dr; and kfdt explains that the increment of r, is positive if k6 > 0. Again formally,
for k > 0, if at time ¢, the inequality r > 6 holds (resp. r; < ), then the drift k(6 — r;) is negative
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(resp. positive) and, at least in mean, r is decreasing (resp. increasing).

Here we have used the notation r for the CIR process. As shown above, this process is close to a
BESQ p (and not to a BES R).

Dufresne [75] has obtained explicit formulae for the moments of the r.v. r,. The process ( fot rsds,t >
0) is studied by Dufresne [75]; Dassios and Nagaradjasarma [56] present an explicit computation for
the joint moments of r, and I; = fot rsds, and, in the case § = 0, the joint density of the pair (r¢, I}).

8.8.2 Transition Probabilities for a CIR Process

From the expression of a CIR process as a squared Bessel process time-changed, using the transition
density of the squared Bessel process given in ([121]), we obtain its transition density.

Proposition 8.8.2 Let r be a CIR process following (8.27). The transition density *Q*%7 (r; s €
dy|lrs = x) = fi(x,y)dy is given by

okt okt v/2 T+ yekt 1
= 2 () () O

2e(t) \ = 2¢(t)

2 2k0
where c(t) = 7 (e* — 1) and v = —5
o

=1 — 1. The cumulative distribution function is

4k0 =z _yekt)

k k6,0 2
Qr (Tt<y)*X (0_2 7C(t)’ C(t)

where the function x?(,a) is T is a non-central chi-square with § = 2(v + 1) degrees of freedom,
and o the parameter of non-centrality

8.8.3 CIR Processes as Spot Rate Models

The Cox-Ingersoll-Ross model for the short interest rate is the object of many studies since the
seminal paper of Cox et al. [52] where the authors assume that the riskless rate r follows a square
root, process under the historical probability given by

d?"t = l~c(0~—rt)dt+a\/ﬁdﬁft

Here I~c(9~ — ) defines a mean reverting drift pulling the interest rate towards its long term value 0
with a speed of adjustment equal to k. In the risk adjusted economy, the dynamics are supposed to
be given by:

dry = (E(6 — 1) — Ary)dt + o/ridW,

where (W, = Wt + fg %\/Eds,t > 0) is a Brownian motion under the risk adjusted probability @
where \ denotes the market price of risk. Setting k =k + X, 6 = l;:(é/k), the @ -dynamics of r are

d?"t = k(g - Tt)dt + O'\/Eth .

Therefore, we shall establish formulae under general dynamics of the form (8.27).
Even if no closed-form expression as a functional of W can be written for ry, it is remarkable that
the Laplace transform of the process, i.e.

bt [exp (— /O du ¢><u)m>}

is known..
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Théoréme 8.3 Let r be a CIR process, the solution of

dry = k(0 — r))dt + o\/FdW,. (8.30)

The conditional expectation and the conditional variance of the r.v. ry are given by, for s < t,

le;@,n(Tt |]_~S) — Tse_k(t_s) + 0(1 _ e—k(t—s)),

0.2(67k(t75) _ 67216(1578)) 00_2(1 _ efk(tfs))Q
+

Var(ry |Fs) = s ? ok

Note that, if & > 0, E(r;) — 6 as t goes to infinity.

Comments 8.8.2 Using an induction procedure, or using computations done for squared Bessel
processes, all the moments of r; can be computed. See Dufresne [74].

Exercise 8.8.1 If r is a CIR process and Z = r%, prove that
dZ, = (azj*” (kO + (a — 1)02/2) — Ztak:) dt + oz gaw, .

In particular, for a = —1, dZ; = Z;(k — Z;(k0 — 02))dt — tha/zath is the so-called 3/2 model (see

Section on CEV processes in [121] and Lewis [148]).
8.8.4 Zero-coupon Bond

We now address the problem of the valuation of a zero-coupon bond, i.e., we assume that the
dynamics of the interest rate are given by a CIR process under the risk neutral probability and we

compute E (exp (— ftT To du) |.7-'t> )

Proposition 8.8.3 Let r be a CIR process defined as in (8.27) by
drt = k(e—T‘t> dt+0\/7Ttth7

and *Qk%7 its law. Then, for any pair (\, i) of positive numbers

T

with
Ay +Ek+e?(y—k)) +2u(e” — 1)

Crnls) = CoN@m — 1) T (e + 1) + k(@ — D)
2k0 2ye(1+h)s/2
Ay u(s) = ——1n
’ o2 a?\(ers — 1)+ (e +1) + k(e — 1)

where v = \/k? + 2024

Corollary 8.8.1 Let r be a CIR process defined as in (8.27) under the risk-neutral probability.
Then, the t-time price of a zero-coupon bond maturing at T is

T
FQEe <exp (‘ / T d“) \ft> = exp[~A(T —t) = G(T = )] = B(r, T — 1)
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with
B(r,s) = exp(—A(s) — rG(s))
and
207 — 1) B 2
(y+k)(e*—1)+2y  k+ycoth(ys/2)
2k6 2ye(7Hk)s/2
40 = 2 (Grne )

-1
7@ kerln(cosh’ysqusinh’Y;) ],
8l

o2 |2 2

where v = Vk? + 202

The dynamics of the zero-coupon bond P(t,T) = B(ry, T —t) are, under the risk neutral probability
df)(lf7 T) = P(t, T) (T‘tdt + O'(T - t, ’I"t)th)

with o(s,1) = —aG(s)/r.

