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Begin at the beginning, and go on till you come to the end. Then, .......

L. Carroll, Alice’s Adventures in Wonderland




A probability space (€2, G,P) is given. All the processes are assumed to
be G-adapted and cadlag.

We denote
t
By = exp(/ r(s)ds)
0

the savings account, where r is deterministic.




Self-Financing Trading Strategies and Dividend-paying Assets

Self-Financing Trading Strategies and
Dividend-paying Assets

Let S*,i=1,...,k denote the price processes of securities that pay
dividends according to a process of finite variation D*, with D} = 0,
and S7, j =k +1,...,m non-dividend-paying assets.

The wealth process associated to the strategy ¢ = (¢!,...,¢™) is

Vi(g) = > #1S; .
/=1

A strategy ¢ is said to be self-financing if V;(¢) = Vo (@) + G¢(9)
where the gains process G(¢) is

¢t dS..

m
/=1 ]Oat]

k
Gi(d) =) » ¢, dDL, + )
1=1 )




Self-Financing Trading Strategies and Dividend-paying Assets

We say that Q, equivalent to P, is a martingale measure if
e the discounted price B, 15,{ of any non-dividend paying traded
security is a Q-martingale with respect to G

e the ex-dividend price process S* associated with the dividend

G1).

The processes SiB; ' + 0.9 B LdD! are Q-martingales.

process D" satisfies:

St = B, Eq (S_Z}B;l — / B 'dD!
Jt,T]

For any self-financing trading strategy ¢, the discounted wealth process
B; 'V,(¢) is a Q-martingale.




Self-Financing Trading Strategies and Dividend-paying Assets

Defaultable Market

The probability space is endowed with a reference filtration F.

The default time 7 is a non-negative random variable.

H; = lly;<4y is the default process, with natural filtration H. Note
that H; = o(t A 7) and that 7 is a H-stopping time.

We set G = F VvV H.




Self-Financing Trading Strategies and Dividend-paying Assets

Some examples

e 7 is a stopping time in a Brownian filtration

e )\ is a given non-negative F-adapted process and

t
T = inf{t : / Aydu > U}
0

where U is a non-negative r.v. independent of F'.




Defaultable claim

Defaultable claim

A defaultable claim maturing at T is a quadruple (X, A, Z, 1),
where

e X is an Fp-measurable random variable,

e A is an F-adapted continuous process of finite variation

e / is an F-predictable process.

The payoftf X is done at time T"if 7 > T
The payoft Z. is done at default time 7 if 7 < T
The process A corresponds to a cumulative continuous payment till

default time.




Defaultable claim

The dividend process D of a defaultable claim (0, A, Z, 7) equals, on
t<T,

Dt — AT/\t + HTStZT

— / (1—Hu)dAu+/ Z, dH,
10,1]

10,t]




Credit Default Swap

Credit Default Swap

A credit default swap with a constant rate x and recovery at default
is a defaultable claim (0, A, Z, 7), where

[ ) Zt = 5(t>

e A, = —kt for every t € [0,T].

The function (or process) o : [0,T] — IR represents the default

protection, and the constant k € IR represents the CDS rate (also

termed the spread, premium or annuity of a CDS).

10



Toy Model

Toy Model

We assume here that F is the trivial filtration. Let
Gt =Qr>1) = [ flwdu
)

be the Q-survival probability. In that case, for any function h,

1
E(h(T)‘Ht)]l{t<T} — ﬂ{t<7'} ]P(t < T)E(h(T)ﬂ{t<T})

_ ]1{t<T}%E ( /t " ) f(u)du)
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Toy Model

We assume that » = 0.

The ex-dividend price of a CDS maturing at 1" with rate s is

Sik) = Eo(lyererd(r) | M) = Eq(Ugyarys((T A T) —1) | H,)

= lgyen % (/t o(u) f(u) du—/ﬁz/t G(u) du) .

For a CDS initiated at time 0O, the value x is determined so that
So(k) = 0, hence

/0 ) 5(u) f(u) du = K /O ) G (u) du

Note that the price S; can take negative values.
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Toy Model

The process
t tAT
M; = Hy — / (1—Hy)y(u)du = Hy — / v(u) du,
0 0

where v(u) = % is a (Q, H)-martingale.

