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Preface

In the last few years, academicians have touted practitioners with many recipes to price more ef-
ficiently American options, especially when the latter are written on large baskets. Most of these
methods are based on Monte Carlo simulation principles. The purpose of these notes is to review
the most talked about methods, to expose the mathematical underpinnings, with the hope to debunk
some of exaggerated claims which have been made on their practicality and the universality.

As some of these methods go under the name of Monte Carlo regression methods, we felt com-
pelled to devote a chapter to a short primer on the basics of Monte Carlo computations, and an
appendix to nonparametric regression. However, these components of the course are not central to
the subject, and they can be skipped in a first lecture: they are included for the sake of completeness.
Disclaimer. The present document is still incomplete. These notes are more of a work in progress
than a finished product. They still need quite a lot of TLC. They are distributed as a guide to the
lectures. My apology for the many missing parts, the unfinished sections and the remaining typos.

René Carmona
Princeton, N.J.

February 27, 2006
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Optimal Stopping
and Snell Envelop for Markov Chains

This first chapter presents the basics of American options. Our emphasis is on numerical methods
for computing prices and identifying optimal exercise strategies. As a consequence, we mostly limit
ourselves to the discrete time case spending little time explaining how to reduce a continuous time
model to this set-up. So for all practical purposes, we study Bermudan options rather than American
options.

We review the fundamental mathematical results of the theory of optimal stopping in discrete time. We
rephrase the problem in terms of Snell envelops. We concentrate on the particular case of Markovian
dynamics for the instruments underlying the options, and we illustrate the important role played by
the Bellman dynamic programming principle.

1.1 OPTIMAL STOPPING AND AMERICAN OPTIONS

Because of our emphasis on numerical implementations, we will exclusively work in a discrete time
setting. So in order to avoid technical difficulties, we only consider the optimal stopping problem for
discrete time stochastic processes or sequences. Moreover, when we talk about American option, we
actually mean what is known as a Bermudan option, namely an option which can only be exercised
on a finite set of discrete dates ¢t = 0 < ¢; < --- < ¢y, this whether or not the underlying
instrument or index on which the option is written evolves in continuous or discrete time. As a
result, the theory which we develop and use will not depend upon what is happening in between two
successive possible exercise times ¢; and ¢;1, only the transition from time ¢; to time ¢;,1 matters.

We first fix an integer N. This integer has the interpretation of the horizon of the problem, and the
date of maturity when we consider an American option. NV could possibly be infinite if we wanted
to consider perpetual options. Throughout this chapter we use the following notation. (§2, F,P) is
a probability space on which all the random variables are defined, and {F,},, is a filtration, the
o-field F,, giving the information available at any given time. We shall use the notation E,, { - }
and alternatively E{ - |F,,} for the conditional expectation with respect to F,,. S denotes the set
of F,-stopping times, and S, 3 = {7 € S;a < 7 < [} the set of stopping times taking values
in the interval [, 3]. We denote by {&, }, an adapted stochastic process with the interpretation of
a reward, or pay-off in the case of American options: should the process be stopped at time n or
should the owner of the option decide to exercise her right at time n, she will be rewarded by the
amount &,,. The following technical assumption:
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E{ sup &M} <oo (1.1)
0<n<N

will be needed for some of the results stated below. Notice that this assumption reduces to the
integrability of the positive part &, of each &, when N is finite. We shall often assume that &,
is non-negative. This is not a restriction when we deal with option pay-offs. As usual, we use the
notation ™+ for the positive part max(x,0) of a real number z.

1.1.1 Optimal Stopping Problem

In the present context, the optimal stopping problem can be stated as the optimization problem

sup E{¢r},

TE€ESo, N
the goal being to

1. find the value of the supremum;
2. prove that the supremum is actually attained,
3. characterize the optimal 7’s (i.e. the stopping times at which the supremum is attained).

1.1.2 The Snell Envelop

Mathematicians have an uncanny ability to find the solution of a problem by just giving a new name
to its solution! So in this spirit we introduce

Definition 1. The stochastic process {&, } defined by

€n= sup E,{&} (1.2)

N TESH,N
is called the Snell envelop of the process {&, }n.

Notice that we used a conditional expectation, so the Snell envelop is a stochastic process which is
adapted to the filtration {F,, },,. According to this definition, én is the solution of the initial problem
if we assume that the process was not stopped before time n, and if we use all the information
available at time n. In particular, éo is the value of our original problem since

§o= sup Eo{& ).

TESO,T

The following bullet points summarize the properties of the Snell envelop which we use throughout.

° éN = &y when N is finite;
e Bellman dynamic programming principle:

&n = max{&, B {&ni1}}  n < N. (1.3)

Notice that when the horizon N is finite, these first two bullet points give a computational al-
gorithm for the solution of the optimal stopping problem as a function of the terminal reward
&N provided we can compute the conditional expectations. Indeed, starting with é ~N = &n, One
can repeatedly apply the dynamic programming principle to compute fn for n decreasing from
n =N — 1ton = 0, giving the value fo of the optimum.
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e {£,},, is the smallest super-martingale majorizing {&, }
e 7 optimal if and only if
- & =& and
— {&ur }n martingale
o 7o = inf{n; &, = &, } is the smallest optimal stopping time

1.1.3 The Markovian Case

We first consider a functional analytic result not involving directly probability or stochastic pro-
cesses.

Réduite of a Function

We assume that P is a sub-Markovian transition kernel on a measurable space (E, £). In the case
of American options, F can be thought of as the space of all possible values of the underlying
instrument. For each nonnegative measurable function ¢ : £ — R, on F, the function ¢* defined
as ¢* = limy_, o @y With

o =¥,  pr+1 =max{p, Poi}

is the smallest super-harmonic function majorizing ¢. A non-negative measurable function f on £
is said to be super-harmonic (for the kernel P) if Pf < f. ¢* is called the réduite of ¢ for the kernel
P. The limit appearing in the definition of ¢* exists because the sequence {(y } is non-decreasing
as we can easily see by induction. Indeed, ¢y < ¢ by the above definitions of g and ¢;. Now, if
we assume that o5 < g1 we have

Prro = max{p, Pory1}
> max{p, Poy}
= Pk+1-

where we used the induction hypothesis ¢ < ¢p+1, the monotonicity of P, and the definition
of ¢p+1. The fact that ¢* is super-harmonic is a straightforward consequence of the monotone
convergence theorem. Indeed:

Pe* = P(lim o = lim Ppy, = ¢".

Notice that (using once more monotone convergence)

¢* = max{p, Pp"} (1.4

which is a system of coupled equations (as many as elements of the set £) which we could try to
solve for the values of the reduite. Indeed, this functional equation says

" (z) = max{p(x), /E oW)Px.dy)}), cwcE
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Functions of a Markov Chain

We now consider a stochastic process { X, },, which, in the case of the pricing problem for American
options, will represent the underlying indexes or securities on which the options are written, and we
assume that this process is a Markov chain with transition probability given by a transition kernel
which we denote by P. This means that the kernel P gives the conditional expectations of functions
of the Markov chain in the sense that

E{g(Xnt1)|Fn} = E{g(Xn11)|Xn} = [Pg](Xn)

for any function g on the state space for which the above expectations/integrals make sense. The
main result is that if the reward £,, at time n is given by a function ¢ (X, ) of the Markov chain, then
the Snell envelop is given by the reduite of that function computed along the chain. In other words:

n = 0" (Xn). (1.5)

Among the many consequences of this theoretical result, the following has far reaching numerical
implications. The smallest optimal stopping time is the hitting time of the set

D={x€B; p(z) = ¢* ()} (1.6)

which is called the exercise region. Indeed, we saw earlier that the smallest optimal stopping time
7* was the first time the Snell envelop process coincides with the reward process. Given the repre-
sentation (1.5) of the Snell envelop, this implies

7" =inf{n; X,, € D}.

Remarks

The above results are stated in the time-homogeneous case when the transition kernel does not
change with time.

o However, the results above also hold when the transition kernel P depends upon time, in other
words, when the transition from time n to time n + 1 is given by a kernel P,, which can change with
n;

© Moreover, if the transition kernel is allowed to change with time, there is no reason why the state
space should not also be allowed to change with time. When appropriate, we shall use the notation
E, for the set of possible states at time k.

As we shall see in the next section, these generalizations provide a convenient way to recast the
binomial tree model in the Markov chain framework considered in this subsection.

1.1.4 American / Bermudan Options

We now concentrate on the case of an American option, and we assume that the pay-off to the owner
of the option is (X, ) if the owner chooses to exercise her right at time n. Here ¢ is a non-negative
function which can be computed for all the values of the underlying instruments X,, at time n.
Typical examples include

e ¢(z) = (x — K)T in the case of a call option with strike K on a single stock or index with value
T
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e ¢(z) = (K — z)7 in the case of a put option with strike K on a single stock or index with value
x5
e p(z) = (3, wiz™ — K)T (resp. p(x) = (K — >, w;z(D)T) in the case of a call (resp. put)
basket option with strike K and weights w; on a basket of stocks or indexes with components
(@)
X s

As the components () of the vector  from which the basket is constructed are allowed to depend
upon each other, one could think of the 2(*) as values of the same underlying instrument at different
time, including in this way Asian option in the modelling framework of basket options.

As before, we assume that { X, },, is a Markov chain. For the sake of generality, we do not assume
that this chain is homogeneous, and we denote by P, the transition kernel from time n to time 1+ 1.

Discounting

As explained in our discussion of the dynamic programming principle, when considering exercising
the option at time n, the owner of the option has to compare the immediate reward ¢ (X,,) to the
expected future rewards should she choose not to exercise immediately. For this comparison to be
meaningful, she needs to express the values of the future cash flows in “time n currency”. Hence the
need for discounting the future cash flows to compute their present value equivalents. We denote by
D(nq,n2) the discounting factor giving the time n; value of a unit cash flow taking place at time
ng > n1. In the discrete time setting we have;

no—1

D(nl, TLQ) = H

n=mni

1
1+7r,

(1.7)

where 7, stands for the yield over the period from time n to time n + 1. This discounting factor is
multiplicative in the sense that

D(’fll, ’flg) = D(Tll, Tlg)D(’le, ’flg)

whenever n1 < ny < ng. We explain in formula (1.30) how to compute this discount factor from the
exponential term used in the continuous time when we discretize a model from continuous time fi-
nance. We will allow for stochastic interest rates in the sense that {r,, },, could be a random sequence
as long as it is adapted, the typical case being when r,, is a function of the X, for m < n.

The value at time n = 0 of the American option is given by the solution of the optimal stopping
problem:
sup  E{D(0,7)p(X,)}. (1.8)

TGS[()’N]

Despite its clear intuitive meaning, the fact that this optimal value is the right price requires a justi-
fication, and we shall not discuss the no-arbitrage argument leading to this result.

In order to recast this optimal stopping problem in the Snell envelop framework discussed above,
we introduce the discounted transition kernels P,

[P fl(z) = E{D(n,n+ 1) f(Xn41)| Xn = z) (1.9)

which can be written in the simpler form



Optimal Stopping and Snell Envelop for Markov Chains
[ fl(2) = D(n,n + 1) [Puf](x) (1.10)

when the interest rates (and hence the discounting factors) are deterministic. Even though ﬁn is not
exactly the transition kernel of the Markov chain {X,, },, the results stated earlier in the case of
a function of time-homogeneous Markov chain can be adapted to the present situation. As in the
homogeneous case described above, the Snell envelop

&= sup E{D(n,n)o(X;)|Fn} (1.11)
TESN,N]

can still be written as a function of the underlying Markov chain (recall our discussion of the réduite),
but in the present case, this function is time dependent, namely:

&n = vn(X5) (1.12)

for a sequence {v,, },, of functions of the state variable x. én gives the value of the option at time n
if it has not yet been exercised by that time. As we concentrate on the finite horizon case, this time
dependent value function is given by the dynamic programming principle

{ un () = p(2) ) (1.13)
vp(2) = max{p(x), [Prvn+1](2)}, n=0,1,--- ,N—1. )

The smallest optimal time 7% if the option was not exercised before time 7 is given by the first time
after n for which the Snell envelop coincides with the pay-off

F=inf{n’ > n; v (Xn) = o(Xn)}. (1.14)
and in particular, the Snell envelop can be expressed as a conditional expectation

&n = vn(Xn) = En{D(n, 77)p(Xr2)} (1.15)
instead of a supremum of such conditional expectations.

As usual, we drop some of the subscripts n when n = 0 so that the value of the option is given by

€0 = vo(Xo) = SEEE{D(OJ)@(XT)}

and the smallest optimal exercise time 7* is given by
7 =inf{n > 0; v,(X,) = p(Xn)}.
In particular

o = vo(Xo) = E{D(0,7)p(X+)} (1.16)

Continuation Function

In many instances it will be convenient to rewrite the dynamic programming principle in terms of
the value of not exercising immediately. We formalize this intuitive idea by defining the function ¢,
forn=0,1,--- ,N — 1 by ~

G = Pup i (1.17)
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for each z € E,,, then ¢, () represents the current expectation, conditioned by the fact that X,, = z
at time n, of future rewards assuming that future exercise will be decided optimallly, if there is
no exercise at time n. In other words ¢, gives the continuation value at time n and the dynamic
programming principle can be rewritten as

vn () = max{p(z), gn(z)}.

Obviously, the full backward induction can be rewritten in term of the continuation value functions:

{ gN-1 = PN—lSD

- 1.18
qn:anaX{@aanrl}v n=01,-- ,N—-2 ( )

It is interesting to compare (1.18) with (1.13). A major difference lies in the relative placements of
the maximum and the action of the discounted transition operator P,,. The latter enters linearly in
(1.18) and this will make computations easier.

Still Another Formula

For each integer n > 0 we define the non-linear operator @),, by

[Qn f)(z) = max{p(x), [P f](2)} (1.19)

whenever the right hand side makes sense (e.g. when f > 0). With this notation, the backward
induction providing the value function at time n = 0 can be re-written as the following equality:

vo(z) = [QoQ1- - Qn-1¢](x) (1.20)

This form of the dynamic programming principle is quite useful when the state space E or the state
spaces F,, are finite. Indeed, a function f on FE,, can be identified to a vector comprising all the values
f(z) (so the length of this vector is equal to the cardinality of E,,). Since the transition probability
operator P, is linear, it can be viewed as a matrix, and computing the function P, f can be done by
multiplying the matrix corresponding to P, by the vector of the entries of f. The computation of
the vector comprising the values of the function @), f can then be completed by computing entry by
entry, the maximum of each entry () with the corresponding entry [P, f](z).

We will use this remark in our implementation of the quantization method introduced in Chapter 3.

These results can be written in a simpler form when the Markov chain {X,, },, and the discount
factors are time-homogeneous. In this case, formula (??) reduces to the more compact expression

vo(z) = [Q@V () (1.21)

where the exponent N means that we apply the operator () N times to the pay-off function ¢, and
where the non-linear operator () is defined by:

[Qf)(x) = max{p(x), [Pf)(x)} (1.22)

for all non-negative measurable function f, or for any function f for which E{|f(X1)|} < oo.
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American Call and Put Options in the Black-Scholes Model

This subsection is a little excursion in the world of continuous finance., but before we even consider
specific models for the underlying risky assets, we derive a general fact about the exercise of Amer-
ican call and put options which is useful both in discrete and continuous time models as long as the
maturity is finite.

Let us assume momentarily that the discounted reward process & = D(0,t)p(X;) is a sub-
martingale. Contrary to the case of super-martingales, expectations and conditional expectations
increase with time for such processes. So in order to find a stopping time maximizing ]E{ET} =
E{D(0,7)p(X,)} it always pays to wait. Consequently, for such processes, the optimal exercise
time is the maturity date 7'. In other words, the fact that the exercise is of the American type is of
no benefit to the holder of the option if the discounted reward process is a submartingale: there is no
early exercise premium in this case.

This innocent looking remark has important applications in several cases including the Black-
Scholes model of call and put options on a geometric Brownian motion { X} };. In this case, and in
the absence of dividend payments the risk neutral dynamics of the underlier are given by

dXt = Xt[Tdt + O'th],

we assume that the short interest rate is deterministic and constant over the life of the option. We
use the discount D(0,t) = e~ "*. We also assume that the maturity 7" and the strike K are positive
numbers. A simple application of Ito’s stochastic calculus gives

e in the case of an American call option, i.e. when the pay-off function is p(z) = (x — K)™, the
discounted reward process &isa submartingale if 7 > 0.

e in the case of an American put option, i.e. when the pay-off function is ¢(z) = (K — z)7, the
discounted reward process &isa submartingale if < 0.

Hence, unless the underlying stock is paying dividends (and the drift r is replaced by r — ¢ if ¢ is the
rate of continuous dividend payment) the problem of pricing and exercising an American call option
is trivial in the sense that it is not any different from the case of a European call. This is why when
considering American options, we consider put options most of the time.

1.2 MULTIPLICATIVE BINOMIAL TREES

Tree models are often proposed as simple models capturing stylized facts of real markets. They are
popular because of their conceptual simplicity and the fact that they are easy to implement. More-
over, they are also used as discrete approximations of more sophisticated continuous time models.
The following notation will be used for discrete time models as well as for continuous time models.

N is the number of periods, or the number of intervals in the time discretization
At is the length of the single period;

T = N At is the maturity of the option;

K is the strike of the option;

X is the value at time ¢ = n = 0 of the asset underlying the option;

r is the (annual) short interest rate.
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Time is measured in years, and the discount factor used in computing present values is D(n,n +
1) = e "4t if the tree is used as a discretization of a continuous time model, and D(n,n + 1) =
1/(1 + rAt) if the tree is directly considered as a model of a discrete multi-period economy.

In the general setting of a multi-period discrete time model, the assumption is that, from one period
to the next, the value of the underlying asset, say X, is multiplied by a random quantity, say £, which
represents the return on the asset over the period in question. The premise of a multiplicative tree is
that this quantity can only take finitely many values. We implicitly assume that the random quantities
corresponding to different periods are independent. The tree is binomial when the random variable
¢ can only take two values. So over a single period, the value of the underlying asset can go from
Xo = xp to X1 = Xo& where the random variable £ can only take two values £; < &,. A schematic
of the evolution of the value of the underlying asset is given on the left part of the following diagram.

zou v1 = @(x0&u)

5y =ty

Zo ’l)()?

zo&a

The right part of the above diagram illustrates the analysis of an American option with pay-off
function . If the option is exercised at time n = 1, the reward is given by the cash flow given by
the pay-off, and the value at time n = 0 of exercising this call option at time n = 1 is given by the
expected discounted pay-off. This is the same thing as valuing at time n = 1 the European option
with maturity n = 1 and pay-off ¢(X7). A standard arbitrage argument implies that this value is
given by the expected discounted pay-off at time n = 1:

vl = E{D(0, 1)v1} = D(0,1)[puvu + (1 — pu)vd] (1.23)
provided we define the risk neutral probability p,, by:

erAt _ gd
gu - fd .

The optionality of the American exericise is to give the holder the right to exercise the option at time
n = 0, in which case, she would get p(z). A time n = 0, the holder of the option can choose to
exercise the option immediately, or if it is more advantageous, to wait for time n = 1 to exercise her
right. Hence, in accordance with the dynamic programming principle, her value at time n = 0 is

pu = (1.24)

vée) = max{¢(xg), v(()e)} = max{p(zo), E{D(0,1)v1 }}
= max{p(zg), D(0, 1)py vy + (1 — py)vg}-
1.2.1 Pricing by Backtracking in Multiperiod Models

We now consider a binomial tree as a model for a NV period horizon. The price dynamics for the
risky asset underlying the option are given by the following recombining tree:
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zo&y

\

zo&s

\

2 3
xOEu mogu gd

AWZRN
NN/

£ N

AVARWARY

z0u o€

m
Il

§u

Zo 20&ua

2¢2
z0&uéa

3

o
1l
m

a

SHN)

z0éa

l‘of

/

z0&3 20&3u

/

z0&l

z0€]

n=20 n=1 n =2 n=23 n=4

For the sake of consistency, we recast this price tree in the Markov chain framework introduced
earlier in the chapter. For each n = 0,1,--- , N the underlying risky asset takes exactly n + 1
values, and if we denote by x,[i] the i-th value, the latter can be characterized by ¢ down-moves and
n — ¢ up-moves for the underlying asset in the first n periods. So

xn[i]zﬂfoﬁfiﬂf—i, 1=0,1,---,n, n=0,1,--- , N.
According to the notation of Section 2.3, the state space at time 7 is given by
E, ={x,li]; i=0,1,--- ,n}

The transition kernel P, is easily defined since from X,, = x,,[i] the risky asset can only go to up or
down, and with probabilities p,, and p; = 1 — p,, respectively. So

pyify=2f, andx € B,
P, (x,y) = pgify=x€sandx € E,
0 otherwise

Notice that the returns &, and &; can be made time dependent (i.e. functions of n) without affecting
the pricing procedure as long as the risk neutral probabilities p,, (which automatically become time
dependent) are adjusted to satisfy (1.23). Notice that discounted prices are martingales under this
probability structure. Indeed:

X, =D(n,n+ DE{X,11|Fn}, n=0,1,--- N —1.

The dynamic programming principle (1.13) can be used to compute the value of the option by
filling the tree from right to left. Indeed, if the option has not been exercised yet, its value at maturity
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n = N (4 in the diagram below) is given by the pay-off of the option, since exercise can only take
place at that time. In other words, we can compute all the values vy (i) fori = 0,1,--- , N as

on(i) = planlil) = pleoS€l ™),  i=0,1,--- N,

v4(0) = @(z0&s)

<

w
—~

(=)
=

va(1) = p(zo€3a)

<
S
—

/N

<
fn
—
<
w
—~
—
~—

/NN

<

S
—
—
~—
~

\/
IAVAVAVA

3
I
IS

04(2) = p(z0€2€32)

<
S
—
8
S
N2
T
o
o

<
=
—

<
S
—~
N
~
/.Q

<

w
—~

w
=

va(3) = p(zo€as)

va(4) = ¢(z0€1)

n=20 n=1 n=2

3
|

Next, we backtrack one step in time and compute the value of the option at time n = N —
1. Following the prescription of the dynamic programming equation (1.3), we compute for each
node, the maximum of the reward for immediate exercise, i.e. ¢(z,[i]) and the expected reward
[Povns1(-)](zn]i]) we would get if instead of exercising immediately we were to wait one unit of
time, and then act optimally from that point in time.

What we just did forn = N — 1 can be done forn = N — 2, ---,n = 1 and finally n = 0 to
fill in the tree from right to left by implementing the dynamic programming principle at each node.
Proceeding in this way, we fill in the entire tree all the way to the root. According to the dynamic
programming principle, this last value is the (risk neutral) price of the option. This algorithm is
encapsulated by the pseudo code

for i varying from 0 to N v(N,i) = phi(x_N[1])
for n varying from N-1 down to 0
for i varying from 0 to n
v_n(i)=max{phi(x_n[i]),D(n,n+1l)*
[p_u » v(n+l,i)+(1l-p_u) * v(n+l,i+1)]}

We can now move down the tree (i.e. from left to right) to identify the smallest exercise strategy:
along each path, the option is exercised as soon as the value function v,, (i) computed above is greater
than the reward ¢ (z,[i]) for immediate exercise.
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1.3 BINOMIAL TREES STILL, BUT FROM A DIFFERENT PERSPECTIVE

In this section we change our perspective on trees. Instead of viewing them as stand alone models
for an economy and bona fide supports for the risk neutral stochastic dynamics of the underlying
asset, we assume that these dynamics are in fact given by the geometric Brownian motion model of
continuous time finance proposed by Samuelson, and we view the tree as an intuitively appealing
approximation tool from which one constructs numerical schemes to compute prices, hedges, . . ..
The over-arching model is:
dXy = X¢[pdt + odWy] (1.25)

where p is the annual rate of growth of the underlying asset, o is its volatility, and dW; represents
the infinitesimal increment of a standard Wiener process also called process of Brownian motion.
We are interested in pricing and hedging contingent claims, and for that reason, we need to work
with the risk neutral dynamics of the asset. Since we assume that the latter does not pay dividends,
this forces us to assume that the rate of growth is the short term interest rate, i.e. u = r. As before,
we restrict ourselves to the particular case of a European call option with maturity 7" and strike K for
the sake of definiteness. Its price is given by the risk neutral expectation of the discounted pay-off of
the option, hence:

Orx =B (Xr — K)T) (1.26)

Notice that the stochastic differential equation (1.25) can be solved explicitly. The solution is given
by the geometric Brownian motion:

X, = Xoelr=o" /Dt (1.27)

and this shows that X; has a log-normal distribution. The unexpected term —ot/2 appearing in the
exponential is usually called the It6 correction. Using the log-normal distribution, we can compute
explicitly the expectation in (1.26), leading to the famous Black-Scholes formula which we recalled
and programmed in Chapter ??.

