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Stylized facts

• Inflation-indexed bonds have been issued since the 80’s, but it is only in
the very last years that these bonds, and inflation-indexed derivatives in
general, have become quite popular.

• Inflation is defined as the percentage increment of a reference index, the
Consumer Price Index (CPI), which is a basket of good and services.

• Denoting by I(t) the CPI’s value at time t, the inflation rate over the
time interval [t, T ] is therefore:

i(t, T ) :=
I(T )
I(t)

− 1.

• In theory, but also in practice, inflation can become negative.
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Stylized facts (cont’d)

Historical plots of CPI’s
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Figure 1: Left: EUR CPI Unrevised Ex-Tobacco. Right: USD CPI Urban
Consumers NSA. Monthly closing values from 30-Sep-01 to 21-Jul-04.
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Stylized facts (cont’d)

• Banks are used to issue inflation-linked bonds, where a zero-strike floor
is offered in conjunction with the “pure” bond.

• To grant positive coupons, the inflation rate is typically floored at zero.

• Accordingly, floors with low strikes are the most actively traded options
on inflation rates.

• Other extremely popular derivatives are inflation-indexed swaps.

• Two are the main inflation-indexed swaps traded in the market:

– the zero coupon (ZC) swap;
– the year-on-year (YY) swap.
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Stylized facts (cont’d)

• Inflation-indexed derivatives require a specific model to be valued.

• Main references: Barone and Castagna (1997), van Bezooyen et al.
(1997), Hughston (1998), Kazziha (1999), Cairns (2000), Jamshidian
(2002), Jarrow and Yildirim (2003), Belgrade et al. (2004) and Mercurio
(2005).

• Inflation derivatives are priced with a foreign-currency analogy (the
pricing is equivalent to that of a cross-currency interest-rate derivative).

• In a short rate approach, one models the evolution of the instantaneous
nominal and real rates and of the CPI (interpreted as the “exchange
rate” between the nominal and real economies).

• Recent approaches are based on market models, where one models
forward CPI indices and nominal rates.
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Purpose and outline of the talk

• Our purpose is to price analytically, and consistently with no arbitrage,
inflation-indexed swaps and options.

• We start by introducing the two main types of inflation swaps and price
them by means of a market model.

• We then introduce inflation caps and floors, and derive analytical formulas
under the “flat smile” case.

• We finally consider stochastic volatility as in Heston (1993) and derive
closed-form formulas for caps and floors.

• Examples of calibration to market data are shown both in the “flat smile”
case and in the stochastic volatility case.
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Some notations and definitions
We use the subscripts n and r to denote quantities in the nominal and real
economies, respectively.

The zero-coupon bond prices at time t for maturity T in the nominal and
real economies are denoted, respectively, by Pn(t, T ) and Pr(t, T ).

The nominal instantaneous rate at time t is denoted by n(t).

The forward LIBOR rates at time t for the future time interval [Ti−1, Ti] are

Fx(t; Ti−1, Ti) =
Px(t, Ti−1)− Px(t, Ti)

τiPx(t, Ti)
, x ∈ {n, r},

where τi is the year fraction for [Ti−1, Ti].

We finally define the Ti-forward CPI by

Ii(t) := I(t)
Pr(t, Ti)
Pn(t, Ti)
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Zero-coupon inflation-indexed swaps

Party A

Party B

-

0 TM

6

?

N [(1 + K)M − 1]

N
[

I(TM)
I0

− 1
]

In a ZCIIS, at time TM = M years, Party B pays Party A the fixed amount

N [(1 + K)M − 1],

where K and N are, respectively, the contract fixed rate and the contract
nominal value.

Party A pays Party B, at the final time TM , the floating amount

N

[
I(TM)

I0
− 1

]
.
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Year-on-year inflation-indexed swaps

Party A

Party B

-

0 T1 T2 TMTi−1 Ti

6

?