Corollary 8.8.2 The Laplace transform of the r.v. rr is

1\’ \eE
kk0,0( ,—Arry _ _
@7 (e ™) (2)\6—1— 1) eXp( 2A5+1>

with & = ¢(T)e %" and & = 2/c(T), ¢(T) = i(ekT —1).

8.9 Parisian Options

In this section, our aim is to price an exotic option that we describe below, in a Black and Scholes
framework: the underlying asset satisfies the stochastic differential equation

dSt = St((T’ — 5) dt + O'th)

where W is a Brownian motion under the risk-neutral probability @, and w.l.g. ¢ > 0. In a closed

form,

S, = ze® Xt

where X; = W; + vt and v = T;‘S — 3. The owner of an Up-and-Out Parisian option loses its
value if the stock price reaches a level H and remains constantly above this level for a time interval
longer than D (the window). A Down-and-in Parisian option is activated if the stock price reaches
a level L and remains constantly below this level for a time interval longer than D. For a window
length equal to zero, the Parisian option reduces to a standard barrier option. For a continuous
process X and a given t > 0, we introduce g?(X), the last time before ¢ at which the process X was
at level b, i.e.,

g2(X) =sup{s <t: X, =b}.

gt@g?(X): last time before t at which the process X is at the level b For an Up-and-Out Parisian
option we need to consider the first time at which the underlying asset S is above H for a period
greater than D, i.e.,

GHT(S) =int{t > 0: (t— g () ls,>my > D}

or, written in terms of X

GEM(X) =inf{t > 0: (t — g/ (X)) L(x,5n) > D}
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where h = In(H/x)/o. If this stopping time occurs before the maturity then the Up-and-Out
Parisian option is worthless. The price of an Up-and-Out Parisian call option is

. _ —rT +

PUO(z, H,D;T) = Eg (e (St — K) nGE,H(S»T)

_ —rT oX +

= FEg (e (xe T _ K) HGE"‘(X)>T)
or, using a change of probability

. _ = (r+v?/2)T vW. oW +
PUO(z, H,D;T) = ¢~ +*/2T (e T (2e"WT _ K) nag,h(WbT) .
The sum of the price of an up-and-in and an up-and-out Parisian option is obviously the price of a
plain-vanilla European call.
In the same way, the value of a Down-and-in Parisian option with level L is defined using
Gph(S) =inf{t > 0: (t — gF(S))(s,<1y > D}

which equals, in terms of X

G (X) = inf{t > 0 (t = g{ (X)) x,<0) = D}
1
with £ = —In(L/z) and is equal to
o

PDI(z, L, D;T) = Eq (e_TT(ST - K)+]1GB‘L(S)<T>

— e HTR (e”WT (e — K)*1

def

G;,’@(W)<T)
e~ DT *pDI(2, L, D; T).

8.9.1 The Law of (G,‘(W), WGB,e)

Proposition 8.9.1 Let W be a Brownian motion and G, = GB’O(W). The random variables G,
and WGB are independent and

2

P(Wg. €dz) = fxexp(—;—D)n{M}dx, (8.31)
Blesp(~ 3 Op)) = ST (5.32)

where
& 1‘2 2/9
U(z) = / zexp(zx — ?)dx =1-2¢" 2N (z).
0
We can easily deduce from the above Proposition the law of the pair (GE)’Z7 WGf,z) in the case
D
¢ < 0, as we present now.

Corollary 8.9.1 Let £ < 0. The random variables GB’Z and W .-« are independent and their laws
D
are given by

P(Wg-—r €dr) = de Izery (0 —x)exp <— (x2—D€) ) (8.33)
N~ epl)
E (eXp(—QGD )) = YD) (8.34)
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Proposition 8.9.2 In the case £ > 0, the random variables GB’Z and W -« are independent. Their
D
laws are given by

1
E(exp(-A\G5)) = e M (1 - F(D)) + ——— H(V2\,0,D).
(exp(-AG5") (L= FiD) + oo HV2X, D)
where the function H is defined by
e t— —at —
H(a,y,t) < e*“‘W(aﬁy) + N ( a\/i %), (8.35)
we get
E(e Mvlyr, <) = €Y H(y, |yl 1),
and
—(z—£)%/(2D (—x
P(W@Bg €dr) = ly<pdr {e (@=07/@D) p(T, < D) 5
n L (e—x2/(2D)_e—(x—2£)2/(2D) ]
27D
PROOF: See [121] or [80] U

8.9.2 Valuation of a Down and In Parisian Option

Théoréme 8.4 In the case x > L (i.e., £ < 0) the function t — he(t,y) is characterized by its
Laplace transform: for A > 0,

/h\, A = ee 2 d € —72 — —/ A
, Z 7z ex + 2z V2
E( y) D2\ \I/(\/ 2)\D) </0 P ( 2D |y ‘ )

where U(z) is defined in (8.33). If y > £, then

U(—V2AD) el-v)V2A
U(V2AD) V2

/};Z()‘a y) =

Comments 8.9.1 Parisian options were studied in Avellaneda and Wu [6], Chesney et al. [43],
Cornwall et al. [50], Gauthier [88], Haber et al. [95]. Numerical analysis is done in Bernard et al.
[11] and Schréder [174]. The ”Parisian” time models a default time in Cetin et al. [41]. Cumulative
Parisian options are developed in Hugonnier [103] and Moraux [158]. A PDE approach of valuation
of Parisian option is presented in Haber et al. [95] and in Wilmott [178].
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