Our goal in this section is to construct multiplicative binomial tree models providing approxima-
tions to the desired price, e.g. (1.26). Once a time horizon 7" is chosen, an approximating binomial
tree can be constructed by choosing N typically large (recall that the length of one time period is
then given by At = T'/N), two numbers ,, and &, for the distribution of the random return &, and a
probability p.

Remark 1. At this stage of our discussion of the approximation strategy, we do not require that
the probability p be given by the risk neutral condition (1.24). In other words, we do not assume
that p = p,, given by this formula. This means that the tree may not be exactly risk neutral, and
consequently, computing prices by expectations of prices over the next period (i.e. filling in the tree
from right to left as we did earlier) may not be justified rigorously, and such a computation procedure
may introduce significant errors if the risk neutral condition (1.24) is far from satisfied.

We review two standard tree construction procedures, both relying on choices of the parameters &,
&4 and p intended to match the first two statistical moments of some of the random variables in the
continuous time model (1.25) with those of their analogs in the tree in question.
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1.3.1 The CRR Prescriptions

Formula (1.27) states that X A, is of the form:

X = Xoe(r702/2)At€UWAt

Cox, Ross and Rubinstein use a binomial tree where
2
Xap = Xoe(r—a /2)Atee

(hence £ = elr=o*/ 2)Atee) where the random variable e takes only two values in such a way to have
the same mean and the same variance as ¢ ;. In other words, ¢ has mean 0 and variance o2 At.
These two constraints give two equations for the three variables &,,, £; and p, which is not enough
to determine them uniquely. So they choose arbitrarily p = .5, which is in some sense, a symmetry
condition on the probability distribution of €. Solving explicitly one finds:

1 5 _ 6(1”702/2)At+0m gd _ 6(T70'2/2)At70'm (1.28)
9 ) u 3 . .
In line with the above remark, we notice that the corresponding tree is not risk exactly neutral, but

simple computations with the Taylor expansions of these quantities when At is small show that the
risk neutral condition (1.24) is satisfied in the limit A¢ — 0.

p:

One of the main criticism of the CRR approximation is its slow convergence toward the value of
the Black-Scholes formula.

1.3.2 The JR Prescriptions

In order to improve on the poor convergence properties of the CRR prices, Jarrow, and Rudd propose
to use a binomial tree where

1 r—o2/2
p=§+722/ VAL, &=e"VAL = 7VAL (1.29)

As in the case of the CRR trees, the JR trees are only risk neutral in the limit At — 0.

1.4 EXTENSIONS

This final section is a patchwork of topics which are connected to the problems discussed in this
chapter, but which we do not want to cover in full because of their technical nature.

1.4.1 Dividend Payments

If the underlying asset is a stock paying dividends and if the payments of these dividends can be
modelled with a a continuous flow at a (continuous) rete § > 0, then the Black-Scholes theory
shows that the pricing problem is equivalent to pricing the derivative in a model without dividend
payments and where the effective discounting rate r giving the drift in the equation for the dynamics
of the underlying asset is replaced by the effective rate r — §. The construction above can be adapted
without any significant change to handle this case.

On the other hand, the problem is more difficult when owning the stock entitles the investor to
cash payments.
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1.4.2 Multivariate Derivatives
Higher Dimensional Trees

The concept of binomial tree can be extended to the pricing of options on several underlying assets.
This is for example the case of spread options or more general basket options. We consider the
case of spreads for the case of definiteness. Basket options are never priced with trees because even
a reasonably small number of components in the basket is enough to make the size of the tree
computationally prohibitive.

Let us consider for example an option with strike K and maturity 7" on the difference X; =
Xt(Q) - X t(l) of two assets. A first hunch could be to model directly the dynamics of the underlying
index X; and to build a binomial tree for this model, This has been done with additive trees, with
a reasonable success for some sets of parameters. But because of the limitations of these models, it
makes more sense to model separately the underlying assets Xt(l) and Xt(Q), construct a binomial
tree for each of them, and then combine these two separate trees into a single tree capturing the
dependencies of the two assets.

Let us assume for example that we want to build a tree with NV time periods. At time ¢t = nAt,
i.e. at the end of the n-th period, the first asset X (1) can move up or down and move to two different
values, and for each of them, the second asset X (2) can also have two values. This makes a total of
4 nodes to which the couple (X SA)t, X SA)t) can move during the period. Hence four probabilities to
choose. In order to choose these probabilities, not only should we use the separate dynamics of the
two underlying assets, but also the way they correlate.

Such a construction is reasonable if one is interested in the analysis of qualitative properties of
economic models. However, it is unsatisfactory if one needs precise approximations of continuous
models. Indeed, because of poor rates of convergence, the size of the tree becomes rapidly un-
manageable.

Discretized Black-Scholes Model

In this subsection we consider the case of an American option written on a basket of d underlying
risky assets. Here d can be as large as 50 or 100. However, and despite many claims to the contrary,
numerical methods available today work well only for dimensions much smaller if we do not rely
on the Monte Carlo methods discussed in Chapter 3. For the sake of these lectures, we shall only
consider values of d between 2 and 6.

We assume for the sake of simplicity that the dynamics of the underlying assets X (*) are given
by a non-degenerated d-dimensional geometric Brownian motion. As we shall see later in Chap-
ter 4, in this particular case, the time discretization leads to exact simulation avoiding errors pro-
duced by a scheme such as Euler’s. So we assume that there exists a d-dimensional Wiener process

{Wt(i)}izl)... ,d, >0 such that:

d d
i i 1 j
Xt()(a:):xé)exp 7’75201-2]4 tJrZa,;th(])
j=1 j=1

where the process start from Xo(i) = x(()i), i=1,---,d, and where X' = [0};]; j=1,... 4 I8 a positive
definite d X d matrix, and if we denote by ty = 0 < t; < --- < ty = T the fixing dates which we use



to discretize the continuous time model. These are the dates at which the options which we consider
can be exercised. So as explained earlier, the option is Bermudan instead of being American.
With these notation, the transition kernel P,, governing the transition from time ¢,, to ¢,,4 1 is given
by:
[Pof)(@) = E{f(Xe,.1ot, (a)}, @€ R

forn =0,1,---, N — 1. Notice also that
Fp=etnti=t) 1 p=01,.-- N —1. (1.30)

and that P, is independent of n (i.e. the Markov chain is homogeneous) whenever the interest rate
is constant and the fixings are regularly spaced.

Notice that, because of the availability of exact simulation in this case, we do not need to consider
intermediate times between two successive fixing dates, as we would have needed if we were to rely
on a discretization scheme (such as Euler’s or Milshtein’s) for a stochastic differential equation. See
next chapter for a discussion of this issue.

NOTES & COMPLEMENTS

A detailed discussion (including proofs) of the Snell envelop of discrete time stochastic processes can be found
in Neveu’s textbook [?]. Applications to the analysis of American options are given in the masterful little
textbook of Lamberton and Lapeyre [?] where we can also find the no-arbitrage argument showing that the
value of the American option is given by the value function of the optimal stopping problem.

The original paper of Cox, Ross and Rubinstein [?] is still one of the best places to learn about the intricacies
of binary trees as a model for option pricing. Our presentation of the financial material of this chapter was
influenced by the first chapter of Clewlow and Strickland’s book [?]. As emphasized in the text, the binomial tree
can be viewed as a financial model of its own, or alternatively, it can also be viewed as a numerical scheme set up
to compute approximate values for prices and hedges of a continuous time finance model such as the Samuelson
model of the Black-Scholes theory for example. In doing so, we may relax the risk neutrality restriction, but
we need to address the accuracy of the approximation and the rate of convergence when convergence toward
the limiting continuous model does occur. This is addressed in a recent paper by J. Walsh [?] where the author
cleverly embeds all the different approximating trees in the same continuous model using Skorohod embedding
arguments. As shown by W. Schachermayer in a recent intriguing note [?], this convergence is very subtle due
to the meaning of risk neutrality, and minor changes can lead to quite unexpected limiting behavior.

The reader interested in spread options is referred to the recent survey by Carmona and Durrleman [?] where
she will find among other things, a detailed discussion of the various numerical methods used to price these
instruments.

15






Monte Carlo Primer

This chapter is intended as a crash course on Monte Carlo computations. We review the
standard methods of random simulations (often called Monte Carlo simulations) and we
emphasize the case of time discretization of continuous time stochastic differential equation.
The second part is devoted to the numerical computations of expectations by the so-called
Monte Carlo method. Our goal is not to give an in depth presentations of these subjects. We
merely review the results which we use in the following chapter on Monte Carlo methods
for the pricing of American options.

2.1 RANDOM GENERATION
Most financial engineering problems lead to the computation of expectations of the form

E{y(X7)} or E{W(X[O,T])]"

In many cases, X7 is arandom vector giving the values of economic factors and underlying securities
at time 7" and v give the present value of a specific cash flow or pay-off depending on these factors
and underlying instruments. These random pay-offs often depend not only on the values of the
factors at time 7', but on the entire past history, say X| (0,T]> of these factors. In these cases, we need
to evaluate the second of the above expectations. Notice that computations of probabilities, such as
those probabilities P{L < x} involved in the computations of values at risk, (VaR for short) fall
under the present framework as the probability of an event is nothing more than the expectation
of the indicator random variable which is 1 when the event occurs and 0 otherwise. The goal of
this chapter is to present Monte Carlo methods to compute approximations to the values of these
expectations and probabilities.

In this first section, we address the most fundamental issues of random number generation. We
use bullet points to highlight the main topics which we intend to illustrate with examples.

e Random Number Generators.
e Random Simulations.
o Variance Reduction Techniques.

A reasonable treatment of these topics would require more time and space, and our cavalier discus-
sion does not do justice to the importance of the concepts. We encourage the reader to consult the
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Notes & Complements at the end of the chapter for references to systematic presentations of the
issues skimmed over in this chapter. Each bullet point is now explained and illustrated with simple
introductory examples. We use concepts and tools introduced in the analysis and mitigation of credit
risk to illustrate the computational methods introduced in this chapter.

2.1.1 Random Number Generators and Random Samples

All computing environments comprise a random number generator. Repeated calls to this gener-
ator return a sequence of numbers, say ui,us,...,u, which form a sample of random numbers
uniformly distributed over the unit interval [0, 1]. For us, a ”sample” means a set of realizations of
a finite number of random variables which have the same distribution and which are independent.
In the present situation, the u;’s are realizations of independent random variables Uy, Us, ..., U,
with the uniform distribution U (0, 1) over the unit interval [0, 1]. Also, we shall try to adhere to the
convention of using lower cases for realizations of random variables, and upper cases for the actual
random variables.

Random simulations and Monte Carlo computations require non-uniform random samples. The eas-
iest way to construct such samples with a uniform random number generator is to use the method
of the cumulative distribution (cdf for short). The latter is based on the following elementary result
from probability theory.

If F~1 is the inverse of a cdf F, and if U ~ U(0, 1) is a uniform random variable on the unit
interval [0, 1], then the random variable X = F~1(U) has cdf F.

This theoretical result is used in the following practical way: in order to construct a sample
x1,T3,...,T, from a distribution with cdf F', we first generate a sample w1, us, ..., u, from the
uniform distribution on the unit interval [0, 1], and we compute:

T = F_l(ul),l‘g = F_l(’u,g),...,l‘n = F_l(un).

2.1.2 Simulation of Finite Random Variables

The first example of non-uniform random generator which we discuss is simple enough to be under-
stood without requiring the above theoretical result. It concerns the simulation of random variables
taking only finitely many values. Indeed, in this case, the cdf method takes a very intuitive form
which can be explained at a very intuitive level.

Let us assume for example that the random variable X can only take finitely many values
M ... () with probabilities py, - - - , py respectively

P{X =2} =p;, j=1,---,k with p; >0 and p;+---+pp =1

Let us partition the unit interval [0, 1) in the & disjoint intervals I1 = [0, p1), I1 = [p1,p1 +D2)s -+
Iy =[p1+ -+ pr_1,1). Since

]P){UEIJ}ZPJ, j:L,k

if U ~ U(0,1) is a random variable with uniform distribution on the interval [0, 1], in order to
generate a sample of size n from the distribution of X, we can generate a sample u, - - - , u,, from
the uniform distribution on [0, 1] and set
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:L'i::E(j) whenever u; € I, i=1,---,n.

This procedure is simple, intuitive, and fully general. It is very efficient for small values of k. This
is not to say that it is used in all the cases of random simulations of finite random variables. Indeed,
this method can be very difficult to implement when k is large and the partial sums p; + - -+ + p;
are difficult to compute. Indeed, finding out which of the interval I; does a given random number
u; belong may require many costly evaluations and comparisons in too large a number to make this
method reasonable. This is why alternative algorithms have been developed in many cases, including
but not limited to binomial and multinomial distributions for large values of the parameters. As we
will need it later in the construction of non-central x? random generators, we present an example of
a random generator for the Poisson distribution.

Poisson Random Number Generator

Recall that for any A > 0, the Poisson distribution P(A) with parameter A is the distribution of an
integer valued random variable satisfying

N
PN=j}=e?"Z, j=012- @1

J!
For the Poisson distribution P(\), we will use a random number generator based on the inverse
cdf method. To be specific, we start with a uniform random number U ~ U(0, 1) and we compute
F~1(U) as the smallest integer nsatisfying F'(n) < U, and in order to compute the cdf, we use the
fact that P{N = j + 1} = AP{N = j}/(j + 1). We summarize the algorithm in the following box.

e Set F =p=e*, j=0and generate U ~ U(0, 1)
e Do
_ Add1toj
— Replace p by pA/j andaddpto I’
e whileU > F
e Return j

Credit Rating Migrations and (Finite State) Markov Chains

Motivated by future applications to credit default simulation, in this subsection, we consider the
simulation of Markov chains with finitely many states. A stochastic process {X,,}n=0.1,... is a
(finite state) Markov chain if the random variables X, can only take finitely many values, say
2 .. 2 and if

P{X, 41 = x(j)|Xn — x(i),Xn_l _ x(il), Xy = x(in—l)} =P{X 41 = x(j)|Xn — x(i)}_
2.2)

It is usual to introduce a special notation for this conditional probability, say

P{X, 1 =z |X, =29} = P(i, ), ii=1,2,-- k. (2.3)
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P is a k x k matrix called the transition matrix of the Markov chain. Its entries are non-negative
numbers and on each row, they sum up to 1.

Markov chain simulation is concerned with the generation of large numbers, say M, of indepen-
dent samples of length N, say x; 0, %1, %i 2, - ,2;n fori = 1,2,--- M having the same joint
distribution as the dependent random variables X, X7, Xo, - - - , X 5 forming the Markov chain. The
Markov property makes this quite easy. For each ¢ between 1 and M, one first generates a sample
x;,0 from the distribution of the random variable X. Then, one generates a sample x; 1 from the
conditional distribution of X given that Xg = x; ¢. This conditional probability is given by the
row of the matrix P corresponding to which (/) ;0 1s equal to. Then, one generates a sample ; o
from the conditional distribution of X given that X; = x; ;. Again, this conditional probability is
given by the corresponding row of the matrix P. So it is straightforward, though tedious to articulate,
to generate the desired Markov chain samples, tarting with the distribution of X (which is a finite
random variable) and using the rows of the transition matrix as dictated by the successive sample
values of the chain appearing in the simulation.

We already saw several examples of finite state Markov chains in our discussion of trees in Chapter
1, and the above discussion will come handy when we try to price American options in these models.
For the sole purpose of illustration, we discuss a concrete example borrowed from the theory of
corporate bonds and credit ratings. Rating agencies such as S&P and Moody’s rate debt issues.
However, one often talks about the rating of a company. Since companies have many loans, it is not
clear how to infer a rating for a company from the ratings of its debt issues. A typical convention
is to assign to the company the rating of its senior unsecured bond. A senior unsecured debt is an
unsecured debt with the highest payment priority level in the event of default.

| Aaa Aa A Baa Ba B C D

Aaa||93.66 5.83 0.40 0.08 0.03 0.00 0.00 0.00
Aa|| 0.66 91.72 6.94 0.49 0.06 0.09 0.02 0.01
A||0.07 2.25 91.76 5.19 0.49 0.20 0.01 0.04
Baa|| 0.03 0.25 4.83 89.26 4.44 0.81 0.16 0.22
Ba|| 0.03 0.07 0.44 6.67 83.31 7.47 1.05 0.98
B{ 0.00 0.10 0.33 0.46 5.77 84.19 3.87 5.30
C{ 0.16 0.00 0.31 0.93 2.00 10.74 63.96 21.94
D|| 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
One-year ratings migration probabilities based upon bond rating data from 1981-2000. Data is
adjusted for rating withdrawals. Source: Standard & Poor’s.

Using the above matrix as a transition matrix P, we can simulate at will scenarios for the time
evolution of the rating of a corporate bond if we know its initial rating.

We now discuss the examples of the exponential and Gaussian distributions which we motivate
with credit risk modelling issues.

Arrival Model

Exponential distributions plays a crucial role in modelling arrival processes. We introduce notation
specific to the theory of these processes with an emphasis on the modelling of credit events. However,
these arrival times can also be used in modelling crashes, jumps, . . . as the latter became popular in
the financial engineering circles.
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In the late nineties spectacular defaults on debts issued by corporations, counties, municipalities
and sovereigns have created havoc in the financial market. The market of credit derivatives has
emerged as a way to mitigate credit risk. We use this important new area of financial engineering
as a source of examples for our discussion of random simulation. For the sake of illustration, let
us consider a single bond issued by a corporation. Associated to this loan we introduce a random
variable 7 taking value in [0, o) which we think of as the time of default on the associated payments
(interests, coupons, principal). Default usually means a missed or delayed payment, a filing for
bankruptcy (Chapter 7 or 11 in the US) or any form of debt restructuring to diminish financial
obligations. Note that the random variable 7 can take the value co, which corresponds to the company
never defaulting. Obviously,we shall assume that P{7 = 0} = 0. The cdf is denoted by F, i.e.

F(t) = P{r < t}, t>0.

Even though the cdf characterizes completely the distribution of 7, we shall use most often the
survival function G, defined by:

G.(t) =1 — Fi(t) = P{r > t}, > 0.

The function:
A(t) = —log G, (t) = —log[l — F,(t)]
is called the hazard function, and whenever 7 has a density, say f., the function

a0

)\T (t) GT (t)

is called the intensity, or hazard rate. Notice that with these definitions, we have

@) = = G 108G (0) = — 7 2.4

and consequently that
G-,—(t) — e Jd Ar(u)du
which bears a striking resemblance with the formula giving the price of a zero coupon bond as a

function of the instantaneous forward rate.

First Example: the Exponential Distribution

One of the most popular models for default arrival is to choose for 7 the first time of arrival of a
point process of arrivals, and the simplest one of them is obviously the Poisson process. In this case,
the random variable 7 has an exponential distribution E(\) with parameter the rate A of the Poisson
process in question. The practical significance of this parameter is clear in this case because it gives
the inverse of the mean time of arrival in the sense that

1
E = —,
=5
Notice also that in this case

F.(t)=1—e* hence G,(t)=e* and M. (t)=A\
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Here is our first example of a non-uniform random generator. We assume, that the time of default
of a given corporate bond is given by the first time of arrival of a Poisson process. Since pricing
this corporate bond only involves the time of the first arrival of the Poisson process (and possibly
the recovery rate which we ignore at this stage), and since such a distribution is well known, the
problem of random simulation or Monte Carlo computation is very simple. Since the inverse cdf is

the function ! (u) = —3 log(1 — u), and since a random variable U is uniformly distributed on
[0, 1] if and only if 1 — U is, we can generate a sample from the distribution E(\) in the following
way: for given a sample size n, we generate a sample uy, ug, . .., u, from the uniform distribution

on the unit interval [0, 1], and we compute:

1 1
71 = —<logui, z2 = —<logus, ...,z = —< logu,.

A A A

2.1.3 Random Samples from the Gaussian and Student Distributions
Gaussian Distributions

The Gaussian distribution plays a very important role in most of the models for mathematical finance.
The well known example of Samuelson’s model in which prices are modelled as log-normal random
variables (i.e. exponentials of Gaussian random variables) in which the famous Black-Scholes for-
mula was derived is a case in point. Hence the need for efficient random number generators produc-
ing Gaussian samples.

We use the notation ¢ and ¢ to denote the density and the cdf of the standard Gaussian distribution
N(0, 1) respectively. In other words

1 1 z
p(x) = E@_x2/27 D(x) = E/ e =%z, zeR. (2.5)

The appeal of the cumulative distribution function method is due to its great generality. However, its
implementation can be inefficient when the c.d.f. or its inverse cannot be computed explicitly and one
has to rely on numerical inversion methods. This is the case for the Gaussian distribution. Because of
the crucial importance of the normal distribution, specific random generation algorithms have been
designed to provide code for generators of Gaussian samples. The most popular of these algorithms
is the Box-Mueller method which constructs Gaussian variate two-by-two, using the characterization
of the bivariate normal distribution in polar coordinates.

Student or t Distributions

The Student distribution with v degrees of freedom is the distribution of the ratio £/+/x/v where
¢ and x are independent random variables, £ having the standard Gaussian distribution N (0, 1) and
x having the X, chi-square distribution with v degrees of freedom. Because of the properties of the
Gamma function, the parameter v does not need to be an integer. However, when v is an integer, a
simple random sample generator can be set up for ¢-variates. Indeed, if X;, Xo, ---, X, and X,
are independent N (0, 1) random variables, then ¢ = X, 41 and x = X7+ X2+ -+ X2 can be used
to produce a random variable X = £/+/x/v whose distribution is by definition, the ¢-distribution
with v degrees of freedom.

The density of such a distribution is given below in formula (2.6). This formula defines a proba-
bility density even when the parameter v is not an integer. In fact, we shall need random generators
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for t-distributions with non-integer parameter v. See our discussion of the CIR model later in the
chapter.

Notice that a random variable X with a ¢-distribution can be written in the form X = ¢ if we
set 0 = \/v/x which shows that the distribution is a (continuous) mixture of mean-zero Gaussian
random variables, the mixing being done via a random variance. In financial jargon X appears as
some form of stochastic volatility return. In any case, this is the trade-mark of heavy tails as we are
about to see.

Simple calculus shows that the ¢-distribution has a density which is given by the formula

I'((v+1)/2) 1

L = 2.6
W@ = 02y (% a2 o) 7 (26)
where the notation I is used for the Gamma function
I'(z) = / s e %ds. 2.7
0

The Student distribution is a cornerstone in the distribution theory developed for the statistical anal-
ysis of normal samples. Our interest in this distribution has little to do with the original reasons for
its introduction. One of our reasons is the fact that this distribution has a natural generalization to
the multivariate case which we will use extensively in our discussion of copulas. However, one of
very attractive feature of this distribution is the fact that it has heavy tails. We shall make use of this
property later in our discussion of risk control by Monte Carlo methods. Indeed, the density (2.26)
decays polynomially at both ends of the real axis, and if we measure the size of the upper tail of a
distribution by the survival function we see that
cst

Gu(z) =P{X >z} = o when 2 " 400
with a similar behavior for the lower tail when x ~\, —oo. This shows that the ¢-distribution belongs
to the family of Generalized Pareto Distributions (GPD for short).

Gamma Distributions

The Gamma distribution with scale parameter ¢ > 0 and shape parameter b > 0 is the distribution
I'(a,b) with density f, ; defined by

@ tem/b, >0 (2.8)

Jasl®) = Ty
and f, ,(z) = 0 when z < 0. Recall formula (2.7) for the definition of the Gamma function I". It
has mean ab and variance ab?. The Gamma distribution family includes the family of exponential
distributions which are obtained by setting the shape parameter a to 1. It also include the family of
x? (Chi-square) distributions. Indeed, if d is an integer, the x?2 distribution with d degrees of freedom
is nothing but the Gamma distribution with shape a = d/2 and scale b = 2. Using this equality

d
2:1—1 Z9
Xd 27 ’

one can extend to definition of the y? distribution to non-integer number of degrees of freedom! We
will need this extension for the simulation of the square root diffusion process of the CIR model.
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We now discuss random number generators for Gamma distributions. Many different algorithms
have been proposed. The encyclopedic volume [?] by De Vroye reviews most of them in detail. For
the purpose of this book, we shall trust the choice made by Glasserman in [?]. Since the density
fap(z) is bounded for @ > 1 and unbounded for a < 1, not surprisingly, we are led to treat these
two alternative separately.

o ifa <1
- SetB=(a+e)/e
Repeat
- Generate U; and Us independent U (0, 1) and set Y = SU;
- IfY <1
Set Z =Y1/e
If Uy < e=Z accept otherwise set Z = —log((8 — Y)/a)
if Uy < Z% 1 accept
until accept
Return b7
e ifa>1
- Seta=a—1,8=(a—(1/(6a)))/a, m=2/a,d=m+ 2
Repeat
- Generate U; and Us independent U (0, 1) and set V = Uy /U,
< ifmU; —d+V +(1/V) <0acceptelseif mloglU; —logV +V —1<0accept
until accept
Return abV

2.2 NUMERICS FOR STOCHASTIC DIFFERENTIAL EQUATIONS

Our earlier discussion of exotic and path-dependent options emphasized the need for the simulation
of entire sample paths of a continuous time process. We tackle this problem when the continuous
process is the solution of a stochastic differential equation, as it is often the case in the mathemati-
cal models of quantitative finance. We already encountered several times the stochastic differential
equation of the geometric Brownian motion

dSt = ,U/Stdt + O'Stth. (29)
It is a particular case of more general stochastic differential equations of the form
dXt = b(t, Xt)dt + O'(t, Xt)th (210)

as we can see by choosing b(t, ) = px and o (¢, ) = ox. It was proposed as a reasonable model for
the value of a firm, and hence, its simulation will help us understand Merton’s model for default. For
the purposes of illustration, we also consider a few of the other commonly used stochastic differential
equations in the world of financial mathematics. For example, the Vasicek model used for interest

rates. It reads
d?"t = —)\(’I"t —?)dt—i—ath (211)

and is nothing but the classical Ornstein-Uhlenbeck process of mathematical physics. In financial
applications it is often used as a model for the short interest rate because of its mean reversion
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feature, and because it leads to explicit closed form formulae for many derivative prices. The Vasicek
model fits in the general framework of (2.10) by setting:

b(t,x) = =Mz —T7) and o(t,x) =o.