NϕiK

Nψi

[
I(Ti)

I(Ti−1)
− 1

]

In a YYIIS, at each time Ti, Party B pays Party A the fixed amount

NϕiK,

while Party A pays Party B the (floating) amount

Nψi

[
I(Ti)

I(Ti−1)
− 1

]
,

where ϕi and ψi are, respectively, the fixed- and floating-leg year fractions
for the interval [Ti−1, Ti], T0 := 0 and N is again the swap nominal value.
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ZCIIS and YYIIS rates

Both ZC and YY swaps are quoted, in the market, in terms of the
corresponding fixed rate K.
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Figure 2: Euro inflation swap rates as of October 7, 2004. The reference
CPI is the Euro-zone ex-tobacco index.
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Pricing of a ZCIIS

Standard risk-neutral pricing (under the nominal economy) implies that the
value at time t, 0 ≤ t < TM , of the inflation-indexed leg of the ZCIIS is

ZCIIS(t, TM , I0, N) = NEn

{
e−
R TM
t n(u) du

[
I(TM)

I0
− 1

] ∣∣Ft

}
.

The foreign-currency analogy implies that, for each t < T :

Nominal

Real

� . . .
I(T )

1

time T time t

En

{
e−
R T
t n(u) duI(T )

∣∣Ft

}

Pr(t, T )

⇒ En

{
e−
R T
t n(u) duI(T )

∣∣Ft

}
= I(t)Pr(t, T ) ⇒

ZCIIS(t, TM , I0, N)= N

[
I(t)
I0

Pr(t, TM)− Pn(t, TM)
]
= NPn(t, TM)

[IM(t)
I0

− 1
]
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Pricing of a ZCIIS (cont’d)

The ZCIIS price is therefore model-independent: it is not based on specific
assumptions on the interest rates evolution, but simply follows from the
absence of arbitrage.

This result is extremely important since it enables us to strip, with no
ambiguity, real zero-coupon bond prices (equivalently, forward CPI’s) from
the quoted prices of zero-coupon inflation-indexed swaps.

The market quotes values of K = K(TM) for some given maturities TM .

The ZCIIS corresponding to (TM ,K(TM)) has zero value at time t = 0 if
and only if

N [Pr(0, TM)− Pn(0, TM)] = NPn(0, TM)[(1 + K(TM))M − 1]

⇒ Pr(0, TM) = Pn(0, TM)(1 + K(TM))M ⇒ IM(0) = I(0)(1 + K(TM))M
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Pricing of a YYIIS
The valuation of a YYIIS is less straightforward and, as we shall see, requires
the specification of an interest rate model.

The value at time t < Ti of the YYIIS payoff at time Ti is

YYIIS(t, Ti−1, Ti, ψi, N) = NψiEn

{
e−
R Ti
t n(u) du

[
I(Ti)

I(Ti−1)
− 1

] ∣∣Ft

}
,

which, assuming t < Ti−1, can be calculated as

NψiEn

{
e−
R Ti−1
t n(u) duEn

[
e
− R Ti

Ti−1
n(u) du

(
I(Ti)

I(Ti−1)
− 1

) ∣∣FTi−1

] ∣∣Ft

}

= NψiEn

{
e−
R Ti−1
t n(u) du[Pr(Ti−1, Ti)− Pn(Ti−1, Ti)]

∣∣Ft

}
.

This expectation is, in general, model dependent.
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Pricing of a YYIIS with a market model

We notice that the forward CPI Ii(t) = I(t)Pr(t, Ti)/Pn(t, Ti) is a martin-
gale under the nominal Ti-forward measure QTi

n . Therefore,

YYIIS(t, Ti−1, Ti, ψi, N) = NψiP (t, Ti)ETi
n

{
I(Ti)

I(Ti−1)
− 1

∣∣Ft

}

= NψiP (t, Ti)ETi
n

{ Ii(Ti)
Ii−1(Ti−1)

− 1
∣∣Ft

}

= NψiP (t, Ti)ETi
n

{ Ii(Ti−1)
Ii−1(Ti−1)

− 1
∣∣Ft

}
.

We assume that, under QTi
n ,

dIi(t) = σI,iIi(t) dW I
i (t)

and that an analogous evolution holds for Ii−1 under Q
Ti−1
n .
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Pricing of a YYIIS with a market model (cont’d)

The dynamics of Ii−1 under QTi
n are

dIi−1(t) =−Ii−1(t)σI,i−1
τiσn,iFn(t; Ti−1, Ti)
1 + τiFn(t; Ti−1, Ti)

ρI,n,i dt

+ σI,i−1Ii−1(t) dW I
i−1(t),

where σI,i−1 is a positive constant, W I
i−1 is a QTi

n -Brownian motion with
dW I

i−1(t) dW I
i (t) = ρI,i dt, and ρI,n,i is the instantaneous correlation

between Ii−1(·) and Fn(·; Ti−1, Ti).