The process

1
Lt — ]1{15<T} @

is a (Q, H)-martingale which satisfies dL; = —L;_dM,.
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Toy Model

Using

S,(k) = Ly ( /t " S0 f)du — & /t " G du>

and IP formula, one proves that the dynamics of the ex-dividend price

Si(k) are

dSi(k) = =Si— (k) dMy + (1 — Hy)(k — 0(¢)7(¢)) dt .
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Toy Model

The dividend process associated with the CDS is
hence,

d(Si(k) + D) = —=S,_(k)dM,+ (1 — H;) (k —5(t)y(t))dt
—k(1 — Hy) dt + 6(t) dH,
= (0(t) — Si—(k)) dM;

The function S;(x) such that ]1{t<7}§t(/<;) = Il 1<) S¢(k) is the

predefault-price, it satisfies

aSu(k) = (Su(r)7(t) + (5 = 8(t)y(2)) dt,

We assume that S;(k) # 6(t) for every ¢ € [0,T].
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Toy Model

Hedging with CDS

Our aim is to find a replicating strategy for the defaultable claim

(X,0,Z,7), where X is a constant and Z; = 2(t).

Let g and ¢! be two functions defined as

10 = 5 ( /0 tz(s)dG(s) + XG(T))

h(t) = 5(t)
o(t) — St(’{)’

Let ¢) = Vi(¢) — ¢ (t)Si(k), where Vi (¢) = Eq(Y|H,) and

' (t) =

Y = H{TZT}Z(T) + I[{T<7.}X

Then the self-financing strategy ¢ = (¢, ') based on the savings

account and the CDS is a replicating strategy.
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Toy Model

Proof: The terminal value of the wealth is
Vi =2(1)1;cr + Xp,

On the one hand

ﬁ (XG(T) + /O t z(s)dG(s))

— [ wam r - =) (xem) + [ a9dos)
0 G(t) 0

hence dV; = (z(t) — g(t)) dM; with g(t G— fo s)+ XG(T)).

E(WVrH) =Vi = 2(1)lr<t + ey

On the other hand, dV; = ¢} dS;(k) = o1 (6(t) — S;_(k)) dM;.
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First to default

First to default

We assume again that F is the trivial filtration.

We now assume that two CDS’s with default times 7 and 7 are given.

Let G be the survival probability of the pair (7, 72)
G(t,s) =P(ry > t, 70 > s).

We assume that the pair (7, 75) admits a density f. Some easy

computation lead to P(t < 71|m2) = h(t, 72) where:

é?gG(t, 8)
GQG(O, S)

h(t,s) =

18



First to default

Martingales

e Filtration H* = o(r; At) The processes

tAT;
' ' b fi(s)
MY = HY — d
e / - F(s)

where
ﬁmg:Mng@:[;mww

are ‘H!-martingales. In terms of G:

1= Fy(t) = G(£,0), f1(t) = —8,G(t,0)
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First to default

e Filtration H = H! v H? Let F(!) be the H2-submartingale
Ft(l) = P(r; < t|H?)

with decomposition Ft(l) = Ztm + fot atVds where Z() is an

H”-martingale.

The process

tAT1 (1)
Mt(l) — Htl —/ @s (1) dS
0 1 — Fj

is a H-martingale
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First to default

In a closed form, the process

tAT1 (1)
Mt(l) e Htl — / s (1) dS
0 1 — Fg

is a H-martingale, where

o o) = —HPOND (1) — (1 — HP) G0

o h(D(t,s) = —ggggg

o F\V =P(r <t/H2)
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First to default

Indeed, some easy computation enables us to write

P <t <o)
P(ro > t)
G(0,t) — G(t, 1)
G(0,1)

FY' = H2P(r <t|m) + (1 — H?)

