Investments, wealth and risk tolerance

Lecture V



Topics

Utility-based measurement of performance

Variational and stochastic components of optimal utility volume

Optimal allocations and their stochastic evolution

Efficient frontier



Utility-based measurement of performance



Stochastic environment

Important ingredients

Time evolution concurrent with the one of the investment universe

Consistency with up to date information

Incorporation of available opportunities and constraints

Meaningful optimal utility volume



Dynamic utility

U(x,t) is an F-adapted process

e As a function of x, U is increasing and concave

e For each self-financing strategy, represented by 7, the associated
(discounted) wealth X; satisfies

Ep(U(XFt) | Fs) < UXT,s)  0<s<t

e There exists a self-financing strategy, represented by 7, for which
the associated (discounted) wealth XZT* satisfies

Ep(UXF 4) | F) = UXT,s) 0<s<t



Traditional framework

A deterministic utility datum u(x,T') is assigned at the end of a

fixed investment horizon

Uz, T) =u(x,T)

Backwards in time generation of optimal utility volume

V(Xy,t) = sup Ep(u(X{,T)/Ft)

V(XT ,t) = Ep(V(XT ,s)/F) (DPP)
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Uz, t) = Ve, t) 0<t<T

The dynamic utility coincides with the traditional value function.

It remains constant for times beyond 7.



Alternative framework

A deterministic utility datum wu(x, 0) is assigned at the beginning of
the trading horizon, t = 0

U(x,0) =u(x,0)

Forward in time generation of optimal utility volume

UXT ,x)= Ep(UXT t)/Fs) 0<s<t

e Dynamic utility can be defined for all trading horizons
e Utility and allocations more intuitive

e Difficulties due to the “inverse in time" nature of the problem



Construction of a class of forward dynamic utilities



Creating the martingale that yields the optimal utility volume

Minimal model assumptions

Stochastic optimization problem “inverse” in time

Key idea

Stochastic input Variational input
Market Individual

N/

Maximal utility — Optimal allocation



Variational utility input
Key ingredients : wealth and risk tolerance

Risk tolerance solves a fast diffusion equation posed inversely in time

( Tt + %,’,.2,',,3333 — O

r(z,0) = — ugg?

N———

g

\

Utility surface generated by a transport equation

U + %r(m, t)uy =0

u(,0) = ug(z)
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Stochastic market input

11



Investment universe
Riskless and risky securities
e (O, F,P) ; W=W! ... W% standard Brownian Motion

e Traded securities
dSt = Siuldt + o -dWy) ,  Sh>0
1 <i<k t t(Mt t ) 0
dBy = riBydt | By=1

e, 7t € R, (7% e R?  bounded and JF+-measurable stochastic processes

e Postulate existence of a F;-measurable stochastic process A\ € R
satisfying

,ut—’rtlzaér)\t
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Investment universe

e Self-financing investment strategies 7'('?, 7'('%, 1=1,...,k
e Present value of this allocation
koo
Xp =2 m
1=0

dXt — Z W%(M% — 7“75) dt + Z W%U% : th
1=0 i=0

= ot - (A dt + dWy)

7Tt:<7'('tl,...,ﬂ'f>, ,ut—TtIIO'?)\t
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Market input processes

(o, \t) and (Y3, Zt, Ay)

These Fi-mble processes do not depend on the investor's variational utility

They reflect and represent, respectively
(At,0¢) : dynamics of traded securites

Y; : benchmark

numeraire

Zy : market view away from market equilibrium

feasibility and trading constraints

Ay . subordination
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The processes (Y, Z¢, A¢)

e Benchmark and/or numeraire

A “replicable” process Y; satisfying

dYy = Yibs - (Aedt + dWy)
Yo=1

575 < .7:75 ) UtO;(St = 575

U;F - Moore-Penrose matrix inverse
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Market input processes

e Market views, feasibility and trading constraints

An exponential martingale Z;  satisfying

dZy = Zypt - AWy
Zo=1, ot eFy

e Subordination

A non-decreasing process A; solving

dA; = |6t — oo (A + @) dt
Ag =0
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Optimal utility volume
Optimal asset allocation
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Optimal utility volume