The evolution of Ii−1, under QTi
n , depends on the nominal rate Fn(·; Ti−1, Ti).

To avoid unpleasant calculations, we freeze the above drift at its current
time-t value, so that Ii−1(Ti−1) conditional on Ft is lognormally distributed
also under QTi

n .
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Pricing of a YYIIS with a market model (cont’d)

Also the ratio Ii(Ti−1)/Ii−1(Ti−1) conditional on Ft is lognormally
distributed under QTi

n . This leads to

ETi
n

{ Ii(Ti−1)
Ii−1(Ti−1)

∣∣Ft

}
=

Ii(t)
Ii−1(t)

eDi(t),

where

Di(t) = σI,i−1

[
τiσn,iFn(t; Ti−1, Ti)
1 + τiFn(t; Ti−1, Ti)

ρI,n,i − ρI,iσI,i + σI,i−1

]
(Ti−1 − t),

so that

YYIIS(t, Ti−1, Ti, ψi, N)= NψiPn(t, Ti)
[ Ii(t)
Ii−1(t)

eDi(t) − 1
]

= NψiPn(t, Ti)
[
Pn(t, Ti−1)Pr(t, Ti)
Pn(t, Ti)Pr(t, Ti−1)

eDi(t) − 1
]
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Pricing of a YYIIS with a market model (cont’d)

Finally, the value at time t of the inflation-indexed leg of the swap is

YYIIS(t, T , Ψ, N) = Nψι(t)

[
I(t)

I(Tι(t)−1)
Pr(t, Tι(t))− Pn(t, Tι(t))

]

+ N

M∑

i=ι(t)+1

ψi

[
Pn(t, Ti−1)

Pr(t, Ti)
Pr(t, Ti−1)

eDi(t) − Pn(t, Ti)
]
.

In particular at t = 0,

YYIIS(0, T , Ψ, N)= N
M∑

i=1

ψiPn(0, Ti)
[ Ii(0)
Ii−1(0)

eDi(0) − 1
]

= N
M∑

i=1

ψiPn(0, Ti)
[
1 + τiFn(0;Ti−1, Ti)
1 + τiFr(0;Ti−1, Ti)

eDi(0) − 1
]
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Inflation-indexed caplets

An Inflation-Indexed Caplet (IIC) is a call option on the inflation rate implied
by the CPI index.

Analogously, an Inflation-Indexed Floorlet (IIF) is a put option on the same
inflation rate.

In formulas, at time Ti, the IICF payoff is

Nψi

[
ω

(
I(Ti)

I(Ti−1)
− 1− κ

)]+

,

where κ is the IICF strike, ψi is the contract year fraction for the interval
[Ti−1, Ti], N is the contract nominal value, and ω = 1 for a caplet and
ω = −1 for a floorlet.

We set K := 1 + κ.
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Inflation-indexed caplets (cont’d)

Standard no-arbitrage pricing theory implies that the value at time t ≤ Ti−1

of the IICF at time Ti is

IICplt(t, Ti−1, Ti, ψi,K, N, ω)

= NψiEn

{
e−
R Ti
t n(u) du

[
ω

(
I(Ti)

I(Ti−1)
−K

)]+ ∣∣Ft

}

= NψiPn(t, Ti)ETi
n

{[
ω

(
I(Ti)

I(Ti−1)
−K

)]+ ∣∣Ft

}
.

The pricing of a IICF is thus similar to that of a forward-start (cliquet)
option.

We now derive an analytical formula under the previous market model.
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Inflation-indexed caplets (cont’d)

We apply the tower property of conditional expectations to get

IICplt(t, Ti−1, Ti, ψi,K, N, ω)

= NψiPn(t, Ti)ETi
n





ETi
n

{
[ω(I(Ti)−KI(Ti−1))]

+ |FTi−1

}

I(Ti−1)

∣∣Ft





,

where we assume that I(Ti−1) > 0.

Sticking to market models, the calculation of the outer expectation depends
on whether we model forward rates or the forward CPI’s.