= H{(1-h"(t, )+ (1 - H})

where
82 G(t, U)

() = 5 )
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First to default

tAT1IN\T2 tAT1
v == [ s [ R mas
t

with
L alG(Sa S)
Ty
| o f(ta 8)
vHE(t, ) uC (5]

Note that ~; is the intensity of 7 before 75 and ’yl|2(t, To) is the

intensity of 7y after 7.
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First to default

The process

, ) tATo 011(92)
M; = Hj _/ (2) ds
0 1— Fs

where

o o) = —H}0:h®)(71,1) — (1 - Htl)aé?t(,gf)

81G ,S
o« h(t,5) = Golis)

o Ft(2> = P(m2 < t|H;)

is a H-martingale.
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First to default

It is rather easy to find the dynamics of S!. One starts from the fact
that, on the set {71 > t, 7 >t}

- Gé’t) ( /t 5(u)Gdu, t) — k /t duG(u,t))

= Vi)

and, on the set {71 >t > 1}

. 1 T T
S; = Gt 12) (—/t dud(u) f(u, m2) — m/t duagG(u,72)>
— VQ(t,TQ)

25



First to default

Hence

St =(Q—H))1—-H)V'(t)+ (1 —H/})H V*(t, )
and

dS; = (1—H})NA—-H})dV'(t)+ (1 - H})H? dV3(t, )
—St_dH} — (1 — HH{V'(t) = V*(t, )} dH?
where
av'i(t) = ((71 () +72(t) V() + k1 — 01 (t) 71 () — Séz(m)w(t)) dt

dV2(t, 1) = (7”2(15,7'2)‘/2(75,7'2) — A U2(2 m)5, (1) +m) dt
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First to default

and the function S §|2

[ oty [ du [ dzf(z 1)

; = — K
Siia(k1) = ftoo F(u.t)du 1 ftoo Fut) du

NOte that VQ(T27’7'2) = S7l_2|2(/{/1>

(k1) equals

27



First to default

~

Let Stl(/ﬁzl)Il{KT(l)} = Stl(/i1)]1{t<7(1)} where 71y = 71 A 72.

The dynamics of the pre-default price S (k1) are

dS} (k1) = (71(t) +2(1)S} (k1) dt + (k1 — S1(E) 1 (t) — Sp(k1)72(t)) dt,

28



First to default

The pre-default price of a FtD claim (X, 0, Z, 7(1)), where Z = (Z, Z>)
and X = ¢(T), equals

[T duzZy () [ dv flu,v) + [ dvZa(v) [ du f(u,v)

) = G, 1)
G(T,T)
+c(T) G
Moreover,
dr(t) = (n(t) +7)7(t)dt - ZZ
= > (7)) — Zi(1)) dt

29



First to default

Assume that the linear system

or (St(k1) — 01(8)) + 67 (Sf(k2) — SZy(k2)) = Zu(t) —7(b),

~

07 (S7(k2) = 02(t)) + 61 (S (m1) = Sija(m1)) = Za(t) — 7 (D),

admits a unique solution ¢; = (¢7, ¢7) and let
67 = Vi(9) — ¢¢ Sy (k1) — 07 5§ (k2)

where
2

dVi(9) = Y 04 (dSi (k) — ridt) , Vo(9) = Eq(Y)

i=1
Then the self-financing strategy ¢ replicates the first-to-default claim
(X,O, Z, 7'(1)).

30



Stochastic intensity

Stochastic intensity

We now assume that some reference filtration F such that F; C G,
is given. We set G = F V H so that G, = F; V H; = o(F;, H,) for every
t € IRy. The filtration G is referred to as to the full filtration.

We define the process
Fy = Q{7 < t| Fi},

and the survival process G, =1—F, =Q{r > t|F;}.
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Stochastic intensity

The process G
Gy :Q{T >t|ft}

is a supermartingale and admits a decomposition as
Gy =2y — Ay

where Z is an F-martingale and A an F predictable increasing process.

We assume that GG is a continuous process with Gy = 1 and G; > 0.

32



Stochastic intensity

From the remark that, if (Y;,t > 0) is a G-adapted process, there exists

an F adapted process (y;,t > 0) such that

Yillier =y i~

we obtain the key formulae:

e For any integrable Gr measurable r.v. Y

1

— K Y :
G (GTY | Fy)

E(Mirery Y [Gi) = Lypany

e Let y be an F-predictable process. Then,

1 T
Blye Lr<rlG0) = el ir<sy + ey B / yudF|F)
t
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Stochastic intensity

The ex-dividend price of a credit default swap, with a rate process k

and a protection payment J, at default, equals, for every t € [s,T],
TNT
G) ~ Eq(1en / ds |Gy ).
t
ft> |

1 T o) uNT
— ]1{t<7'} a EQ —l 5u dGu -+ l dGul Ky dv

St(li) — EQ (]l{t<7-§T}(57-
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Stochastic intensity

We now assume that (H) hypothesis holds between F and G, that is
F-martingales are G-martingales.