Stochastic input : (Y, Z;, Ay) Variational input : u(z,t)

Benchmark | Y}

Time change UtUgpr = %u% Market view

At ”LL(:L“, O) - uo(x) : Zt

Ulx,t) = u(%, Ay) Zy
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Optimal utility volume

Stochastic market input Variational input
uh(z
A, Of x,ro(x) = —%
| l
benchmark, views re + %TZTM =0 (FDE)
subordination up + %rugg =0 (TE)
(Ye, Zt, At) u(z,t)

N -

Ule,t) = u(4-, Y Z

Model independent construction! "



What is the optimal allocation?

Optimal portfolio processes

T = (ﬂg,ﬂtl,...,ﬂf)

can be directly and explicitly characterized

along with the construction of the forward utility!
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The structure of optimal portfolios

ngk — Otﬂ';fk : ()\t dt + th)

Stochastic input Variational input
Market Individual
(Y, Z¢, Ap) wealth =
M, O, O, Ot risk tolerance 7(x,t)
I, . . .
AL linear combination
t

of (benchmarked) optimal wealth

and subordinated (benchmarked) risk tolerance
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Optimal asset allocation

o Let ng be the optimal wealth, Y; the benchmark and Ay the subordination
processes

ngk = O'tﬂ'ZLk : ()\tdt + th)
dYy = Yibe - (Medt + dWy)
dAy = |O‘t0;_<)\t + @) — (5t|2dt

e Define r; the subordinated (benchmarked) risk tolerance

Optimal (benchmarked) portfolios

1 >k
Eﬂf = O';L <<)\t + ¢¢)ry + 0y <7z — rf))
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Wealth-risk tolerance stochastic evolution
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A system of SDEs at optimum utility volume

*
Tt

X/ = Y, and 7 =r(X], A)

dXT = 7f (oo (A + ¢0) — 6) - (Ar — &) dt + dW7)
dry = Tx(Zt*v At)djf\f

e Separability of wealth dynamics in terms of risk tolerance and market input

e Sensitivity of risk tolerance in terms of its spatial gradient and changes in
optimal wealth

e Utility functional has essentially vanished

Universal representation, no Markovian assumptions
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An efficient frontier

Optimal wealth-risk tolerance (X, 7}) system

of SDEs in original market configuration
[ AX} = (oo (A + @) — 6) - (N — &) dt + dW)

dﬁfk = 7’:1:(5(\;7 At) df(\f

\

change of measure change of time

historical — benchmarked Levy's theorem
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An efficient frontier

Optimal wealth-risk tolerance (z},z7) system of SDEs

in canonical market configuration

( dx% = a:% dwy

$dad = ry(x), t)a? dwy
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Analytic solution of the efficient frontier SDE system

d:c% — :13% dwy

dry = 1y (z), t); dwy

Define the budget capacity function h(x,t) via

h(zt) du h(z,t)
SC:/Q ) :/a: v(u, t)du

x : related to symmetry properties of risk tolerance,
reflection point of its spatial derivative and
risk aversion front
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Analytic solutions

The budget capacity function & solves the (inverse) heat equation

Using equivalent measure transformations and time change we recover the
original pair of optimal (benchmarked) wealth and (benchmark) risk tolerance
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Utility-based performance measurement

Market Investor
Benchmark, views, constraints Wealth, risk tolerance
Market input processes Fast diffusion eqgn
Subordination Transport eqn

Forward evolution
; Yi, Zt, A '

x, r(x,t), u(x,t)

|

Optimal utility volume and optimal portfolios

measure time
change \L change

Efficient frontier SDE system
Heat eqn \I/ Fast diffusion eqn

Universal analytic solutions



Dynamic exponential utility

Objective: Find an F;—adapted process Uy () such that

Up (z) = —exp (-%)

y

y Ep(Us (X3) [Fr) < Up (X])

o (1 (X7 ) ) = Ui (X7 ) 52

\

Solution

e Variational input

T
u(x,y, z) = — exp <—— + z)
Y



Dynamic exponential utility (continued)

e Stochastic market input consists of a pair of Ito processes, (Y, Z), solving,
respectively,

dYy = Yiby - (Redt + dWy)