We follow, as before, the latter approach, since it allows the derivation of a
simpler formula with less input parameters.
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Inflation-indexed caplets: a market model (cont’d)

Assuming again that, under QTi
n ,

dIi(t) = σI,iIi(t) dW I
i (t)

and remembering that I(Ti) = Ii(Ti), we have:

ETi
n

{
[ω(I(Ti)−KI(Ti−1))]

+ |FTi−1

}

= ETi
n

{
[ω(Ii(Ti)−KI(Ti−1))]

+ |FTi−1

}

= ωIi(Ti−1)Φ


ω

ln Ii(Ti−1)
KI(Ti−1)

+ 1
2σ

2
I,i(Ti − Ti−1)

σI,i

√
Ti − Ti−1




− ωKI(Ti−1)Φ


ω

ln Ii(Ti−1)
KI(Ti−1)

− 1
2σ

2
I,i(Ti − Ti−1)

σI,i

√
Ti − Ti−1


.
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Inflation-indexed caplets: a market model (cont’d)
By definition of Ii−1, the IICF price thus becomes

ωNψiPn(t, Ti)ETi
n





Ii(Ti−1)
Ii−1(Ti−1)

Φ


ω

ln Ii(Ti−1)
KIi−1(Ti−1)

+ 1
2σ

2
I,i(Ti − Ti−1)

σI,i

√
Ti − Ti−1




−KΦ


ω

ln Ii(Ti−1)
KIi−1(Ti−1)

− 1
2σ

2
I,i(Ti − Ti−1)

σI,i

√
Ti − Ti−1


∣∣Ft



 .

Remembering the dynamics of Ii−1 under QTi
n , and freezing again the drift

at its time-t value, we have that under QTi
n :

ln
Ii(Ti−1)
Ii−1(Ti−1)

|Ft ∼ N
(

ln
Ii(t)
Ii−1(t)

+ Di(t)− 1
2
V 2

i (t), V 2
i (t)

)
.

where V 2
i (t) := (σ2

I,i−1 + σ2
I,i − 2ρI,iσI,i−1σI,i)(Ti−1 − t). Therefore,
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Inflation-indexed caplets: a market model (cont’d)

IICplt(t, Ti−1, Ti, ψi,K, N, ω)

= ωNψiPn(t, Ti)


 Ii(t)
Ii−1(t)

eDi(t)Φ


ω

ln Ii(t)
KIi−1(t)

+ Di(t) + 1
2V2

i (t)

Vi(t)




−KΦ


ω

ln Ii(t)
KIi−1(t)

+ Di(t)− 1
2V2

i (t)

Vi(t)





 ,

where Vi(t) :=
√

V 2
i (t) + σ2

I,i(Ti − Ti−1), and Ii(t)
Ii−1(t)

= 1+τiFn(t;Ti−1,Ti)
1+τiFr(t;Ti−1,Ti)

.

This price depends on the volatilities of the two forward inflation indices and
their correlation, the volatility of nominal forward rates, and the correlations
between forward inflation indices and nominal forward rates.
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Inflation-indexed caps

An inflation-indexed cap is a stream of inflation-indexed caplets.

An analogous definition holds for an inflation-indexed floor.

Given the set of dates T0, T1, . . . , TM , with T0 = 0, a IICapFloor pays off,
at each time Ti, 1, . . . , M ,

Nψi

[
ω

(
I(Ti)

I(Ti−1)
− 1− κ

)]+

,

where κ is the IICapFloor strike, ψi are the contract year fractions for the
intervals [Ti−1, Ti], 1, . . . , M , N is the contract nominal value, ω = 1 for a
cap and ω = −1 for a floor.

We again set K := 1 + κ, T := {T1, . . . , TM} and Ψ := {ψ1, . . . , ψM}.
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Inflation-indexed caps (cont’d)

From the caplet pricing formula we get:

IICapFloor(0, T , Ψ,K, N, ω) = ωN
M∑

i=1

ψiPn(0, Ti)

·

1 + τiFn(0;Ti−1, Ti)

1 + τiFr(0;Ti−1, Ti)
eDi(0)Φ


ω

ln 1+τiFn(0;Ti−1,Ti)
K[1+τiFr(0;Ti−1,Ti)]

+ Di(0) + 1
2V2

i (0)

Vi(0)




−KΦ


ω

ln 1+τiFn(0;Ti−1,Ti)
K[1+τiFr(0;Ti−1,Ti)]

+ Di(0)− 1
2V2

i (0)

Vi(0)





 .