Unfortunately, at any time ¢ > 0 the solution r; of such an equation has a positive probability to be

negative: not that good for an interest rate! Using an equilibrium argument, Cox, Ingersoll and Ross
suggested to use an alternative model which retains mean reversion and which remains positive at
all time (as long as it initial value is positive.) This model is known as the CIR model. It reads

d’f‘t = —A(Tt - F)dt + O'\/Eth. (212)
Notice that in this case we have:
b(t,z) = —Ax —T7) and  o(t,z) = oy/x.

So far, we only considered scalar equations where X; and IV, are real valued. Popular models involve
multivariate stochastic differential equations for vector valued state X; and driving Wiener process
W;. Let us consider for example Heston’s model for stochastic volatility.

dS, = pS,dt + oS, dw >

i . (2.13)
doy = —XNoy — T)dt + 0,\/o:dW,;

which fits in the framework of (2.10) if we set:

X, = [i] L b(t, X) = [—A(/er— T)] L o(t, X,) = ["OS UU%} and W, = [Wi(”)

Notice that in all the examples above, the drift and diffusion coefficients b(t,«) and o (¢, z) are
independent of . For this reason, we restrict our presentation to time independent coefficients in what
follows, even though most of the results have analogs in the case of time dependent coefficients.

In order to understand the point of view chosen in the discussion below, it is important to keep in
mind that at each given time ¢, X; comprises the values of economic factors and financial instruments
of interest, and that depending upon the specifics of the model used for the dynamics of X; and
depending upon the acutal problem at hand, it might be necessary to construct Monte Carlo samples
from the distribution of X; at a specific time ¢ = T, or of the entire history Xg 1) of X up until
time T', or in other instances, the values (Xy,, X¢,, Xt,, -+ , X, ) of X at some fixing dates to, T —
1,to,- -+ ,tn. The discussion below should be relevant to these different situations.

2.2.1 Discretization Schemes for SDE’s

As before we set T' > 0 for the time horizon, we choose an integer /N for the number of time steps,
and At = T'/N for the mesh of the regular subdivision ¢ty < t; < -+ < ty where t; = At for
it = 0,1,---, N. The goal of this section is to identify simply implementable random simulation
procedures which can lead to sample realizations of the solution { X }; of (2.10) at the times ¢; of
the subdivision, or at least to sample realizations of reasonable approximations of the solution.
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Explicit Solutions

In some very rare cases, the solution of (2.10) is given by an explicit formula. In those cases, ran-
dom samples can usually be generated using the explicit form of the solution. For example, in the
geometric Brownian motion case of (2.9) one has:

Stisnyar = Siarexp [(u— 02 /2) At + o[Wiip1yae — Wiad] (2.14)

fori =0,1,2 < --- , N—1, and the exact values of the solution can be computed at the points of the
subdivision from the knowledge of the initial value Sp and the increments W; 1 1)a¢ — Wia; of the
Wiener process. Since the latter are independent random variables with the distribution N (0, At),
random samples for the vector S = {S;a¢}i=0,1,....; can be simulated by generating samples
{€i}i=1,... n of independent variates with the standard Gaussian distribution N (0, 1), and replac-
ing the increments W,y 1)s5; — Wist by \/Ztei_H fort =0,1,--- , N — 1.

Remark. The geometric Brownian motion stochastic differential equation is not the only one to
have an explicit solution in closed form. Indeed, (2.11) admits the solution

t
e = ree M) +/ e M aw,, (2.15)

which is Gaussian as long as 7 is, and well suited for random simulations since the stochastic
integrals over disjoint intervals [s, ¢) are independent and have the Gaussian distribution N (0, [1 —
e~2M=5)]1/(2)\)). Moreover, and even though this fact is much less obvious, we shall see later that
the CIR model is also amenable to exact simulation.

If one is only interested in random samples of the vector X = {X;a;}i=0.1,... .y an exact solu-
tion is possible in some (rare) cases where one does not have such a nice explicit solution as (2.14)
or (2.15). Indeed the random variables X; A; can be simulated inductively if one has random num-
ber generators for the conditional distributions P{X;A¢|X(;—1)a¢, -+ , Xa¢, Xo}. Indeed, given the
initial condition X, one can generate samples from X ; using a random number generator for the
conditional distribution P{ X | X0 }. Next, for each value of the couple (X, X A¢) so generated, one
can use a random generator for the conditional distribution P{X5+|X Az, X0} to generate samples
for the third component of (Xg, X ¢, XoA¢), etc.

Unfortunately, this situation does not occur very often, even if in most of the situations of interest
the conditional distributions are simplified by the equality

P{Xiae| Xi—yae, - Xae, Xo} = P{Xsa¢| X(i—1)a¢}

which follow from the Markov property of the solutions of the stochastic differential equations which
we are considering in this chapter.

Euler’s Scheme
The situations described above are not generic, and exact simulation is not available in general. In

order to find reasonable approximations, we rewrite the stochastic differential equation (2.10) over
an arbitrary interval [s, t) in integral form

t t
Xt:XS—i-/ b(Xu)du+/ o(X,)dW, (2.16)
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and we use Taylor expansions to approximate the integrands by simpler functions. Our first attempt
is based on the approximation by a constant given by a Taylor expansion of order one. In this case,
equality (2.16) becomes the approximate equality

Xi =~ X+ b0(X5)(t — s) + o(Xs)[Wy — Wy]. (2.17)
This approximation suggest to define the vector X = {)A(i}i:Ql?... .~ inductively by Xo = X, and
Xit1 = Xi 4+ b(Xi) At + o( X))V Atei i1, i=0,1,---,N—1 (2.18)

for a vector {¢;};=1.. n of independent identically distributed (iid for short) standard Gaussian
random variables. This construction of a random vector as a proxy for the solution on the subdivision
is called the Euler scheme.

2.2.2 Controlling the Errors

One of the most important problems facing financial engineers is the computation of the expected
values of functions of the entire path of underlying assets and indexes, i.e. expectations of the form
E{f(Xo,r1)} where we use the notation X[ 7] to emphasize the fact that we consider the whole

entire path. The idea is to approximate this function by an appropriate function say f of the random
vector produced by the Euler scheme. For example, in the case of an Asian option, ignoring the

discounting factor,
T +
f(Xp,) = (/ Xidt — K)
0

can be approximated by

N +
f(Xo, X1, , Xn)) = (AtZXZ- - K) :
Similarly, in the case of a down and out call,

f(X[o,T]) = (XT - K)+1{inf{Xt; 0<t<T}>H}

can be approximated by

F(Xo, X1, XN)) = (Xn = K) ek ocicny sy

We discuss later the problems created by the fact that the average and the barrier crossing involve
only the fixing times t; = iAt in Subsection 2.2.4 below. Pay-offs of European options are simple
to manipulate because they only involve the path at maturity. In the case of a plain vanilla European
call,

f(Xom) = (Xr - K)*

can be approximated by o ) A
f((X07X17 e 7XN)) = (XN - K)+

A discretization scheme is expected to provide approximations of the solution of (2.10) in the sense
that
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lim E{|| X7 — Xy|?} =
m {II X7 — Xn[7} =0

or even that
: 0 2
lim E{ sup [|X; — X{ngaell} = 0.
At—0 0<t<T
Even though this second condition seems to be more restrictive than the first one, in many proofs,
the same argument seems to imply both. In any case, we say that a scheme is of strong order « if

E{||Xr — Xn|*}"/? < c(At)

for some constant ¢ > 0. The Euler scheme presented above is of strong order 1/2.

2.2.3 Other Discretization Schemes

One of the strange consequences of Ito’s stochastic integration theory is that, despite the fact that
both integrands were expanded to the same order, the approximation of the first integral ended up
being of order At while the approximation of the stochastic integral is only of order v/At. A remedy
could be to expand the integrand o(X) in the stochastic integral to higher order. If we do that, after
re-arranging the terms we get a discretization scheme given by the formula

~ N A~ 1 ~ ~
Xi+1 =X, + b(Xl)At + O'(Xi)\/ At€i+1 + §UI(Xi)O'(Xi)At(€?+1 — 1). (2.19)

This discretization procedure is called Milstein’s scheme. Notice that it requires the differentiability
of the diffusion coefficient. As expected, it provides a better approximation than the Euler scheme
since it is of strong order 1. Notice that this improvement comes at a cost since in a typical Monte
Carlo computation, the extra term in (2.19) needs to be computed a very large number of times, one
time for each step of the subdivision, and one time for each Monte Carlo sample.

2.2.4 Warning: Random Simulation can be a Touchy Business

We consider several examples to illustrate the care which needs to be taken in using random sim-
ulations based on discretization schemes when dealing with subtle properties of continuous time
models.

Time of Default as a First Hitting Time

Let us assume that the dynamics of the value of a firm are given by a stochastic differential equation
like (2.10), and that default on its debt is believed to occur at the (random) time 7 defined as

7 =inf{t > 0; X; < L(t)}

the first time the value of the firm drops below a level L(¢) which could possibly depend upon time.
There are two obvious sources of error in replacing the computation of the infimum of the times at
which the continuous time process X is below the level L. First, a discretization scheme such as
Euler or Milstein can only provide samples of X at pre-assigned times ¢;, and the time 7 can be
wrongly estimated if X is not below L at these specific times. The second source of error is the fact
that the discrete dynamics implemented by the discretization scheme is only an approximation of
the theoretical continuous dynamics given by the stochastic differential equation defining the model.
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These two shortcomings have to be kept in mind when dealing with discrete scheme. We address
them both in the case of the CIR model.

Despite its high level of abstraction, continuous time finance is very powerful in providing so-
phisticated models and tools of analysis to resolve the challenges posed by complex instruments.
Fortunately, in a practical situation, the indenture of a contract specifies a set of fixing dates at which
the values of the instruments underlying the contract are monitored, and discrete time considerations
can be substituted for the continuous time models. Running averages are often computed as plain
averages instead of integrals, barrier crossing is checked on a finite set of dates. American options
can only be exercised on certain dates (and are called Bermudan options)

Sample Paths of the CIR model

This last example is presumably the most disturbing. The CIR model (2.12) for the short interest
rate was first derived from an equilibrium argument. However, its popularity is mostly due to the fact
that it offers an alternative to the Vacicek model (2.11) resolving the issue of its major shortcoming.
Indeed, it is well known that

ry >0 forall ¢t >0

whenever 7o > 0 and 02 < 27/ A. There is an intuitive reason for that (a mathematical proof would
be more involved). Notice that whenever the value of r; gets dangerously close to zero, the mean
reverting drift will pull r; toward 7. However, this is not enough to keep 7; from becoming negative.
Indeed, the Vasicek’s model has the same mean reverting drift, and nevertheless at any given time,
it can be negative with positive probability. Things are different with the CIR model. Indeed, the
instantaneous standard deviation of the a solution of the square root equation (2.12) is proportional
to the square root of its value, so the closer the solution gets to 0, the smaller the standard deviation
of the Gaussian kick produced by the dW; term, and if 02 < 27/ A, then the random kick will not be
larger enough to overcome the effect of the mean reverting drift, and it will not be able to force r; to
cross to the negative side.

The important thing to keep in mind when computing with this model, is that the positivity prop-
erty is a feature of the continuous time model. It is because r, approaches 0 in a continuous fashion
that the decay of the volatility can take place at the right pace and control the size of the random
kicks of the noise term dW;. Things are different in the discrete case. If one considers a plain imple-
mentation of the Euler scheme and one generates a real sequence from the recursive definition

Xiy1 =X, — )\(XVZ — 7)At + U\/ZG,’.H

for an i.i.d. sequence {¢;}; of standard Gaussian random variables, and Xy = ro > 0, then at any
time 7, the probability that the next value becomes negative is strictly positive. Indeed, conditioned
on the knowledge of X;, X;,1 is a Gaussian random variable with mean X; — A\(X; — 7) At and
variance 02X, and consequently, it has a positive probability to be negative. Several tricks are used
to handle occurrences of negative values, the most frequent one being to replace any negative value
trying to appear by a small positive number chosen a priori.

Remark 1. A word of caution is needed if one wants to recast the square root stochastic differential
equation (2.12) in the framework of the general theory of stochastic differential equations. Indeed,
the square root nature of the diffusion coefficient is so singular that the CIR model does not satisfy
the usual assumptions under which existence and uniqueness of a solution is guaranteed. Indeed,
the coefficient or the CIR stochastic differential equation are not Lipschitz. However, it was proved
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a long time ago by Feller that not only the square root stochastic differential equation (2.12) has a
unique strong solution, but this solution remains positive at all times if its initial value is positive,
i.e.if 7o > 0 and if 02 < 27/\.

Remark 2. Once a grid ) < t; < --- < ty of time points has been fixed, exact simulation
is possible for the transition probability of the Markov process solving the stochastic differential
equation (2.12) can be determined explicitly. It is given by a non-central y? (Chi-square) distribution.
See below for details.

Exact Simulation for the CIR Process

As before, we choose a discrete grid 0 = £y < ¢; < --- < ¢y of time points, and we try to generate
n samples of the random vector (r¢,,- - , 7, ) given that o = r is given. Despite the above horror
stories, the situation is not as dire as the above discussion could lead to believe. Indeed, like the
Vasicek model, the CIR model is amenable to exact simulation. As we are about the demonstrate,
the formulae are not as simple, and the simulation is more involved. The main theoretical result was
proven by Feller. It states that if s < ¢, conditioned on the knowledge of r, the distribution of r; is
a multiple of a non-central y? distribution. Specifically:

1— e—)\(t—s)
rilrs ~ ——p——0o"xa(a) (2.20)
where the number of degrees of freedom d is given by
4NF
= ?

and the non-centrality parameter « is given by

4)\67)\(1575)

o = —02(1 — e_)\(t_s))'r's.

We can now put all the elements reviewed above together to describe the exact simulation algorithm
for CIR samples over a grid t; < to,--- < tx starting from rg.

e Fori=1,2,--- ,ndo
— Forj=1,2,--- ,Ndo
Setc; = 02(1 — e Ma—ti-1)) /(4))
Set aj = dde M Ei—ti-1p, oy /(02(1 — e M Ei—ti-1)))
Generate y ~ x3(a;)
Set Ti,j = CiX
Obviously, this exact simulation algorithm is possible only if one can simulate samples from non-
central x2 distributions. This is done on the basis of the following two remarks.

e If v is a Poisson random variable with mean «/2, and if conditioned on the value of v, x is a
x? random variable with d + 2v degrees of freedom, i.e. if x|v ~ X(Qz 1 2,,» then the unconditional
distribution of x is the x? distribution with d degrees of freedom and non-centrality o, i.e. x ~
X%(c). This first remark reduces the problem of the generation of non-central x? random variables
to the generation of regular y? distributions.

e The remaining problem is to simulate y2 random variates when the number of degrees of freedom
is not necessarily an integer. Indeed, when d is an integer, x? is merely the distribution of the sum
of the squares of d independent N (0, 1) random variables. In general, one uses the fact that x?7 is
a Gamma distribution with shape parameter « = d/2 and scale parameter b = 2.
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2.3 MONTE CARLO COMPUTATIONS

Monte Carlo computations have become the tool of choice in quantitative finance. They are used
for the simulation analysis based on scenarios generated from a stochastic model (typically given by
a system of stochastic differential equations), but most often they are used to compute numerically
probabilities and expectations which cannot be easily evaluated by other methods, e.g. quadratures,
solving partial differential equations, etc. Most Monte Carlo computations are rooted in the follow-
ing result known as law of large numbers. If p = E{Z} is the expected value of an integrable
random variable Z, then for any sequence {7, },, of independent random variables having the same
distribution as Z, it holds almost surely that:

) 1 n
E{Z} = lim - Z Z; (2.21)
j=1
In most cases, Z appears as a deterministic function, say f, of random factors Xy, X1,..., XN

which can be grouped in a vector X = (X, X1,...,Xy) so that Z = ¢(X). We shall see several
instances of this structure later on. In any case, if we have a way to generate random samples for the
distribution of Z, for any such sample z1, . .., z,, the sample average

21+t 2y
n

gives an approximation of the expectation E{Z}, and the larger the sample, the better the approxi-
mation.

Remark. If the distribution of Z has a density, say f(z), then:

E{Z} :/zf(z)dz

which explains why Monte Carlo computations are often used for the numerical computation of
integrals outside of any probabilistic context.

No approximation can be reasonably used if one does not have a sense of the size of the error
incurred. In the present situation, the error is

1+ -+ Z, —nE{Z}
n

1 Z
E{Z} — EZZ]- -
j=1

_ 1 Zi+---+Z, —nE{Z}
- n NG

The central limit theorem tells us that (at least when the common distribution of the Z’s has a second
moment)

1< 1
E{Z} -~ > Zi~ %azg (2.22)
j=1

with { ~ N(0,1). Here oz denotes the common variance of the Z;’s. So as announced, the error
goes to zero when the sample size n increases without bound. However, we can derive much more
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information from this result. Indeed, we learn that the rate of convergence is of the order n=1/2 So
the size of the error can be controlled by the choice of a large sample size. Furthermore, even though
the size of £ cannot be predicted, after all this is a random variable, we know that it will be typically
in the range [—2, +2], and the only remaining way to control the error is to lower the variance of Z.
We shall come back to this idea later in the chapter.

A First Example: Pricing a European Option

Financial derivatives are based on well defined cash flows. The payments are made on specific dates
in the future, and the pay-offs are uncertain when viewed from time ¢ = 0. Their prices are most
often given by risk neutral expected values of discounted pay-offs, and Monte Carlo computations
offer the easiest way to get an approximation of these prices. Let us give a simple example.

For the sake of illustration, we price a European call at the money, with maturity one year on an
underlying stock valued at US $ 50. We also assume that the annualized volatility is ¢ = 30% and
that the yearly continuously compounded interest rate is r = 3.5%. The price C of this option can
be derived from the value of an expectation since

C = e "E{(S; —50)"}

where S is a log-normal random variable with parameters log 50+.035—.32 /2 for the mean and .32
for the variance. So, assuming that we have a random number generator for the standard Gaussian
distribution, we can price this option without appealing to the Black-Scholes formula. Indeed we
have f

Z=(81—50)t  with 8 = 5003 3/23e

where € is a mean-zero variance-one Gaussian random variable. So for any value of the integer n we
can generate a sample €1, - - - , €, of size n of standard Gaussian variates, compute the corresponding
sample

2 = (506‘0357.32/2+‘361 o 50)+’ ...... 2 = (506.0357.32/24».36" o 50)+

of Z’s, and finally compute the average

n

which gives the desired approximation of the call option price. Obviously, the above cannot be a very
convincing example. Black-Scholes formula offers a more efficient way to compute the value of the
option. Moreover, the value obtained by evaluating this formula is exact (as long as the log-normal
model holds). This example is merely a first instance of Monte Carlo computation of a derivative
price.

2.3.1 Monte Carlo Computation from A Discretization: Overall Error

We now consider the typical case of the use of the approximation provided by the Euler scheme for
the purpose of pricing an option by a Monte Carlo method. For the sake of simplicity we discuss
only the case of an European contingent claim with pay-off f(Xr), and we ignore the discounting
factor. Because of the European nature of the exercise, we can take f = f.

We need to take into account the errors produced separately by the two steps of the procedure
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e replacing the correct pay-off f(X7) by the approximation f(X ) provided by the Euler scheme;
e replacing the expectation E{ f(Xy)} by the Monte Carlo average (f(XJ(\})) +- 4 f(X'I(\?)))/n,

So, computing the root mean square error (RMSE for short) we get
1 (1 ~ 1/2
RMSE = B {B{/(Xr)} - L)+ -+ 12

= [E{f(X7)} - E{f(Xn)}|

+E {IE{f(X'N)} -

C2
< VAt + —.
<a + n

The computing time is proportional to the number n of Monte Carlo simulations. Moreover, this
computing time is also proportional to the number N of time steps in the discretization scheme.
Consequently, it is inversely proportional to the mesh A¢. Hence we see that the computing time ¢
is of the form ¢ = c3n /At for some constant c3. Using this computer time budget constraint we can
rewrite the estimate for RMSE as

02\/5
RMSE < ¢; VAt +
= VeAt

and minimizing the right hand side with respect to v/ At we find that the critical value for the latter
is a multiple of ¢~'/4, and that the minimum upper bound for the RMSE is

RMSE < (/¢ /4

which shows that to improve the RMSE by a factor of & we need to increase the computing time by
a factor of k*!

2.4 MORE MONTE CARLO COMPUTATIONS
2.4.1 Stochastic Volatility Models

Stochastic volatility models comprise an equation for the dynamics of an underlying stock or index
of the standard form
S, = Sy[pdt + o (t)dw> (2.23)

but the volatility o (¢) appearing in such an equation is not assumed to be a deterministic constant.
Instead, it is assumed to have its own stochastic dynamics. To be more specific, o(t) is assumed to
be of the form o(t) = o(Y}) for some function y — o(y) of a random factor ¥; whose dynamics
are given by the solution of a stochastic differential equation of the form

dY, = p(t, Yy)dt + q(t,Y,)dw, " (2.24)

Hull and White proposed an Ornstein-Uhlenbeck for Y; in which case the function o has to take only
positive values. On an intuitive level, stochastic differential equations (2.24) for which the solution
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remains positive are very attractive proposal because on can use the volatility itself as a factor by
choosing o(y) = y. A natural proposal is to use the geometric Brownian motion stochastic differ-
ential equation (2.9) in lieu of (2.24). One of the shortcomings of this model is that it does not have
the mean reversion property which is empirically observed. Another popular proposal is the Hes-
ton model for which the dynamics (2.24) of Y; are given by the square-root diffusion (2.12) which
is typically used as a model for the short interest rate in the CIR model. The Wiener processes
Wt(S) and Wt(Y) appearing in equations (2.23) and (2.24) can be assumed to be independent for
the convenience of computations. However, in order to give an account of the leverage effect (ob-
served negative empirical correlation between the returns and the changes in volatility) these Wiener
processes are often assumed to be negatively correlated.

Random simulations of stochastic volatility models can be done with the tools developed up to
now. The major difference is obviously the dimension of the model: we need to generate samples
for both the volatility o; (or the factor Y;) and the underlying asset S;. Euler schemes can be used
for both. The only point in need of attention is the possible correlation between the two Wiener
processes. This problem is considered in full generality in the subsection. For the time being, it is

enough to know that the innovations egf_)l and ez(ﬁ can be obtained from two independent standard

. . 1 2
Gaussian random variates ez(- Jr)l and 61(' +)

S Y 1 2
€9 =, amd ) = pel) 4 VI,

2.4.2 Multivariate Distributions

, from the formula

We prepare the ground for our discussion of portfolio risk management by discussing multivariate
distributions.

The Multivariate Gaussian Distribution

We say that a m-variate random vector X = (X1, - -+, X;,,) has the m-variate Gaussian distribution
with mean p = (p1,- -+ , b ) and variance/covariance matrix X if any linear combination a3 X7 +
-+ 4+ oy X, 1S a univariate Gaussian random variable with mean

O"H:Oél+"'+04mﬂm

and variance

m
atEa = Z OéiOZjEi’j (225)
ij=1
where we use the notation « for the vector & = (av, -+ - , Q).