Yo=y>0

and

dZy = mdt + & - AWy

Zy = 0.
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Moore-Penrose pseudo-inverse matrix o of o (d x k) is the unique k x d

matrix satisfying

UU+U:U o

T T
(00+) = oo (0+0) =00,

The processes 0, k, n, £ are taken to be bounded and F;—progressively mea-

surable. It is, also, assumed that

cotd=¢6 and d-(k—A) =0
The drift n of the process Z satisfies

— ¢

2n = ‘5 — oo™ ()\—I—ﬁ)‘z

Wlog, the dynamics of the benchmark process Y can be written as

dYy = Yibe - (Aedt + dWy)
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Dynamic exponential performance

Solution

Ut (x) = —exp (—% + Zt>

|dea of the proof: applying Ito calculus and using the structural assumptions on
the market input yields

AU (X) = U (X) (=Y '3 dW + XY 16 - dW + & - dW)
+%U (X) (=218 A+ 2XY okt 2+ Y AP +2 (YT - XY )68
=2yl B 2XYTIo £ (XY TR = 2XY ) (0] + [¢)7) at
=U(X) (=Y 7'8-dW + XY 15 dW + & - dW)
+%U (X) (|Y‘1ﬁ (A +9+ (xy~t—1)6) \2 +2XY T (k= A)
20+ € = 15 = (A + 9 dt
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Idea of the proof (continued)

and, in turn,

dU (X)=U(X) (=Y "B lor + XY 154+ &) - dW

+%U (X) (|Y_1B_1a7r —oot (A +&)+ (XY~ —1)6) |2+2XY_15-(/1 — )
+|(I = o00™) <A+g)\2 + 20+ [€)F — |6 - (>\+€)\2) dt

..... and, finally,
AU (X)=U(X) (=Y 'Blon + XY 715+ &) - aW

%U@X”Y—H?JUW—OU+(A+(XY“1—1)5+€N2ﬁ
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At the optimum
e Feedback portfolio control process
™ =YBot (A+ (XY —1)6+¢).
e Optimal wealth process
dX* = B~ lor* - (Adt + dW)
= (Y (00" (A +8) = 0) + X*5) - (\dt + dW).
e Optimal utility volume
dU (X*) = U (X*) (=Y "B o + X*Y 1o +¢) - dW

=U(X*) (00t (6 =N+ (I —00t)€) - dW.
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Explicit solutions

o Optimal wealth process:

= & (@ + J§ &5 (050 (As + &) = 85) - (As — ) ds + dW))
Er = exp (J§ (05 - As — 51657 ds + f 05 - dW)
e Optimal portfolio process

mf = BYio; (M + & — &) + BrX[ o] 6y
= a:EtBtU;r(St + BthU;r (At + & — 0¢)

+Bi&y </ g 1Y3 ((73(7 ( -+ fs) — ) - (()\5 — (55) ds + dWS)) U;F(St

e Optimal utility volume

X

U (X]) = exp <_§ — /Ot ! ‘0'50'—'_ (0s — Ag) + ([ 050, )fs‘

+/Ot <O'50';_ (55 — Ns) + (] — 0504 ) fs) : dWS)
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Case I: No benchmark and ‘no’ views 06=¢=0.

Then, Yy =y, fort > 0.

e The forward performance process takes the form

x t1 2
Ut (x) = —exp <_§ +/O 5 ‘050;)\5‘ ds)

Note that even in this simple case, the solution is equal to the classical
exponential utility only at ¢ = 0.

e The optimal discounted wealth and optimal asset allocation are given, re-
spectively, by

X =x+ /Ot Y (O‘SO';F)\S) - (Agds + dWy)
and
T = thO';_)\t
Observe that 7™ is independent of the initial wealth x.
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Case 1: No benchmark and ‘no’ views §=¢ =0 (continued)
e Optimal utility volume
x t1 2 t
U (X]) = —exp <_§ — /O 5 ds — /O (75(7;)\3 : dW3>

Observe that 7™ is independent of the initial wealth x.