This price depends on the volatilities of forward inflation indices and their
correlations, the volatilities of nominal forward rates, and the instantaneous
correlations between forward inflation indices and nominal forward rates.
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Calibration to market data

We consider an example of calibration to Euro market data as of October
7, 2004.

We calibrate the Jarrow and Yildirim (JY) model, the LIBOR market model
(MM1) and our market model (MM2) to inflation-indexed swaps.

We use the zero-coupon rates to strip the current real discount factors for
the relevant maturities.

Some model parameters are fitted to ATM (nominal) caps volatilities.

The model parameters that best fit the given set of market data are found
by minimizing the square absolute difference between model and market
YYIIS fixed rates.

To avoid over-parametrization, we introduce some constraints.
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Calibration to market data: results

Maturity Market JY MM1 MM2

1 2.120 2.120 2.120 2.120

2 2.170 2.169 2.168 2.168

3 2.185 2.186 2.186 2.184

4 2.213 2.217 2.218 2.215

5 2.246 2.250 2.250 2.247

6 2.271 2.276 2.275 2.272

7 2.292 2.296 2.295 2.293

8 2.309 2.314 2.312 2.310

9 2.324 2.324 2.322 2.320

10 2.339 2.345 2.343 2.341

11 2.353 2.358 2.356 2.355

12 2.367 2.371 2.369 2.369

13 2.383 2.385 2.383 2.383

14 2.390 2.397 2.396 2.396

15 2.408 2.410 2.410 2.410

16 2.418 2.420 2.421 2.421

17 2.429 2.430 2.431 2.432

18 2.439 2.439 2.442 2.443

19 2.450 2.448 2.453 2.454

20 2.461 2.457 2.463 2.465
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Calibration to market data: results (cont’d)

The three models are equivalent in terms of calibration to market YYIIS
rates. They can however imply quite different prices for zero-strike floors:
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Figure 3: Comparison of zero-strike floors prices implied by the JY model
and MM2, for different maturities.
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Calibration to swaps and zero-strike floors

4 6 8 10 12 14 16 18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Maturity

P
ri
ce

s 
in

 %

Market prices
MM2 prices

Figure 4: Zero-strike floor prices implied by MM2, after calibration to
market quotes (both swaps and floors) as of October 7, 2004.
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Including the smile: calibration to one-year caplets
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Figure 5: Market prices versus model prices with ATM implied volatility for
one-year caplets. Moneyness is defined as: K/(I1(0)/I(0)− 1).
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A market model with stochastic volatility

We drop the subscript n and assume that, under a reference measure Q:

• Nominal rates Fi are lognormally distributed with constant volatilities;

• Forward CPI’s Ii follow Heston-like dynamics with a common volatility
process V (t):

dFi(t)/Fi(t) =(. . .) dt + σF
i dZQ,F

i

dIi(t)/Ii(t) =(. . .) dt + σI
i

√
V (t) dZQ,I

i

dV (t) =α(θ − V (t)) dt + ε
√

V (t) dWQ, V (0) = V0,

where σI
i , σF

i , α, θ, ε and V0 are positive constants, and 2αθ > ε to
ensure positiveness of V .

We allow for correlations between Brownian motions ZQ,F
i , ZQ,I

i ,WQ.
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A market model with stochastic volatility (cont’d)

We take Q = Q0, where Q0 is the spot LIBOR measure corresponding to
the numeraire

Bd(t) = P (t, β(t))
β(t)∏

l=1

[1 + τlFl(t)], β(t) = Tj if Tj−1 < t ≤ Tj.