It is known that if the F market is complete and arbitrage free, and if
using G-adapted strategies in the F-market does not induce arbitrage
opportunities, then this hypothesis holds. It is well known that (H)

hypothesis is equivalent to
P(r <t|F) =P(r < t|Fs)

hence the process F' is increasing ( G is decreasing). We assume that F
is a Brownian filtration and that F'is absolutely continuous wrt

Lebesgue measure.
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Stochastic intensity

The process

tAT
Mt — Ht — / Yu du,
0

with v.dt = dg—% is a G-martingale. The dynamics of the ex-dividend

price Si(k) are
dSt(/i) = —St_(/i) th—F(l—Ht)Bth_l dmt+(1—Ht)(’rtSt(/i)—i—/i—&%) dt,

where m is the (Q, F)-martingale given by

T T
m; = Eg (/ B;l(SuGufyu du — /ﬁl/ B,;lGu du ‘ ft> .
0 0
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Stochastic intensity

Hedging defaultable claims

Our aim is to hedge
Y =lyr>nZr + Lypen X,

using two CDS with maturities T}, rates x; and protection payment §°.
We assume 7 = 0. Let (! defined as

T
=[Eg (/ 6! Gy du — / Gy du > , dm! = (ldW,
0

m? = EQ(—/O Z,dGy + GrX|Fy), dm? = ¢FdW,

and

37



Stochastic intensity

Assume that there exist F-predictable processes ¢!, »? such that

2

2
Z% (52 - gf(ﬁz)) = Zt — Gt Zqﬁd = Gt
i=1

1=1

where ¢ is given by

1 T
g = — Eg (—/ ZudGu—l—GTX|]-"t>.
Gt t

Let ¢f = V;(¢) — Z?Zl $LS?(k;), where the process V(¢) is given by

2

dVi(¢) =) ¢i(dS} (ki) + dDy)

i=1
with the initial condition Vj(¢) = Eg(Y'). Then the self-financing

trading strategy ¢ = (¢, ¢!, $?) is admissible and it is a replicating
strategy for a defaultable claim (X,0, Z, 7).
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Stochastic intensity

Pricing First to default claims

We now assume that some reference filtration F is given. Let the
default times 7;, © = 1,2 be such that (H) hypothesis holds between F
and G = F VvV H! vV H? hence between F and G! = F vV H! (resp.

G? =F v H?. We denote by

G(t,s;u) = P(my > t, 70 > s|Fy)

Under H hypothesis, G(¢,t;t), G(0,t;t) and G(¢,0;t) are increasing

processes, supposed to be continuous. Furthermore, for t < u,s < u

]P)(Tl S t,TQ S S|fu) = ]P)(Tl S t,TQ S S|foo)

39



Stochastic intensity

Then, one can generalize the previous results, established in the case of
trivial filtration. In the case r = 0, the dynamics of the pre-default
price S}(k;) are
dS} (k1) = ((%(t) +72(1))SH (K1) + k1 — 61 (D) (t) — Stl|2(ffl)W2(t)) dt-+Gy* dmy,
with
COG(t, )
G(t,t: 1)

71(t) =

40



Stochastic intensity

Assume that the recovery Z, paid at first default time, is a

F-predictable process. The first default time 7(;) satisfies
P(r1y > t|F) = G(t, ;1) = G(t, t;00) = G (¢)

and

T
E(Z(T(1)>]]-t<7'(1)<T|gt) — ]]-7'(1)>tE(/ ZudG(l) (’U/>|ft)
t
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Stochastic intensity

In the case where 7 and 7 are conditionally independent with
respect to F;, then G (u) = G'(u)G?(u) with G'(t) = P(1; > t|F,),
hence

dGY (v) = GH(u)dG?(u) + G?(u)dG?(u)
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Stochastic intensity

Begin at the beginning, and go on till you come to the end. Then, stop.

L. Carroll, Alice’s Adventures in Wonderland
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Stochastic intensity

Thank you for your attention
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