Here m > 1 is an integer, and X is a m X m symmetric matrix. This distribution is denoted by
Ny (p, X). This distribution has a density (the joint density of the X,’s) when the matrix X is of
full rank (i.e. non-degenerate). However, we shall no need and/or use the form of this density. We
shall only need a way to generate samples of random vectors with a given multivariate Gaussian
distribution. A general random generator procedure can be deduced from the following properties of
the Gaussian distributions.

e The components Xi,---,X,, are standard N(0,1) Gaussian random variables when p =
(0,---,0) and X' is the m x m identity matrix I,,.. To generate a sample of size N from this
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special m-variate distribution, one generates a sample of size mN from the distribution N (0, 1)

and one regroup the entries m by m;
e X ~ N, (u, X)) ifand only if X — p ~ N,,(0, %)
e X~ N,(0,%)if X = X/2Zand Z ~ N,,(0, I};)

In other words, in to generate a sample of size N from the m-variate distribution N, (p, ), one
generates a sample Z1, - - - , Z from the distribution N,, (0, I,,,) as explained in the first bullet point
above, and then one sets

Xy =p+ 527, Xy =p+ IV Zy.

Application: Pricing a Spread Option

A European call (resp. put) spread option on two assets S1(¢) and S2(t) is a plain vanilla European
call (resp. put) option on the difference Sy () —S2(t) of the two assets. Such options are of interest in
the presence of correlation between the two assets. Hence, the price of such an option with maturity
T and strike K is given by: the risk neutral expectation

e TTE{(S1(t) — Sa(t) — K) T}, (resp. e "TE{(K — (S1(t) — S2(t)))"}).

Notice that, even in the case of assets log-normally distributed, there no closed form formula for
such prices, except in the case K = 0 of an option to exchange an asset for another. Indeed the
difference of two correlated log-normally distributed is not log-normally distributed, and we do not
have simple expressions for its distribution and the values of the above expectations. The special
case K = ( was treated by Margrabe who derived a formula of the Black-Scholes type for the price
of exchange options.

For the purposes of the present discussion, we assume that the dynamics of the two assets are
given by geometric Brownian motions

dS;(t) = S;(t)[u:dt + Jith(i)}, i=1,2

where the fact that the correlation coefficient of the two Wiener processes is p is symbolically de-
noted by
[dW ™, aw )], = pdt,

for some p € [—1, +1]. So when we say that the two assets are correlated, we mean that the infinites-
imal returns are correlated and

ds®  45(2)

OR W]t = [dlog S, dlog SP; = g109[dW D dW P, = oy09pt.

This formal notation is in fact a rigorous statement in the framework of Ito’s stochastic calculus.
Since .
Si(T) = Si(0) expl(us — 0 (DT + W), i=1.2

and since the two random variables W}l) and W}Q) are mean-zero Gaussian random variables with
variances T and correlation p, we produce a sample of size n from the difference D(T') = S1(T) —
S2(T') by generating a sample

(egl)’ 652))’ Tt (6(1)7 6;2))

n
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from the bivariate Gaussian distribution N2 (y, X) with mean o = (0,0) and variance/covariance

matrix
_|lr
¥ [ﬂl]

D; = 8,(0) exp[(pn — 07/2)T + 01 VTel] — S5(0) exp(pa — 03/2)T + o2VTe?],

and computing

fori =1,2,--- ,n. Finally the Monte Carlo approximation of the price of the spread option is given

by the average
—rT n

e
- ;Dj.

The Multivariate t-Distribution

The m-variate Student (or t-) distribution with v degrees of freedom is the distribution of the m-
dimensional random vector X = &/\/x/v where £ = (&1, , &) is a multivariate Gaussian
vector with distribution NV,, (0, X), and where x has the ,, chi-square distribution with v degrees
of freedom, £ and x being statistically independent. The parameters of the distributions are 1) the
dimension m, 2) the number of degrees of freedom v, and 3) the variance/covariance matrix X' of £.

Notice that such a random vector X can be written in the form
A€ .
X/v

X =

where £ is a mean-zero Gaussian random vector with independent components, and where A is any
matrix satisfying AA® = X. Notice that the random vector X has the multivariate ¢-distribution
with v degrees of freedom and its variance/covariance matrix is the m-dimensional identity ma-
trix. Its marginal components have univariate ¢-distributions, they are uncorrelated but they are not
independent!

As in the univariate case, the density of the ¢-distribution can be computed in closed form.

; _ I((v+m)/2) 1
m,v(z) (Z/?T)m/QF(Z//Z)dCt(Z)l/2 (1 + th—lx/y)(u+m)/2

Our interest in the multivariate ¢-distribution is triggered by the discussion of copulas.

(2.26)

2.4.3 VaR Computations for Risk Analysis

The risk of a portfolio of holdings is often quantified by the so-called Value at Risk (VaR for short)

of the profit and loss (P&L for short) distribution of the future values of the portfolio. Let us denote
by P, the portfolio value at time ¢, and for a given time horizon At, VaR is defined for each risk
tolerance «, . For the sake of definiteness, we shall choose o« = 1% in the following discussion. The
value at risk at the level « over the period [¢,t + At] is defined as the negative of the a-quantile of
the distribution of the log-return of the portfolio over that period. In other words,

P,
P{log %At < —VaR,} =«
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Despite widespread use, the value at risk of a portfolio is not a satisfactory measure of the risk of the
portfolio. A naive explanation is that VaR gives the minimal loss occurring with a fixed probability
(i.e. a loss of size at least VaR,, occurs with probability o)) without giving the actual size of these
losses. However, a more serious shortcoming of VaR as a measure of risk is that it is not sub-additive
and hence, does not encourage diversification.

For this reason another quantity is often used to measure the risk of a portfolio. It is called the
expected shortfall distribution and it is defined as the expected loss assuming (conditioning by) losses
of size greater than V aR,,.In other words, the expected shortfall, £/S,, is given by:

ES, =E{L|L >VaR,} = é/ x dF(x). (2.27)
z>VaR,

if we denote by L the loss and by FT, its cdf. We proceed to show how to compute these measures
of risk by Monte Carlo methods. In so doing we shall illustrate the dramatic influence of the loss
distribution on the values of these measures.

Monte Carlo Estimations

Given a sample L1, --- , L,, of Monte Carlo realizations of the possible losses of a portfolio over a
given period the value at risk at level « is estimated by the empirical 100« percentile of the sample.
It is obtained by ordering the losses

L(l) < L(Q) <0< L(n)

and by using VaR, = L([nq) as estimate. We use the notation [x] for the integer part of . Once the
value at risk is estimated, the expected shortfall is estimated by replacing the conditional expectation
entering in its definition by the corresponding empirical analog. In other words

[na]

ES, = LZL(i)

o] &

2.4.4 Copulas and more VaR Computations

By polarization of the expression (2.25) for the variance, it is plain to see that if X = (X7, -, Xj)
is a Gaussian vector with variance/covariance matrix 3, then

Ei,j = COV{Xi7Xj}

and that conversely, it is possible to generate samples of couples of random variables (X7, X52)
jointly Gaussian, with marginal distributions N (111, 07) and N (uz,03) and correlation p. Indeed,
these prescriptions completely determine the joint distribution of (X7, X5) which is necessarily
No((p, X)) with

g % pPo102 :|

B = (M17M2)7 and XY= I:po'lo'g O’%

So correlating Gaussian random variables does not seem to be too difficult. How about coupling
together random variables which are not necessarily Gaussian? The problem is much more difficult,
and we shall address only elements of partial answers to these difficult problems.



NOTES & COMPLEMENTS

A detailed discussion of the various discretization schemes and a thorough analysis of their respective conver-
gence properties can be found in the book by Kloeden and Platen [?].

Tree methods can be used to simulate and price instruments on underlying assets with stochastic volatility.
Unfortunately, the size of the tree becomes prohibitive very fast and Monte Carlo methods are usually preferred.

For an exhaustive review of the properties of spread options and detailed discussions of the various approx-
imation proposed for their prices and their Greeks, and in particular for a proof of Margrabe’s formula, the
interested reader is referred to the review article [?] of Carmona and Durrleman.

The statistical concept of copula has seen a recent renewal of interest due to the growing need for understand-
ing and controlling the dependencies between non-Gaussian random variates. A clean mathematical account of
copulas can be found in Nelsen’s lecture notes [?]. The S—-P1us implementation together with financial appli-
cations are presented in Carmona’s textbook [?].
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Monte Carlo Valuations based on
Dynamic Programming Principle

In this chapter we review some of the most popular methods of American option pricing by Monte
Carlo techniques. We believe that despite the enormous popularity of some of these algorithms, major
confusion still persists about the very nature of these algorithms. The first algorithm we report uses
Monte Carlo techniques to compute plain expectations. The other ones are written in terms of con-
ditional expectations and the Monte Carlo computations are coupled with non-parametric regression
ideas.

3.1 THE TSITSIKLIS-VAN ROY ALGORITHM

The version of the Tsitsiklis-van Roy algorithm which we present is based on the form (1.18) of
the dynamic programming backward induction written in terms of the continuation value functions
constructed from the discounted transition kernel P,, defined earlier in (??).

_ The algorithm is based on the following idea: in (1.18), replace the discounted transition kernels
P, by finite dimensional approximations II,, P, and use the resulting approximate value of contin-
uation functions ¢, instead of g,. According to this prescription, g, is defined recursively by:

Gn-1=1ITPy_1¢ G.1)
QTL:HanaX{@7qn+l}> n:0a17"'7N_2 )

As explained earlier, the rationale for using this form of the backward induction is that the discounted
transition kernel P,,’s enters linearly in the equations, and following them with linear projections is
very convenient: the projection operator I/ acts directly on the discounted transition operator Py,
so IT and P, can be bundled together to perform the induction. This is not possible if the value
function form of the dynamic programming principle is used as II and P, would be on both sides
of the maximum operator.

It is important to emphasize that the subsequent algorithm is not based on Monte Carlo estimation
of regression functions. Indeed, as we are about to see, the dynamic programming principle is left
written in terms of expectations only, as opposed to conditional expectations, and plain Monte Carlo
computations of these expectations is possible very much in the spirit of the original Monte Carlo
prescriptions.
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3.1.1 Numerical Algorithm

In this form of the algorithm, a set of basis (feature) functions { f¢ }, is chosen and all the value and
continuation functions are approximated by linear combinations of the first L basis elements:

L
Z oy fe
=

where the coefficients {oy}¢—1,... 1, are chosen to minimize some form of sum of squared errors.
The choice of the functions f, is made for convenience of numerical computations, and possibly to
tailor the numerics to the pay-off function ¢, and the specifics of the dynamics of the underlying
assets as given by the Markov chain { X, },,.

A natural procedure would be to choose a Hilbert space structure and for each function f, to use
its orthogonal projection on the span of {f1,--- , f1.} as approximation. Two important features of
(3.1) need to be considered. The natural Hilbert structure which should be used at time n is given by
the inner product

< g,h >n=E{g(Xn)h(Xy)}.

Unfortunately, this Hilbertian structure changes with n and a fixed set of functions f is not likely to
form an orthonormal system simultaneously for all inner products. Consequently, Gramm-Schmidt
ortho-normalization needs to be used to compute the orthogonal projections providing the approxi-

mations. This procedure requires computing the matrix I"(") = {FZ(Z )} » with

Iy = B{fo(X0) for(Xn)}.

As we know from classical least squares theory, the inverse I") =1 and its square root I'(
play a crucial role. Indeed, the functions fg(n) defined by:

n)—1/2

L

fén) _ Z [F(n)—l/Qm,f[ (3.2)

=1

form an orthonormal system, and the orthogonal projection IT(™ f of a function f onto the span of
f1,-++, fr can be written as

L L
o™ =3N"< > 1 =3"al"
=1

=1

where the aé") are computed from (3.2). It holds

L

oy = S N < f, for >n

=1

which has a nice expression in terms of expectations over the process when f is actually of the form
P, f. Indeed, in this case we have

L
al™ = D(n,n+1 Z I B for (Xn)o(Xng1)}
=1
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We summarize the backward induction in terms of the coefficients o [ ) of the decomposition of the
approximation of the continuation value function on the basis functions f, introduced above:

e Compute a(N b D(N—-1,N) Ze, T (Nfl)*l]gg/E{fg/(XN_l)cp(XN)} for{ =1,---,L;

° forn—N—27~-~ , 1,0 compute
L
a;n) n n+ 1 Z F(n) 1 ZZ'E{fel(Xn) max{ n+1 Z a§7;+ Z” n+1)}}
=1 =1
fore=1,---,L;

The price of the option is given by

max{¢(zo), Go(zo)},

where the value of ¢y (x¢) is given by:

L
ZOZEO)JC@(%O)-
=1

3.1.2 Monte Carlo Implementation

We now give the gory details of the implementation of the above algorithm when we choose a
Monte Carlo approach to the computation of the expectations appearing in the various steps of the
algorithm described in the above bullet points. As most of these expectations involve the underlying
Markov chain at two successive instants, it is economical to use the same set of Monte Carlo samples
of the entire paths for all these expectations. So we generate M samples w(®), - - w™) from the
distribution of the sample path {X,, },,—0 1,... n, and replace all the expectations in the above bullet
points by the corresponding Monte Carlo sample averages. Moreover, as we do not have the exact
values for the entries of the matrices I'("), we use the empirical estimate [ computed from the
Monte Carlo observation proxies by

Iy = % D (X (@™) for (X (™)) (3.3)

e To start )
— Compute the matrix I'™—1 using formula (3.3) withn = N — 1;
— Compute the numbers

L

M
@éNfl) _ D(N]—wl,N) Z[ﬁ(N_l)_l]N’ Z fé’(XNfl(W(m)»SD(XN(W(m)))

/=1 m=1

for{=1,---,L;
o forn=N—-2,---,1,0
— Compute the matrix I'(") using formula (3.3);
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— Compute
L M
(ny D(m,n+1) Loy -
Ozé ) — —r Z[[‘( ) 1]%' Z fZ(Xn(w( )))
=1 m=1
L
s { 00 ), 3 5 )|
=1
for/=1,---,L;

Finally, the price of the option is approximated by

L
max {gp(xo), Z é&go)fg(mo)} .

As explained before, the smallest optimal exercise time can be approximated on each Monte Carlo
simulated path w("™) by computing the first time that the pay-off equals the continuation value, i.e.

L
%*(w(m)) = min {n > 0; o(X, (m) Z A(n)fp an(m))}

=1

3.2 GENERAL MONTE CARLO REGRESSION STRATEGY

We now present a general approach based on the classical form (1.13) of the dynamic programming
principle. An approximation 0y, (z) of the value v,,(x) is computed forall0 < n < N and z € F.
Then the true value of the option is approximated by 9 (zg) (we denote by x( the value of the
underlying at time n = 0). Then, the minimal optimal time of exercise is approximated along each
sample path X. by

7* =inf{n > 0; 0,(X,) = ©(Xn)}.

The approximation ¥y, (x) is computed in the following way. Expressing the Markovian transition op-
erator as a conditional expectation, the backward induction formula (1.13) giving the value function
can be rewritten in the following way:

on(z) = p(z)
{ vp(z) = max{p(z), E{D(n,n + 1)v,t1(Xns1)|Xn = x}}, 34

forn =0,1,--- , N — 1. So, if we choose a method to compute approximations for the above con-
ditional expectations, we got ourselves a way to compute an approximation for the value function,
and hence of the price of the option as well as an approximate optimal exercise strategy. The above
conditional expectation is the regression of the univariate random variable D(n,n + 1)v,41(Xp41)
against the random variable X,, which is most of the time multivariate. Classical statistics provides
all sorts of methods to compute approximations of regression functions from sample observations.
They are classified as parametric, semi-parametric and non-parametric. Because we want to handle
underlying processes { X}, in relatively high dimension, the Monte Carlo approach to Ameri-
can option pricing relies on non-parametric regression procedures. Moreover, samples created from
Monte Carlo simulations of these couples of random variables are used in lieu of observation data.
In these lecture notes, the Monte Carlo approach is based on the following strategy:
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e Generate M samples w(l), . ,w(M) from the distribution of the sample path {X,, },=0.1,... ~;
e Choose a non-parametric regression method, and foreachn = N — 1, N —2,--- /1,0, compute
an approximation of the theoretical regression function

E{D(n,n + 1)vns1(Xn41)| Xn = }
from the observation data proxies

(Xn (@), D(n, 1+ Dvps1 (Xngr (WD), - -,
.. (Xn(w(M))’ D(n’ n —+ 1)vn+1(Xn+1(w(M))))

of M couples computed from the Monte Carlo samples generated in the first bullet point;
e Plug these approximations in formula (3.4) to compute the approximated value function @, (x) for
all z of the form 2 = X,, (w)) and for n = N down to n = 0.

Remarks .

1. Each sample w(™ is characterized by a sequence
Xo(w(m)) — xo,Xl(w(m)), e 7XN(w(m))

of random elements of R”. Obviously, we should try to use exact simulation whenever the model
for the underlying Markov chain permits. This is the case when the underlying dynamics are
given by a binomial tree or a geometric Brownian motion (see for example Subsection 1.4.2), or
a mean reverting Ornstein-Uhlenbeck or CIR process. However, this is not the case when these
samples are obtained from the implementation of a numerical scheme for stochastic differential
equations, e.g. the Euler’s scheme or any other higher order scheme.

2. As we already mentioned, the regression method is most often chosen to be of the non-
parametric type. This is due in part to the fact that we do not know a priori the functional
form of the regression function and to the typically high dimension p of the underlying process.
However, things will be different when we know or suspect that the regression functions are of a
certain form. This is for example the case in the case of the regressions used for the convertible
bond pricing where we used hockey-stick functions mimicking the European option pay-offs.

3. Glasserman random tree offers a smooth transition between the T VR method which requires
only expectations and more general methods based on full fledge non-parametric regressions.

3.3 LONGSTAFF-SCHWARTZ ALGORITHM

Instead of implementing directly the backward induction of the value function version of the dynamic
programming principle, this algorithm reformulates the dynamic programming principle in terms of
the minimal optimal stopping times 7,:. In this more subtle form of the backward induction, the
conditional expectations do not involve consecutive times any more. We shall see that the numerical
performance of the approximation so-obtained are different, quite possibly better, than the naive
implementation discussed in the previous section.

The thrust of the method is to compute inductively the optimal stopping times path by path. Con-
centrating on the optimal times of exercise does not take anything away from pricing needs. Indeed,
as emphasized by formulae (1.15) and (1.16), the various value functions are expectations involving
the optimal stopping times. Hence they can be approximated by Monte Carlo averages as:
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M
~ 1 * m m
on() = 37 > 1 D(n, 75 (@™)) (X o (o) (™)) (3.5)
In particular, the approximate price of the option will be computed as
M
bo(x) = Vi mil D(0, T*(w(m)))ap(XT*(wm))(w(m)) (3.6)

3.3.1 Dynamic Programming on Exercise Times

Notice that the smallest optimal stopping times are characterized by

=N
T = "X, 20 X0} + Tnp1 Hex)<omx,)y  forn=0,1,--- N —1

This expression seems to depend on the value functions. However, the definitions of the two com-
plementary sets appearing above can be rewritten in terms of the stopping times only. Indeed:

{o(Xn) <vp(Xn)} = {p(Xn) < [ann+1](Xn)} 3.7
= {o(Xn) <E{D(n, 75 41)0(Xr:, )| Xn}} (3.8)

Equality (3.7) is due to the fact that the value v,,(X,,) at time n is the maximum of the immediate
pay-off ©(X,,) and the continuation value, while and equality (3.8) is due to the fact that along the
path of the underlying process, the Snell envelop (and hence the value function) is a martingale up
until the smallest optimal time, 7, ; in this case, time at which it is first equal to the discounted
pay-off function, namely D(n, 7 1)¢(X7:, ).

Once re-expressed in this way, the backward induction can be done on the stopping times instead
of the value functions.

Remarks. 1. The form of the algorithm presented above is an abstraction, together with a mathe-
matical justification of the procedure described on a simple numerical example in Section 1 of the
original Longstaff-Schwartz paper [?]. Section 2 of this same paper is devoted to a formal descrip-
tion of the algorithm in the abstract framework used here. However, the very nature of the backward
induction on exercise times seems to be lost in the process, and what is presented relates more to
the general regression algorithm alluded to in the previous section. It is only by reading between the
lines that one can recognize it.

2. The authors make a big fuss out of the use of a rejection method which at each stage of the
induction, discards all the sample scenarios which are not in the money. We shall address this issue
later in our discussion of the numerical results.

3.3.2 Numerical Implementation

A numerical implementation of the method requires the computation of the conditional expectations

E{D(naT;-f-l)‘P(XT;{H”Xn} (3.9)
As in the previous section, we choose to use a Monte Carlo approach to the computation of these con-
ditional expectations. As before, we first generate M samples w), - - -, w™) from the distribution

of the sample path {X,,},,—0,1,... N, and then we can use any of the the non-parametric regression
methods discussed earlier and in the appendix.
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The confusion alluded to in the abstract of the chapter lies in the fact that many people call the general approach
presented in Section 3.2 by the name of Tsitsiklis - van Roy method, and other call it Longstaff - Schwarz

method. This confusion is partly due to the fact that these two papers have very many similarities and appeared
almost simultaneously. We thank Bernard Lapeyre for enlightening discussions on the differences between these
methods. In fact, the presentation in the layout of this chapter owes enormously to these private discussion.
Both methods rely on the decomposition of regression functions on special bases of feature functions. The only
convergence results apply when one increases the number of paths (scenarios) while keeping the number of
basis functions constant. See for example the papers of Tsitsiklis and van Roy [?] and Clément, Lamberton and
Protter [?] Recent studies by Egloff and Min-oo [?] and Glasserman and Yu [?] show that the number of paths
should grow super-exponentially in the number of basis functions for simultaneous convergence to take place.

We stated clearly in the text that any method producing approximations of conditional expectations from
Monte Carlo samples could be used to price American options. In a separate appendix , we review some of the
most common nonparametric regression procedures which have been used in this context. A method based on
Malliavin calculus is presumably the only method not familiar to classical statisticians.

A quantization algorithm based on classical ideas of signal analysis was proposed in [?] by Bally and Pages.
The stochastic dynamics of the risky assets underlying the option are approximated by a Markov chain com-
puted on a tesselation of the space. The major overhead in terms of computing time comes from the generation
of the tesselation. So, the quantization algorithm is bound to be efficient if one has to price many American
options written on the same underlying risky assets. Indeed in this case, the tesselation needs to be generated
only once. For this reason, the authors made sample tesselations available on their web site. Still pricing is
practially limited to underlying assets of dimension p < 8. Notice that for the quantization method, Monte
Carlo techniques contribute in two different ways. They can be used to generate the tesselation and compute
the transition probabilities. But once the tesselation is set and the transition probabilities are computed, as we
demonstrated in this chapter, Monte Carlo methods can be used to price options on such a Markov chain. As we
just explained, performance of the quantization method is seriously limited by the dimension of the underlying
asset. This was known to many authors, in particular to Barraquand and Martineau who proposed five years
earlier an approximate algorithm where quantization was used only in one dimension. The gist of their method
is to compute an optimal exercise strategy which would only depend on the knowledge of the time evolution of
the (one dimensional) reward process instead of the (multi-dimensional) underlying asset process. See [?] for
details on this original use of the quantization idea.
The iterative construction mentioned in the last section of the chapter has been proposed by Kolodko and
Schoenmakers in [?] and was extended to the multiple stopping problem by Bender and Schoenmakers in [?].
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Dynkin Games and Monte Carlo Valuation of Convertible Bonds

Summary.

4.1 INTRODUCTION

Issuing bonds is a typical way for corporation to raise money. The level of corporate borrowing and
the potentially disastrous effect of default have led to the birth and the growth of a vibrant credit
derivatives market. Most corporate bond covenants are extremely complex (a typical prospectus is
several hundred pages long), and conversion provisions are often found among the many intricate
conditions for exercise. Convertible bonds are corporate bonds, and as such they are subject to default
of the issuer. Embedded in a convertible bond is an option for the holder of the bond, to exchange
the security for a given number of shares of the company stock or of an index chosen to underly
the convertible component of the bond. This number of shares is determined by a conversion ratio
identified in the indenture of the bond.

So convertible bonds are hybrid derivatives with a fixed income component (the interest coupon
payments) and an equity component (underlier shares in case of conversion). They are very attractive
to investors interested in the upside of a stock price appreciating significantly) with little or no
downside due to the bond protection. Convertible bonds were extremely popular and their market
volume increased very fast until the credit crunch of May 2005 due to the credit downgrade of GM
and Ford.