By definition of Bd and the change-of-measure technique, we have, under Q0,

dFi(t)/Fi(t) = σF
i


−

i∑

l=β(t)+1

σF
l ρF

i,l

τlFl(t)
1 + τlFl(t)

dt + dZ0,F
i (t)




dIi(t)/Ii(t) =
√

V (t) σI
i


−

i∑

l=β(t)+1

σF
l ρF,I

l,i

τlFl(t)
1 + τlFl(t)

dt + dZ0,I
i (t)




dZ0,F
i dZ0,F

l (t) = ρF
i,ldt, dZ0,I

i dZ0,F
l (t) = ρF,I

l,i dt
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The pricing of caplets

The price at time t ≤ Tj−1 of the j-th caplet, is, under the measure QTj,

IICpltj(t,K) = P (t, Tj)E
Tj
t

( Ij(Tj)
Ij−1(Tj−1)

−K

)+

= P (t, Tj)
∫ +∞

−∞
(es − ek)+qj

t (s) ds

where k = ln(K) and qj
t (s)ds = QTj {ln [Ij(Tj)/Ij−1(Tj−1)] ∈ [s, s + ds]|Ft} .

Remark. Instead of having a payoff depending on a single asset S(t), as it
is for standard or cliquet options (paying off [S(Tj)/S(Tj−1)−K]+ in Tj),
here the payoff depends on the ratio between two different assets at two
different times.
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The pricing of caplets (cont’d)

Following Carr and Madan (1999), we rewrite the caplet price in term of its
(renormalized) Fourier transform:

IICpltj(t, e
k) = P (t, Tj)

e−ηk

2π

∫ +∞

−∞
e−iskψj

t (η, s)ds

= P (t, Tj)
e−ηk

π
Re

∫ +∞

0

e−iskψj
t (η, s)ds

ψj
t (η, u) =

φj
t(u− (η + 1)i)

(η + iu)(η + 1 + iu)

where the only unknown is the conditional characteristic function φj
t(·) of

ln (Ij(Tj)/Ij−1(Tj−1)), and where η ∈ R+ is used to ensure L2-integrability
when k → −∞.
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Derivation of the characteristic function

Our objective is now to find an explicit formula for φj
t .

To this end, we derive the dynamics under the pricing measure QTj:

dIj(t)/Ij(t) =
√

V (t) σI
j dZI

j (t)

dIj−1(t)/Ij−1(t) =
√

V (t) σI
j−1

[
− τjFj(t)

1 + τjFj(t)
σF

j ρF,I
j,j−1dt + dZI

j−1(t)
]

dV (t) =

[
αθ − ε

√
V (t)

j∑

l=β(t)+1

τlFl(t)
1 + τlFl(t)

σF
l ρF,V

l − αV (t)

]
dt + ε

√
V (t) dW (t)

where dZF
l (t) dW (t) = ρF,V

l dt, for each l.
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Derivation of the characteristic function (cont’d)

Setting Yj(t) := ln Ij(Tj), we recall that, by definition of characteristic
function and the Markov property:

φj
t(u) = E

Tj
t

[
e
iu ln

Ij(Tj)

Ij−1(Tj−1)

]
= H (V (t), Yj(t), Yj−1(t), F1(t), . . . , Fj(t)) .

Applying the Feynman-Kač theorem, H can then be found by solving a
related PDE.

Remark. In the general case, due to the unpleasant presence of drift terms
of type

√
V (t)Fl(t)/(1 + τlFl(t)), there are no a priori reasons for the PDE

to be explicitly solvable. In the following, we thus investigate a particular
case allowing for an explicit solution.
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Derivation of the characteristic function (cont’d)

We assume that, for each i, l = 1, . . . , M :

ρF,I
i,l = ρF,V

i = 0

We allow, however, for non-zero correlations ρI
j,l = dZI

j dZI
l /dt (between

different forward CPI’s) and ρI,V
i = dZI

i dW/dt (between forward CPI’s and
the volatility).

Setting Xj(t) := Yj(t)− Yj−1(t), we then have, under QTj,

dYj(t) = −1
2
V (t)(σI

j )
2 dt +

√
V (t) σI

j (t) dZI
j (t)

dXj(t) =
V (t)

2
((σI

j−1)
2 − (σI

j )
2) dt +

√
V (t)(σI

j dZI
j (t)− σI

j−1 dZI
j−1(t))

dV (t) = [αθ − αV (t)] dt + ε
√

V (t) dW (t)
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Derivation of the characteristic function (cont’d)

To make φj
t explicit, we write

φj
t(u) = E

Tj
t

[
eiu

(
Yj(Tj)−Yj−1(Tj−1)

)]
= E

Tj
t

[
e−iuYj−1(Tj−1)E

Tj

Tj−1

(
eiuYj(Tj)

)]

Noting that E
Tj

Tj−1

(
eiuYj(Tj)

)
is the characteristic function of ln Ij(Tj)

conditional on FTj−1
, solving a Heston-like PDE, we have that

E
Tj

Tj−1

[
eiuYj(Tj)

]
= exp {AY (τ̄j, u) + BY (τ̄j, u)V (Tj−1) + iuYj(Tj−1)}

where τ̄j := Tj−Tj−1 and AY and BY are deterministic complex functions.