050;)\5

e Total amount allocated in the risky assets

T -
1-—:1-y0 )\t
By t

e Amount invested in the riskless asset

Such an allocation is rather conservative and is often viewed as an argument
against the classical exponential utility.
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Case 2: Static performance oo" (6 — \) + ([ — aa+) ¢ =0.

Then o™ (§ —A)=0and o6 =€, and Z; = L& - dWy

e Dynamic exponential utility
U T e aw
T)=—exp|—=— —I—/ :
t( ) p Y, 0 §s S
e Optimal discounted wealth

* t
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Case 2: Static performance oo™ (§ — \)+ ([ — aa+) ¢ = 0. (continued)

e Optimal allocation

t
mi = x&Bio} 6 + Yy Bio & + Bi&y ( /O EYEs - dWS> o Oy

e Optimal utility volume
x

Uy (XF) = U (&) = — exp (—5)

Observe that the optimal level of forward performance remains constant across
times.
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Case 3: No benchmark and risk neutralization 6 =0and A+ ¢ = 0.

Then, & =1, Y; =y > 0and Zp = — [ 1| \s]Pds — [{ Ag - dWs.

e Dynamic exponential utility

r 1
Uy (2) = — exp <_§ =5/ sl s —/O A dWS>
e Optimal discounted wealth
X/ =u
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Case 3: No benchmark and risk neutralization 06 =0and A +¢& = 0.

(continued)

e Optimal allocations

=0 and w~ =X/ =ux.

e Optimal utility volume

U (X)) =U; (2).

It is important to notice that, for all trading times, the optimal allocation consists
of putting zero into the risky assets and, therefore, investing the entire wealth
into the riskless asset. Such a solution seems to capture quite accurately the
strategy of a derivatives trader for whom the underlying objective is to
hedge as opposed to the asset manager whose objective is to invest.
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Case 4: Following the benchmark 0 = A+ & with A+ & # 0.

Then 6 = oo™ (A + &) and, in turn, Z; = — g% €7 ds + JEes - dWs.

e Dynamic exponential utility

X

t t
Ut (x) = —exp <_?t_/0 %|€S|2d5‘|‘/0 fs'dWs> :

e Optimal wealth
X[ =&

e Returns of wealth and of benchmark

dX, _dY;
X, v
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Case 4: Following the benchmark ¢§ = A\+& with A+& # 0. (continued)

e Optimal allocation
*
T = B X, 0/ 0

e Optimal performance level

X

t1 /
010X = = oxp (5 = [ gl ds+ [ )

Observe that, contrary to what we have observed in traditional backward ex-
ponential utility problems, the optimal portfolio is a linear functional of the
wealth and not independent of it.
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Case 5: Generating arbitrary portfolio allocations

e Assume that 1-0; (A\; +&) = 1. Then

*
Tt

.Bt

0,%

1 =X; and w7 =0

Hence, the optimal allocation 7™ puts zero amount in the riskless asset and
invests all wealth in the risky assets, according to the weights specified by the
vector o (A + €).
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Case 5: Generating arbitrary portfolio allocations (continued)

e Note, also, that for an arbitrary vector 14+ with 1 - azrut = (), the vector

C1—1-0/ N

&t =

vt
1-0‘?%

e L 1—1-0," )\
satisfies the above constraint since 1 - a;r ()\t t Uity tw) =1
. t t

Can we generate optimal portfolios that allocate arbitrary, but constant, frac-
tions of wealth to the different accounts?

The answer is affirmative. Indeed, for p € R, set,

1-of (M +&)=p

Then, the total investment in the risky assets and the allocation in the riskless

bond are
. 7TO
1- L =pX/ d ZL—_(1—9p X/
B, DAt an B, ( p)t

46