The realization that convertible bonds are nothing more than Dynkin games of timing has spurred
a recent wave of papers in the framework of the theory of mathematical models of continuous time
finance. Starting with the introduction of game option by Kifer in [?], this culminated in the works of
Kallsen and Kiihn [?] and [?] who proved that a no-arbitrage price was given by the value function
of a Dynkin game. These results set the stage for further theoretical developments. See for example
the series of works by Bielecki et al. [?, ?, ?] or [?] for examples of applications of the theory of
doubly reflected backward stochastic differential equations. We shall not need any of these theoreti-
cal developments as the purpose of these lecture is to discuss numerical valuation methods and their
implementations. We work in the discrete time setting, and for that reason, we only need very simple
facts from the theory of Dynkin games, for example as they are presented in the classical textbooks
[?] and [?].
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The structure of this chapter is very straightforward. We first describe the main features of con-
vertible bonds as they are traded. The formalism which we introduce naturally brings to bare games
of timing. Then, we review the basic facts of the theory of Dynkin games of timing in the discrete
time setting, and we highlight the form of the dynamic programming principle which holds in this
situation. This recursive form of the dynamic programming principle is recast as a backward induc-
tion not much different than in the case of the optimal stopping, and as such it is easily amenable to
implementation. The resulting computation algorithms are riddled with computations of conditional
expectations, and many of the considerations discussed earlier in the case of American options will
come handy.

4.2 CONVERTIBLE BONDS AS DYNKIN GAMES

4.2.1 Typical Corporate Bond Scenario

A corporate bond is a contract between two counterparties who agree to the following terms:
In general, the seller or issuer of the bond

o collects the nominal (namely the loan amount) at inception of the contract
e and pays interest coupons at regular time intervals
e and finally refurns the nominal amount of the bond at maturity

In general the buyer or holder of the bond

e pays the nominal amount (loan amount) upfront

e and receives the interest coupon payments according to the tenor schedule (this is the fixed income
part of her investment)

e and finally retrieves the nominal amount at maturity.

This description of what a corporate bond is highly incomplete as it lacks any reference to the
possibility of default, the main feature differentiating a corporate bond from a Treasury which is
usually assumed to be default free. Indeed, on the top of the items described in the bullet points
above, the holder of the bond gets a recovery amount expressed as a proportion of the nominal of the
bond in case of default before maturity.

4.2.2 Extra Features of Convertible Bonds

The issuer or seller of the bond can at a time of his choosing (namely at a stopping time 7, that she
can choose) put the bond namely

e she can return the nominal (loan amount) to the buyer of the bond and
e stop paying interest coupons

On the other hand, the buyer of the bond, i.e. the bond holder can at a time of his choosing (i.e. at a
stopping time 73, that she chooses)

e request the nominal of the bond and walk away (in which case the game is over) or
e convert the loan title into shares of the underlying specified in the contract in an amount also
specified in the contract.
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The contract ends the first time one of the two counterparties exercises her right. But as corporate
bonds, convertible bonds are subject to default of the issuer. The precise conditions under which
default is declared are specified in the indenture of the bond. Moreover, what should happen in case
of default, i.e. what kind of recovery if any should the buyer of the bond expect, is also discuss in
the prospectus of the bond. So a convertible bond can be viewed as a corporate bond with an option
to exchange the title for a given number of shares of an agreed upon index (most often the stock of
the issuing company) with the caveat of a few complex indentures including

a Put / Redemption provision

a Call provision

a Put / Redemption protection

a Call protection

a Call notice

specifics for the settlement at maturity
definition of what constitutes default
recovery in case of default

4.2.3 Mathematical Problem

In more mathematical terms, the settlement of a typical convertible bond contract can be described
after

o the bond holder chooses an exercise strategy in the form of a stopping time 7
e the bond seller chooses an exercise strategy in the form of a stopping time 7

from which the time - zero value of the payments to the bond holder B from the bond seller S are

defined by the quantity

L., whenever, <71s0r7 =7 <N
R(my,7s) = (&, whenever 7, = 7, = N 4.1
U.,, whenever 7, > 75
In other words, this present value of the cash flow is given by

e an adapted stochastic process L = {L,, },, if B converts first,
e an adapted stochastic process L = {U,, },, if S calls the bond first,
e and a random variable ¢ if neither party exercises the option before maturity

In this setting,

e The bond holder B tries to maximize E{ R(7, 75)}, so the holder of the bond can be view as a
player trying to maximize the expected cash flow, while
e the issuer S tries to minimize the expected cash flow E{R(7, 75)}.

The question we address in this chapter is
What is the value of such a contract?

and how can we practically implement the computation of the value of the contract.
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4.2.4 Current Practice in the Industry

We first remark why the methods used most frequently in pricing convertible bonds are not Satisfac-
tory. For an exhaustive review of the implementation details of these methods, we refer the interested
reader to Andersen and Buffum’s review [?].

e On one hand, most current models in use are based on restrictive assumptions such that

— Traditional split between a straight bond and the option to convert, but this form of the convert-
ible bond is not exactly equivalent but merely an approximation

— Structural approach based on precise information on the term structure of assets and liabilities
of the firm and modeling of fundamental factors such as stock price, interest rate, . . .

e On the other hand, most current implementations are based on tree models and PDE solvers which
limit the bond models to low dimensional driving factors and rather short maturities. Moreover,
the numerical results produced by these models
— do not match market prices
— do not match market deltas

Obviously, there is room for experimentation with new ideas and new pricing algorithms. The Monte
Carlo approach which we propose is in this spirit. But before we proceed, it is a good idea to check
the wish-list of all parties involved, academics and practitioners, including traders and quants.

From an academic point of view, a versatile model with simple implementations is needed for the
systematic analysis of many of the features of convertible bonds which are often mentioned and not
studied rigorously by lack of the proper tools. See for example the discussion of possible extensions
in Subsection ?? below for some of the claims that need to be substantiated. From a practitioner
point of view, every day transactions require

e a program for quick pricing with prices in line with those from third party providers, but also

e a robust model implementation including more of the bond indentures and with implementations
for risk managers, market makers and possibly proprietary traders. Such a program will be quite
likely slower than the program alluded to in the first bullet point.

4.3 PROPOSED MONTE CARLO APPROACH

We now describe the various components of our Monte Carlo approach to the pricing of the convert-
ible bonds described in the previous section.

4.3.1 Monte Carlo Simulation

The first step is to generate sample paths (Monte Carlo scenarios) for the underlier. Indeed even
though we will model default via an intensity, we still need the dynamics of the index into which the
bond ownership can be converted. So even though we are not working within the structural approach
a la Merton, we need a model for equity dynamics. We shall start from a geometric Brownian mo-
tion for the sake of definiteness, but the versatility of Monte Carlo methods allows for any kind of
dynamics given by stochastic differential equations (including stochastic volatility, local volatility,
.... models). As already emphasized, we use exact simulation whenever possible. Otherwise, we use
Euler’s scheme or any higher order scheme to generate Monte Carlo scenarios.
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The next step is to choose a model for default intensity. We work in the framework of Cox pro-
cesses in the spirit of the reduced form approach. If we denote by 7, the time of default, assuming
that it has intensity {\; }; with respect to the filtration {F;}, is essentially assuming that

Pirg > t|F} =e Joreds >0,

Since the intensity A is non-negative, samples from such a stopping time are easily obtained as
the first times the running integral of the intensity crosses over a level given by an independent
exponential random variable with unit rate. For the sake of convenience, we restrict ourselves to
intensities of the form

At - A(Xt)

for some deterministic function \ of the underlying factor X;. Accordingly, including the possibility
of default in our model will require that we

draw an exponential random variable, say e with rate 1.

generate scenarios for the intensity A, for 0 < s < T,

compute the running integral fof As ds

in which case the scenarios for the time of default will be given by the first time the intensity
running integral crosses above the exponential variate,.

We are now left with the implementation of the bond indenture on the Monte Carlo scenarios so
obtained. This is done via the construction of two random sequences

o {L;}; gives the present value at time ¢ = 0 of the cumulative cash flows to the holder,
before-and-including time ¢ = jAt, should she decide to exercise her right(s) (conversion, re-
demption/put, ... ) at that time, while the issuer has not exercised her option yet.

o {U;}; gives the present value of the cumulative cash flows still to the holder from the issuer
before and including time ¢ = j At should the issuer decide to exercise her right to call the bond
at time j At while the holder has not exercised any of her options yet.

We denote by C} the time zero value of all the coupon payments having occurred at time ¢ or before.
Typically
Co= i> 1T <tD(0,T))e(T;) 42)

where as usual the nominal of the bond has been normalized to 1, and where ¢(s) is the coupon
rate applicable at time s as agreed upon in the indenture of the bond. In most cases, the function
s < ¢(s) is piecewise constant if not constant throughout the life of the bond. Remember that we
use the notation 7Tp = 0 < 77 < -+ < T'n < --- for the dates of the coupon payments. Their
schedule is also specified in the bond prospectus, but for the sake of definiteness, we shall assume
that the coupons are quarterly. Next we denote by A; the interests accrued since the last coupon
payment. It is given by the simple formula

t—T,

A=t
T Ty

T <t<Tia 4.3)

when the coupon rate is a constant independent of time.
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Typical Monte Carlo Scenario for {L;};

For the sake of illustration, we give several examples of what the present value of cumulative cash
flows to the holder of the bond should be when she exercises her right (whatever right that is) before
the seller.

o Before default (i.e. whenever ¢ < 1)
- Ly = Ay + G if t = jAt < T,opny since conversion is not allowed during the conversion
protection period,, i.e. as long as ¢ is smaller than the threshold T, ;
- Ly = A + Cy + aS; if t > T,0n, and no redemption is possible, i.e. if t < Tpy;
- Ly = A, + Cy + max{aS,, P} if t > T, and put is possible, i.e. t > T3

o After default (i.e. whent > 7)
- L; = Ay + C; + R, where R; denotes the present value of recovery if default occurs at time ¢

Typical Monte Carlo Scenario for {U; };

Similarly, we describes the cash flows to the bond holder when the issuer exercises first by giving
their present values.

o Before default (i.c. whenever ¢ < 7)
— Uy = oo up to the time T,;; announcing the end of the hard call protection;
- Uy = At + Cy + max{aS;, P.q } if the issuer is allowed to call the bond, i.e. if ¢ > Teqi;
— Include Make Whole provisions

Implement Soft Call Protection

Include Call Notice of Redemption Period provisions

o After default (i.e.ift > 7)
- U;=A:+C,.+R;

Notice that in all cases we have
LtSUt and LT:UTzf.

The inequality between the processes L and U justifies the notation L for lower bound and U for
upper bound, and it plays a crucial role in the derivation of the classical results of the theory of
Dynkin games which we recall below and which we use in our valuation implementation.

Typical Convertible Bond Scenario
In words, the present value of the cumulative payments to the bond holder B from the seller S is
given by

e [ is B converts (strictly) before maturity and no later than S calls the bond
e U if S calls the bond first
o ¢ if neither party exercise their respective options before maturity

In more mathematical terms,

e Given an exercise strategy 7, (stopping time) chosen by the bond holder
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e Given an exercise strategy 7 (stopping time) chosen by the issuer of the bond

the present value R(7, 75) of all the cash flows from the issuer to the holder of the bond during the
life of the bond is given by

L., wheneverm, <7s0rm =7 <N
R(my,75) = < €, whenever 7, = 7, = N 4.4)
U-.,, whenever 7, > 75
The holder of the bond tries of maximize the expected value of R while the issuer tries to minimize

it. The analysis of this problem is part by the classical theory of Dynkin games of timing which we
review in the next section.

4.4 DYNKIN GAMES OF TIMING

Throughout this section we work within the mathematical framework of a probability space ({2, F,P)
equipped with a filtration {F,, }, > and we denote by S the set of stopping times for the filtration.
We only consider times n smaller than or equal to a final horizon N. We could allow for N = oo
in order to include infinite horizon problems (and perpetual options and games) but we shall restrict
ourselves to finite maturities NV for the sake of definiteness.

4.4.1 Definition

The rules of such a game are completely determined by a terminal (i.e. Fy-measurable) random
variable £, and two adapted sequences { Ly, }o<n<n and {U, }o<n<n of integrable random variables
satisfying

L,<U, P-—a.s. n=20,---,N. 4.5)

The game is played in the following way. Independently of each other, each player chooses a stopping
time, say 7, and 7, to use the same notation as in the previous section, and for each scenario, the first
player receives from the second player the reward amount R(t,75) given by

R(Tb7TS) = LTbl{'rbS'rs,Tb<N} + UTS]'{TS<T1,} + fl{Tb:TS:N}- (46)

This is an instance of a zero-sum game as whatever the first player receives is paid by the second
player. Notice that in this abstract setting, this pay-off can be negative, implying that cash can flow
in both directions. In words, the second player pays the amount L, if the first player ends the game
first before time IV, U, if she stops the game first, or ¢ if none of the players stop the game before
N. According to these rules,

o the first player tries to maximize E{R(7;, 75)} while
e the second player tries to minimize E{R(7, 75)},

and for this reason, the first player is often referred to as the maximizing player while the second
player is called the maximizing player. In any case, it is now clear that framed this way, the mathe-
matical set-up of convertible bond valuation fits in the framework of Dynkin games of timing.
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4.4.2 Game Value Functions

We now review the results of the theory of Dynkin games in discrete time which we will need in our
convertible bond pricing exercise. We emphasize the striking parallel with the discussion of Chapter
1 which cast the Snell envelop as the solution of the optimal stopping problem.

We first introduce the game upper value as the number:

V = supinf E{R(m, 75)} 4.7)
TH Ts

and the game lower value as
V = inf sup E{R(m, 7s)} (4.8)
Ts 1y

whose interpretations are as follow.

e For any given minimizing player strategy 7, the maximizing player will choose a strategy 7,
which maximizes her expected reward

sup B{R(7, 75)} 4.9)

and if the minimizing player is prudent, she will choose 7, in order to minimize (4.9), explaining
how V appears.

e This min-max strategy guarantees that the expected payment to the maximizing player is at least
V., which appears as a lower bound to the game value.

e By exchanging the roles of the maximizing and minimizing players in the above argument, we
highlight a max-min strategy for which, independently of the strategy used by the maximizing
player, the expected payment cannot exceed V, which hence appears as an upper bound to the
value of the game.

4.4.3 Obvious Bounds

Fixing the exercise time 7, of the seller in the definition of the upper value of the game will give an
upper bound. If we use 7, = N (which amounts to saying that the seller actually does not exercise
his or her right), then we get:

V = supinf E{R(7, 7s)} (4.10)
< sup E{R(n, N)} (4.11)
— sup E{L,)} (4.12)

which shows that the value of the game is bounded from above by the value of an American option
with pay-off {L,, },. Obviously the buyer cannot expect more than what he would get should the
seller act as if she did not have the option to stop the game.

Similarly, fixing the exercise time 73 of the buyer in the definition of the lower value of the game
will give a lower bound. If we use 7, = N (which amounts to saying that the buyer actually does not
exercise her exercise right), then we get:
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V = infsup E{R(m, 7s)} (4.13)
> inf E{R(N,7,)} (4.14)
= irTlfIE{UT)} (4.15)

which shows that the value of the game is bounded from below by the negative of the value of an
American option with pay-off {—U,, },,. Obviously the seller cannot expect to do better than what
she would do should the buyer act as if she did not have the option to stop the game.

4.4.4 Main Result

As in the case of our discussion of the optimal stopping problem and the introduction of the Snell
envelop as a dynamic version of the original problem, for each time n < N we define the random
variables V;, and V,, by

V.= inf sup E,{R(7,7s)} (4.16)
— Tv€Snr.e8,
and o
V. = sup inf E, {R(m,7s)}. 4.17)
Ts€S,, T6Sn

The first result of the theory is captured by

Vo=Va, 0<n<N.

We denote by V;, the common value of V,, and V;,. The second main result of the theory is a con-
structive algorithm which gives a practical way to actually compute the value process {V;, }o<n<n-

L,, ifE, {V,+1} < L,
Un ,lf Un < En{Vn+l}

starting from the terminal condition Viy = &. The backward induction given by formula (4.18) is
the analog of the dynamic programming principle (1.3) derived for the Snell envelop constructed as
the value process of the optimal stopping problem in Chapter 1. The third and final theoretical result
which we borrow from the theory of Dynkin games of timing is the characterization of a minimal
set of optimal stopping times

7y =inf{n>0; V, <L,} (4.19)

and
7 =inf{n >0; V, >U,}. (4.20)

These three theoretical results will be proven in Chapter ?? as part of our discussion of the dual-
ity/pointwise approach to the problem.
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4.5 MONTE CARLO IMPLEMENTATION

The conclusion of the discussion of the previous section is that we have a pricing algorithm for con-
vertible bonds without call notice. Like in the case of American options, we shall not argue why the
value function computed above is in fact a reasonable no-arbitrage price according to the classical
models of financial mathematics. The interested reader is referred to the Notes and Complements at
the end of the chapter for references on this subject.

The strategy to implement such a pricing algorithm goes as follows:

Choose our favorite regression method

Compute the value functions V,, backward-in-time starting from time n = N down to n = 0.
Read off the convertible bond price as the value function at time n = 0

Compute the optimal exercise times, scenario-by-scenario, in a forward-in-time pass through the
scenario

4.5.1 Choice of a Model with Equity dependent Spreads

As explained earlier, we model default in the reduced form approach by choosing a default intensity
A, and conditioned on the value of this intensity, the time of default becomes an exponential random
variable € with rate \. We model the intensity as a function of the underlying spot value of the
company’s shares. So we choose an intensity of the form A; = A(S;) for some deterministic function
x — A(z). As explained in Duffie’s book [?], the default intensity should be a decreasing function
of the equity as we expect that large values of the stock come with a low probability of default and
small values of the stock with an increase in the probability of default. Several parametric families
have been used for the function A.

e The power family A(x) = Byz~#* was usedin [2, 2, 2, 2, 2, 2, 2], and possibly other works which
we are not aware of, while
e the exponential family \(z) = Bpe P was used in [?, ?].

Except possibly for the fact that calibration to the CDS spread curves available to us seemed to have
been more robust with the exponential family, we did not find significant differences between the
valuations within each model.

In any case, because of this particular form of the default intensity, we work in the framework of
a one-factor model.

4.5.2 Calibration

The numerical results presented below were obtained from simulations of geometric Brownian mo-
tions with constant volatility o and drift given by the short interest rate the day we value the bond.
The drift was adjusted for the rate of dividend payments when such information was available, but
as we did not have any option data, we used a wild guess for the implied volatility.

A first improvement would be to use a local volatility function (¢, ) — (¢, «) function of the
underlying spot z in lieu of the constant o.

The intensity parameters 3y and (3; were chosen in order to match market the CDS spread curve
whenever the information was available, or the 1yr and the byr probabilities of default given by
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Moody’s transition probability matrices when the credit rating of the company was known. We used
a Levenberg-Marquardt form of least squares calibration, the CDS spreads being computed by
Monte Carlo methods from the model. This calibration procedure seems to have worked reasonably
well, its major shortcoming being its lack of robustness.

4.5.3 Setting up the Regressions

The o-field F,, giving the information available at time n contains the information about S}, and all
the events {7 < k} for k& < n. So even if we were to assume that S is Markovian, we could not
replace the conditioning by F,, by a conditional expectation with respect to S,,. However, in order
to avoid multivariate regressions we would like to replace conditional expectations with respect to
F. by conditional expectations with respect to .S,,. In order to achieve this we propose to add a jump
to 0 at default. In other words, we set S; = 0 when ¢ > 7 or to be more specific we work with S’n
defined by

5‘7 Sn7 ifn<r
"o ifn>r1

In the models of continuous time finance, this would amount to adding a jump martingale term to
the stochastic differential equation for S;.

Back to our discrete time model, the effect of the change we propose to the backward induction
amounts to

Regress V,, 1, against Sn instead of 7, !
In order to understand the effect of such an assumption we look at empirical data in the (S,,, V,,+1)
- plane. We see

e a blob of points above S;, = 0 (corresponding to instances of default prior to or at time n)
e a mild "hockey-stick” shape or linear cloud above .S,, > 0

Given these empirical facts, we propose an easy way-out to the regression problem:

e we compute a plain average for of the values of V,, 11 corresponding to S,, = 0
¢ we perform a plain least squares piecewise linear regression of V,, 1 against S,, when S,, > 0!
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V[, J+1]

V[ J+1]

4.5.4 Looking at Data: Sirius

Sirius, 3.5%, June 1, 2008, J=Jmax=324

4.5.5 Looking at Data: Sirius

Sirius, 3.5%, June 1, 2008, J=50
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4.5.6 Looking at Data: Bearingpoint

Bearingpoint, 3.5%, 12/15/2024, J=Jmax=3319
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4.5.7 Looking at Data: Bearingpoint

Bearingpoint, 3.5%, 12/15/2024, J=500

0 20 40 60

59



60 Convertible Bonds

V[, J+1]

V[ J+1]

400

150

100

50

800

800

200

0

4.5.8 Looking at Data: Bearingpoint

Bearingpoint, 3.5%, 12/15/2024, J=5
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4.5.9 Looking at Data: Schlumberger

Schlumberger Series A, 1.5%, 6/1/2023
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4.5.10 Prices and Model Deltas

Sirius 3.5% 6/1/2008 on 8/9/06, S0=%$3.88, conv=72.46
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4.5.11 Prices and Model Rhos
Sirius 3.5% 6/1/2008 on 8/9/06, S0=$3.88, conv=72.46
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4.5.12 Prices and Model Vegas

Sirius 3.5% 6/1/2008 on 8/9/06, S0=%$3.88, conv=72.46
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4.5.13 Implemention of Notices of Redemption Periods

This is usually done as an American option pricing problem.

4.5.14 Possible Extensions

Among the features which we did not test numerically and which could be of interest we list

e Adding more stochastic factors such as interest rate (for long dated bonds with so-called borrow
fees), or stochastic volatility (e.g. Heston model) or even other underliers (stocks, indexes, baskets)
for exchange conversions. Of these three possible extensions, the third one is imposed by the
indenture of the contract. An alternative to the second one is discussed in the next bullet point
below. Finally, concerning the first point, it has been argued repeatedly in the technical literature
that the volatility of interest rates was significantly smaller than equity volatility and that, as a
consequence, the correction for stochastic interest rates was of a much smaller order. See for
example [?], citeGrimwoodHodges, or [?]. In any case, all these changes are easy to implement,
the only problem being the increase in the dimension of the regression, and this is the only reason
why we refrain from implementing any of these changes: we did not want to face the curse of
dimensionality in this first numerical analysis.

o Including local volatility ("a la Dupire”) in the underlier’s model when the price of more than one
liquidly traded option is available. Techniques to construct implied and local volatility surfaces
have been developed for underliers with a large number of actively traded options. However, for
most of the underliers of convertible bonds, only a small number of prices of traded options are
available, and whether these constructions are based on parametric or non-parametric smoothing
techniques, relying on their results can be very probematic, especially for long dated bonds. Prices
of risky bonds should be included (when available) in the calibration of the volatility surface, as
the use of calibration methods ignoring the possibility of default will create an artificial skew. See
for example [?] for a discussion of this last point.

e Developing importance sampling methods for variance reduction



o Identification of the optimal conversion time as the first crossing time of an Exercise Boundary.
This is easily achieved by computing a Monte Carlo of the support of .S(7).

o Identification of the optimal call time and statistical analysis of the call lag

o Exogeneous modelling of tax effects and so-called fundamental changes.

NOTES & COMPLEMENTS

The realization that convertible bonds are nothing more than Dynkin games of timing has spurred a recent wave
of papers in the framework of the theory of mathematical models of continuous time finance. Starting with the
introduction of game option by Kifer in [?], this culminated in the works of Kallsen and Kiihn [?] and [?] who
proved that a no-arbitrage price was given by the value function of a Dynkin game. These results set the stage
for further theoretical developments. See for example the series of works by Bielecki, Crepey, Jeanblanc, and
Rutkowski [?, ?, ?] or [?] for examples of applications of the theory of doubly reflected backward stochastic
differential equations. We shall not need any of these theoretical results as the purpose of this paper is numerical.
The facts from the theroy of Dynkin games in discrete time used in this chapter can be found in the classical
books of Dynkin and Yuschevich [?], and Neveu [?].

The discussion of the Monte Carlo implementation presented in this chapter is borrowed from Carmona’s
technical report [?].
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Valuation of Instruments with Multiple American Exercises

Summary. This chapter is devoted to the numerical analysis of a set of financial contracts involving multiple
American exercises. We describe large classes of financial instruments with multiple American exercises before
we set up the mathematical framework in which we tackle the problem of multiple American options valuation.
Some of the Monte Carlo valuation algorithms described in the previous chapters are implemented in several
multiple exercise cases and we discuss the numerical results so obtained. Motivated by the structure of energy
swing contracts, we consider the generalization of our Monte Carlo approach to multiple American options to
the case of multiple Dynkin games and we give numerical results in this case as well.