Consequently,

φj
t(u) = eAY (τ̄j,u)E

Tj
t

[
eiuXj(Tj−1)+BY (τ̄j,u)V (Tj−1)

]

5th Winter school on Financial Mathematics, Lunteren, 23 January 2006 38



Derivation of the characteristic function (cont’d)

The last conditional expectation is nothing but the characteristic function
of the couple (Xj(Tj−1), V (Tj−1)) evaluated at point (u,−iBY (τ̄j, u)).

By again solving a PDE of Heston’s type with suitable boundary conditions,
we obtain

φj
t(u) = exp {AY (τ̄j, u) + AX(Tj−1 − t, u) + BX(Tj−1 − t, u)V (t) + iuXj(t)}

where AX and BX are other deterministic complex functions.

The II caplet price is finally calculated by numerical integration:

IICpltj(t, e
k) = P (t, Tj)

e−ηk

π
Re

∫ +∞

0

e−isk φj
t(s− (η + 1)i)

(η + is)(η + 1 + is)
ds
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Derivation of the characteristic function (cont’d)

The coefficients AY and BY :

BY (s, u) =
γ − b

2a

[
1− eγs

1− b−γ
b+γeγs

]

AY (s, u) =
αθ(γ − b)

2a
s− αθ

a
ln

[
1− b−γ

b+γeγs

1− b−γ
b+γ

]

where

a := ε2/2, c := −iu(σI
j )

2/2− (σI
j )

2u2/2,

b := iuσI
j ερ

I,V
j − α, γ :=

√
b2 − 4ac.
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Derivation of the characteristic function (cont’d)

The coefficients AX and BX:

BX(τ, u) =BY (τj, u) +
γ̄ − b̄− 2āBY (τj, u)

2ā


 1− eγ̄τ

1− 2āBY (τj,u)+b̄−γ̄

2āBY (τj,u)+b̄+γ̄
eγ̄τ




AX(τ, u) =
αθ(γ̄ − b̄)

2ā
τ − αθ

ā
ln




1− 2āBY (τj,u)+b̄−γ̄

2āBY (τj,u)+b̄+γ̄
eγ̄τ

1− 2āBY (τj,u)+b̄−γ̄

2āBY (τj,u)+b̄+γ̄




where

ā := ε2/2, b̄ := iuε(σI
jρ

I,V
j − σI

j−1ρ
I,V
j−1)− α

c̄ := iu
(
(σI

j−1)
2 − (σI

j )
2
)
/2− (

(σI
j−1)

2 + (σI
j )

2 − 2σI
jσ

I
j−1ρ

I
j,j−1

)
u2/2

γ̄ :=
√

b̄2 − 4āc̄
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Solving the general case with non-zero correlations

As in a LIBOR market model, we can deal with forward-rates-dependent
terms in the drifts by resorting to a freezing technique.

The drift terms that involve forward rates are

Dl(t) :=
√

V (t)
Fl(t)

1 + τlFl(t)

and depend on the volatility, too.

A first way to freeze these terms consists in setting

Dl(t) ≈ Dl(0),

thus changing the asymptotic volatility value from θ to

θ̃ := θ − ε

α

j∑

l=1

Dl(0)τlσ
F
l ρF,V

l
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Solving the general case with non-zero correlations
(cont’d)

The first freezing leads to the following (approximated) SDEs for Xj and
V :

dXj(t) ≈
[
V (t)

2
(
(σI

j−1)
2 − (σI

j )
2
)

+ Dj(0)τjσ
I
j−1σ

F
j ρF,I

j,j−1

]
dt

+
√

V (t)[σI
j dZI

j (t)− σI
j−1 dZI

j−1(t)]

dV (t) ≈α(θ̃ − V (t)) dt + ε
√

V (t) dW (t).

The dynamics of Xj here differs from the previous one for a constant drift
term.

Such a term, however, is innocuous and the relevant characteristic functions
can still be calculated explicitly.
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Solving the general case with non-zero correlations
(cont’d)

A second possibility for a tractable approximation is to set

Dl(t) ≈ Fl(t)
1 + τlFl(t)

V (t)√
V (t)

≈ Fl(0)
1 + τlFl(0)

V (t)√
V (0)

= Dl(0)
V (t)
V (0)

,

where the freezing is done with the purpose of producing a linear term in
V (t). This leads to the following (approximated) SDEs for Xj and V :

dXj(t) ≈V (t)
[
1
2
(
(σI

j−1)
2 − (σI

j )
2
)

+
Dj(0)
V (0)

τjσ
I
j−1σ

F
j ρF,I

j,j−1

]
dt

+
√

V (t)[σI
j dZI

j (t)− σI
j−1 dZI

j−1(t)]

dV (t) ≈ᾱ(θ̄ − V (t)) dt + ε
√

V (t) dW (t),
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Solving the general case with non-zero correlations
(cont’d)

where

ᾱ := α +
ε

V (0)

j∑

l=1

Dl(0)τlσ
F
l ρF,V

l

θ̄ := αθ/ᾱ

Also in this second case, the relevant characteristic functions can be
calculated explicitly.

Remark. For the approximated processes V (t) to be meaningful, we must
require θ̃ > 0 and ᾱ > 0. Moreover, for the origin to be inaccessible,
conditions 2θ̃α > ε and 2θ̄ᾱ > ε must be imposed, with the latter that is
automatically satisfied since 2θα > ε by assumption.
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Solving the general case with non-zero correlations
(cont’d)

To test the goodness of the above approximations, we should perform a
Monte Carlo simulation and compare the analytical caplet prices coming
from the approximations with the corresponding Monte Carlo price windows
calculated numerically.

This procedure, however, is rather cumbersome, since it also requires the
joint simulation of all forward rates.

A much quicker test can be conducted by simply comparing the caplet
prices implied by the two approximations.

The two approximations, moreover, can be compared with the exact price
obtained in the “zero-correlation case”.
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Solving the general case with non-zero correlations
(cont’d)

We test the goodness of the above approximations on EUR data as of
October 7, 2004.

We set: ρF,V
i = ρF,I

i,l = ρI,V
i = −0.2,

ρI
i,i−1 = 1− 1.5e−0.08(i−2),

α = 0.2, θ = 0.001, V (0) = 0.001,
ε = 0.01 and
σI

i = 1− 0.05(i− 1), for i, l = 1, . . . , 5.

We plot the percentage differences
between “exact” and “freezing-based”
caplets prices.
The first freezing case is shown on top.
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Calibration to a matrix of II caps/floors
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Figure 6: Absolute percentage differences between calibrated prices and
market prices (market quotes as of October 7, 2004).
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Conclusions

We have reviewed the pricing of II swaps and caps under a (lognormal)
market model for forward CPI’s.

We have then extended the model by introducing a stochastic volatility as
in Heston (1993).

Closed-form formulae for option prices have been obtained when the
correlations with forward rates are zero.

In the non-zero correlation case, we have derived efficient price
approximations based on classical drift-freezing techniques.

We have also presented an example of calibration to II caplet prices.

Assuming a unique volatility process for all forward CPI’s seems too
restrictive if we aim at calibrating many maturities simultaneously.

5th Winter school on Financial Mathematics, Lunteren, 23 January 2006 49



Possible future developments

One may consider a different volatility process for each forward CPI,
introducing new volatility and correlation parameters:

dIj(t)/Ij(t) =
√

Vj(t) σI
j dZI

j (t)

dIj−1(t)/Ij−1(t) =
√

Vj−1(t) σI
j−1

[
− τjFj(t)

1 + τjFj(t)
σF

j ρF,I
j,j−1dt + dZI

j−1(t)
]

dVk(t) =

[
αkθk − εk

√
Vk(t)

j∑

l=β(t)+1

τlFl(t)
1 + τlFl(t)

σF
l ρ

F,Vk
l − αkVk(t)

]
dt

+ εk

√
Vk(t) dWk(t), k = j − 1, j

However, the calculation of caplet prices is not straightforward, since the
pricing of each caplet (but the first one) involves an extra volatility process.
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