5.1 INTRODUCTION

Due to a renewal of interest in exotic interest rate derivatives and a growing involvement of academic
researchers in problems of energy trading, options with multiple American exercises have caught the
attention of many financial engineers. Extensive references are given in the Notes & Complements at
the end of the chapter. We first present a set of instruments for which optionality appears in multiple
instances. In preparation for the numerical analysis of these instruments, we outline the stylized
facts of a mathematical set up in which simplified versions of these derivatives can be studied.
Roughly speaking, we revert to the case of a single underlying risky asset, and we consider options
which can be exercised several times. In such simplified models, these instruments could be priced
by solving partial differential equations like in the classical Black-Scholes theory. However, non-
linearities rule out solutions in the classical sense, and complex boundary conditions make the design
and the control of numerical schemes quite a challenge. In the spirit of this set of lecture notes, we
approach the pricing problem by Monte Carlo methods. We show how to expand the regression based
procedures used in the previous chapters for single exercise instruments in order to apply them to the
case of multiple exercises. A natural application of this generalization can be used to solve multiple
Dynkin games, providing a tool for the pricing of two-sided swing contracts.

5.2 FIRST MOTIVATING EXAMPLES

This section is devoted to the description of financial instruments with multiple embedded Ameri-
can exercises. These instruments will serve as motivation for the mathematical problems we solve
numerically in the following sections.
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5.2.1 Chooser Caps

The first example we propose is borrowed from the fixed income markets. The reason for the pop-
ularity of these markets when it comes to implementing models of instruments with American and
Bermudan exercises is the fact that the typical time interval separating two successive possible exer-
cise times is typically a quarter (if not a semester) and as a consequence, the total number of possible
exercise times is generally much smaller than in the case of the equity or energy markets. Following
Meinshausen and Hambly (see [?]) we choose to discuss the Chooser Cap also known as Chooser
Flexible Cap as our first example. We refer the interested reader to Section 9.7 pp.125-127 of Pelsser
book [?] for details.

A cap contract with strike K on a 3-months interest rate is a portfolio of options on the quarterly
interest payments that have to be made. Let us assume that the life of the contracts is N quarters,
and the nominal is X . Each individual option is called a caplet. It covers one of the N quarters, and
its pay-off is

XAt(Lz — K)* 5.1

where At is the daycount fraction (Act/360 is typically used for 3-months US dollar interest rate
derivatives), and where L3 denotes the 3-months LIBOR rate observed at the end of the quarter. An
Auto Cap comprises a total of NV quarters together with a limit N, < N on the number of caplets
which are actually settled. The holder of such a contract receives a normal caplet payment for each of
the first NV, caplets in the money (i.e. for which L3 > K at the end of the quarter). Obviously, an auto
cap reduces to a regular cap when N, = N. A Chooser Cap (also called a Chooser Flexible Cap) is
a contract with the same premises as an auto cap, except for the fact that at each reset date, the holder
of the contract has the right to decide whether to exercise that particular caplet and count it as part
of the N, allowable ones, or spare it for later use, each decision being final. Also note that the N,
caplet rights expire worthless if not used before the end of the NV periods. As before, a chooser cap
reduces to a regular cap when N, = NN, while it can be viewed as a standard American/Bermudan
option when N, = 1.

From now on we will fix X = 1 and drop the nominal of the contract from our notation.

The payoff of the chooser flexible cap under an exercise decision is maxfRt ..K; Og, where Rt is
the interest rate at the beginning of the t-th quarter. The constants are set to

We use exact simulation to simulate the values of r,, for t;, =ty + iAt fori = 0,1,--- , N with
At = .25.

5.2.2 Executive Option Programs

The discussion in this subsection is modeled after the works of [?] and [?] and some of the references
cited in these two papers.

5.2.3 Optimal Dividend Payment Schedules

This example is borrowed from [?]. We assume that the cash reservoir of a financial corporation
follows a mean reverting process. The firm must decide the optimal dividend strategy, which consists
of the optimal times and the optimal amounts to pay as dividends. We model this as an stochastic
impulse control problem.
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5.2.4 Energy Delivery Contracts

The following discussion is motivated by the structure of most base-load contracts used for the
delivery of oil, gas and electricity. For the length of the contract, say one year, a fixed amount of
commodity is to be delivered on a regular basis, say daily, in return for a periodic payment, say
monthly, from the receiving party to the delivering counter-party.

Plain vanilla contracts of this type are essentially restricted to specific financially settled deals.
Contracts physically settled by the actual delivery of the commodity, and most financially settled
contracts are sprinkled with clauses increasing dramatically the complexity of the covenants. For
the purpose of illustration, we give two stylized examples which we introduce as motivation for the
developments of this chapter.

5.2.4.1 Recall Option

Let N, be an integer (we assume that IV, is not greater than the number N of days in the life of the
contract), and let us assume that the seller of the commodity can withhold delivery on at most NV,
days of his choice over the life of the contract provided he or she gives notice to the other counter-
party the day before withholding delivery. Let us denote by L,, the present value of the net gain
beyond the income expected from the base-load contract due to the recall of the commodity on day
n. Assuming that there exists a liquid spot market for the commodity (we ignore delivery location
and basis issues in this naive discussion), a simple (though naive) way to conceptualize L,, is to think
of L,, as of the present value of the net gain or loss due to forfeiting the income from the base-load
contract, and selling the daily amount of commodity contracted on the spot market. In other words,

L,=e"a(S, — K) 5.2)

where « is the quantity to be delivered daily, .S,, is the spot price of one unit of the commodity,
and K is the fixed price agreed upon in the contract and where as usual, we denote by r the short
interest rate which we use for discounting and which we assume to be constant over the life of the
contract. According to such a contract, the holder of a recall option can choose N, stopping times
71 < T2 < --- < Tn,, and the present value of his or her expected profit and loss (P&L) is

ES > Lo (5.3)

The holder of the recall option is thus interested in maximizing the value of the contract he holds,
and for that, he will solve the optimization problem:

N,
sup ES Y L (5.4)

T2 <<TNG €S | o <

Notice that, because we do not assume that the reward L,, is non-negative, exercising all the N,
recall rights can be sub-optimal in some cases.

This type of instrument with multiple American exercises was the motivation behind the analyzes
of [?] and [?].
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5.2.4.2 Swing Option

We now assume that the optionality added to the base-load delivery contract is on the side of the
buyer of the commodity. The terminology swing was motivated by the buyer’s right to increase or
decrease (i.e. swing) the amount to be delivered the day following the decision to exercise one of the
swing rights. We assume that N, times in the life of the contract, the buyer of the commodity can
request with one day notice that the amount delivered the following day be increased or decreased
by a fixed percentage amount. Let us denote by U,, the present value of the net cash flow beyond
the income expected from the base load contract, due to the exercise of a swing right on day n.
As before we assume the existence of a liquid spot market, and we denote by u and d the relative
amounts (percentages) of commodity by which the base-load amount can be modified. In other
words, on any given day, the buyer can choose to receive either (1 + u)a or (1 — d)« units of the
commodity the following day still at the unit price of K, if he or she chooses to exercise one of his
or her N, swing rights. Obviously, the swing is up or down depending on whether the price is above
or below K respectively. The holder of the swing option can sell the excess amount uc, or buy the
complement da on the spot market. In other words, the present value U, of the net gain to the holder
of the swing option is

. {e—mua(sn —K) S, > K 55)

e "Mda(K - S,) ifS, <K

if he or she decides to exercise one of the swing rights on day n. Consequently, the holder of a swing
contract can choose N stopping times 71 < 7o < --- < Ty, and the present value of his or her
expected profit and loss (P&L) is

He or she should maximize the value of the contract, and for that, solve the optimization problem:

N,
sup E Z U,

T1<T2 < <TN,ES i=1. 7. <T
yTisS

As before, the fact that the reward U,, can be negative implies that exercising all of the N, swing
rights can be sub-optimal.

It is important to notice that the definitions of the cash-flows L,, and U,, is not completely consis-
tent with our claim that the exercise of a recall or swing right should be announced one day earlier.
Indeed, either the action takes place the same day as the notice of exercise, or else the party exercis-
ing an option needs a crystal ball for the cash-flows to be defined in this way. Indeed, the conditions
S, > K and S,, < K appearing in the definition of U,, should involve S,,_; instead of S,, in the
absence of a crystal ball. We shall ignore the problem of the timing of the notice of exercise here, and
consider the problem as defined above. It makes perfect sense mathematically, and it is a good first
order approximation to the actual real life problem. This type of contract with multiple American
exercises can be treated in exactly the same way as the base-load contract with finitely many recall
rights.
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5.2.4.3 Impulse Control for Plant Valuation

5.3 MULTIPLE AMERICAN OPTIONS VALUATION

We now introduce a single mathematical framework in which we can solve at once a;; the valuation
problems introduced in this chapter. As before we work on a probability space ({2, F,P) equipped
with a filtration {F,,},, and we denote by E,,{ - } the conditional expectation with respect to the
o-field F,, giving the information available at time n. The set of stopping times for this filtration
is denoted by S, and S, g denotes the set of stopping times greater than or equal to v and smaller
than or equal to 3. We then fix an integer p > 0 not greater than the finite horizon N. The integer
p represents the number of exercise rights while ng )B denotes the set of p-tuples of stopping times
used to model the multiple exercises:

s ={r=(n, -, eESha<n<n< - <71 <7, <G}

a7

We now introduce the reward process {{, }o<n<n as a random sequence on integrable random
variables &,,. The random variable £, can be interpreted as the present value (so &, includes the
discount factor e~"") of the pay-off to the holder of the option should he or she decide to exercise
one of his or her rights at time n. Notice that we do not assume that £,, is non-negative, so &, can
represent a profit as well as a loss. With this notation out of the way, the Optimal Multiple Stopping
Problem can be formulated as the optimization problem

V4

sup E{{:} with &r = Zgﬂ

eSSy i=1

In analogy with the classical optimal stopping problem, we search for the value of the supremum,
we try to find out if this supremum is actually attained, and if yes, we look for a computational
algorithm giving a ”minimal” set of optimal 7’s. We solve the problem of multiple exercises by an
inductive procedure based on the solution of a sequence of single exercise American options with
pay-off functions £(*) and value function V() defined inductively by:

M =g, v = £

7(12) — &+ En{vn(}r)l V@ — 5(2)

57(1;0) =&n + ]En{%(?ﬁl)} Ve = é(p)

where we use the hat-notation "introduced in Chapter 1 for the Snell envelop of a random sequence.
Let us explain some of these formulae in words. £() represents the reward process of exercising one
right when the holder of the option still holds 7 exercise rights. So at time n, f,(f) is equal to the
reward &, for immediate exercise of one right, plus the expected reward he or she should expect if
from time 7 + 1 on, the remaining ¢ — 1 rights are exercised optimally. In other words, one should
have 57(17: ) = &n + En{Véi_ll)}. Using the results of Chapter 1, we easily get that the maximum
expected reward is given by
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W =B}

with 7* = (77, ,77) € Si%). defined by:

7 =inf{n > 0; &P =V, P}

7 =inf{n > 77 y; f£p7i+1) = Vn(p*”l)}

Remark. In the Markovian case we can speak of value function instead of value process because,
as in the case of the Snell envelop we have:

1(11) = gn = f(Zn) V(l) = é(l) = f*(Z’n)
= (f + Pf)(Zn) V) = €0 = (f + Pf)*(Zn)

5.3.1 Mathematical Models

We shall consider several specific models in order to test our numerical implementation. They are
both discrete time approximations of the continuous time models which we now describe.

American Put Option

We set ourselves in the Black-Scholes framework of an underlyer {.S; }, following a geometric Brow-
nian motion driven by an R-valued Wiener process {W;},.

0.2

Sy = Spexp [(T—Q)t—&—awt} , t>0 (5.6)

The reward process {; }+ is given by the pay-off of the put option &; = e~ "¢ (S;) where ¢ : R, —
R, is the function ¢(x) = (K — z)*. Under these conditions, and after proper discretization of
time, the desired value is given by the optimum

p
Vi = sup E{Ze-%(sﬂ.)}‘
=1

(T15eer7p) €SP

Gaussian Mean Reverting Underlyer

Motivated by well known properties of commodity underlyers we consider the example of a call
option written on an underlying process {.S; }; following a mean-zero Ornstein-Uhlenbeck process
driven by an R-valued Wiener process {W; };. In this case

t
S, = e MGy + 0/ e M= qw, >0 (5.7)
0

where A and o positive constant used for the mean reversion rate and the volatility. The reward
process {&; }+ is given by the pay-off of a call option with strike K, say & = ¢(X;), where ¢ :
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R, — R. is now the hockey-stick function ¢(x) = (z — K)*. Under these conditions, and after
+ + y
proper discretization of time, the desired value is given by the same optimum

p
VP = suwp E{Zemwm} .

(Tl,A..,Tp)ES((;p) i=1

as before.

Mean Reverting CIR Underlyer

As explained in the description of the first example of this chapter, many interest rate models are
based on the dynamics of short term interest rates. In order to analyze chooser cap prices, we denote
the value of the 3-months LIBOR rate L3 at time ¢ by r; and we model the dynamics of the stochas-
tic process {r;};>0 as a mean reverting square root diffusion given by the stochastic differential
equation

dry = =XN(ry = T)dt + o/redWy | t>0 (5.8)

where A, 7, and o are positive constants used for the mean reversion rate, the asymptotic rate, and
the volatility, and where {W;}, is an R-valued Wiener process. We assume that 0> < 27/ which
guarantees that r; remains positive at all times.

Even though we do not have a closed form formula like (2.9) or (??) for the solution r; of (2.12),
it is still possible to implement exact simulation procedures to generate values at finitely many times
T; of Monte Carlo samples from (2.12).

The reward process {{;}+ is given by the pay-off of a call option with strike K, say & =
e "t At(r, — K)™T, given by the hockey-stick function ¢(x) = (z — K)T. Under these conditions,
and after proper discretization of time, the desired value is given by the optimum

P
Vo(p) = sup E {Z e i (ry, — K)+} .
i=1

(le--an)ES(gp)

5.3.2 Numerical Results

This subsection gathers numerical results obtained by the implementation of natural extensions to
the multiple exercises case of the Monte Carlo regression method described in the previous chapters.

Multiple American Put Options

We implemented the Monte Carlo computations described in the previous section with a simple
piecewise linear least squares regression, and we recomputed the price and the exercise boundaries
first analyzed by Carmona and Touzi in [?] using Malliavin calculus. See the Appendix at the end of
these lecture notes for further details on this approach. As in [?] we used p = 5 exercise rights on a
1 year American put striked at the money with Sy = K = 100, volatility ¢ = 0.3 and short interest
rate r = 5%. The exercise boundaries are given in Figure ??.

Notice the differences with the boundaries given in Figure ?? of the Appendix. We believe that
the Monte Carlo results given in Figure ?? are more reliable, though we cannot justify this claim at
this stage.
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Exercise Boundaries with 5 Rights, 1yr Maturity
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Fig. 5.1. Estimates of 5 exercise boundaries for the 1 year multiple American put option described in the text.

Gaussian Mean Reverting Underlyer
Chooser Cap

We concentrate on 10-years contracts, so the number of possible exercises is N = 40, and we specify
the (risk neutral) dynamics of the 3-months LIBOR interest rate as discrete time observations of a
continuous time stochastic process {r}:>o chosen to be a mean reverting square root diffusion
(known as a CIR model):

dry = —A(ry = T)dt + o /rdWs, > 0. (5.9)

Numerical results are presented in the next figures. Figure ?? for the values A = 1, 7 = 0.05 and
o =0.3.

We varied the number of caplets that can be exercised from N, = 1 to the maximal possible

number N, = 40. The values we obtained for the chooser cap are compared to the corresponding
values of the auto cap (with the same number V. of caplets) and the full-fledged cap for two values
of the initial interest rate and strike couples, ro = K = 0.01 and 7o = K = 0.05.
Remark. As we already mentioned, for N. = 40 the price of the chooser cap reduces to the price
of a regular cap. In the case of the Vasicek model, the latter can be computed explicitly by a change
of numeraire technique as explained in the book [?] by Brigo and Mercurio. See Theorem 4.2.1 and
the interest rate dynamics in the T-forward measure given in Lemma 4.2.2.
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10 years Auto & Flexible Chooser Caps, 10=K=0.01 10 years Auto & Flexible Chaoser Caps, 0=K=0.05
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Fig. 5.2. Values of 10 years auto and chooser caps with ro = K = 0.01 (left) and ro = K = 0.05 (right).

It appears that as expected, the prices of chooser caps are much higher than the prices of auto caps.
An intuitive explanation goes as follows. When a caplet is exercised in an auto cap, it is likely that it
is barely in the money. However, in a chooser cap, when a caplet is not far enough in the money, it is
possible to wait until a later date and exercise the caplet when it is much deeper in the money. The
success of such a change in strategy obviously depends upon the current term structure of interest
rates, and whether or not the yield curve is upward or downward sloping.

Figure ?? illustrate the sensitivities of the flexible chooser cap prices with respect to the mean
reversion parameter A (left) and the volatility factor o (right).

The results reproduced in Figure ?? were produced with the following parameters. In both cases
we fixed rp = K = 7 = 0.05. For the dependence with respect to A we chose 0 = 0.1 and we
varied the mean reversion parameter A by choosing A =5, A =2, A =0.8, A =0.4and A = 0.15
successively. For the dependence with respect to o we chose A = 0.5 and we varied the volatility
parameter o by choosing o = 0.001, 0 = 0.05, 0 = 0.1, 0 = 0.15 and ¢ = 0.2 successively.

Notice that the various combinations of parameter values used in the numerical experiments re-
ported above all satisfy the condition o2 < 2\7 which guarantees the positivity at all times of the
square root diffusion, ie.e the solution of the stochastic differential equation (2.12).

5.4 MULTIPLE DYNKIN GAMES

As a motivation for the models considered in this section, we revisit the commodity delivery contract
discussed earlier, embedding both the recall and swing options in the indenture of the contract.
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Fig. 5.3. Values of 10 years auto and chooser caps with ro = K = 0.01 (left) and ro = K = 0.05 (right).

5.4.1 Two-sided Swing Contracts

We now consider a base-load contract augmented with NN, recall rights for the party delivering the
commodity, and N, swing rights for the counter-party. Obviously, we are about to merge the dis-
cussions of the two preceding subsections. But before doing just that, we need to alter the cash-flow
direction in one of the two examples as they are opposite one of the other. For the sake of consistency
with our discussion of the applications of Dynkin games to the valuation of convertible bonds, in this
subsection we consider only cash flows from the buyer of the commodity to the seller. For that reason,
we keep the meaning of the notation L,,, but we replace U,, by its negative. Hence, the buyer of the
commodity becomes the minimizing agent while seller of the commodity becomes the maximizing

agent, and we denote by 7(") = (7" {7 ... 771(\2)) with 71" < {7 < -0 < T](\;) the stop-
ping times chosen by the maximizing agent for the recall times, and by 7() = (7'1(5), 7'2(5), e T](\f))

where 7'1(5) < 7'2(8) << Tl(vi)

times. We then define

are the stopping times chosen by the minimizing agent for the swing

J(Tl(r)a'"' 77_](\;;)77—1(3)»"' 37_](\;3)

as the expected present value of the pay-off to the buyer of the two sided swing contract. Finally we
set

Jr) = sup inf J(Tl(r), e ,T](VTB, Tl(s), e ,7'](\2_))
(D <ongr ) i <l
for the buyers value of the contract and
J6) — inf sup  J(r7, - ,T](VTT)’ 7o 77.](\[83))

= i
<) D <cr )

By construction we always have:
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Moreover we also have

Theorem 1.
J = g

We will denote by .J or J(Nr-+) the common value of J() and J().

5.4.2 Recursive Hierarchy of Dynkin Games

We will rely on the notation of our first discussion of Dynkin games in Section 4.4. We only empha-
size the changes due to the recusrive nature of the set-up of this subsection.

We start with two integrable stochastic processes £(7) = {§T(Lr)}0§n§N and £(8) = {fv(ig)}OSnSN
whose interpretations are as follows. The random variable 57(17") represents the amount earned (or lost
when &(Lr) < 0) by the first player if she exercises one right at time n. Similarly the random variable
5,({';) represents the amount paid by the second player to the first player, if the second player exercises
one right at time n. So &(f) and 57(15) both represent cash flows from the second player to the first one.

Let us compare the direction of the cash-flows descried above with those in the case of the two-
sided swing contracts: the regular payments go from the buyer of the commodity to the seller. So if
we want to use the terminology of the Dynkin games of timing used in the case of convertible bonds
models, the maximizing player should be the seller of the commodity, possibly a retailer, and the
minimizing player should be the buyer of the commodity, possibly a consumer.

Next, we fix two integers N, > 0 and Ng > 0 and we define inductively the random sequences
V) = {V,SL’J)}OSTLSN starting with V(%0 = 0. For each integer 1 < i < N, and 1 < j < N,
we define V' (%9) as the value of the Dynkin game of timing with pay-offs

irj r i—1,j
L) = ¢ +En{vr$+1 J)}
i,j s t,j—1
UED = €9 + BV )
Wheni=0and 1 < j < Ng, we define V(0.3) ag the value function of a multiple American option
with j exercise rights and single exercise pay-off ¢(*). Similarly, for j = 0 and 1 < i < M, V(0 is
defined as the value function of a multiple American option with ¢ exercise rights and single exercise

pay-off £("). So according to our discussion of Section ?? on instruments with multiple American
exercises, if i > 1, then V(%9 is the value of an American option with pay-off

60 = €D + BV,
while if j > 1, then V(%) is the value of an American option with pay-off
6 =6 +ELVTY).

Theorem 2.
JOLN) = L),



5.5 TWO-SIDED SWING CONTRACTS AS RECURSIVE DYNKIN GAMES

Let us assume that the stochastic process {.S; }:>o gives the spot price of a commodity on which a
two-sided swing contract is written. As before we denote by N, and N, the numbers of recall and
swing exercise rights respectively, by K > 0 the strike of the base-load contract, and by d and u the
quantities of down and up swings. We now introduce the reward processes £(") and £(*) defining a
recursive Dynkin game which is equivalent to the two-sided swing contract. As explained earlier, we
consider cash flows in one direction only, and we choose flows from the seller to the buyer.

We first consider the commodity seller side, and we denote by 57([) the present value at time n = 0
of the cash flow from the seller to the buyer if the seller exercises one of his rights at time n. We
have:

e = ¢"(8,) = e ™Sy — K) + f,] (5.10)

where f,. denotes the recall fee the commodity seller has to pay in order to be allowed to exercise
one right. On the other hand, the cash flow from the commodity seller to the buyer when the latter
decides to exercise one of his swing rights is given by

€9 = ¢)(8,) = e ua(S, — K)Tda(K — Sp)t — f] (5.11)

where the constant f represents the swing fee the commodity buyer has to pay for each swing
exercise.

5.5.1 Numerical Results
Base-load Delivery Contract
M-recalls Option
N-swings Option

A Two-sided Swing Contract

5.6 OPTIMAL SWITCHING AND REAL-OPTION ASSET-VALUATION

NOTES & COMPLEMENTS

The inductive procedure for multiple American exercises was implemented by Meinshausen and Hambly in [?]
to value chooser interest rate swaps. These authors used an extension to the multiple exercise case of the duality
upper bounds presented in Chapter ??.

Detailed proofs of Theorem ?? and Theorem ?? can be found in the recent paper [?] by Carmona and
Dayanik.

The optimal switching version of the impulse control problem discussed above was introduced by Carmona
and Ludkovski in [?] and [?] to value power plants and gas storage facilities.
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Duality and Pointwise Approach

In the first part of this last chapter, we review the duality approach to the optimal stopping problem
and we explain how it can lead to Monte Carlo computations of approximate prices for American
options. This method which was introduced approximately at the same time as the Tsitsiklis-van Roy
and Longstaff-Schwartz methods. Despite the fact that it did not get the same press, it deserves con-
sideration for two main reasons: the first one is that by reformulating the problem as an infimum
over martingales (instead of a supremum over stopping times), it provides lower bounds for the value
function of the problem, and these upper bounds can in principle be tight if the martingale is chosen
appropriately. The second reason is the fact that these upper bounds can easily be computed by Monte
Carlo method. Indeed, once a martingale is chosen, the upper bound is the expectation of a maximum
which can be computed path by path at very little cost.

The last part of the chapter is devoted to the extension of this pointwise strategy to the case of Dynkin
games.

6.1 INTRODUCTION

This chapter is motivated by recent developments in the numerics of American option valuation.
Based on an idea of Davis and Karatzas [?] three groups of authors have proposed, essentially si-
multaneously, a duality formulation where the supremum over stopping times is replaced by an
infimum over martingales. Even though the duality argument is the same in the three papers, the
details of their implementations are slightly different. While Haug and Kogan use neural networks
[?], Rogers uses potential theory to guess a right martingale [?], and Andersen and Broadie focus on
unbiased estimates by embedding smaller trees within the Monte Carlo structure set up to compute
the expectation once the martingale is chosen [?]. Combined with easily obtained lower bounds, the
upper bounds provided by the duality approach proved to be very useful in squeezing the solution
of the optimal stopping problem in tight intervals. These bounds were used in the multiple exercise
case by Meinshausen and Hambly in [?].

What should the right analog of the duality theory for Dynkin games be is not clear at this stage.
However the Davis and Karatzas’ pathwise formulation of the optimal stopping problem was ex-
tended by Karatzas in [?] to cover the case of Dynkin games of timing. We give a detailed proof of
this fact to lay the foundations for the development of efficient Monte Carlo procedure to compute
bounds for the values of these games.
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6.2 OPTIMAL STOPPING: DUALITY AND UPPER BOUNDS

We use freely the notation of Chapter 1. Let {M,,},, be any (bounded) martingale in the given
filtration {F, },,. We have (recall that {Y},},, is the reward process and D(0, n) is the discounting
factor):

Vo= sup E{D(0.7)Y;}

TESo, N
= Sup E{M'r + D(OvT)YT - M‘r}
TESo, N
— Mo+ sup E{D(0,7)Y, — My}
TESo,N
< My+E{ max [D(0,n)Y, — M,]} 6.1)
n=0,1,--- \N

where we used the optional sampling theorem for martingales to derive the third equality. Hence, we
proved that R

Yy < inf E D(0,n)Y, — M,]}, 6.2

= e, L PO Y0 = AT} ©2

where M, denotes the set of F,,-martingales { M, },, vanishing at time 0 (i.e. for which M, = 0).

This implies that, choosing a martingale { M, },, starting from M = 0, and computing the quantity

E{ max [D(0,n)Y, — M,]} (6.3)
n=0,1,--- ,N

provides an upper bound for the value of the American option. The computation of such an upper
bound is very simple as it does not require the computation of conditional expectations. Moreover
as it is expressed as an expectation, it is screaming for a Monte Carlo evaluation. Indeed, if one can
generate sample scenarios w(™) for the discounted pay-off and the martingale, one can compute the
difference D(0,n)Yy, (w™) — M, (w™) for each time n, then compute the maximum over 7, and
finally average out the resulting maxima over m to get an approximation of the expectation.

The ease with which one should be able to compute these upper bounds is one of the main attrac-
tions of the method. But the main question remains: how good are these upper bound? We now show
that, at least theoretically, they could be as good as we need. Indeed the duality gap collapses as we
have:

Yy = {Mnl]gfeMo E{n:[)mlax ’N[D(O,n)Yn — M,]}. (6.4)

To prove this result, we identify a martingale for which the upper bound (??) is tight, i.e. for which
equality holds. The stochastic process {D(0,n)Y;,}, giving the discounted price of the American
option is a super-martingale, so it has a Doob-Meyer decomposition

D(0,n)Y, = Yy + M, — A, (6.5)

where {]\;[n}n is a martingale in M and {/L,}n is a non-decreasing predictable process (i.e. A,
is F,,—1-measurable). The Doob-Meyer decomposition is a rather deep result for continuous time
stochastic processes, but it is quite simple in the discrete case. Indeed one can write any adapted



6.2 Optimal Stopping: Duality and Upper Bounds 79

process {Z, }n as Z,, = Zo + M,, + A,, where {M,, },, is a martingale such as My = 0 and {A,},
is a predictable process such as Ag = 0. Indeed, it is enough to choose

(Z; —EB;1{Z}), and  A,=> (B, 1{Z;} - Z; 1) (6.6)

1 j=1

n
M, =
Jj=
This fact is intuitively clear: A,, is merely whatever is needed to compensate for the fact that Z,,
may not be equal to the conditional expectation of its next value. Moreover, it is easy to check that
A,, is non-negative and non-decreasing in n if and only if Z,, is a super-martingale. Now, using the
martingale part of the Doob-Meyer decomposition of D(0, n))}n as a test martingale in (??) we get:

Yo <Yo+E {Omax (D(O,n)Yn — D(O,n)Yn — An)} <Yy

<n<N

where we used the fact that Y;,, < Y;, and A,, > 0. So the martingale of the Doob-Meyer decompo-
sition of the discounted value of the American option closes the duality gap!

Remark. It is important to emphasize the fact that the duality gap is closed because the value
function V,, (i.e. the discounted Snell’s envelop) is a super-martingale, fact which is true whether or
not the pay-off process Y,, is non-negative.

6.2.1 Implementation Issues

e In order to take full advantage of the path - by - path form of the duality theory, one needs to
identify good martingales. In the Markovian case, martingales can be obtained by computing
harmonic functions for the infinitesimal generator of the process along the sample paths. If a basis
{©1, 2} can be computed explicitly (by solving an ordinary differential equation) it is reasonable
to look for the coefficients Ay and A for which M,, = A1 (X)) + A2p2(X,,) gives the best (i.e.
the smallest) upper bound. This gives FINISH

e When looking for this elusive martingale capable of providing a good upper bound to the value
of the optimum, a reasonable strategy could be to use the martingale part of the Doob-Meyer
decomposition of an easy to compute approximation to the value function. Indeed, such approxi-
mations are easy to come by, for example by choosing a guestimate of the exercise boundary, and
approximating the true value function by the expected discounted pay-off when the underlying
process first hits the exercise boundary proxy. However, as one sees from formula (??), the com-
putation of the martingale part of a Doob-Meyer decomposition involves the computation of many
conditional expectations. Hence this route may not bring any relief to the computational burden.
Moreover, computing conditional expectations by non-parametric methods always carries a bias,
and in order to avoid this bias, Andersen and Broadie proposed to compute these conditional ex-
pectations by a subsampling procedure, embedding a fixed size smaller tree at each node of the
Monte Carlo samples of the underlyer.

In our opinion, the direct search for a good martingale is still more of an art than a science.

6.2.2 Extension to Multiple Exercises

As explained in in [?] by Meinshausen and Hambly, the duality bounds can be used to approximate
the values of instruments with multiple American exercises. FINISH
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6.3 DUALITY SQUEEZES

Throughout these lectures, we derive approximations to the value of instruments with one or several
American exercise opportunities. But not only didn’t we worry about how good or bad these approx-
imations were, but we did not attempt to identify possible biases. The possibility to squeeze the true
value in between a lower and an upper bound is one of the main reasons for the success of the duality
approach, especially since the confidence intervals straddling the unknown optimal value happen to
be quite short in many practical applications without the need for an excessive computation budget.

6.3.1 Lower Bounds

As we already mentioned, lower bounds are relatively easy to come by. From any reasonable candi-
date for an exercise strategy, say 7, the expectation

E{D(0,7)¢(X7)}

is obviously a lower bound to the optimum. Given a Monte Carlo sample w®, o w(™) an unbi-
ased estimate of this expectation is given by:

1 M

3(7’) = — Z D(07T(w(m)))f(XT(w(m))(w(m))),

m=1

This random number may or may not be below the true optimum, but its expectation is. So it is
plain to use Monte Carlo scenarios to produce a downward biased estimate if we can identify such
a reasonable candidate for the exercise strategy. This can be done in several different ways using
the tools developed in Chapter 3. For example, one can use the last stopping time produced by the
Longstaff-Schwartz backward induction. But we can also use an approximate value function, say
the result of the dynamic programming backward induction performed with any kind of regression
method, in which case the exercise strategy can by identified as the first time the Monte Carlo sample
paths hit the set where the approximate Snell’s envelop (i.e. the value function computed along the
paths) coincides with the reward.

Remark. At this stage, we should not call such an estimate a lower bound as it is only in expectation
that we can be sure that it lies below the unknown true value. However if we construct a confidence
interval around this negatively biased estimate, say with confidence level «/2, the lower limit of this
confidence interval provides a lower bound for the true value with probability 1 — «/2.

6.3.2 Upper Bounds

Even though the search for an optimal martingale is still elusive in general, the duality theory pre-
sented in this chapter offers a straightforward tool to turn the lower bound computed above in Sub-
section ?? into an upper bound. Indeed, one can use the upper bound provided by the martingale of
the Doob-Meyer decomposition (??) of the approximate Snell envelop. But before doing so, we need
to tackle the following problem: as explained earlier, this computation requires the evaluation of a
large number of conditional expectations, and if these conditional expectations are estimated with
a bias (as we would do using plain non-parametric procedures) the resulting process may not be a
real martingale and the resulting computation of what should be an upper bound in expectation may
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not be so. For this reason, it is recommended to estimate these conditional expectations by regular
averages (i.e. plain estimates of regular expectations) over new independent samples generated ac-
cording to the conditional distribution at the node where the estimate of the conditional expectation
is needed. This extra sampling adds to the complexity of the algorithm, but its effect on the com-
plexity is only a constant factor independent of the number M of original Monte Carlo samples and
of the number of time steps as the number of branches of the extra trees is constant over the nodes.

A direct application of the strategy described above is the analog of the Tsitsiklis - van Roy
approach to the implementation of the dynamic programming backward induction. But as in Chapter
3, there is an alternative backward induction in terms of approximately optimal stopping times. This
provided a Longstaff-Schwartz version of the argument. This idea was formulated and tested by
Andersen and Broadie in [?]

Remark. As in the case of the upper bound, the above estimate is only an upper bound in expecta-
tion. However if as before we construct a confidence interval around this positively biased estimate,
say with confidence level «/2, then the random interval limited by the lower bound of the confidence
interval computed earlier in Subsection ?? and the upper limit of the present confidence interval, con-
tains the true value of the optimum with probability 1 — a. This idea was promoted by Broadie and
Glasserman. See for example [?] Chapter 8.

6.3.3 Numerical Examples

6.4 PATHWISE APPROACH TO DYNKIN GAMES

In this section, we use the notation and the results of Section 4.4 on Dynkin games of timing. In
particular, we use the notation L,, and U,, for the pay-offs to the maximizer player when respec-
tively, the maximizer and the minimizer player stop the game, and V;, for the value function. One
of the main results of Section 4.4 is a form of the dynamic programming principle which can be
summarized as

‘/n = med{Ln7 E71{Vn+1}7 Un} (67)

where we use the notation med{x1, x2, -+ , x, } for the median of the sample x1, x2, - , z,.

Recalling our discussion of the Doob-Meyer deconposition for discrete time processes, and espe-
cially formulae (??) and (??), the process { M,, },, defined by

Vi =Vo+ My + Y (B; 1{V;} = Vi)

Jj=1

is a martingale in M. Again the compensation is only here to correct for what prevents V,, to be
equal to E,,{V},1}. Looking back at the form of the dynamic programming principle given by (??),
the summation above can be split into two separate sums: a first sum over the indexes j for which
E;_1{V;} > V;_1 (in which case V;_; = U;_1) and a second sum over the indexes j for which
E;_1 {VJ} < Vj_1 (in which case V;_; = L;_1). Consequently we have the decomposition

Vi, = Vo + My + Ay, — Bn (6.8)
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for some martingale {M,, },, in M, and for predictable processes {A,, },, and {B,, },, defined by:

n

A=Y B {V}-Uis)*, =12 N 6.9)

j=1

and .
B,=> (Li-1—E; 1{V;)H*, n=12-- N (6.10)

j=1

Notice also that both predictable processes {4, }1<n<n and {B, }1<n<n are non-negative and
non-decreasing. Also, by the very definition of these processes we have

Ap=A;s, and B, = B;s, n=1,2,---,N, (6.11)

where the stopping times 77 and 7.7 are the minimal optimal exercise times of the buyer and the
seller as defined in (2?) and (2?).
We state the result of the decomposition which we just proved as a lemma for future reference.
The fact that the upper bound (??) is tight follows from Karatzas analysis [?]. We reproduce the
proof for the sake of completeness.
For any fixed 0 < n < N we have
R(H,T:) - M;:/\q—; = (Ln - Mn)lnST;,n<N + (UT; - MT )1n>‘r;‘ + (5 - MN)]-n:‘r;‘:N

6.4.1 More Bounds

We now prove the easy upper and lower bounds for the value of the game.

. 3 _ - < < 3 _ +
MglngE{OggN(Un M)} <V < MiIéfMUE{og%XN(L” M)} (6.12)

In order to prove the upper bound we set 75 = N (in which case R(y, 7s) = L, ) and we apply the
duality theory of Section ?? to the reward process {U,, },,. We get:

Vo = supinf E{R(m, 75)}

IN

sup E{R (7, N)}

)

supE{L,,}
Tb

= inf E{ max (L, — M)}
M+eM, 0<n<N

IN

Similarly, in order to prove the lower bound we set 7, = N (in which case R(7,, 75) = U.,) and we
use duality for the optimal stopping problem with reward process {— L, } ,. We get:



Vo = supinf E{R(7p,75)}

v

inf E{R(N, 7,)}

v

—supE{-U.,.}

—— inf E ~U, + M,
anf { max (=Un+ M, )}
MﬁlngE{oggN(Mn —Un)}

NOTES & COMPLEMENTS

The duality approach to American option pricing was proposed simultaneously by Haug and Kogan in [?] and
Rogers [?]. The fundamental idea can be traced back to an earlier paper by Davis and Karatzas [?]. This
method was used in the multiple exercise case by Meinshausen and Hambly in [?]. The implementation of the
duality approach was more recently refined by Andersen and Broadie in [?]. In this chapter, we used the additive
form of the Doob-Meyer decomposition. There exists a multiplicative form as well, and a duality theory based
on this form was developed by Jamshidian in [?]. It is unclear which method is more efficient numerically, so
we chose to present and work with the additive version as it is slightly simple to present and implement, and
most importantly, because it has been studied most extensively.
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Appendix: Monte Carlo Regression

As evidenced by our discussion of the dynamic programming principle, the practical implementations
of this backward procedure as well as some of the implementations of the duality approach require the
computation of a large number of conditional expectations. This appendix is devoted to a review of
some of the regression methods which have been used in this context. We first review the basic facts of
parametric regression by restricting the function f to families of functions which can be characterized
by a small number of parameters. But since in some cases we do not want to assume anything a
priori on the regression function, except possibly for requiring that is (at least piecewise) smooth,
we then concentrate on non-parametric regression techniques. Also, because of the applications we
are interested in, we mostly work in the multidimensional case, and especially in cases where the
dimension p of the explanatory variables is relatively large in the sense that we would like to have
methods working reasonably well for values of p up to 100 and possibly higher.

7.1 REVIEW OF THE REGRESSION SET Up

We review the notation and the general set up of regression. This will give us a chance to stress the
main differences between the parametric point of view and the nonparametric approach.

Given a random variable X in a measurable space (F, &) and a real valued random variable Y,
the regression of Y against X is the function

E>x<— f(x) =E{Y|X =x} (7.1)

which is defined almost surely on E for the distribution of X. Obviously this definition can be
generalized to the case where Y takes values in a more general vector space as long as the notion of
expected value for E-valued random variables is clearly defined. For the purpose of this appendix,
X will be a real valued random variable or a multivariate random vector taking values in a Euclidean
space RP. Statisticians have developed practical methods of estimating regression functions from
sample data. From such a statistical point of view, the starting point is a sample of n observations

(leyl)a """ 7(Xn7yn)

where foreachi = 1,2, --- , n, x; is a vector of p numerical components x; = [Z; 1, T2, - , Tip)s
and y; is a real number. The components of the x;’s are observations of the p explanatory (scalar)
variables, while the y; are observations of the response variable. The theory justifying the estima-
tion procedures is developed under the assumption that the data are sample observations of random
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couples (X1,Y7), --- , (X,,Y;,) having the same distribution, say the distribution of the couple
(X,Y) having the regression function (??). For the sake of notation, we use the notation (X, Y") for
a generic couple of random vector, random variable with the same joint distribution. The statistical
dependence of the Y -component upon the X-components is determined by the knowledge of the
(common) joint distribution of the couples (X;, Y;)’s. This distribution /ives in (p 4+ 1) dimensions.
It is determined by the marginal distribution of the p-variate random vector X (which lives in p
dimensions), and the conditional distribution of Y which gives, for each possible value x of X, the
conditional distribution of Y given that X = x. The regression function of Y against X gives the
expectation of this conditional distribution, so it does not contain all the information about the con-
ditional distribution, just its mean. The graph of the regression function is a one-dimensional curve
when p = 1, it is a 2-dimensional surface when p = 2, and it becomes a hyper-surface more difficult
to visualize for larger values of the number p of explanatory variables.

7.1.1 Practical Objective

In most practical applications the search for the regression estimate f is done by

e computing the real numbers f(x) for all the values x = x; fori = 1,--- ,n, or by
e computing the real numbers f(x) for the values x = X; fora grid X1, - - - , Xg.

The option described in the second bullet point is used when the sample size n is too large for the
function f to be computed at all the observations x;, In this case a grid of values of x with cardinality
m much smaller than n is chosen to be as fine enough for the computations of f (x) to be computed
by simple linear interpolation from the values of f at the points of the grid without loosing too much
information.

7.2 PARAMETRIC REGRESSION

The idea of parametric regression is to search for an estimate f (x) in a specific class of functions
{fo}oce parameterized by a parameter 6 varying in a parameter set ©, the chosen estimate 0 min-
imizing a criterion quantifying the fit of the function fy to the data. For example, the least squares
estimate would be a value 6 minimizing the least squares error criterion, i.e.

= arg inf Z lys — fo(x:)|% (7.2)

0coO

Similarly, the least absolute deviations estimate would be a value 6 minimizing the least absolute
deviations criterion, 1.e.

0 = arg elg(ngz fo(xi)]. (1.3)

A more systematic procedure is to assume that the joint distribution of (X, Y") belongs to a family
fo(x,y), and then to use the maximum likelihood procedure to estimate the parameter 6 from the
sample observations. This procedure recovers the least squares estimate when the conditional dis-
tributions are Gaussian, and the least absolute deviations estimate in the case of double exponential
distributions.
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7.2.1 Standard Examples

Except possibly for the case of simple and multiple linear regressions, we shall not work with least
absolute deviations regression, and we shall concentrate on least squares regression. The most com-
monly used least squares regression procedures are

e simple or multiple regression
e polynomial regression
e piecewise linear and splines regression

7.3 NON-PARAMETRIC POINT OF VIEW

Let us assume for example that the set of the sample values x1, - - - , X,, is equal to a smaller set X,
-, X5, of different values, each of them being taken by many equal x;. To be more specific, let us
assume for example that n = kn and that

X1 =X1,0 X = X1, e Xk(i—1)+1 = Xq, " s Xn = Xp
In such a case, it is natural to compute the regression function f(x) = E{Y|X = x} at the points
x; for j =1,--- k. For each such x;, the observations yy;_1)+1," " , Yx; of the response variable
form a sample of size % of the conditional distribution of Y given X = X;. So the regression, which is
by definition the expectation of this conditional distribution, can be estimated by the sample average
of these observations, i.e.

k

o 1

F&y) =+ > YkG-1)+is
1=1

and the larger the value of k, the better the estimate.

Unfortunately, such a situation is rarely encountered, in other words, in most cases, k = 1. The
philosophy of most of the non-parametric regression procedures is to overcome this fact.

7.4 BASIS EXPANSION REGRESSION
Let us assume that the regression function
f(x) =E{Y[X = x}

belongs to a function space for which we know a basis, say { f¢}¢. For the sake of simplicity, we
assume that the function space is a Hilbert space and that the basis is orthonormal. In this way

F) =< fuf>f (7.4)

>1

Non-parametric regression typically involves infinite dimensional function spaces, and hence, infi-
nite sums. Indeed, if the expansion involves only a small number of terms, estimating f amounts
to estimating these parameters and we are back in the realm of parametric statistics. Notice that the
above expansion in (??) contains finitely many terms when the regressor X can only take finitely
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many values. A natural first step in estimating the function f is to approximate expansion (??) by a
finite sum. Indeed, the above decomposition means that

L
fx) = Jlim > < fo, f > fo.
=1

We use the notation f(*) = IT; f for the finite sum appearing in the above right hand side. If we use
this finite sum f(%) as an approximation for f, the squared error is given

If ==Y <fof>?
{>L+1

and classical numerical analysis results can be used to estimate the rate of convergence to 0 of this
error. This rate will of course depend upon the specifics of the Hilbert space and the smoothness
properties of the (unknown) regression function f, but precise convergence rates can be obtained for
very general classes of functions f.

We assume from now on that the integer L has been chosen. Notice that the difference between
non-parametric and parametric statistics is more at the level of L large versus L small, rather than at
the level of the duality L finite versus L infinite.

Notice also that because of the Hilbert space structure, the coefficients {< f;, f >}1<¢<1, of the
basis decomposition are the arguments {c }1<¢<, of the minimization problem

a1,y

L
inf f =D aefell® (7.5)
£=1

So estimating the function f by the finite sum f(*) can be done by looking for real numbers a1, - - -,
ay, solving (??), and using the approximation

L
FB =3 "aufy. (7.6)

=1
7.4.1 Sample estimation

We now assume that we have observations

(Xl,yl)a """ a(XnyM)

where for each m = 1,2,--- , M, x,, is a vector of p numerical components and y,, is a real
number. We use these data to estimate the approxiamtion (%) of regression function f. Each v,
can be viewed as a noisy observation of f(x,,) since by definition

fxm) =E{Y|X =x,,}.
Informally:
Ym = f(Xm) + noise
z (

) (x,,) + noise

¢
= arfe(xm) + noise
=1
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hence, the least squares paradigm suggests to look for the av,,’s minimizing the least squares objec-
tive

M ¢
ot Sy = e o). 17
T m=1 =1

This is now a problem which can be solve by plain least squares methods, possibly of high dimen-
sion, but definitely with standard tools!

7.5 KERNEL REGRESSION

We first discuss the case p = 1 of univariate regression.

7.5.1 The Kernel Smoother

The idea of the kernel smoother is to rely on the observed responses to neighboring values of x
to predict the response f(x). The only difference is that, instead of relying on a limited number
of observations y;’s of the response, the local character of the averaging is realized by a weighted
average of all the observed values y;’s, the weights being decreasing with the distance between x
and the corresponding value z; of the explanatory variable. To be more specific, the weights are
computed by means of a kernel function £ — K(z), and our good old enemy, the smoothing
parameter. The latter is called bandwidth in the case of the kernel method, and it will be denoted by
b > 0. By now, we should be familiar with the terminology and the notation associated with the
kernel method. Indeed, we already introduced them in our discussion of the kernel density estimation
method. We give a lucid account of the relationship between the applications of the kernel method
to density estimation and regression in the Appendix at the end of this chapter. The actual formula
giving the kernel scatterplot smoother f(z) is:

Z?:1 i K (%)

f@) = fox(x) = = v (7.8)
Zj:l K ( b . )
Notice that the formula giving f(z) can be rewritten in the form:
n
fl@) = wi(z)y; (7.9)
i=1
provided we define the weights w; (z) by the formula:
K r—XT;
w;(z) = (52) (7.10)

Understanding the properties of these weights is crucial to understanding the very nature of kernel
regression. These properties will be clear once we define what we mean by a kernel function. A
nonnegative function  — K (x) is called a kernel function if it is integrable and if its integral is

equal to 1, i.e. if it satisfies:
+oo
/ K(z)dx = 1.

— 00
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Kernel function Formula
1 if lz] < .5
bo K ’ -
® boa( {0 otherwise
1— ||, if lz] <1
tri 1 K . -
riang-e triangle ( {0 otherw1se
9 3 . 1 3
parzen Kparzen(x) = § 5 — z2, if |z| < 5
0 otherwise
K _ 1 —12/2
normal nm"mal(x) = me

Table 7.1. Table of the four kernel functions used by the Splus function ksmooth.

In other words, K is a probability density. The fact that the integral of K (z) is equal to one is
merely a normalization condition useful in the applications to density estimation. It will not be of
any consequence in the case of the applications to regression since K always appear simultaneously
in the numerator and the denominator: indeed, as one can easily see from formulae (??) and (??),
multiplying K by a constant does not change the value of the regression function f as defined in
(??). But in order to be useful, the kernel K () has to take relatively large values for small values
of x, and relatively small values for large values of z. In fact, it is also often assumed that K is

symmetric in the sense that:
K(-z) = K(z)

and that K (z) decreases as  goes from 0 to +o0c. The above symmetry condition implies that:

+oo
/ K (z)dx =0 (7.11)

— 00

which will be used in our discussion of the connection with kernel density estimation in appendix.
They are also some of the most commonly used kernel functions when it comes to regression. Notice
that the first three of them vanish outside a finite interval, while the fourth one (theoretically) never
vanishes. Nevertheless, since its computation involves evaluating exponentials, it will not come as
a surprise that such a kernel can be (numerically) zero because of the evaluation of exponentials of
large negative numbers: indeed for all practical purposes, there is no significant difference between
€760 and 0, and exponents that negative can appear very often!

Except for the choice of the kernel function box which leads to the crudest results, the other three
kernels give essentially the same results in most applications. The situation is different when it comes
to the choice of the bandwidth parameter b. Indeed, the choice of the bandwidth is the Achilles heel of
kernel regression. This choice can have an enormous impact, and the results can vary dramatically:
small values of b give rough graphs which fit the data too closely, while too large a value of b
produces a flatter graph as b increases. By experimenting with the choice of the bandwidth, one can
easily see that as b tends to oo, the graph of the kernel smoother converges toward the horizontal
straight line with intercept the mean ¥ of the observed responses y;’s. As we explained earlier, this
means that regression is meaningless since the explanatory variable does not have any influence on
the value of the prediction of the response variable.
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7.5.2 The Multivariate Case

Multivariate kernel regression is a typical example of multivariate nonparametric nonlinear regres-
sion, but it can also be viewed as a high dimensional generalization of the procedure described
in the subsection on the kernel scatterplot smoother, and especially the discussion of the function
ksmooth. Indeed, most of what we said then, can be generalized to the case where the dimension
p of the explanatory variables is not necessarily equal to 1. Indeed, formula (??) can be used in the
form:

Sk ()
= ()

provided the function x — K(x) is a kernel function in p dimensions, in the sense that it is a
nonnegative function of p variables which integrates to one.

f(x) = fox(x) = (7.12)

The simplest example of p-dimensional kernel function is given by a function of the form:
K (x) = k(dist(x, 0)) (7.13)

for some nonnegative and non-increasing function k( - ) of one variable and some choice of a notion
of distance from the origin in p dimensions. Possible choices for this notion of distance include the
usual Euclidean norms in RP:

1/2 1/2

p
dist(x, 0)) Z or dist(x, 0)) ij

or non Euclidean norms such as:

dist(x,0)) Z |z, | or dist(x,0)) = sup |a;].

j=1--p

These choices are popular because of their convenient scaling properties. If one excepts the Eu-
clidean distance computed with different weights w; for the different components x; of the ex-
planatory vector x, all these kernel functions share the same shortcoming: all the components of the
explanatory vector are treated equally, and this may be very inappropriate if the numerical values
are on different scales. Indeed, in such a case, the value of the distance is influenced mostly (if not
exclusively) by the variables having the largest values. We illustrate this point with a short discus-
sion of an example which we will study in detail in the later part of the chapter. Let us imagine
for example that the first explanatory variable is an annualized interest rate. Its values are typically
of the order of a few percentage points. Let us also imagine that the second explanatory variable
is a time to maturity. If for some strange reason this second variable is expressed in days instead of
years, its values will be in the hundreds on a regular basis, and a distance of the type given above will
ignore the small changes in interest rate, and report only on the differences in maturity. A change
in unit in one of the variables can dramatically change the qualitative properties measured by these
notions of distance, and consequently affect strongly the results of the kernel regression. This effect
is highly undesirable. We discuss below alternative choices of kernel functions which can overcome
this difficulty, as well as a standardization procedure which re-scales all the explanatory variables in
an attempt to balance their relative contributions to the regression results.
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Another very popular class of kernel functions is given by direct products (sometimes called tensor
products) of one dimensional kernel functions. Indeed, if Ky, K, --- , K, are one-dimensional
kernel functions (possibly equal to each other), then the function:

K(x) = K(z1, 72, ,1p) = K1 (21)Ka(22) - - - Kp(p) (7.14)

is obviously a p-dimensional kernel function. For these kernel functions, the weight multiplying the
i-th response y; is proportional to:

X=X\ T1 — T41 T2 — 42 Tp — Tip
K( b >K< b >K< b ) K”( b )

and from this expression one sees that there is no harm in choosing different values for the p occur-
rences of the bandwidth b in the right hand side. In other words, it is possible to choose p different
bandwidths b1, ba, - - - , by, one for each component of the explanatory variable. This feature of the
direct product kernels makes them very attractive. In some sense, normalizing the scalar explanatory
variables and using one single bandwidth amounts to the same as using different bandwidths for the
components of the explanatory vector. See Subsection ?? for an example of standardization before
running a kernel regression.

We now recast some of the most important properties of kernel regression as elementary remarks
which apply as well to the one dimensional case of the kernel scatterplot smoother ksmooth dis-
cussed earlier.

e The kernel regression estimate f(x) is a linear function of the observations. Indeed, the defini-
tion formula (??) can be rewritten in the form:

F6) = 3 wilx)

where the weights w; (x) are defined by:

w;(x) = _ K (5*) .
YK (252)

Notice that these weights are nonnegative and they do sum up to one. Because the kernel function
is typically very small when its argument is large and relatively large when its argument is small,
the weight w;(x) is (relatively) large when x is close (i.e. similar) to the observation x; and small
otherwise. This shows that the kernel regression function f given by (2?) is a weighted average of
the observed values y;’s of the response (and hence it is linear in the y;’s) with weights which give
more importance to the responses from values of x; close to the value x of the explanatory variables
under consideration.

e The choice of the bandwidth is a very touchy business. Many proposals have been made for
an automatic (i.e. data driven) choice of this smoothing parameter. Whether one uses the results of
difficult asymptotic analyses to implement bootstrap or cross validation procedures or simple rules
of thumb, our advise is to be wise and to rely on experience to detect distortions due to a poor choice
of the bandwidth.

o As we explained earlier, it is tempting to use a separate bandwidth for each explanatory variable.
This is especially the case when the kernel function is of the product type as given in (??) and when
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the dynamic ranges of these variables are very different. For example, if a variable is expressed in
a physical unit, changing the unit system may change dramatically the range of the actual values
of the measurements, and small numbers can suddenly become very large and as a consequence of
the change of units. Accordingly, the influence of this variable on the computation of the kernel
regression can increase dramatically. This undesirable effect is often overcome by normalizing the
variables. See details in the discussions of the practical examples presented in Subsection ?? below.

e The sample observations of the explanatory vector form a cloud of points in the p-dimensional
Euclidean space RP. The larger the dimension p, the further apart these points appear. Filling up
space with points is more difficult in higher dimension, and in any given neighborhood of a point
x € RP, we are less likely to find points from the cloud of sample observations when p is large.
This fact is known as Bellman’s curse of dimensionality. When the number n of observations is
not excessively large, the kernel regression has proven to be very powerful when the number of
explanatory variables (i.e. the number p) is reasonably small, typically 2 or 3. How small should this
number be obviously depends upon the sample size n, and the more observations we have, the larger
the number of explanatory variables we may include. This form of Bellman’s curse of dimensionality
can easily be illustrated by heuristic arguments but it can also be quantified by rigorous asymptotic
results which show that n should grow exponentially with p. This is a serious hindrance.

7.6 PROJECTION PURSUIT REGRESSION

Projection pursuit searches for an approximation of the true regression function f(x) in the form:

m

FPx) =a+ ) duar-x). (7.15)

(=1

where « is a real number, the a, are unit vectors in RP and the ¢,’s are functions of a real variable.
Remember that we are working in the usual regression setting:

(X17y1)7(X27y2)7 """ 7(XM7?JM)

where the explanatory variables x1,Xs,- -+ ,x)s are p-dimensional. This algorithm was designed
in order to cope with the curse of dimensionality inherent with large values of p, by replacing the
p-dimensional explanatory vectors x; by suitably chosen one-dimensional projections a; - X;, hence
the term projection in the name of the method. We now explain how the quantities «, ¢1(a -x), -« - ,
and ¢y, (ay, - x) appearing in formula (??) are estimated in practice. The projection pursuit algorithm
is based on an inductive procedure in which residuals are recomputed and fitted at each iteration. To
start, we assume that the observed values y;’s as the starting residuals, i.e. the residuals of order zero.
Next, each time one of the terms in the sum appearing in the right hand side of (??) is estimated, the
actual estimates are subtracted from the current values of the residuals, providing in this way a new
set of residuals from which we proceed to estimate the next term in (??). This recursive fitting of the
residuals justifies the term pursuit in the name of the method.

The constant « is naturally estimated by the mean of the observations of the response:

1 n
QZ?ZE;%-
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This sample mean is subtracted from the observations (i.e. the residuals of order zero) to get the
residuals of order one. Next we proceed to the estimation of the first direction a; and the first function
¢1. Because of computational considerations, it is important to choose a specific procedure capable
of selecting the best function ¢ for each choice of the direction given by the unit vector a.

The creators of the projection pursuit algorithm proposed to fit recursively the residuals (starting
from the values of the response variable) with terms of the form ¢, (a; - x) and to associate to
each such optimal term a figure of merit, for example the proportion of the total variance of the
response actually explained by such a term. In this way, the whole procedure would depend only
upon one parameter. One could choose this folerance parameter first (typically a small number) and
one would fit the response and the successive residuals until the figure of merit (i.e. the proportion
of the variance explained by ¢4, (a; - x)) would drop below the tolerance parameter and this would
automatically take care of the choice of the order m of the model (2?).

7.7 MONTE CARLO MALLIAVIN REGRESSION

This final section is devoted to a recently developed method to compute conditional expectations

when random variables/vectors are functions of a (possibly multivariate) Wiener process. Se we

propose to compute

E{Y 9x(X)}
E{6x(X)}

when both Y and X are functions of an underlying Wiener process {W(¢)};. The above formula
is not always rigorous as it involves Dirac delta functions, but its intuitive power will be extremely
useful. The idea of the method is to use an integration by parts to replace the delta function by its
anti-derivative which is a bona fide function. The idea is very simple. However, its implementation
is very intricate as the integration by parts in question needs to be done in function space (the path
space of the Wiener process). This is how and why the so-called Malliavin calculus (calculus on
Wiener space) is brought to bear.

E{Y|X = x} = (7.16)

Malliavin Calculus Based Simulation Method

Using Malliavin integration by parts formula to get rid of the Dirac point masses in (??), one gets a
ratio of the form:

E{Y Hx(X)S}
EY|X=x} = ———— 7.17
{Y[X =x} B (X)S] (7.17)
where Hy(x') = ]\, 11z,,00)(#}), and S is some non-negative random variable. An important

consequence of this formula is the fact that the associated Monte Carlo estimator:

% ZnN:1 Y (™ H (X (M)
X Loy Hy (X (M) S

E{Y|X =x} =

)

constructed from an independent sample { (V™) X(™) S()}, _, of size N, converges at the
v/ N—rate by the classical central limit theorem. The following subsection is devoted to a self-
contained derivation of these facts. We use a pedestrian approach based on the log-normality of
our Gaussian framework, without ever appealing to results of the Malliavin calculus.
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7.7.1 Integration-by-Parts based Regression Estimation

We first concentrate on a regression function of the form:

E{g(Wiyn)de(Ws)}

ra(z) = E{g(Wepn)We = 2} =

Integration by Parts

Let us denote by ¢ the density of the standard one dimensional normal distribution, and let us assume
that g is a smooth function with a bounded derivative. By the independence of the increments of the
Brownian motion, we have:

BT} = ([ otwn +u2)dewn)e (f&) o (jﬁ) sy

where we use the notation ¢ for the density of the standard normal distribution, i.e.

1
67$2/2

p(z) = N ,

Integrating by parts with respect to the w; variable, we get :

z e R.

’U)

E{g(We1n)dz(Wr) }f// (W1 + w2) 1 00y (w1) T@ f}) ( )dw1dw2

<
oot () (o

Next, we compute the second integral by integrating by parts with respect to the wo variable. We get:

Blo(Wian)ba (7} = [[ gl + w2>1[w,m><w1>%go (50 (22 ) durdos

oo (3] i
= E{g(Wi+1)1[z,00) (We)Sh}

where the random variable W W W
S = Tt - % (7.18)

is independent of the function g. Notice that formula (??) is established for a function g € C}. How-
ever, since it does not involve the regularity of g, we can conclude by a classical density argument
that it is valid whenever g(W;,,) € L.

Actual Simulation

Let (W(s))lgsg s be n independent samples of the Wiener process W. Then, the Monte Carlo esti-
mator suggested by the above formula is defined by

. _ dnlgl(z) ©) ) () o)
y(x) = mwhere inlg Zg (Wl Yooy (W) S,
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where S ,(ls) is computed from the sample T (%) using formula (??). Its asymptotic properties are
directly deduced from the law of large numbers and the central limit theorem for independent iden-
tically distributed random variables. In particular, the rate of convergence is of the order v/ N.

The price to pay in order to recover the /N rate of convergence is that the variance of the estimator
Gn[g](x) explodes as h shrinks to zero since

lim S, =0
A0

in L. Since our objective is to send the time step h to zero, it is necessary to find a remedy to this
variance explosion problem.

Localization

In order to do so, we introduce a localization function. Let x be an arbitrary smooth function with
x(0) = 1. Following the computations leading to formula (??) we get:

E{g(Wesn)0e(We)} = E{g(Wisn)de(Wi)x (Wi — )}

// (w1 + w2)dx (w1)x (w1 — x)p <1\2> @ <w2) dwy dws
st () ()

B // 9/ (wr + w21y o) (wi)x(wr — 2)¢p (315) ’
- //9(w1 + w2) Lz 00 (w1)X (w1 — 2)¢p (%) 7

= // g(wr + wa) g o0y (w1) x (w1 — ff)%w <\/1E> v %) dwydws

h
—//9(w1 + w2) 1, 00) (W1)X (w1 — 2) ¢ (w;> ® (ﬁ) dwydw;

= E{9 Wisn) Liz,00)(We)Shx }

where the random variable S}, ,, is defined by:

t h
= x(Wy —2)Sp — X' (W — )

W, W, — W,
Shx = x(W; — ) (t - t””t) — X' (W, — ) (7.19)

is again independent of the function g. For each localization function y, one can now define a new
Monte Carlo estimator as before. All these estimators share the nice convergence property at the
v/N-rate. Therefore, the natural question is whether one can reduce the variance of the Monte Carlo
estimator by some convenient choice of localization function x.

Variance Reduction by Localization. Set G := g(W;,)?, and let us consider the integrated mean
square error
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J(x) = /RIE {G1w,>. 57 } d .
We are interested in the integrated mean square error minimization :
V :=min{J(x) : x smooth, bounded and x(0) = 1} .
Using Fubini’s theorem and a path by path substitution, we get:

W, ,
J(x) =E {G/ Ix(Wy — x)Sp — X' (W — )| dm}

— 00

:E{G / " xS —x'(y)fczy} |

Observing that E{G.S,} = 0, this provides

+oo
I = / B{GS2} (W) + E{G} X (0)]2] dy

Hence the integrated mean square error minimization is reduced to a classical problem of calculus
of variations, which can be solved explicitly. The optimal localization function is then given by

2 1/2
xn(z) = e ™% where n, := (%) . (7.20)

In particular, this shows that
nn = (0] (h_1/2) .

7.7.2 Monte Carlo Estimation for the Finite Maturity Problem

We now return to the problem of the optimal multiple stopping problem, and more precisely to the
pricing of swing options in the framework of the discrete time approximation set up in Subsection
??. Let IV,, be some integer depending on the time step parameter n, and let {W(S), 1<s< N,}be
N, independent samples of the Wiener process. For each integer s, we denote by X (*) the process
X associated to the Brownian motion W (*) via formula (2?). Also, we set:

R (ty,2) := 87 (£) 11w .00) (W)
= Xh(Wt(S) —x) [nh +ht <2Wt(j8) - Wt(jszh - Wt(jslh):| 1[m,oo)(Wt(jS)) )

where S}, and y, are defined respectively in (??) and (??). Following the discussion of the previous
paragraph, we define the estimators :

S A2 s s

[\}n Zs:l U7(L) (tj+17Xt(j<+)»l> Rg/)n (tj?th)
S s

Nin, ZS:]. Rg/)n (tj? Wtj)

ﬁg) (tj7th) =

&S;) (tj,th) =¢ (th)
Nin Z§=1 @7(11_1) (tj + 4, Xt(;-)&-é) RSSS) (tj’ th)

—rd
+e
S :
Y R (4, W,)

1<1-5
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of pgf ) (tj, Xt].) and d),(f ) (tj, Xt].) respectively. These estimators are defined inductively, given the

estimators 9(*~1)(., .) and the previous estimator f}ﬁf) (tj+1, x©® ) in the backward procedure. Fi-

tj+1
nally, we observe that psf ) < 3K and qﬁ,(f ) < iK. Hence, in order to ovoid an explosion of the
algorithm, we define the truncated estimators (see Bouchard and Touzi (2002)):

P (1, X,,) = GE) A ) (1,%,,) "
O (15, Xe;) = GK) A (85.X,) T
and
o) (5, X4,) == max {ﬁg) (t. X4,) 07 (tj’Xtﬂ')} '

According to the error estimate of Bouchard and Touzi (2002), in order for the approximation error
to be of the order of n~1/2, one has to choose a number N,, of simulated trajectories such that

N, = O<n7/2> .

The Value Functions

The above algorithm was implemented and tested in the case of an American put option with four
exercise rights and the following characteristics: maturity 7' = 1 year, » = .05, ¢ = .30, maximal
number of exercise rights £ = 5, n = 50. We also used a refraction period § = 0.1 to separate
successive exercises. This feature is not so much of an extra difficulty when dealing with discrete
time models, however, it can be a serious nuisance with continuous time models. We added the
refraction time to our computations as this feature is typical in the energy markets.

The left pane of Figure ?? gives the plots of the graphs of the functions z — v()(¢, ) for
t = .59,.58,---,.02,.01. Two remarks are in order. First, these graphs are not computed over the
same range of values of z. Essentially, we computed the values of v(¥)(¢, ) for the values of =
which can be reached by the sample paths of the diffusion process X;, and we determined this range
of values of = from the results of our simulations. The second remark concerns the noise in the
numerical results. Obviously, we should expect zero in the right hand side of the plots, and we see
quite significant departures from this expectation. The right pane of the figure gives the plots of the
graphs of the functions 2 < v3) (¢, ) for t = .59, .58, --- ,.02,.01. for t = .49, .47,--- ,.02,.01.

Figure ?? gives the same plot as the left pane of Figure ??, but instead of super-imposing the
one-dimensional graphs on the same plot, we use both the ¢ and the x variables to produce surface
plots, or to be more specific the scaled time to maturity 7 = 100(7" — t) and x. The fact that the
range of x varies with ¢ is obvious from this surface plot, and as expected, it is limited by some form
of parabola. Plotting the graphs of the other value functions v(*) would produce very similar results
and we refrain from producing them.

Number of Monte Carlo Scenarios

We present some partial numerical results to illustrate the effect of the number of trajectories N,,.
According to the result of Bouchard and Touzi (2002) which we re-derived above, the number NV,
should be of the order of n7/2. The results collected in the following Table 1 show that a very high
precision can be achieved even with a significantly smaller number of simulated trajectories.
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Monte Carlo Swing Value Functions for One Exercise Right
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Monte Carlo Swing Value Functions for Three Exercise Rights
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Fig. 7.1. Graphs of the functions v<1>(t, -) fort = .59,.58,---,.02,.01 (left) and of the functions v<3>(t, -)

for t = .49,.47,-- - ,.02,.01 (right).

Table 1. Swing put option values for various numbers of simulations

T = 1year,d = 0.1 year, Sy = K = 100, r = .05, 0 = .30, n = 50

N =8,192 N = 16,384

ey [
v(?) [stand. dev.

[

[

il

@ [stand. dev.] 38.34

v

Exercise Regions

]
]
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]
J
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56%) 19.26 |.
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30%)

]
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Next we identify an estimate of the exercise region for each of the value functions v(*) considered
as a single stopping problem associated to the reward function ¢)(i)(t, x). The corresponding exer-
cise boundaries are given by the graphs of the functions ¢ < Z(t). Estimates of these boundaries
computed with the Monte Carlo method described in this section are plotted in Figure ??. The com-
putations were performed with the following parameters: maturity 7" = 10 months, refraction period
0 = 2 months, = .05, ¢ = .30, maximal number of exercise rights £ = 5, n = 50, N = 8192.
As expected these exercise boundaries are increasing functions of the time-to-maturity variable. We
also verify that 27 (¢t) > &%, (¢). This property is consistent with the intuition. We proved rigorously



Appendix: Monte Carlo Regression

100

L
G
SR
S
S
SRR
R
SN
I
SR
R
A
e e
e
A
R
R
t

S

i
e

SRR

T

Fig. 7.2. Surface plot of the graph of the function v when regarded as function of both ¢ and . The variable

TAU represents 100 * (7" — t).

this result in the case of the perpetual put options in Lemma ??, but a proof of this fact in the finite

maturity case is still lacking: this monotonicity remains an interesting open problem.

NOTES & COMPLEMENTS

The use of kernel regression in the context of American option pricing was first suggested by Carriere in [?].

If the bandwidth is chosen to go to zero as the sample size increases without bound, the kernel estimate can be

made to converge toward the true value of the conditional expectation. However, despite some freedom in the

choice of the rate of convergence of the bandwidth toward 0

the bias introduced by the approximation of the

s

point mass at x by the kernel function is responsible for the fact that the classical v/ N rate of convergence of the

central limit theorem is lost. We refer to Bosq’s monograph [?] for a detailed analysis of the rate of convergence
of the kernel estimator. There the interested reader will find extensions to dependent samples and proofs that

this rate decreases dramatically when the dimension of the random variable B increases.

The use of basis function expansions in the context of American option pricing can be traced back to the

work of Tsitsiklis - van Roy [?] and Longstaff and Schwartz [?] , As in the case of the kernel method, the

N —rate of convergence is lost because of the bias introduced by the finite dimensional approximation. The

choice of the orthonormal basis can drastically influence the rate of convergence. For example, it was shown by

Egloff and Min-oo in [?] (see also the paper by Glasserman and Yu quoted in the previous chapter) that the rate

of convergence of this algorithm could be exponentially slow. See for example their Theorem 6.15.
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Multiple Exercise Regions
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Fig. 7.3. Estimates of the boundaries of the exercise regions of swing options with £ = 5 exercise rights, as
given by the graphs of the functions ¢ < ] (¢) computed via the Monte Carlo procedure described in the text.

The use of Malliavin calculus in financial derivative pricing has been proposed by Fournié, Lasry, Lebuchoux
and Lions in [?], and further developed by Bouchard, Ekeland and Touzi in [?]. The asymptotic properties of
the resulting numerical algorithm for the computation of the price of American put options (and more generally,
for the expected value of functions of the solutions of reflected backward stochastic differential equations)
have been analyzed in Bouchard and Touzi [?]. The presentation given in the text is borrowed from a work
of Carmona and Touzi [?] where a self contained approached was given in the Black-scholes framework of
geometric Brownian motion without any requirement other than basis probability calculus.
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cross validation, 86 geometric Brownian motion, 11
curse of dimensionality, 87 Gramm-Schmidt ortho-normalization, 38
growth rate, 11
D
default, 19, 46 H
delta function, 88 hazard
diffusion coefficient, 23 function, 19
direct product, 86 rate, 19
discount factor, 7 heavy tail, 21
discounted transition kernel, 5 Heston model, 23, 32
distribution Hull-White model, 32
t, 20
exponential, 19 I
Gamma, 21 integration by parts, 88
Gaussian, 20 intensity, 19
generalized Pareto, 21 It6 correction, 11
normal, 20 Ito’s stochastic calculus, 33
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K
kernel, 83
function, 83

L
law of large numbers, 29
leverage effect, 32
Lipschitz coefficient, 27
log-normal, 11

M
Malliavin calculus, 43, 88
Markov chain, 17
Markov property, 24
mean reversion, 23
median, 77
Milstein scheme, 26
Moody’s Inverstor Services, 36
multivariate ¢-distribution, 34
multivariate Gaussian distribution, 32, 33
multivariate normal distribution, 32, 33
multivariate Student distribution, 34

N
normal distribution, 20

o
option
American, 1, 27
Asian, 5, 27
basket, 5
Bermudan, 1, 5, 27
call, 4
pay-off, 1
perpetual, 1
put, 5
reward, 1
spread, 33
Ornstein-Uhlenbeck process, 22

P
pay-off, 1
perpetual option, 1
Poisson distribution, 17, 19
projection pursuit, 87
put option, 5

Q

quantization algorithm, 43

R
recombining, 8
recovery, 46
reduite, 3
regression, 79
regression function, 80
reward, 1
risk neutral probability, 8

S

S&P, 36
sample, 16
Samuelson’s model, 20
scale parameter, 21
senior unsecured

bond, 18

debt, 18
shape parameter, 21
shortfall

expexted, 35
Snell envelop, 2
spread option, 33
stochastic calculus, 33
stochastic volatility, 23
strong order, 26
Student distribution, 20
sub-additive measure of risk, 34
submartingale, 7
super-harmonic, 3
survival function, 19
swing contract, 14

T
tensor product, 86
tesselation, 43
transition kernel, 3
transition matrix, 18
tree, 8
binomial, 8

\'
Value at Risk, 34
value at risk, 15
Vasicek model, 22, 27
volatility, 11

w
Wiener process, 11



V4
zero coupon bond, 19



